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Two Canonical Representations for Regularized
High Angular Resolution Diffusion Imaging
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Abstract. Two canonical representations for regularization of unit sphere
functions encountered in the context of high angular resolution diffusion
imaging (HARDI) are discussed. One of these is based on spherical har-
monic decomposition, and its one-parameter extension via Tikhonov reg-
ularization. This case is well-established, and is mainly reviewed for the
sake of completeness. The second one is new, and is based on a higher
order diffusion tensor decomposition. A homogeneous representation of
this type has been proposed in the literature, but we show that this
is inconvenient for the purpose of regularization. We instead construct a
heterogeneous representation that can be regarded as “canonical”, to the
extent that its behaviour under regularization mimics that of spherical
harmonics.

Key words: Tikhonov regularization, higher order diffusion tensors,
spherical harmonics, high angular resolution diffusion imaging (HARDI),
diffusion tensor imaging (DTI), scale space.

1 Introduction

High angular resolution diffusion imaging (HARDI)—and, as a special case, dif-
fusion tensor imaging (DTI)—has the potential to provide unprecedented insight
into the microstructure of fibrous tissue such as muscle and brain white matter.
It is to date the only in vivo technique for studying the microstructure of such
tissues. Since tissue degeneration may occur as a precursor of certain diseases,
it holds the promise to become an essential diagnostic tool. In addition it may
further our insight in anatomy and brain connectivity, cf. Alexander et al. in the
context of neurotherapeutic applications of brain DTI [1].

In order to model the a priori unconstrained number of point measurements in
HARDI, one is naturally led to an infinite-dimensional Hilbert space framework.
Apart from the obvious risk of overfitting, lack of control on the overwhelming
number of degrees of freedom greatly complicates analysis and visualization.
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Regularization provides a way to control data complexity and to ensure manifest
robustness. We will review some finite-order Tikhonov regularization schemes
from the literature, as well as a recently introduced infinite-order scheme [2–8].
It has appeared natural in all cases to employ a basis of spherical harmonics
[9, 10], and this is indeed the typical procedure followed in practice. (The main
reason for this review is to make the paper self-contained; the reader is referred
to cited literature for details.)

However, an alternative but equally interesting decomposition has been put for-
ward by Özarslan and Mareci [11]. Instead of spherical harmonics the authors
propose to use homogeneous polynomials confined to the unit sphere, as a gen-
eralization of DTI. The “higher order diffusion tensors” constructed accordingly
are in principle capable of modeling raw HARDI data to any prescribed accu-
racy. Although there is some implicit regularization in the act of truncating the
polynomial expansion at some finite order, akin to the regularizing effect of fit-
ting acquisition data to a second order DTI tensor, the intention is primarily to
capture raw data to any desired level of detail. Indeed, the higher order diffusion
tensor model of Özarslan and Mareci is best appreciated as a DTI generalization.

However, unlike with DTI, which by construction has only six independent de-
grees of freedom per point [12–14], there is no explicit regularization of a general
HARDI signal. The question thus presents itself whether the tensor model of
Özarslan and Mareci admits regularization in a “natural” way, similar to the
case of the spherical harmonic description. The answer is no, in the sense that
the employed basis functions are not eigenfunctions of standard regularization
operators. This implies that there exists no “simple” way of adapting the raw
data coefficients in their polynomial expansion so as to obtain a corresponding
regularized expansion. We therefore modify their scheme by instead considering
a heterogeneous polynomial on the sphere, and exploiting intrinsic redundancy
so as to make each homogeneous term an eigenfunction under regularization.
As a result, our alternative higher order diffusion tensor model reconciles the
tensor rationale championed by Özarslan and Mareci with the regularization
rationale, without sacrificing the niceties exhibited by the spherical harmonic
description in this context. The “trick” is basically to extract from a homoge-
neous polynomial representation of order N , say, all those degrees of freedom
that can be expressed in terms of spherical harmonics of lower orders, which can
then be reformatted into lower order polynomial terms, ultimately producing an
equivalent, heterogeneous polynomial. This will be operationalized in the next
section.

