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Regularization schemes for degenerate

Richards equations and outflow conditions

Iuliu Sorin Pop 1 and Ben Schweizer 2

October 2009

Abstract: We analyze regularization schemes for the Richards equation and a
time discrete numerical approximation. The original equations can be doubly
degenerate, therefore they may exhibit fast and slow diffusion. Additionally, we
treat outflow conditions that model an interface separating the porous medium
from a free flow domain. In both situations we provide a regularization with
a non-degenerate equation and standard boundary conditions, and discuss the
convergence rates of the approximations.

Keywords: doubly degenerate equation, outflow problem, numerical approxi-
mation, variational inequalities

1 Introduction

The Richards equation models flow in unsaturated porous media, using the saturation s
and a transformed pressure variable u. On a bounded domain Ω ⊂ Rn one considers the
following nonlinear degenerate problem for all times t ∈ (0, T ).

∂ts = div (∇u + K(s)), u ∈ Φ(s) on Ω, (1.1)

s|t=0 = s0 on Ω, u = uD on ΓD, n · (∇u + K(s)) = 0 on ΓN , (1.2)

u ≤ uout, n · (∇u + K(s)) ≤ 0, (u− uout) n · ∇u = 0 on Γout. (1.3)

In this set of equations, Φ is a nonlinear monotone constitutive law, K is a vectorial
coefficient that combines permeability and gravity, the boundary ∂Ω is decomposed into
an impermeable part ΓN , a Dirichlet part ΓD, and an outflow part Γout, n is the outer
normal. The value uout is the transformed pressure corresponding to a vanishing capillary
pressure: the fluid can flow out of the medium only if u exceeds this value. Without loss
of generality we will later set uout = 0. The monotone graph Φ ⊂ R × R can be doubly
degenerate, i.e. it can have flat parts (vanishing diffusion) and infinite slope (elliptic
behavior). Some physical background on the equations and, in particular, on the outflow
condition, is collected below.

1Eindhoven University of Technology, Department of Mathematics and Computer Science, Den Dolech
2, 5612 AZ Eindhoven, The Netherlands. i.pop@tue.nl

2Technische Universität Dortmund, Fakultät für Mathematik, Vogelpothsweg 87, D-44227 Dortmund,
Germany. ben.schweizer@tu-dortmund.de



2 Pop and Schweizer

We study two simplifications of the above equations. One regards standard boundary
conditions, i.e. Γout = ∅ such that the boundary condition (1.3) is not used. In the other
simplification we study the outflow condition, but neglect gravity (setting K ≡ 0) and
assume a non-degenerate constitutive law Φ.

In both cases, a regularization method for the above set of equations is introduced
and analyzed. We derive convergence of solutions as the regularization parameter tends
to zero. Furthermore, we derive convergence rates for a numerical scheme that can be
used to approximate the regularized system.

Literature. Due to its importance in practical applications and its interesting analytical
features, a vast literature is concerned with the description of flow in porous media. The
Richards equation is widely used to model the flow of one phase in unsaturated porous
media. If two phases (e.g. water and air) must be modelled, we are led to the closely
related two-phase flow equations, see e. g. [1, 8, 9, 10, 11, 17, 26]. Instead, if the medium
is partially saturated and the unsaturated phase is not modelled, we are led to the dam
problem [6], where the outflow condition is of particular importance. A system with
similar double degeneracy appears in a model for the evolution of bacterium species in
[5]. The analytical results and methods in those models are closely related to ours.

For the analytical treatment of the doubly degenerate equations a fundamental refer-
ence is [2], where existence, regularity and uniqueness of solutions is treated. We empha-
size that the uniqueness is shown only in the case that the function b = Φ−1 is Lipschitz
continuous. This is improved by Otto in [20] to more general single-valued functions b,
but we recall at this point that b is not single valued in our case.

Existence results for the outflow boundary condition for the same nonlinear equation
are provided with the formulation as variational inequalities in [1, 3], and with a regular-
ization procedure in [25]. A homogenization of many interface conditions was performed
in [10, 11, 26].

Numerical schemes for simply degenerate equations are investigated in e. g. [4, 13, 14,
16, 18, 22, 23]. The doubly degenerate case appears in [15, 21, 24]. Closest to our results
are [21] and [24], treating also the doubly degenerate case with a regularization procedure.
To relate our results to these works we note that in the first paper it is assumed that
Φ′(s) = 0 has only one solution s, and that Φ is convex and single valued. The problem
considered in the second paper can be brought to the form of (1.1). The assumptions
there allow for a nonlinearity Φ that may be multivalued, but Φ′(s) = 0 has again only
one solution. Here we allow both, Φ can be multi-valued and vanish on intervals. In all
papers mentioned above only standard boundary conditions are considered. Concerning
the problem with an outflow boundary, we are not aware of any numerical approach.

Main results on doubly degenerate equations. In the doubly degenerate case, we
restrict our analysis to Γout = ∅. To regularize the degenerate problem (1.1)–(1.2) we
consider a smooth approximation Φδ of Φ satisfying 0 < mδ ≤ Φ′

δ ≤ Mδ < ∞ on R,
where mδ and Mδ are δ-depending. The regularized problem is non-degenerate parabolic,
having a unique solution pair (sδ, uδ),

∂tsδ = div (∇uδ + K(sδ)), uδ = Φδ(sδ) on ΩT := Ω× (0, T ],

sδ(0) = s0 on Ω, uδ = uD on ΓD, n · (∇uδ + K(sδ)) = 0 on ΓN .
(1.4)
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As shown e. g. in [3, 25], under natural assumptions on Φ, a sequence δ ↘ 0 exists such
that (sδ, uδ) converges weakly to a solution (s, u) of the degenerate problem (1.1). Our
interest here is to compare approximate solutions. This, in particular, gives a quantitative
result on the convergence (sδ, uδ) → (s, u), the convergence of the whole sequence, and a
uniqueness result of solutions in a viscosity sense. Our main result in Theorem 2.2 is the
comparison estimate

sup
t∈[0,T ]

‖sδ − sε‖2
H−1(Ω) ≤ C max{ε, δ}. (1.5)

Here, C depends on the data s0, uD, but it is independent of ε and δ.

Main results on outflow boundary conditions. The contact of the porous medium
with free space across a portion Γout can not be described with a Dirichlet or a Neumann
condition. The outflow condition takes the form of complementing inequalities, which can
also be stated with a variational inequality. In this part, we restrict to non-degenerate
functions Φ and neglect gravity, therefore K ≡ 0.

For regularizing the outflow problem we use the form considered in [25]. A similar
approach was employed for two-phase flow equations, see [17]. We choose a nonlinear
Robin condition for the normal flux

−n · ∇uδ = Fδ(uδ) on Γout, (1.6)

where Fδ is an increasing function approximating the graph {(u, U) ∈ R2 : u · U = 0, u ≤
0, U ≥ 0}. Our main result in Theorem 3.3 is a convergence result

‖sδ − s‖2
L2(ΩT ) + ‖uδ − u‖2

L2(ΩT ) → 0, (1.7)

where (s, u) is a solution of the limit problem. The convergence analysis can be made
more precise. We will show that the convergence is monotone, uδ ≥ uε for δ ≥ ε. If the
pressure data are controlled, an error estimate is given in Proposition 3.6. Furthermore,
a numerical scheme is analyzed and the error estimate

‖ŝh
δ (t)− sδ(t)‖2

L2(Ω) ≤ C
(
h1/2 + δ−1h3/4

)
for the solution ŝh

δ of the numerical scheme is derived in Theorem 4.1.

Physical background. The Richards equation models unsaturated flow in a porous
medium occupying a region Ω ⊂ Rn. The unknown physical variables are the capillary
pressure p, the saturation s, and the velocity v. Darcy’s law relates forces to the velocity
with the help of the permeability k which is assumed to be given by an algebraic relation
k = k(s). Similarly, the capillary pressure law imposes an algebraic relation p ∈ pc(s).
With the unit vector en = (0, . . . , 0, 1) ∈ Rn pointing upward, the force of gravity is −gen.
Assuming a unit density, conservation of mass demands ∂ts+div v = 0 and can be written
as

∂ts = div (k(s)(∇p + gen)), p ∈ pc(s).

