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Two interacting atoms in an optical lattice site with anharmonic terms
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We propose an easy to use model for interacting atoms in an optical lattice. This model allows for the whole
range of weakly to strongly interacting atoms, and it includes the coupling between relative and center-of-mass
motions via anharmonic lattice terms. We apply this model to a high-precision spin-dynamics experiment, and
we discuss the corrections due to atomic interactions and the anharmonic coupling. Under suitable experimen-
tal conditions, energy can be transferred between the relative and center-of-mass motions, and this allows for
creation of Feshbach molecules in excited lattice bands.
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I. INTRODUCTION

Optical lattices form a suitable environment for high-
precision experiments with interacting atoms. Two atoms can
be isolated from other atoms by placing them on a single
lattice site, and many sites can be filled simultaneously.
While the lattice parameters such as depth and geometry can
be adjusted via the laser field, the interactions can be tuned
using a Feshbach resonance by applying an external mag-
netic field. Feshbach molecules in a lattice, created by
sweeping the magnetic field over resonance, can be trans-
ferred into deeper vibrational bound states, for instance, by
applying stimulated Raman adiabatic passage �1�.

Precise values for relative interaction strengths of ru-
bidium atoms were derived by studying coherent collisional
spin dynamics in an optical lattice �2,3�. These high-
precision measurements provide challenges for theoretical
coupled-channel models based on current state-of-the-art in-
teraction potentials �4�. One may wonder, for instance, at
what level of precision it is possible to calculate interaction
properties before the Born-Oppenheimer approximation,
which is the underlying foundation for the potentials, breaks
down.

Before conclusions can be drawn on the limitations of
two-body interaction models, one has to make sure that the
correct comparison is made between theoretical quantities of
such a calculation, and the measurements that depend on
these interactions. For instance, one cannot always put the
resulting scattering lengths of a two-body collision, defined
in the limit of zero collision energy, as the on-site interaction
in a Hubbard model. The divergence of the scattering length
on resonance will give rise to physically unrealistic large
energy shifts. A resonant interaction takes the two-body in-
teraction in the unitarity limit, where the solution of scatter-
ing wave functions are shifted over � /2 compared to nonin-
teracting atoms, and one would rather use expressions based
on the �energy� dependent scattering phase shift. This argu-
ment also applies for high-precision experiments on nonreso-
nant systems since small energy-dependent corrections al-
ready can be of importance. Also, the relative and center-of-

mass motions of two interacting atoms, which can become
coupled due to different atomic species �5,6� and anharmonic
terms in the lattice potential �6�, can give rise to shifts in the
on-site interaction.

The model we put forward in this paper is conceptionally
simple and easy to use. It is based on first-order perturbation
theory starting from an existing solution of two interacting
atoms in a harmonic potential. We show that the model is
valid for moderately deep lattices, i.e., where tunneling to
neighboring sites is negligible. In this way, we are able to
make a proper comparison between the high-precision mea-
surements by Widera et al. �2� and accurate rubidium scat-
tering models. We demonstrate the importance of energy de-
pendence in the scattering phase shift and of anharmonic
corrections for this experiment, and also show how experi-
ments using a Feshbach resonance can produce molecules of
a mixed relative and center-of-mass motion nature.

This paper is outlined as follows: In Sec. II we give a
description of our model. Then we apply it to a spin-
dynamics experiment in a lattice in Sec. III. In Sec. IV, we
discuss the nature of the molecules that have a mixed relative
and center-of-mass motion, predicted by our model. We end
with Sec. V.

II. MODEL

In the ultracold regime only s-wave interactions are al-
lowed, and we conveniently model the interaction with a
pseudopotential �7�

Vint�r� =
4��2

m
a��3��r�

�

�r
r . �1�

Here r is the distance between two colliding atoms, and a is
the s-wave scattering length �8�. The use of this zero-range
pseudopotential is allowed since RvdW�d �9�, with

RvdW =
1

2
�mC6

�2 �1/4
�2�

as the van der Waals length defining the range of the real
interaction potentials �10� with C6 as the leading dispersion
coefficient of the tail of the potential, and d=� /kL as the
lattice spacing, where kL is the wave number corresponding
to the laser frequency.
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The total Hamiltonian for a pair of interacting atoms in an
optical lattice is described by

H = −
�2

2m
�1

2
�R

2 + 2�r
2� + Vlat�R +

r

2
� + Vlat�R −

r

2
�

+ Vint�r� . �3�

Here

Vlat�x� = �
j=1

3

Vj�xj�, Vj�xj� = V0 sin2�kLxj� �4�

is the optical lattice potential with depth V0 and x
= �x1 ,x2 ,x3� is decomposed along the lattice axes. R and r
denote the center-of-mass �CM� and relative positions of the
atoms.