For simplicity we will collectively refer to various related representations that
employ functions on the unit sphere simply as “HARDI”. These include Tuch’s
orientation distribution function (ODF) [15], the higher order diffusion tensor
model and the diffusion orientation transform (DOT) by Özarslan et al. [11, 16],
Q-Ball imaging [2], and the diffusion tensor distribution model by Jian et al.
[17]. Considerations in this paper pertain to all such representations.
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2 Theory

2.1 Notation

Let S : Ω → IR denote a raw HARDI (or HARDI-related, v.s.) signal confined
to the unit sphere Ω : ‖x‖ = 1, x ∈ IR3. Ω may be parameterized using two
coordinates, ξµ, µ = 1, 2, say. The components of the Riemannian metric for the
unit sphere Ω embedded in Euclidean 3-space IR3 are then given by1

gµν =
∂xi

∂ξµ
ηij

∂xj

∂ξν
, (1)

in which ηij are the components of the Euclidean metric of the embedding space
(in Cartesian coordinates ηij = 1 iff i = j, otherwise zero). With Dµ we denote
the covariant derivative with respect to xµ induced by the metric gµν . Recall
that by construction we have Dρgµν = 0, whence also Dµg = 0, in which we
have used the shorthand notation g = det gµν . This “covariant constancy” of the
metric tensor in fact defines the covariant derivative [18], and plays a key role
in partial integration in covariant variational formulations of regularization.

The spherical geometry of the problem naturally suggests the use of spherical
coordinates (ξ1 = θ, ξ2 = φ):

Ω : (x1, x2, x3) = (sin θ cosφ, sin θ sinφ, cos θ) . (2)

2.2 Regularization via Spherical Harmonic Decomposition

We now consider regularization of a raw HARDI signal S. To this end, consider
the following functional, in which ST : Ω → IR is a Tikhonov regularization of
S : Ω → IR, viz. such that

E(ST ) =
∫
Ω

(S(ξ)− ST (ξ))2 +
∑
k≥1

tkDµ1 . . . DµkST (ξ)Dµ1 . . . DµkST (ξ)Dξ

(3)
is minimal. The subscript T refers to a sequence of nonnegative regularization
parameters, T = {tk}k∈N, on which the solution depends. Dµ is shorthand for
gµν(ξ)Dν , and Dξ =

√
g(ξ) dξ1dξ2, denotes the invariant measure on Ω (in

spherical coordinates Dξ = sin θ dθ dφ). The parameters tk ∈ T need to be
chosen so as to ensure convergence of the integral. An obvious choice is to set all
but one of them nonzero. Examples of this are first and second order Tikhonov
regularization as proposed by Hess et al. [4] (t1 = t ∈ R+, remaining ones zero),
and Descoteaux et al. [2, 3] (t2 = t ∈ R+, remaining ones zero). The resulting
Euler-Lagrange equations are finite-order PDEs, and are easily solved relative
1 Index summation applies to pairs of identical upper and lower indices.
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to the basis of spherical harmonics, using conventional spherical coordinates,
Eq. (2), by virtue of the property

∆ΩY
m
` (θ, φ) = −`(`+ 1)Y m` (θ, φ) , (4)

in which ∆Ω = DµD
µ is the Laplace-Beltrami operator on the unit sphere Ω,

and Y m` denote the spherical harmonics2

Y m` (θ, φ) =

√
(2`+ 1)(`−m)!