Emphasis lies on the fact that pc is, in general, a multi-valued function. This reflects the
physical fact that in a fully saturated medium (s = 1), the pressure inside the fluid can
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increase to arbitrary values. Additionally, the permeability degenerates, namely k(s) = 0
for small values of s. This again is a physical fact, reflecting that below some critical
saturation α, the fluid is no longer occupying connected regions in the medium. Then the
permeability vanishes.

In the case of x-independent coefficient functions k and pc, one uses the Kirchhoff-
transform to simplify the problem. Choosing a function Φ : R → R with Φ′(s) = k(s)p′c(s)
such that ∇[Φ(s)] = k(s)p′c(s)∇s = k∇p, setting K(s) = k(s)gen provides the form (1.1).
The equations are complemented with initial values s0 for the saturation s, a Dirichlet
condition uD for the transformed pressure u = Φ(s) on ΓD ⊂ ∂Ω, and a homogeneous
Neumann condition for the velocity at an impenetrable boundary, n · v = 0.

The physical outflow condition is

p ≤ 0, v · n ≥ 0, p (v · n) = 0 on Γout ⊂ ∂Ω.

It states that the capillary pressure can not exceed zero, since otherwise it is favorable
for the fluid to leave the porous medium. Water can only leave the medium, but can not
enter. The third condition is that water can exit only when a vanishing capillary pressure
is reached. Translated into the variables (s, u) the outflow condition is as given in (1.3).
We refer to [19] for more details on the modelling assumptions that lead to the outflow
condition.

2 Standard boundary conditions

In this section we analyze the regularization procedure for the Richards equation with
standard boundary conditions. We include gravity and study both the original and the
regularized equation

∂ts = div (∇Φ(s) + K(s)),

∂tsδ = div (∇Φδ(sδ) + K(sδ)),

together with the boundary conditions of (1.2) and (1.4). Our aim is to verify the con-
vergence sδ → s and to determine the convergence rate. Before stating the main result,
we specify the assumptions on the nonlinearities Φ, K and the regularization Φδ, as well
as on the data.

Assumptions on the limit problem

The constitutive relations. In this section two kinds of degeneracies are allowed:
slow diffusion and fast diffusion. Both are encoded in Φ, which may be multivalued in
s = 1, and its derivative may vanish or blow up. To be precise, we assume that the graph
Φ ⊂ R2 is defined by a monotonically increasing, locally Lipschitz continuous function
Φ̃ : (−∞, 1) → R with lims→−∞ Φ̃(s) = −1 and lims→1 Φ̃(s) = β ∈ R ∪ {∞}. The graph
Φ is determined by Φ̃ through the following relation for all (s, u) ∈ R2,

u ∈ Φ(s) : ⇐⇒ (s, u) ∈ Φ ⇐⇒ u = Φ̃(s) or (s = 1 and u ≥ β).

The value −1 on the left end point is fixed arbitrarily and is used only to specify the
properties of Φ. We also define α = inf{s ∈ (−∞, 1) : Φ(s) > −1}.
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On K : (−∞, 1) → Rn we assume K ≡ 0 on (−∞, α], and the uniform bound

|K ′|2 ≤ CΦ′

for some positive constant C. This is satisfied e.g. for quadratic functions k(s) ∼ (s−α)2
+

near s = α, K(s) = k(s)gen and a capillary pressure with derivative bounded from below
such that Φ′(s) ≥ ck(s). Furthermore, we assume that K ′ is bounded and extend K by
K(1) for arguments s ≥ 1. In particular, K is bounded on the real line.

u

α 1 s

Φ
k

α 1 s

Figure 1: Typical graphs of the nonlinear coefficient functions Φ and k, in the doubly
degenerate case.

Initial and boundary conditions. We emphasize that for the doubly degenerate case
considered in this section, only standard Dirichlet and Neumann boundary conditions
are treated. The sets ΓD and ΓN are two relatively open subsets of ∂Ω with empty
intersection and ∂Ω = Γ̄D ∪ Γ̄N . We assume that ΓD has a positive n − 1 dimensional
measure and that the boundary values are given by a time-independent smooth function
uD, in particular uD ∈ L∞(Ω) ∩H1(Ω). To have an easy proof in Lemma 2.1, we assume
that the boundary admits C1(Ω̄) solutions of Poisson problems on Ω. This is the case
e.g. for smooth boundaries. The smoothness assumptions on ∂Ω and uD are for notational
convenience and can be avoided with additional regularization steps. We finally assume
that the initial and boundary conditions are compatible, in the sense that the initial
saturation s0 ∈ L∞(Ω) and uD of the boundary data are related by uD ∈ Φ(s0).

The regularized problem

In what follows δ > 0 is a small regularization parameter, and Φδ : R → R is a monoton-
ically increasing Lipschitz appoximation of Φ. It satisfies Φδ(R) = R and

Φδ(s) = Φ(s) for all s ∈ (α + ρ(δ), 1− δ),

Φ′
δ(s) =

1

δ
for all s ≥ 1, Φ′

δ(s) = δ for all s ≤ α.

The function ρ : [0, 1) → [0, 1) appearing above is continuous and monotonically increasing
with ρ(0) = 0. We furthermore assume the monotonicity in the regularization parameter,
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namely Φε ≥ Φδ on R for all ε ≤ δ. A possible choice of Φδ is, for s0 ∈ (α, 1) and
sufficiently small δ > 0,

Φδ(s) =

∫ s

s0

min

{
1

δ
, max{δ, Φ′}

}
. (2.1)

In the following, (s, u) denotes a solution pair to the limit problem (1.1), whereas
(sδ, uδ) solves the regularized problem (1.4). The existence of solutions (s, u) is obtained
e.g. in [2]. The existence of solutions (sδ, uδ) is a consequence of standard parabolic
theory. Notice that the regularized problem is a simplification of the problem considered
in Section 3, where outflow boundary conditions are included. The existence proof there,
which is based on time discretization, also works for the regularized problems in this
section. A direct outcome of the analysis carried out here is also the existence of (s, u),
a result that has been obtained previously in the literature. However, our aim here goes
beyond this existence result, to the convergence of the regularization process by obtaining
estimates for the approximation error. In this sense we mention that convergence results
for doubly degenerate parabolic problems are obtained in [15], based on compactness
arguments. Error estimates are obtained in [24] also for doubly degenerate equations. In
the present framework, the assumptions on the nonlinearities there can be translated into
the Hölder continuity of the inverse of Φ, which we do not require here.

Lemma 2.1 (Uniform bounds). The solution uδ is bounded from above,

sup
ΩT

uδ ≤ M(uD, K, Ω), (2.2)

whereas for sδ one has the lower bound

inf
ΩT

sδ ≥ smin(s0, α, Ω). (2.3)

Additionally, sδ satisfies the upper bound

sup
ΩT

sδ ≤ 1 + C(uD, K, Ω) δ. (2.4)

The inequalities hold for all δ > 0, the constants M , smin and C depend on the indicated
data, but are independent of δ.

Proof. For k1 = ‖K‖L∞(R) +1 and large σ > 0, we consider the solution v ∈ H1(Ω) of the
following problem,

∆v = −1 in Ω, ∂nv = k1 on ΓN , v = ‖uD‖L∞(Ω) + σ on ΓD.

Since v is superharmonic, it is bounded from below by its values on the boundary,
hence, in particular, positive. Furthermore, it is bounded uniformly from above by
M = M0(uD, K, Ω) + σ. We claim the following comparison principle: the solution uδ

remains for all times below v, i.e. uδ(x, t) ≤ v(x) for all x ∈ Ω and all t ≥ 0.
We show the claim for C1(Ω̄)∩C2(Ω)-solutions uδ(., t) and v and note that the result

can be generalized to less regular solutions with an approximation argument. We consider
the first time instance t ≥ 0 such that, in some x ∈ Ω, the solutions touch, i.e. uδ(x, t) =
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v(x). Because of uδ(t = 0) = Φδ(s0) ≤ uD < v, the time instance satisfies t > 0.
Furthermore, x can not be on ΓD because of v > uD = uδ on ΓD. On ΓN holds ∂nuδ =
−K(sδ) · n < k1 = ∂nv, hence x can not lie on the Neumann boundary. Finally, for an
inner point x ∈ Ω, we have, in this point,

∂tsδ = ∆uδ +∇ · [K(Φ−1
δ (uδ))] ≤ −1 + K ′(Φ−1

δ (v)) · ∇(Φ−1
δ (v)), (2.5)

where we used that in a maximum of uδ − v we have ∆uδ ≤ ∆v = −1, and the same
gradients, ∇uδ = ∇v. We now exploit v ≥ σ and (Φ−1

δ )′(ζ) = 1/Φ′
δ(Φ

−1
δ (ζ)) → 0 for

ζ → ∞, independent of δ. The boundedness of K ′ and ∇v (independent of σ) implies
that, choosing σ large enough, the right hand side of (2.5) is negative for all δ. This
contradicts the minimality of t in the choice of the point (x, t). Therefore uδ remains for
all times below v.