This Hamiltonian gives rise to nonseparable solutions in
these two coordinates. Moreover, Vint breaks the translational
invariance in the relative coordinate while the periodicity in
the center of mass is still intact. This periodicity ensures that,
when ��r ,R� is a solution, ��r ,R+D� is a solution as well.
We can formulate this in terms of the Bloch theorem

�Q�r,R + D� = eiQ·D�Q�r,R� , �5�

with Q as the quasimomentum associated to the center-of-
mass motion of this two-particle wave function �11�.

A. Harmonic approximation

The restriction to a pair of interacting atoms is an approxi-
mation but becomes exact for deep lattices �for example, in
the Mott-insulator regime� with two trapped atoms per lattice
site. This regime will be our starting point. Then, separation
of the CM and relative motions is possible when each site is
treated as a harmonic oscillator �HO� with frequency �
=�2V0kL

2 /m. The lattice potential for two particles can then
be written as

Vlat�R +
r

2
� + Vlat�R −

r

2
� 	

1

2
m�2�2R2 +

1

2
r2� . �6�

An exact solution for two interacting atoms in a HO trap
can be derived for the relative motion, as was first shown by
Busch et al. �12�. When we expand the angular part to the
angular-momentum basis and we restrict ourselves to the
case l=0 �s waves�, then we are left with a one-dimensional
�1D� Schrödinger equation for the relative radial coordinate,


−
�2

2�
�2 +

1

2
��2r2 +

2��2

�
a��r�

�

�r
r���r� = e��r� , �7�

with �=m /2 as the reduced mass, and ��r� as the 1D delta
function.

The contact potential can be interpreted as a boundary
condition for the harmonic-oscillator equation, and solutions
are given in terms of a relation between the scattering length
and the �modified� harmonic-oscillator levels,

1

2�a/aHO�
=

	�3

4
−

e

2��
�

	�1

4
−

e

2��
� , �8�

with aHO=�2� / �m�� as the harmonic-oscillator length of
relative motion. The relation between e�a� and a is not
unique, i.e., for each value of a, there are infinitely many
different values e�a� that satisfy Eq. �8� just as there are
infinitely many different HO energy levels for the case with-
out interaction. We label the different branches with index
n=1,3 ,5 , . . ., and the corresponding eigenvalues as en�a�.
Note that in general even values of l correspond to odd val-
ues for n, and accordingly that all odd values of l correspond
to even values for n �except n=0� �13�.

Figure 1 shows the lowest few branches of the eigenvalue
spectrum en�a�. The corresponding eigenfunctions are given
by


n�r� = Ane−�r/aHO�2/2U
3

4
−

en�a�
2��

,
3

2
,� r

aHO
�2� , �9�

where U�b ,c ,z� is a confluent hypergeometric function of
the second kind, and An is a normalization constant.

Note that the ground state has a quite distinct behavior
compared to the excited states in the regime where a be-
comes smaller than aHO:aHO /a�1. This is due to the pres-
ence of a bound state in the interatomic potential, and the
ground state will evolve into this bound state for a�aHO,
with a corresponding binding energy of en�a� / ��� /2�
=−�aHO /a�2. Accordingly, the spatial extension of the wave
function is then no longer given by the harmonic-oscillator
length aHO but by the scattering length a,

�15 �10 �5 0 5 10 15
�10

�5

0

5

10

15

�a�1 �units of aHO
�1�

e n
�u

ni
ts

of
�Ω
�2
�

FIG. 1. Lowest branches of the energy spectrum en�a� for two
particles in a harmonic trap, with the interaction modeled by a
contact potential. Relative energy is plotted as function of the re-
ciprocal scattering length. The scattering length is scaled on aHO

=�2� / �m��, the harmonic-oscillator length of the relative motion.
The dashed lines denote the energy levels for vanishing interaction.
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1�r� �
1

r
e−r/a. �10�

We come back to the creation of these molecules in the pres-
ence of anharmonic contributions in Sec. IV. Figure 1 also
shows that sweeping through a Feshbach resonance can give
rise to a transfer of atoms from one spherically symmetric
HO state to the next one, and therefore it is possible to in-
crease or decrease the relative energy by 2��.