4π(`+m)!
eimφ Pm` (cos θ) , (5)

with Pm` the associated Legendre polynomials:

Pm` (z) =
(−1)m

2``!
(
1− z2

)m
2 d`+m

dz`+m
(
z2 − 1

)`
(with −1 ≤ z ≤ 1) . (6)

With the help of polar coordinates and spherical harmonics, setting

S(θ, φ) =
∗∑
`,m

c`m(0)Y m` (θ, φ) , (7)

in which the asterisk indicates summation over the effective indices ` ∈ ZZ+
0 ,

m ∈ {−`,−`+ 1, . . . , `− 1, `}, and

c`m(0) =
∫ 2π

0

∫ π

0

S(θ, φ)Y −m` (θ, φ) sin θdθdφ , (8)

minimizers of Eq. (3) can generically be written as

ST (θ, φ) =
∗∑
`,m

c`m(T )Y m` (θ, φ) . (9)

In the first order Tikhonov regularization scheme by Hess et al. [4] we have,
using a self-explanatory change of function prototype for the coefficients,

c`m(t) =
c`m(0)

1 + t `(`+ 1)
. (10)

In the second order scheme by Descoteaux et al. [2, 3] we have

c`m(t) =
c`m(0)

1 + t `2(`+ 1)2
, (11)

and so forth. Another scheme that leads to convergence of Eq. (3) is obtained
by taking

tk =
tk

k!
, (12)

2 Cf. functions.wolfram.com for further properties of Y m
` and P m

` .
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yielding the spherical scale space representation

c`m(t) = e−t`(`+1) c`m(0) , (13)

which is the analogue of the e−t‖ω‖
2
-attenuation of frequencies of scalar images

in the Euclidean plane under Gaussian blurring3 [19]. This scheme is particularly
interesting for its connection to an abelian semigroup, since one may write

St(θ, φ) = et∆Ω S(θ, φ) . (14)

It reproduces the first order scheme by a Laplace transform over t ∈ R+
0 , cf.

Florack et al. [8].

We end this brief review with the remark that all one-parameter regularization
schemes of the types discussed above are qualitatively similar, and identical in
their asymptotics. Let us now turn to the tensor formalism.

2.3 Regularization via Higher Order Diffusion Tensor Decomposition

Instead of Eq. (7) we now consider a decomposition of raw HARDI data into
“higher order diffusion tensors”, recall Eq. (2),

SN (x) =
N∑
k=0

D i1...ik xi1 . . . xik with N ∈ N ∪ {0,∞} and S∞(x) ≡ S(x). (15)

It should be realized that the collection of polynomials on the sphere,

B =
⋃

k∈N∪{0}

Bk with Bk = {xi1 . . . xik | k ∈ N ∪ {0} fixed} , (16)

is complete, but redundant. In fact, any order monomial of fixed parity can be
obtained from a given higher order one of the same parity via contractions. There
is no way to remove such redundancies from the full expansion, i.e. when N =∞
in Eq. (15). However, if, following Özarslan and Mareci [11], one considers only
the approximation corresponding to finite N , then mutual dependencies can be
removed by setting all coefficients equal to zero except D i1...iN . The resulting
homogeneous polynomial can then be fitted to the raw HARDI data as described
by Özarslan and Mareci [11]. One then ends up with a representation of the form

SÖ.M.
N (x) = Di1...iN xi1 . . . xik with N ∈ N ∪ {0}, (17)

as a generalization of the rank-2 DTI tensor. (By symmetry of the HARDI profile
only even N are relevant.) By construction, this polynomial representation is
equivalent to the spherical harmonic decomposition, Eqs. (7–8), if the latter is
constrained to include terms of orders ` ≤ N only.
3 Koenderink’s argument generalizes to Riemannian spaces without major difficulties.
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Following the same rationale as in the context of a spherical harmonic decom-
position, we would like to regularize the data representations of Eq. (15). That
is, we seek corresponding regularized representations of the form4

SN (x, t) =
N∑
k=0

D i1...ik(t)xi1 . . . xik with N ∈N ∪ {0,∞} and S∞(x, t)≡S(x, t).