The proof for the lower bounds is similar and uses the fact that K(s) = 0 for s ≤ α.
The upper bound for sδ is a consequence of (2.2) and Φ′

δ ≥ δ−1 on [1,∞).

Theorem 2.2 (Doubly degenerate equations). Let T > 0 define a time interval, ε, δ > 0
regularization parameters, and sδ and sε solutions of the regularized problems (1.4) with
the nonlinearities Φδ and Φε, respectively. Then there holds

sup
t∈[0,T ]

‖sδ − sε‖2
H−1(Ω) ≤ C max{ε, δ}. (2.6)

Here, C depends on the data s0, uD, but it is independent of ε and δ.

Proof. Without loss of generality we assume ε < δ. We consider the two approximate
solutions sε, sδ solving

∂tsδ = ∇ · (∇[Φδ(sδ)] + K(sδ)),

∂tsε = ∇ · (∇[Φε(sε)] + K(sε)).

Subtracting these equations, we find for σ = sδ − sε the equation

∂tσ = ∆[Φδ(sδ)− Φε(sε)] +∇ · [K(sδ)−K(sε)]. (2.7)

From this equation we will derive an estimate for σ. We emphasize that sδ and sε are
sufficiently regular for the subsequent operations since they are solutions of non-degenerate
problems.

Step 1. Test function and error evolution. We multiply the equation with the test-
function G = (−∆)−1σ. To be precise, we treat the time t ∈ (0, T ) as a parameter and
introduce the function G : ΩT → R as the solution of the elliptic problem

−∆x G(., t) = σ(., t) on Ω,

G(., t) = 0 on ΓD, ∂nG(., t) = 0 on ΓN .

Multiplying (2.7) with G = G(σ), for the time derivative we have

∂t
1

2
‖∇G‖2

L2 =

∫
Ω

∇G · ∇∂tG =

∫
Ω

G ∂t(−∆ G) =

∫
Ω

G ∂tσ.
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The right hand side in (2.7) yields

−
∫

Ω

∇ · (∇[Φδ(sδ)− Φε(sε)] + [K(sδ)−K(sε)]) G

=

∫
Ω

∇[Φδ(sδ)− Φε(sε)]∇G +

∫
Ω

[K(sδ)−K(sε)] ∇G

= −
∫

Ω

[Φδ(sδ)− Φε(sε)] ∆G +

∫
Ω

[K(sδ)−K(sε)] ∇G

=

∫
Ω

[Φδ(sδ)− Φε(sε)] (sδ − sε) +

∫
Ω

[K(sδ)−K(sε)] ∇G.

The two boundary integrals over the Dirichlet boundary vanish, since both G and Φδ(sδ)−
Φε(sε) satisfy a homogeneous Dirichlet condition on ΓD. Similarly, since n · (∇uδ +K(sδ))
vanishes on ΓN , integrals over the Neumann boundary are vanishing as well. Then (2.7)
yields an evolution equation for the error,

∂t
1

2
‖∇G‖2

L2(Ω) +

∫
Ω

[Φδ(sδ)− Φε(sε)](sδ − sε) +

∫
Ω

[K(sδ)−K(sε)] · ∇G = 0. (2.8)

Step 2. Error estimate. The estimate for σ in H−1(Ω) is a consequence of an estimate
for G(., t) in H1(Ω). To conclude the latter, we exploit the monotonicity of Φδ, and start
by considering for every fixed t, the set of points where sδ is smaller than sε, that is
Ωδε := {x ∈ Ω : sδ < sε}. Recalling the ε-monotonicity of the approximate nonlinearities,
Φδ ≤ Φε, on this set we calculate∫

Ωδε

[Φδ(sδ)− Φε(sε)](sδ − sε)

=

∫
Ωδε

[Φδ(sδ)− Φδ(sε)](sδ − sε) +

∫
Ωδε

[Φδ(sε)− Φε(sε)](sδ − sε)

≥
∫

Ωδε

[Φδ(sδ)− Φδ(sε)](sδ − sε).

Since Φδ is monotone, this is a positive term. On the set Ωεδ := {x ∈ Ω : sε ≤ sδ} we
can perform a similar calculation. We distinguish between the set of intermediate and of
large values of sε,

Ωεδ1 := {x ∈ Ωεδ : sε ≤ 1− δ} = {x ∈ Ω : sε ≤ 1− δ and sε ≤ sδ}
Ωεδ2 := {x ∈ Ωεδ : sε > 1− δ} = {x ∈ Ω : sδ ≥ sε > 1− δ}.

Decomposing the domain and inserting 0 we find∫
Ωεδ

[Φδ(sδ)− Φε(sε)](sδ − sε)

=

∫
Ωεδ

[Φδ(sδ)− Φδ(sε)](sδ − sε) +

∫
Ωεδ1

[Φδ(sε)− Φε(sε)](sδ − sε)

+

∫
Ωεδ2

[Φδ(sε)− Φε(sε)](sδ − sε)
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≥
∫

Ωεδ

[Φδ(sδ)− Φδ(sε)](sδ − sε)− Cδ

∫
Ωεδ1

|sδ − sε| − Cδ

≥
∫

Ωεδ

[Φδ(sδ)− Φδ(sε)](sδ − sε)− Cδ.

In the first inequality, on Ωεδ1 where sε ≤ 1 − δ, we use the uniform approximation
|Φδ(.) − Φε(.)| ≤ Cδ on [smin, 1 − δ]. On Ωεδ2 we use |sδ − sε| ≤ Cδ which follows from
sδ ≤ 1+Cδ of Lemma 2.1, and Φδ(sε) ≤ Φε(sε) ≤ C. In the second inequality we use the
uniform bounds for the saturation and adapted the constant C.

We can therefore rewrite the error equation (2.8) as

∂t
1

2
‖∇G(σ)‖2

L2(Ω) +

∫
Ω

[Φδ(sδ)− Φδ(sε)](sδ − sε)

≤ −
∫

Ω

[K(sδ)−K(sε)] · ∇G + Cδ.

(2.9)

In a given point x ∈ Ω we compare the K-difference with the Φ-difference.

K(sδ)−K(sε) =

∫ 1

0

K ′(sε + ξ(sδ − sε)) dξ (sδ − sε)

Φδ(sδ)− Φδ(sε) =

∫ 1

0

Φ′
δ(sε + ξ(sδ − sε)) dξ (sδ − sε)

Since |K ′|2 ≤ CΦ′
δ on R we find∣∣∣∣∫ 1

0

K ′(sε + ξ(sδ − sε)) dξ

∣∣∣∣2 ≤ ∫ 1

0

|K ′(sε + ξ(sδ − sε))|2 dξ

≤ C

∫ 1

0

Φ′
δ(sε + ξ(sδ − sε)) dξ.

This gives

|K(sδ)−K(sε)|2 ≤ C

∫ 1

0

Φ′
δ(sε + ξ(sδ − sε)) dξ |sδ − sε|2

= C[Φδ(sδ)− Φδ(sε)](sδ − sε).

Hence, for any η > 0, the right hand side of (2.9) is estimated by∣∣∣∣∫
Ω

[K(sδ)−K(sε)] · ∇G

∣∣∣∣ ≤ (∫
Ω

|K(sδ)−K(sε)|2
)1/2

‖∇G‖L2(Ω)

≤ Cη

∫
Ω

[Φδ(sδ)− Φδ(sε)](sδ − sε) +
1

η
‖∇G‖2

L2(Ω).

Taking η = 1/C, (2.9) gives

∂t‖∇G‖2
L2(Ω) ≤ C‖∇G‖2

L2(Ω) + Cδ.

Applying the inequalities of Gronwall and Poincaré, since σ vanishes at t = 0 we find

sup
t∈[0,T ]

‖G(., t)‖2
H1(Ω) ≤ Cδ.