In order to model lattice effects beyond the harmonic ap-
proximation, we have to incorporate anharmonic terms as
well as tunneling. These effects can be of significant impor-
tance even when the atoms are considered trapped in a single
site �3,6�.

B. Anharmonic contributions

In this paper, we propose to handle anharmonic terms in a
perturbative procedure, as we will discuss below. First we
argue that for sufficiently deep lattices tunneling effects are
small compared to anharmonic effects while anharmonic
terms have a small but significant effect.

The significance of tunneling and anharmonic terms can
be estimated using the complete lattice solution for the case
without interaction. In the Appendix we show that this solu-
tion can then be conveniently expressed in terms of Mathieu
functions.

Based on this exact solution we estimate the significance
of tunneling and anharmonic terms for the lowest three
bands. Tunneling induces a broadening of the energy levels
of an individual well indicated as W=Et−Eb and gives rise to
the band structure of a square lattice �11�. In addition, anhar-
monic terms shift a level compared to the corresponding HO
level EHO by an amount E=EHO− �Et+Eb� /2. Here Et and
Eb are the band top and band bottom energies, respectively.

The results of these estimates are shown in Fig. 2. It can
be seen that, sufficiently deep in the Mott phase, in particular
for lattice depths V0 /Erec as used in current experiments, the
anharmonic terms dominate above tunneling: W� E.
Also, the inset of Fig. 2 clearly illustrates that a level shift
remains present even when tunneling vanishes. This remain-
ing shift is thus caused by anharmonic terms and is typically
of order E /EHO�5%. Hence, we have the following set
of inequalities for sufficiently deep lattices,

W � E � EHO. �11�

We therefore expect that for arbitrary values of the scattering
length we can successfully apply a perturbative approach. In
this paper, we use the HO solution as zeroth order solution
and include anharmonic terms as perturbation. In principle,
we can also use the wave function including anharmonic
corrections to compute the broadening of the levels from the
overlap between these wave functions in neighboring lattice
sites. However, for the purpose of our present results this is
not necessary since they are already sufficiently accurate for
optical lattices where we can neglect the effect of tunneling.

We write the zeroth order wave function as

�Ss
�0��R,r� = �S�R�
s�r� . �12�

Here �S�R� and 
s�r� are the exact HO solutions of the CM
and relative motions, corresponding to states labeled with S
= �S1 ,S2 ,S3� and s= �n , l ,m�, respectively. We use different
quantum numbers for CM and relative motions to adapt op-
timally to both the cubic symmetry of the perturbation term
�Eq. �13�� and the spherical symmetry of the interaction re-
gion. Therefore, CM is always described in Cartesian coor-
dinates, with quantum numbers Sj =0,1 ,2 , . . ., for the differ-
ent lattice axes. Relative motion is decomposed in spherical
coordinates, with principal quantum number n=1,2 ,3 , . . .,
and orbital quantum numbers l and m.

As perturbation term we have

H��R,r� = Vlat�R +
r

2
� + Vlat�R −

r

2
�

+ −
1

2
m�2�2R2 +

1

2
r2� . �13�

We define our perturbative solutions in accordance with stan-
dard perturbation theory,

ESs = ESs
�0� + ��Ss

�0�H��Ss
�0�� + . . . , �14�

and

�Ss = �Ss
�0� + �

S��S

s��s

��S�s�
�0� H��Ss

�0��

ESs
�0� − ES�s�

�0� �S�s�
�0� + . . . , �15�

for the first-order corrected energies and wave functions, re-
spectively. ESs

�0�=ES+es is the sum of the HO energies corre-
sponding to the CM and relative motions. The zeroth order
relative wave function and energy depend parametrically on
the scattering length according to the Busch model �12�:
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V0 �units of Erec�

E
��
Ω
�2
�

10 20 30 40 50
0.0
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0.4

0.5

0.6

0.7

V0 �units of Erec�

W

� � E �

FIG. 2. �Color online� Estimation of tunneling and anharmonic
effects based on exact lattice solutions for noninteracting particles.
The ratio of bandwidth W and level shift E is shown as function of
lattice depth V0, given in units of recoil energy Erec=�2kL

2 /2m. The
solid and dashed-dotted lines correspond to the lowest and second-
but-lowest symmetric bands, respectively. The dashed line repre-
sents the lowest antisymmetric band. The inset shows the total HO
energies �dashed lines� and corresponding band tops and bottoms
from which the main graph is computed.
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s�r�=
s�r ;a� and es=es�a�. Hence the anharmonic correc-
tion becomes a function of scattering length as well. Note
however that the perturbation term itself does not depend on
the scattering length, illustrating that the interaction is mod-
eled exactly.