(18)
Of course, Eq. (17) in principle admits regularization in formally the same way:

SÖ.M.
N (x, t) = Di1...iN (t)xi1 . . . xik with N ∈ N ∪ {0}, (19)

which is just the tensorial counterpart of Eq. (9) (for the one-parameter case,
and inclusion of terms ` ≤ N only). However, whereas the spherical harmonics
of fixed ` are eigenfunctions of the Laplace-Beltrami operator ∆Ω , recall Eq. (4),
this is not the case for any of the monomials in Bk, Eq. (16). Consequently it
is a nontrivial task to establish the coefficients Di1...iN (t) as a function of t in
Eq. (19). Another drawback of the tensor representation in the form of Eq. (17)
is that the coefficients depend on the truncation order N . Thus as soon as one
alters N , all data information (as far as captured by the available degrees of
freedom) will have to migrate to new tensor coefficients of corresponding rank.

In the formulation of our Ansatz, Eq. (15), we anticipate that only residual
information is encoded in the higher order part of the heterogeneous polynomial,
i.e. additional structure that cannot be revealed by a lower order polynomial. In
fact we will construct the coefficients D i1...ik such that (i) they do not depend
on N , and (ii) they transform upon regularization in a way quite similar to
the coefficients c`m(t) in Eqs. (10), (11), or (13), depending on one’s preferred
choice of regularization paradigm. We are now in a position to formulate our
main results. Detailed derivations and proofs can be found elsewhere [7].

We construct the coefficients according to the following algorithm.

Algorithm 1 Suppose we are in possession of D i1...ik for all k = 0, . . . , N − 1,
then minimization of the function

EN (Dj1...jN ) =
∫
Ω

(
S(x)−

N∑
k=0

D i1...ikxi1 . . . xik

)2

dΩ ,

yields the following linear systems:

Γi1...iN j1...jNDj1...jN =
∫
Ω

S(x)xi1 . . . xiN dΩ −
N−1∑
k=0

Γi1...iN j1...jkD
j1...jk ,

with symmetric covariant tensor coefficients Γi1...ik =
∫
Ω

xi1 . . . xik dΩ.

4 We henceforth restrict our attention to the scheme of Eqs. (12–13), but the other
one-parameter schemes discussed can be handled in a similar fashion.
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The appearance of the second inhomogeneous term on the r.h.s. of the linear
systems, absent in the scheme proposed by Özarslan and Mareci, reflects the
fact that in our scheme higher order coefficients encode residual information
only. The last integral is the tensorial counterpart of a well-known closed-form
multi-index representation, cf. Folland [20] and Johnston [21], viz.:∫

Ω

xα1
1 . . . xαnn dΩ =

2
Γ ( 1

2 |α|+
n
2 )

n∏
i=1

Γ (
1
2
αi +

1
2

) , (20)

if all αj are even (otherwise the integral vanishes). Here |α| = α1 + . . . + αn
denotes the norm of the multi-index, and

Γ (t) =
∫ ∞

0

st−1 e−s ds = 2
∫ ∞

0

r2t−1 e−r
2
dr (21)

is the gamma function. Recall Γ (`) = (`−1)! and Γ (`+ 1
2 ) = (`− 1

2 ) . . . 1
2

√
π =

(2`)!
√
π/(4` `!) for ` ∈ N ∪ {0}. A translation from multi-index to tensor-index

notation provides us with the closed-form of Γi1...ik :

Result 1 Cf. Algorithm 1 and Eqs. (20–21). In n dimensions Γi1...i2k+1 =0, and

Γi1...i2k =
2Γ (k + 1

2 )Γ ( 1
2 )n−1

Γ (k + n
2 )

η(i1i2 . . . ηi2k−1i2k) .

Parentheses denote complete symmetrization of indices. For n = 3 we obtain

Γi1...i2k =
2π

k + 1
2

η(i1i2 . . . ηi2k−1i2k) .