This implies the desired estimate for σ in L∞(0, T ; H−1(Ω)).
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In the following Corollary we use the term viscosity solution for every L2(ΩT )-weak
limit (s, u) of solutions (sδ, uδ) to the regularized system.

Corollary 2.3. There exists a unique viscosity solution (s, u) to the doubly degenerate
system. It is a weak solution of the limit problem and satisfies, in particular, u ∈ Φ(s)
almost everywhere. The regularized solutions converge strongly to the viscosity solution
and satisfy, with C independent of δ,

sup
t∈[0,T ]

‖sδ − s‖2
H−1(Ω) ≤ Cδ. (2.10)

for all δ > 0.

Proof. Starting from the family {(sε, uε) : ε > 0} of solutions to the regularized problem,
exploiting the uniform bounds, we can select a weakly convergent subsequence with a
limit (s, u). Estimate (2.6) of Theorem 2.2 implies the uniqueness of the limit. Results
of [3, 25] show that (s, u) solves the constitutive relation u ∈ Φ(s) and the degenerate
problem in the form of a variational inequality or in the distributional sense.

Sending ε ↘ 0 in (2.6), by lower semi-continuity of norms, we obtain the estimate
(2.10). In particular, this provides the strong convergence of an arbitrary sequence of
regularized solutions sδ to the unique viscosity solution s.

3 The outflow boundary condition

In this section outflow boundary conditions are studied. Here only a non-degenerate
constitutive law is considered, and gravity terms are neglected. We start by introducing
a weak solution concept with variational inequalities. The concept is strong enough to
guarantee the uniqueness of solutions. Our main interest is the analysis of a regularization
approach for the outflow problem, which is similar to [25]. The existence of solutions to
these regularized problems is achieved in Subsection 3.2, by means of a time discretization
method. The strong convergence to solutions of the original outflow problem is shown in
Subsection 3.3. Subsection 3.4 is devoted to the convergence analysis of the approximate
solutions.

Assumptions on the data. For the open bounded subset Ω ⊂ Rn we assume here
that the boundary is decomposed into three parts, ∂Ω = Γ̄D ∪ Γ̄N ∪ Γ̄out with three
disjoint relatively open parts Γi. We additionally demand Γ̄D ∩ Γ̄out = ∅. We impose
an impermeability condition of ΓN . The Dirichlet data on ΓD are given by a smooth
time-independent function uD : Ω → R, which is identified with uD : ΩT → R. In
particular, uD ∈ H1(Ω) ∩ L∞(Ω). The initial values are given by a function s0 ∈ L∞(Ω).
As in Section 2, we assume mild regularity and compatibility conditions by demanding
uD = Φ(s0) with uD|Γout ≤ 0. This assumption makes sense since we imposed that the
outflow boundary is not adjacent to the Dirichlet boundary, Γ̄D ∩ Γ̄out = ∅.

On Φ we assume from now on the non-degeneracy,

Φ : R → R monotone and C2 with Φ′ ≥ c0 > 0 on R. (3.1)

We denote the inverse by Ψ = Φ−1 and use also its primitive Ψ̂ : R → R.
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3.1 Solution concept for the outflow condition

Definition 1 (Variational solution of the limit problem). A pair (s, u) ∈ L2(ΩT )×L2(ΩT )
with u = Φ(s) almost everywhere is called a variational solution of the outflow problem,
if ∂ts ∈ L2(ΩT ) with s(0) = s0, ∇u ∈ L2(ΩT ), u = uD on ΓD, u ≤ 0 on Γout, and∫

ΩT

∂tsH(ζ − u) +∇u · ∇[H(ζ − u)] ≥ 0 (3.2)

for all ζ ∈ L2(0, T ; H1(Ω)) with ζ = uD on ΓD and ζ ≤ 0 on Γout, and all H : R → R of
class C1

b , monotonically increasing with H(0) = 0.

Interpretation: In the interior, H(ζ − u) is an arbitrary test-function, hence the bulk
equation and the initial condition are satisfied in the weak sense. On the outflow boundary
the condition u ≤ 0 is imposed explicitly. Assuming regularity of the functions and
(ζ − u)|t=0 = 0, (3.2) reads ∫ T

0

∫
Γout

∂nu H(ζ − u) ≥ 0.

Since H(ζ − u) can be an arbitrary negative function, we find ∂nu ≤ 0. Furthermore, if
u < 0 on a part of Γout, H(ζ − u) can have both signs there, whence ∂nu = 0 in this case.

The use of the general function H is justified by the subsequent observation.

Lemma 3.1 (Uniqueness). The outflow problem admits at most one variational solution,
in the sense of Definition 1.

Proof. Let (s1, u1) and (s2, u2) be two solutions. Given η > 0, we consider Hη : R → R
as a smooth approximations of the sign function. It satisfies

Hη(ξ) = 1 for ξ ≥ η, Hη(ξ) = −1 for ξ ≤ −η, while Hη(ξ) = −Hη(−ξ).

Using ζ = u2χ(0,t) + u1χ(t,T ) in the variational inequality of u1 and ζ = u1χ(0,t) + u2χ(t,T )

in the variational inequality of u2, adding the inequalities gives

0 ≤
∫

Ωt

∂t(s1 − s2)Hη(u2 − u1)−∇(u2 − u1) · ∇[Hη(u2 − u1)]

≤
∫

Ωt

∂t(s1 − s2)Hη(u2 − u1) →
∫

Ωt

∂t(s1 − s2)sign(u2 − u1)

= −
∫

Ωt

∂t(s2 − s1)sign(s2 − s1) = −
∫

Ω

|s2 − s1|(t),

as η ↘ 0. This limit makes sense since ∂tsi ∈ L2(QT ) (i = 1, 2), whereas Hη(u2 − u1)
converges in L2 to sign(u2 − u1) = sign(s2 − s1) by the dominated convergence theorem.
Since t ∈ (0, T ) was arbitrary, this shows the uniqueness.

3.2 Regularized outflow problem

In order to regularize the outflow condition (1.3), we impose that a pressure above the
exit pressure results in a large outflow. We use

∂nuδ = −Fδ(uδ) on Γout, (3.3)
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where we assume that Fδ is monotone, has at most linear growth, is continuous and
satisfies

Fδ(ξ) = 0 for all ξ ≤ 0, and Fδ(ξ) ≥
ξ

δ
for all ξ > 0. (3.4)

We furthermore assume Fε ≥ Fδ whenever ε < δ. The primitive of Fδ is denoted by
Fδ : R → R̄ with Fδ(0) = 0. Notice that the non-degeneracy assumption makes no
regularization of Φ necessary.

Lemma 3.2 (Existence for the regularized problem). Let uD ∈ H1(Ω), s0 ∈ L∞(Ω) be as
above and T > 0. Then problem (1.1) with the regularized outflow condition (3.3) posesses
on (0, T ) a weak solution (sδ, uδ). More precisely, there exists uδ ∈ L2(0, T ; H1(Ω)) ∩
L∞(ΩT ) and sδ ∈ L∞(ΩT ) with ∂tsδ ∈ L2(ΩT ) such that the constitutive law uδ = Φ(sδ)
holds almost everywhere in ΩT , uδ = uD on ΓD, sδ(t = 0) = s0, and∫

ΩT

{∂tsδ ϕ +∇uδ∇ϕ}+

∫
(0,T )×Γout

Fδ(uδ) ϕ = 0 (3.5)

for all ϕ ∈ L2(0, T ; H1(Ω)) with ϕ = 0 on ΓD. The solution satisfies the uniform estimates

‖sδ‖L∞(ΩT ) + ‖uδ‖L∞(ΩT ) ≤ C, (3.6)∫ T

0

∫
Ω

Φ′(sδ)|∂tsδ|2 +

∫
Ω

|∇uδ|2(T ) +

∫
Γout

Fδ(uδ)(T ) ≤ C, (3.7)

with C independent of δ > 0.