Some examples (n = 3):

Γ = 4π , Γij =
4π
3
ηij , Γijk` =

4π
15

(ηij ηk` + ηik ηj` + ηi` ηjk) . (22)

It is straightforward to sequentially solve the linear systems in Algorithm 1. It
follows that the scalar D is just the average value over the unit sphere:

D =

∫
Ω
S(x) dΩ∫
Ω
dΩ

. (23)

The constant vector D i vanishes identically, as it should. For the rank-2 tensor
coefficients we find the traceless matrix

Dij =
15
∫
Ω
S(x)xi xj dΩ − 5

∫
Ω
S(x) dΩ ηij

2
∫
Ω
dΩ

, (24)

and so forth. If, instead, we fit a homogeneous second order polynomial to the
data (by formally omitting the second term on the r.h.s. of the linear systems
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in Algorithm 1), as proposed by Özarslan and Mareci, we obtain the following
rank-2 tensor coefficients:

DÖ.M.
ij =

15
∫
Ω
S(x)xi xj dΩ − 3

∫
Ω
S(x) dx ηij

2
∫
Ω
dΩ

, (25)

which is clearly different. However, Özarslan and Mareci’s homogeneous ex-
pansion should be compared to our heterogeneous expansion. Indeed, if we
compare the respective second order expansions in this way we observe that
SÖ.M.

2 (x) = S2(x). The difference in coefficients, in this example, is explained by
the contribution already contained in the lowest order term of our polynomial,
which in Özarslan and Mareci’s scheme has migrated to the second order tensor.
In fact equality holds for any order N :

Theorem 1 Recall Eqs. (15) and (17). We have SÖ.M.
N (x) = SN (x).

The following theorem shows in which precise sense our new expansion can be
called “canonical”.

Theorem 2 If ∆Ω denotes the Laplace-Beltrami operator on the unit sphere,
then for any N ∈ N ∪ {0,∞},

SN (x, t) ≡ et∆Ω SN (x) =
N∑
k=0

D i1...ik(t)xi1 . . . xik ,

with D i1...ik(t) = e−k(k+1)t D i1...ik .

The proof of Theorems 1–2 is presented elsewhere [7].

It seems somewhat miraculous that the t-scaling behaviour of the coefficients in
Theorem 2 is identical to that in the spherical harmonic decomposition, Eq. (13).
This is quite nontrivial, since the monomials xi1 . . . xik are themselves not eigen-
functions of the Laplace-Beltrami operator. In fact, what happened is that, by
considering the specific linear combinations D i1...ik(t)xi1 . . . xik according to the
recipe of Algorithm 1, we have effectively disposed of the degrees of freedom in
the monomials xi1 . . . xik that live in eigenspaces spanned by the spherical har-
monics Y m` of orders ` < k. The span of the resulting homogeneous polynomials
coincides with the degenerate eigenspace of the k-th order spherical harmonics,
span {Y mk |m ∈ {−k,−k + 1, . . . , k − 1, k} , k ∈ N ∪ {0} fixed}.

Heuristically, the significance of Theorem 2 is that it segregates degrees of free-
dom in the polynomial expansion in such a way that we may interpret each
homogeneous higher order term as an incremental refinement of detail relative
to that of the lower order expansion. The linear combinations D i1...ik xi1 . . . xik ,
unlike the monomials xi1 . . . xik themselves, apparently constitute self-similar
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polynomials on the sphere under the act of blurring by the regularization op-
erator exp(t∆Ω), recall Eq. (14), or any of the other bounded one-parameter
regularization operators previously reviewed, which are all of the form f(t∆Ω)
for suitably defined analytical function f . The parameter t determines the an-
gular resolution of the regularized data.