Proof. Step 1. Time discretization. Given N ∈ N, we divide the time interval by taking
h = T/N and tk = kh for k = 0, . . . , N . We seek for sk and uk approximating sδ(tk)
and uδ(tk) respectively. For readability, the subscript δ is ommited in the time discrete
approximations. These solve the following elliptic problems

sk − sk−1

h
−∆uk = 0 and uk = Φ(sk) in Ω, (3.8)

−∂nu
k = Fδ(u

k) on Γout, (3.9)

uk = uD on ΓD, ∂nu
k = 0 on ΓN . (3.10)

At every time step, the solution sk of this problem can be constructed by minimizing

I(u) :=
1

h

∫
Ω

Ψ̂(u) +
1

2

∫
Ω

|∇u|2 +

∫
Γout

Fδ(u)− 1

h

∫
Ω

sk−1
δ u. (3.11)

in the affine subset {u = uD on ΓD} ⊂ H1(Ω), and by setting then s = Ψ(u). The
functional is coercive, hence the minimization problem admits a solution.

Step 2. A priori estimates. The maximum principle for (3.8) provides essential upper
bounds for sk that are uniform in h and δ and depend only on the uniform bounds of s0

and uD. Since Φ is non-degenerate, these bounds also give the uniform boundedness of
uk. For the lower bound we use the same argument, recalling that Fδ(ξ) = 0 for ξ ≤ 0.
Since the uniform bounds transfer to weak limits, (3.6) is shown.
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Formal derivation of the energy estimate. Regarding the estimate for the time deriva-
tive, it suffices to multiply the equation ∂tsδ = ∆uδ with ∂tuδ = ∂t[Φ(sδ)] and to integrate
the result over Ω. This gives∫

Ω

Φ′(sδ) |∂tsδ|2 +

∫
Ω

∇uδ · ∂t∇uδ =

∫
Γout

∂n[Φ(sδ)] ∂t[Φ(sδ)]

= −
∫

Γout

Fδ(Φ(sδ)) ∂t[Φ(sδ)] = −
∫

Γout

∂t[Fδ(Φ(sδ)].

An integration over (0, T ) yields the desired estimate.
Rigorous derivation of the energy estimate. We repeat the above testing procedure on

the time-discrete solution. Multiplying (3.8) by (uk − uk−1) leads to∫
Ω

sk − sk−1

h
(uk − uk−1) +

∫
Ω

∇uk∇(uk − uk−1) +

∫
Γout

Fδ(u
k)(uk − uk−1) = 0. (3.12)

For first term we notice that uk − uk−1 = Φ′(ŝk)(sk − sk−1) for an appropriate function of
intermediate values ŝk. Concerning the second term we recall that 2∇uk∇(uk − uk−1) =
|∇uk|2− |∇uk−1|2 + |∇(uk − uk−1)|2 ≥ |∇uk|2− |∇uk−1|2. Concerning the third term, we
use that monotone functions g : R → R with primitive G satisfy

g(x)(x− y) ≥
∫ x

y

g(t) dt = G(x)−G(y).

Taking g = Fδ gives Fδ(u
k)(uk − uk−1) ≥ Fδ(u

k)−Fδ(u
k−1). Using the above into (3.12)

and summing over k = 1, 2, ..., K we find the discrete estimate.(
K∑

k=1

∫
Ω

hΦ′(ŝk)

∣∣∣∣sk − sk−1

h

∣∣∣∣2
)

+

(
K∑

k=1

1

2

∫
Ω

∣∣∇(uk − uk−1)
∣∣2)

+
1

2

∫
Ω

|∇uK |2 +

∫
Γout

Fδ(u
K) ≤ 1

2

∫
Ω

|∇uD|2,
(3.13)

where we have used that Fδ(uD) vanishes by the assumption uD ≤ 0 on Γout.

Step 3. The limit h → 0.
Weak limits. From the discrete solution (sk)k we construct the piecewise affine inter-

polant ŝh, from (uk)k we construct the piecewise constant interpolant ūh with ūh(t) = uk

for all t ∈ (tk−1, tk). With these functions in L2(ΩT ), the Euler scheme of (3.8) and (3.9)
reads

∂tŝ
h −∆ūh = 0 in ΩT ,

∂nū
h = −Fδ(ū

h) on Γout.

A weak form of the above is obtained by taking ϕ ∈ L2(0, T ; H1(Ω)) with ϕ = 0 on ΓD

as a test function, leading to∫
ΩT

{
∂tŝ

h ϕ +∇ūh∇ϕ
}

+

∫
(0,T )×Γout

Fδ(ū
h) ϕ = 0. (3.14)
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By the non-degeneracy Φ′ ≥ c0, the estimate (3.13) provides

‖∂tŝ
h‖L2(ΩT ) + ‖∇ūh‖L2(ΩT ) ≤ C, (3.15)

with C independent of h. This allows to choose weakly convergent subsequences with
∂tŝ

h ⇀ ∂ts and ∇ūh ⇀ ∇u, both in L2(ΩT ). For obtainig weak solutions to (3.14) we
notice first that the weak convergence of ŝh and ūh are sufficient to pass to the limit in
the bulk integral of (3.14).

Strong limits. To take the limit in the boundary integral and to conclude u = Φ(s) a
strong convergence is needed. This is provided by (3.15): since uh and sh are related by a
non-degenerate function, bounds can be found for all spatial and temporal derivatives. To
see this we observe that ŝh(t) = λs̄h(t)+(1−λ)s̄h(t−h) for an appropriate λ(t) ∈ [0, 1], thus
∇ŝh(t) = λΨ′(ūh(t))∇ūh(t) + (1− λ)Ψ′(ūh(t))∇ūh(t− h). The non-degeneracy Ψ′ ≤ 1/c0

and (3.15) give ‖∇ŝh‖L2(ΩT ) ≤ C. Since now all derivatives are bounded unifromly, ŝh is
bounded in H1(ΩT ). Upon choice of a subsequence, we find the strong convergence in ΩT

and the strong convergence of the boundary values,

‖ŝh − s‖L2(ΩT ) + ‖(ŝh − s)|Γout‖L2(ΓoutT ) → 0.

We now exploit a general principle that relates the piecewise linear and the piecewise
constant interpolation (see e.g. [17] for a proof of the corresponding lemma): if one
interpolation converges strongly in L2(ΩT ), then the other interpolation also converges
strongly. We may therefore consider as an additional quantity the piecewise constant
interpolation for the saturation values, s̄h. The general principle providing the strong
L2(ΩT )-convergence ŝh → s also implies the strong convergence s̄h → s. Since Φ is
Lipschitz continuous, this gives the convergence of ūh = Φ(s̄h), and we finally have

‖ūh − u‖L2(ΩT ) + ‖(ūh − u)|Γout‖L2(ΓoutT ) → 0.

The strong convergence of s̄h allows to take the limit in the relation ūh = Φ(s̄h) and
to conclude u = Φ(s) almost everywhere. Furthermore, for any fixed δ > 0, Fδ has at
most linear growth such that also Fδ(ū

h|Γout) → Fδ(u|Γout) in L2(Γout). We can therefore
take the limit in all terms of (3.14) and conclude that (s, u) is a weak solution of the
regularized outflow problem.

3.3 Existence of solutions to the outflow problem

Theorem 3.3 (Existence of solutions for the limit problem). There exists a pair (s, u)
that solves the outflow problem in the sense of Definition 1. For any sequence δ → 0 there
hold the weak-* convergences

uδ ⇀ u ∈ L∞(0, T ; H1(Ω)) ∩ L∞(ΩT ),

sδ ⇀ s ∈ H1(0, T ; L2(Ω)) ∩ L∞(ΩT ),
(3.16)

and the strong convergence

uδ → u, sδ → s in L2(ΩT ). (3.17)
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Proof. The a priori estimates (3.6) and (3.7) allow selecting weak-* convergent subse-
quences uδ ⇀ u and sδ ⇀ s as claimed in (3.16). Furthermore, by the non-degenerate
relation uδ = Φ(sδ), both convergences are actually weak in H1(ΩT ). Therefore, we find
the strong convergence of the sequences in L2(ΩT ) and thus (3.17). The theorem is shown
once that we verify that the limit solves the outflow problem. In particular, the unique-
ness of the limit problem, shown in Lemma 3.1, provides the convergence of the whole
sequence.

We note already here that the nonlinear relation u = Φ(s) is an immediate consequence
of uδ = Φ(sδ) and the strong convergence of both sequences.