As a final observation we note that the classical rank-2 DTI representation,
defined via the Stejskal-Tanner formula [11, 22]:

Σ(x) = Σ0 exp (−bS(x)) , (26)

arises not merely as an approximation under the assumption that the diffusion
attenuation can be written as

S(x) ≈ SDTI(x) = Dij
DTI xi xj , (27)

but, according to Theorem 2, expresses the exact asymptotic behaviour of S(x, t)
as t→∞:

S(x, t) =
(
D ηij + e−6t D ij

)
xi xj︸ ︷︷ ︸

SDTI(x, t) = Dij
DTI(t) xi xj

+O(e−20t) (t→∞) . (28)

This example shows that the higher order tensors constructed by Özarslan and
Mareci in general, and the classical DTI tensor in particular, are not self-similar,
but have a multimodal (respectively bimodal) resolution dependence, i.e. they
contain multiple self-similar terms with different scaling behaviour under regular-
ization. The actual limit of vanishing resolution is of course given by a complete
averaging over the sphere, recall Eq. (23), noting that ηij xi xj = 1 on Ω:

lim
t→∞

S(x, t) = lim
t→∞

SDTI(x, t) = D . (29)

See Figs. 1–2 for an illustration of Theorem 2 for N = 8 on a synthetic image.

Fig. 1. Left: Synthetic noise-free profile induced by two crossing fibers at right angle.
Right: Same, but with Rician noise.
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Fig. 2. Regularized profiles produced from the right image in Fig. 1 using Theorem 2
for N = 8. The regularization parameter t increases exponentially from top left to
bottom right over the range 0.007–1.0. For low t-values spurious peaks prevent correct
detection of underlying fiber orientations. Peaks are gradually removed as t increases.
In the range t ∈ [0.05, 0.15] we find two nearly correct peak locations intersecting at
a stable angle of 82.5◦ ± 0.8◦. For larger t overregularization sets in as we enter the
classical DTI regime, which is incapable of unconfounding crossing fibers.

3 Summary and Conclusion

We have considered two alternative representations for scalar functions on the
sphere in the context of high angular resolution diffusion imaging (HARDI). One
employs spherical harmonics, the second “higher order diffusion tensors”.

The spherical harmonic representation is ideally suited for the application of
various Tikhonov regularization schemes, associated with operators of the form
f(t∆Ω), in which ∆Ω is the Laplace-Beltrami operator on the sphere Ω, and
f a suitably defined analytical function. This is a result of the fact that the
spherical harmonics have a natural arrangement into orthogonal subsets of de-
generate eigenfunctions of this operator, such that the closure of the direct sum
of these subsets makes up L2(Ω). This representation thus provides a natural
(“canonical”) framework for regularization.

If one wishes to employ a tensorial representation (or polynomials on the unit
sphere), regularization becomes in general a highly nontrivial matter if one de-
clines from an explicit projection onto the spherical harmonic basis. We have
argued that the homogeneous tensorial representation proposed in their semi-
nal paper by Özarslan and Mareci [11] is inconvenient in this respect. We have
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operationally constructed an alternative, heterogeneous tensorial representation,
which does mimic the “canonical” behaviour of the spherical harmonics.

Although all representations—spherical harmonics, higher order diffusion ten-
sors by Özarslan and Mareci, and our newly constructed ones—are equivalent,
there may be good reasons for preferring or excluding a particular one, as we
have demonstrated in the context of regularization. A case where tensors may
be preferred over spherical harmonics is in generalizing the differential geometric
rationale for tractography and connectivity analysis via geodesics and geodesic
congruences (Hamilton-Jacobi framework). For instance, it is most straightfor-
ward to construct a Finsler metric using a higher order diffusion tensor descrip-
tion, as a generalization of the DTI induced Riemannian metric, cf. Melonakos
et al. [23].

In any case, regularization is an important procedure in HARDI, and so it is quite
convenient to be able to carry it out irrespective of one’s preferred paradigm. It
remains an open question how to combine codomain regularization, as proposed
here, with regularization in the spatial domain, cf. [24] in the context of DTI.

Acknowledgments. We thank Vesna Prckovska for conducting the experi-
ments that have led to Figs. 1–2. The Netherlands Organisation for Scientific
Research (NWO) is gratefully acknowledged for financial support.
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