Step 1. Variational inequality in the δ-problem. Let now H be a smooth function and
ζ be a test-function as in Definition 1. We insert H(ζ − uδ) as a test-function into (3.5)
to calculate ∫

ΩT

∂tsδH(ζ − uδ) +∇uδ∇H(ζ − uδ)

= −
∫

ΩT

{sδ ∂tH(ζ − uδ)−∇uδ∇H(ζ − uδ)} −
∫

Ω

s0H(ζ − uδ)

= −
∫

(0,T )×Γout

Fδ(uδ) H(ζ − uδ) ≥ 0.

The last inequality follows by distinguishing two cases. For points (x, t) with uδ ≤ 0 we
find Fδ(uδ) = 0 and the integrand vanishes. If, instead, uδ > 0 we have Fδ(uδ) > 0 and
ζ − uδ < ζ ≤ 0, hence also H(ζ − uδ) ≤ 0 and the boundary integral is non-positive.

Step 2. The limit δ → 0 in the variational inequality. The a priori estimates provide
a uniform bound on ∇uδ in L2(ΩT ). On the other hand, by the non-degeneracy, we
have a uniform bound for ∂tuδ = Φ′(sδ)∂tsδ in L2(ΩT ). This allows to conclude, for a
subsequence, uδ → u for δ → 0 strongly in L2(ΩT ). The (at most) linear growth of H
and the weak convergence of ∂tsδ allows to perform the limit in the first term,∫

ΩT

∂tsδH(ζ − uδ) →
∫

ΩT

∂tsH(ζ − u) for δ → 0.

The other term is more involved. Since ∇uδ converges only weakly, the product
∇uδ∇H(ζ − uδ) will, in general, not converge to ∇u∇H(ζ − u). On the other hand,
oscillations of uδ produce a negative contribution and we can therefore expect

lim sup
δ→0

∫
ΩT

∇uδ∇[H(ζ − uδ)] ≤
∫

ΩT

∇u∇[H(ζ − u)]. (3.18)

Once we have shown (3.18), the variational inequality is verified for the weak limit (s, u).
Step 3. Relation (3.18). We set vδ := uδ − u and Ψ(x, z) := H(ζ(x)− u(x)− z) such

that H(ζ − uδ) = Ψ(x, vδ(x)). Exploiting ∂zΨ ≤ 0 we find the sign condition

lim sup
δ

∫
ΩT

∇vδ∇Ψ(vδ) = lim sup
δ

∫
ΩT

∇vδ ∂zΨ∇vδ +∇vδ∇xΨ(x, vδ)

= lim sup
δ

∫
ΩT

∇vδ ∂zΨ∇vδ +∇vδ H ′(ζ − uδ)∇x(ζ − u)

≤ lim sup
δ

∫
ΩT

∇vδ H ′(ζ − uδ)∇x(ζ − u).
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We claim that the right hand side vanishes. such that

lim sup
δ

∫
ΩT

∇(uδ − u)∇H(ζ − uδ) ≤ 0.

To this end we recall that ∇vδ ⇀ 0 in L2(ΩT ). The strong convergence of uδ implies
the pointwise convergence for a subsequence and, in turn, the pointwise convergence
H ′(ζ − uδ)∇x(ζ − u) → H ′(ζ − u)∇x(ζ − u). All functions of the sequence are bounded
by a multiple of the L2(ΩT )-function ∇x(ζ − u), hence the Lebesgue convergence the-
orem provides the strong convergence in L2(ΩT ). Uniqueness of the limit provides the
convergence of the whole sequence. The product with ∇vδ vanishes in the limit.

Using the above sign condition and inserting vδ provides

0 ≥ lim sup
δ

∫
ΩT

∇vδ∇[H(ζ − uδ)]

= lim sup
δ

∫
ΩT

∇uδ∇[H(ζ − uδ)]− lim
δ

∫
ΩT

∇u∇[H(ζ − uδ)]

= lim sup
δ

∫
ΩT

∇uδ∇[H(ζ − uδ)]−
∫

ΩT

∇u∇[H(ζ − u)].

The last convergence follows from ∇[H(ζ − uδ)] ⇀ ∇H(ζ − u) in L2(ΩT ). This, in turn,
is a consequence of the boundedness of ∇H(ζ−uδ) = H ′(ζ−uδ)∇(ζ−uδ) in L2(ΩT ) and
the strong convergence H(ζ − uδ) → H(ζ − u). With this, we have verified (3.18).

3.4 Monotone convergence of solution sequences

Lemma 3.4. Let Φ be non-degenerate, data s0 and uD as in Lemma 3.2. For a sequence
δ → 0 let sδ and uδ = Φ(sδ) be solutions to ∂tsδ = ∆uδ with regularized outflow condition
(3.3) as constructed in Lemma 3.2. Then there holds the monotonicity

sε ≤ sδ whenever ε ≤ δ. (3.19)

Proof. We fix two solutions sε and sδ for two parameters ε, δ, and assume in the following
ε ≤ δ. The evolution equation for σ = sδ − sε reads

∂tσ = ∆[Φ(sδ)− Φ(sε)]. (3.20)

The stated monotonicity is equivalent to σ ≥ 0, or to a vanishing negative part, (σ)− = 0.
We use a monotone approximation Hη ∈ C1(R, [−1, 0]) of a shifted Heaviside function,
demanding

Hη(ξ) =

{
−1 for ξ < −η,

0 for ξ ≥ 0.

Multiplying the evolution equation (3.20) with Hη(uδ − uε) and integrating over Ω gives∫
Ω

Hη(uδ − uε)∂tσ +

∫
Ω

|∇(uδ − uε)|2H ′
η(uδ − uε)

+

∫
∂Ω

[Fδ(uδ)− Fε(uε)]Hη(uδ − uε) = 0.



Regularization schemes for degenerate equations and outflow conditions 17

We take the limit η → 0 and use the limiting function H : R → [−1, 0] with H(ξ) = −1
for ξ < 0 and H(ξ) = 0 for ξ ≥ 0. Since ∂tσ and Fδ(uδ) − Fε(uε) are functions and the
pointwise convergence of the uniformly bounded sequence Hη(uδ − uε) → H(uδ − uε),
because the second integral is positive, we find∫

Ω

H(uδ − uε)∂tσ +

∫
∂Ω

[Fδ(uδ)− Fε(uε)]H(uδ − uε) ≤ 0.

Observing that the limiting function H satisfies H(uδ − uε) = H(sδ − sε) = H(σ), for the
primitive Ĥ(ξ) = |(ξ)−| of H one has

∂t

∫
Ω

Ĥ(sδ − sε) +

∫
∂Ω

[Fδ(uδ)− Fε(uε)]H(uδ − uε) ≤ 0.

In the boundary integral we distinguish between two sets. For the points x with uδ ≥ uε,
the boundary integral vanishes because H vanishes. On the set with uδ < uε holds
Fδ(uδ) ≤ Fδ(uε) ≤ Fε(uε) and therefore Fδ(uδ)−Fε(uε) ≤ 0. Furthermore, H(uδ−uε) ≤ 0.
Therefore the boundary integral is always non-negative. An integration over (0, t) yields∫

Ω

|(σ)−|(t) =

∫
Ω

|(sδ − sε)−|(t) =

∫
Ω

Ĥ(sδ − sε)(t) ≤ 0,

and the claim (σ)− = 0 follows.

Remark 3.5. Using the a priori estimate (3.7), as well as Fδ(ξ) ≥ ξ2/(2δ), we have for
the pressure on the outflow boundary∫

Γout

(uδ)
2
+ ≤ Cδ,

for all time instances t ∈ (0, T ). However, this is unfortunately not an L∞-bound.

Proposition 3.6 (Comparison of solutions for regularized outflow condition). Let 0 <
ε < δ be regularization parameters, and let sε ≤ sδ be solutions of the regularized outflow
problem as in Lemma 3.2 to fixed data T, s0, uD. Then there exists a C > 0 independent
of ε and δ such that

sup
t∈[0,T ]

‖sδ − sε‖2
L2(Ω) ≤ C‖(uδ)+‖2

L∞(Γout). (3.21)

Proof. We consider two solutions, sδ and sε, with ε < δ. By Lemma 3.4 we have σ =
sδ − sε ≥ 0. The starting point for our analysis is again the evolution equation

∂tσ = ∆[uδ − uε]. (3.22)

Step 1. The test-function. To define the test-function in (3.22) we introduce the
coefficient function

a(x, t) :=

{
Φ(sδ(x,t))−Φ(sε(x,t))

(sδ−sε)(x,t)
if σ(x, t) > 0,

Φ′(sε(x, t)) else,
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and define the dual problem:

∂tG + a∆G = 0 on Ω,

G(T ) = uδ(., T )− uε(., T )

G = 0 on ΓD ∪ {x ∈ Γout : uε(x) > 0},
∂nG = 0 on ΓN ∪ {x ∈ Γout : uε(x) ≤ 0}.

Note that this problem is backward-in-time. Its weak solution G = G(., t) satisfies the
Dirichlet condition in the strong sense on the indicated measurable set, whereas the
Neumann condition is encoded in the weak formulation.

Step 2. Properties of a. By monotonicity of Φ, the coefficient a is always positive and
bounded from below by c0. Furthermore, the function a is bounded since Φ′ is bounded
on bounded intervals and since sδ ∈ L∞. For the differentiability of a we denote by ∂j an
arbitrary derivative, which may be ∂t or ∂xj

for some 1 ≤ j ≤ n, and calculate in the case
sδ 6= sε

∂ja =
Φ′(sδ) ∂jsδ − Φ′(sε) ∂jsε

sδ − sε

− Φ(sδ)− Φ(sε)

sδ − sε

∂jsδ − ∂jsε

sδ − sε

=
Φ′(sδ)− Φ′(sε)

sδ − sε

∂jsδ + (Φ′(sε)− Φ′(ξ))
∂jsδ − ∂jsε

sδ − sε

.

In the above, for each (x, t), the mean value theorem guarantees the existence of a ξ
between sδ(x, t) and sε(x, t) such that

Φ(sδ)− Φ(sε)

sδ − sε

= Φ′(ξ).

The function Φ is twice continuously differentiable, hence the fractions

Φ′(sδ)− Φ′(sε)

sδ − sε

and
Φ′(sε)− Φ′(ξ)

sδ − sε

are uniformly bounded. Since ∂jsδ and ∂jsε are L2, this provides similar bounds for ∂ja.
In this sense, a inherits the differentiability properties of s, in particular any H1-estimate.

Observe that the conclusion still holds in subsets of ΩT where a = Φ′(sε), since in this
case ∂ja = Φ′′(sε) ∂jsε.

Step 3. Boundedness properties of G. The maximum principle implies that G has the
sign of its initial values (uδ − uε)(T ), i.e. G ≥ 0. Furthermore, G is uniformly bounded
since uδ and uε are uniformly bounded.

We furthermore obtain an energy estimate for G. Testing in the dual problem with G
provides

∂t

∫
Ω

1

2
|G|2 −

∫
Ω

a |∇G|2 =

∫
Ω

G∇a∇G.

Integrating over (0, T ), since the “initial values” at t = T are uniformly bounded,
yields bounds for G in L2(0, T ; H1(Ω)), uniformly in the regularization parameters. Here
we use that the coefficient a has the lower bound c0 > 0, and that G satisfies uniform
bounds by the maximum principle. Furthermore, as seen in Step 2, the boundedness



Regularization schemes for degenerate equations and outflow conditions 19

∇sδ,∇sε ∈ L2(ΩT ) implies a uniform bound for ∇a in the same space. This allows
absorbing the right hand side, providing uniform L2(ΩT ) bounds for ∇G.

We finally derive an estimate for the total flux. Given the function G, define its total
flux through the boundary as

Jε,δ := −
∫

(0,T )×Γout

∂nG =

∫
(0,T )×Γout

|∂nG|.

For this one has

Jε,δ = −
∫

ΩT

∆G =

∫
ΩT

1

a
∂tG =

∫
Ω

1

a
G

∣∣∣∣T
t=0

+

∫
ΩT

1

a2
∂ta G.

In the above, 1/a ≤ 1/c0, whereas G is uniformly bounded by the maximum principle.
Following from Step 2, ∂ta satisfies the integral bounds of sδ, sε, providing the uniform
boundedness of ∂ta ∈ L2(ΩT ). Since G ∈ L∞, we have

Jε,δ ≤ C independent of ε, δ.

Step 4. Estimate for σ. So far, all estimates regarded the boundedness of functions
by a (possibly large) constant; we now want to improve our estimate for differences. To
do so, we multiply (3.22) with G and obtain∫

ΩT

∂tσ G =

∫
Ω

σ(T ) G(T )−
∫

ΩT

σ ∂tG

=

∫
Ω

(sδ − sε)(T ) · (uδ − uε)(T ) +

∫
ΩT

σ a∆G.

Recalling the lower bound Φ′ ≥ c0, the first term on the right gives∫
Ω

(uδ − uε)(T ) · (sδ − sε)(T ) ≥ c0‖(sδ − sε)(T )‖2
L2(Ω).

Since σa = (sδ − sε)a = uδ − uε, the boundary conditions imply∫
ΩT

σa ∆G =

∫
ΩT

(uδ − uε) ∆G =

∫
ΩT

∆(uδ − uε) G

+

∫
(0,T )×Γout

(Fδ(uδ)− Fε(uε)) G +

∫
(0,T )×Γout

(uδ − uε) ∂nG.

Using the evolution equation ∂tσ = ∆(uδ − uε) we find

c0‖(sδ − sε)(T )‖2
L2(Ω) ≤

∫
Ω

(sδ − sε)(T ) · (uδ − uε)(T )

=

∫
ΩT

∂tσ G−
∫

ΩT

σa ∆G

= −
∫

(0,T )×Γout

(Fδ(uδ)− Fε(uε)) G−
∫

(0,T )×Γout

(uδ − uε) ∂nG.
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Due to the boundary condition on G, the first boundary integral is nonzero only if uε ≤ 0.
Then we have Fε(uε) = 0 and hence∫

(0,T )×Γout

(Fδ(uδ)− Fε(uε)) G =

∫
(0,T )×Γout

Fδ(uδ) G ≥ 0.

Similarly, the second boundary integral is nonzero only if uε > 0, when 0 < uε ≤ uδ by
the ordering result. By the bound for Jε,δ in Step 3, this gives

−
∫

(0,T )×Γout∩{uε>0}
(uδ − uε) ∂nG ≤ ‖(uδ)+‖2

L∞(Γout)

∫
(0,T )×Γout

|∂nG|

= ‖(uδ)+‖2
L∞(Γout)Jε,δ ≤ C‖(uδ)+‖2

L∞(Γout),

and the proof is concluded.

4 Numerical scheme

In Sections 2 and 3 we have studied regularization schemes and studied the convergence
sδ → s. By Theorem 2.2, in the doubly degenerate case with standard boundary condi-
tions one has

‖sδ − s‖2
L∞(0,T ;H−1(Ω)) ≤ Cδ. (4.1)

Theorem 3.3 refers to the non-degenerate case with outflow boundary conditions. In this
case, as δ → 0,

uδ → u, sδ → s strongly in L2(ΩT ). (4.2)

We mention that Remark 3.5 together with Proposition 3.6 suggests the rate

‖sδ − s‖2
L∞(0,T ;L2(Ω)) ≤ Cδ

in this case. We emphasize that this estimate is not proven. We require an L∞-norm in
Proposition 3.6, but have only an L2-norm in Remark 3.5.

The solutions have been constructed by a time discretization and the corresponding
approximate solutions ŝh

δ and ūh
δ . Our interest in this section is to analyze the error ŝh

δ−sδ,
where h > 0 is the small time step size.

Results for standard boundary conditions. With slightly different implicit dis-
cretization schemes in the doubly degenerate case, convergence for h → 0 was shown in
[15, 18, 24]. We recall that these results regard the standard boundary conditions and
that in those contributions Φ is not allowed to be fully degenerate: a vanishing slope on
an interval and, at the same time, multi-valued.

Analysis for outflow boundary conditions. We briefly recall the scheme introduced
in (3.8)–(3.10) for sk

δ ≈ sδ(tk) and uk
δ = Φ(sk

δ ) ≈ uδ(tk). Denoting by (., .) the scalar

product of L2(Ω) and by (., .)Γout the scalar product of L2(Γout). With the f̂h and f̄h

denoting the piecewise linear and the piecewise constant interpolations of L2(Ω)-functions
fk, (3.14) reads (

∂tŝ
h
δ , ϕ
)

+
(
∇ūh

δ ,∇ϕ
)

+
(
Fδ(ū

h
δ ), ϕ

)
Γout

= 0 (4.3)

for all ϕ ∈ H1(Ω) with ϕ = 0 on ΓD, and for almost all t ∈ (0, T ].
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Theorem 4.1 (Discretization error). Let Φ be non-degenerate and let the data s0, uD, and
T > 0 be given as in Lemma 3.2. Denote by (sδ, uδ) the solution of the regularized outflow
problem and by ŝδ,h the solution of the discretization scheme, both defined in Lemma 3.2.
Then

‖ŝh
δ (t)− sδ(t)‖2

L2(Ω) ≤ C
(
h1/2 + δ−1h3/4

)
, (4.4)

for a.e. t ∈ (0, T ], with a constant C independent of δ and h.

Proof. Step 1. Preliminaries. Existence and uniqueness for the family (sk
δ , u

k
δ ) together

with the convergences ŝh
δ → sδ and ûh

δ → uδ in L2(ΩT ) for h → 0 was shown in Lemma
3.2. Our aim here is to quantify the error introduced by a finite h > 0.

We recall that the function Fδ continuous with a Lipschitz constant Cδ
L of order 1/δ.

We have introduced before the primitive Fδ of this function. The following estimate was
obtained in (3.13)

N∑
k=1

1

h

∥∥sk
δ − sk−1

δ

∥∥2
+

N∑
k=1

∫
Ω

|∇(uk
δ − uk−1

δ )|2 + max
k

{
‖∇uk

δ‖2 +

∫
Γout

Fδ(u
k
δ )

}
≤ C,

(4.5)

with C > 0 independent of δ and h.

Step 2. The test-function G. We now follow the ideas of the proof of Proposition 3.6.
From now on we omit the superscript h for interpolations such as ŝh

δ and s̄h
δ . We define

the two coefficient functions

µ :=

∫ 1

0

Φ′ (zsδ + (1− z)ŝδ) dz and ζ :=

∫ 1

0

F ′
δ (zuδ + (1− z)ûδ) dz. (4.6)

We note that c0 ≤ µ ≤ C and ζ ≥ 0 is bounded by C/δ. Both depend on x and t. We
may write the coefficients also as

µ =


uδ−ûδ

sδ−ŝδ
, if sδ 6= ŝδ,

Φ′(sδ), if sδ = ŝδ,
and ζ =


Fδ(uδ)−Fδ(ûδ)

uδ−ûδ
, if uδ 6= ûδ,

F ′
δ(uδ), if uδ = ûδ.

Arguing as in Step 2 of the proof of Proposition 3.6, the function∇µ is bounded in L2(ΩT )
by the L2-norms of ∇sδ and ∇ŝδ. In particular, we find a uniform bound for µ in H1(Ω),
independent of δ and h.

For an arbitrary time instance t̃ > 0 we define G as the solution of the following
backward problem.

∂tG + µ∆G = 0 on Ω× (0, t̃),

G(t̃) = sδ(t̃)− ŝδ(t̃)

G = 0 on ΓD,

∂nG = 0 on ΓN ,

−∂nG = ζG on Γout.

The function G satisfies a uniform L∞-bound by the maximum principle. Testing the
evolution equation with G provides

∂t
1

2

∫
Ω

|G|2 =

∫
Ω

µ|∇G|2 + G∇G · ∇µ−
∫

Γout

µ∂nG G.
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The uniform bound for ∇µ ∈ L2(ΩT ), the sign of the boundary integral, and the strict
positivity of µ allow to conclude

‖G‖L2(0,t̃;H1(Ω)) ≤ C, (4.7)

with C independent of δ and h.

Step 3. The testing procedure. We subtract the equation for the time discretization
(ŝδ, ūδ) from the one for (sδ, uδ) and obtain

(∂tsδ − ∂tŝδ, ϕ) + (∇uδ −∇ūδ,∇ϕ) + (Fδ(uδ)− Fδ(ūδ), ϕ)Γout
= 0. (4.8)

Taking in the above ϕ = G, integrating in time over (0, t̃), using the definitions of µ, ζ,
and G, as well as sδ(t = 0) = s0 = ŝδ(t = 0), we obtain∫ t̃

0

(∂t(sδ − ŝδ), G) dt = (sδ − ŝδ, G)|t=t̃ −
∫ t̃

0

(sδ − ŝδ, ∂tG) dt

= ‖(sδ − ŝδ)(t̃)‖2
L2(Ω) +

∫ t̃

0

(sδ − ŝδ, µ∆G) dt

= ‖(sδ − ŝδ)(t̃)‖2
L2(Ω) +

∫ t̃

0

(uδ − ûδ, ∆G) dt

= ‖(sδ − ŝδ)(t̃)‖2
L2(Ω) −

∫ t̃

0

(∇uδ −∇ûδ,∇G) dt +

∫ t̃

0

∫
Γout

(uδ − ûδ)∂nG dt

= ‖(sδ − ŝδ)(t̃)‖2
L2(Ω) −

∫ t̃

0

(∇uδ −∇ūδ,∇G) dt−
∫ t̃

0

∫
Γout

(Fδ(uδ)− Fδ(ūδ)) G dt

−
∫ t̃

0

(∇ūδ −∇ûδ,∇G) dt−
∫ t̃

0

∫
Γout

(Fδ(ūδ)− Fδ(ûδ)) G dt.

Using (4.8) with ϕ = G, we see that three of the integrals cancel each other. The remaining
terms provide the estimate

‖(sδ − ŝδ)(t̃)‖2
L2(Ω) ≤

∣∣∣∣∣
∫ t̃

0

(∇ūδ −∇ûδ,∇G) dt

∣∣∣∣∣+
∣∣∣∣∣
∫ t̃

0

∫
Γout

(Fδ(ūδ)− Fδ(ûδ)) G dt

∣∣∣∣∣ .
The uniform bounds for G ∈ L∞ and G ∈ L2(0, t̃; H1(Ω)) of (4.7), and the Cδ

L-Lipschitz
continuity of Fδ provide

‖(sδ − ŝδ)(t̃)‖2
L2(Ω) ≤ C

(∫ t̃

0

∫
Ω

|∇ūδ −∇ûδ|2
)1/2

+ Cδ
L

(∫ t̃

0

∫
Γout

|ūδ − ûδ|2
)1/2

. (4.9)

At this point we use of estimate (4.5) and, in particular, that

N∑
k=1

∥∥sk
δ − sk−1

δ

∥∥2 ≤ Ch, and
N∑

k=1

∫
Ω

|∇(uk − uk−1)|2 ≤ C.
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These can be used in estimating the boundary integrals. By the trace estimates, for any
w ∈ H1(Ω) one has∫

Γout

|w|2 ≤ C1

∫
Ω

|w|2 + C2

(∫
Ω

|w|2
) 1

2
(∫

Ω

|∇w|2
) 1

2

where the two constants C1,2 > 0 depend on Ω and Γout, but not on w. Using the inequality
2|ab| ≤ 1

µ
a2 + µb2 for all reals a, b and µ > 0, one has∫

Γout

|w|2 ≤ Ch−
1
2

∫
Ω

|w|2 + h
1
2

∫
Ω

|∇w|2,

for some C > 0. Using the above estimates gives

N∑
k=1

h

∫
Γout

|uk
δ − uk−1

δ |2 ≤ Ch
3
2 ,

providing estimates for the last term in (4.9). In this way we get

‖(sδ − ŝδ)(t̃)‖2
L2(Ω) ≤ C

(
h1/2 + Cδ

Lh3/4
)
.

Recalling Cδ
L = O(1/δ), this implies the error estimates stated in the theorem.

Remark 4.2. Theorem 4.1 estimates the L2 error for the Euler implicit discretization of
the regularized outflow problem. By Theorem 3.3, along any sequence δ ↘ 0 the regularized
solution sδ converges strongly in L2 to s, the solution of the outflow problem, in the sense
of Definition 1. Passing simultaneously δ and h to zero, the sequence ŝh

δ converges to s.
Following Remark 3.5, we expect an error estimate of the form

‖(s− ŝh
δ )‖2

L∞(0,T ;L2(Ω)) ≤ C
(
δ + h1/2 + δ−1h3/4

)
.

Based on this, one can chose δ in such a way that the error due to the regularization is in
balance with the time discretization error. Specifically, this means that δ and h3/4/δ are
of the same order, yielding δ = O(h3/8) and a similar approximation error. Other choices
are also possible, but they lead to a lower order in the error estimate.
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