The wave function �Ss obtained from Eq. �15� only satis-
fies the boundary conditions for the relative motion. We can
also satisfy the periodic CM boundary conditions �Eq. �5��
by constructing the lattice solution as

�QSs�R,r� = �
D

eiQ·D�Ss�R − D,r� , �16�

with direct lattice vector D= �n1d ,n2d ,n3d�, integers ni, and
Q as the CM quasimomentum introduced in Eq. �5�. This
demonstrates that the wave function �Ss obtained with our
model is effectively a Wannier function of a pair of interact-
ing atoms in an optical lattice.

Finally, we check the accuracy of our model by using
again the exact lattice solution, which is available for the
case without interatomic interactions. Regarding the energy,
we compare the total energy ESs with Eexact= �Et+Eb� /2. In
addition, we compare the first- and second-order corrections
with the exact shift, and compare this with the contribution
of tunneling. All calculations are performed at a lattice depth
V0=25Erec. For the total energy we find already with only the
first-order correction,

�ESs − Eexact�/Eexact � 0.7% . �17�

The first-order correction covers almost 90% of the exact
shift,

��Ss
�0�H��Ss

�0��/E 	 0.88. �18�

The second-order correction is one order-of-magnitude
smaller,

1

E
�

S��S

s��s

��S�s�
�0� H��Ss

�0��2

ESs
�0� − ES�s�

�0� 	 0.09. �19�

This is of the same order as the relative contribution of tun-
neling �see also Fig. 2�,

W/E 	 0.02. �20�

Therefore, the meaning of second-order terms only is lim-
ited. Naturally, the accuracy improves when lattice depth is
increased. We also compared the results for the wave func-
tion and an example is given in Fig. 3 for the same value of
the lattice depth. Shown are the first-order corrected wave
function, together with the zeroth order HO solution and the
Wannier function, being the exact solution for a single site
�see Appendix�. Anharmonic corrections make the trap less
tight compared to the HO approximation, resulting in a small
decrease in the probability for finding the particles near r
=0 around the origin, corresponding to a small increase in
probability density in the barrier. The difference between the
Wannier function and the HO wave function with anhar-
monic corrections is small compared to the difference be-
tween the latter and the unperturbed HO wave function. This
shows that the method converges quickly.

III. SPIN DYNAMICS

In this section we apply our model to the spin-dynamics
experiment, as carried out in the Bloch group �2,3�. This
allows us to investigate systematically the effects of anhar-
monic terms and a nonzero interatomic interaction.

In an optical lattice one is able to trap several spin states
at the same time. Starting with atoms prepared in a specific
one-particle �hyperfine� spin state f ,mf�, collisions between
two such atoms give access to other two-particle spin con-
figurations. When only weak magnetic fields are applied, the
total magnetization is conserved, and therefore coherent col-
lisions between two-particle states of equal total two-particle
spin F occur. This can be described by a Rabi-type model.
For atoms prepared in f =1, which is the case we will treat
here, this is only a two level system, with effective Rabi
frequency

�if� = ��if
2 + �if

2 . �21�

Here �if is the bare Rabi frequency depending on the cou-
pling strength of the spin-changing collision. Detuning �if
contains two contributions,

�if = �0 + ��B2� . �22�

�0 is given by the difference of two interaction energies cor-
responding to collisions that leave the spin configuration un-
changed, and ��B2� is a second-order Zeeman shift between
the initial and final states. By performing the experiment at
different magnetic field strengths B, the Bloch group was
able to subtract �if and �0, thereby being able to derive pre-
cise values for relative interaction strengths of rubidium.
Treating the interaction energy as a linear perturbation in the
parameter kLa, one can derive the Rabi parameters as

0 1 2 3 4
0.00

0.05

0.10

0.15

0.20

r �units of aHO�

Ψ
�0

00
�
�1

00
�

FIG. 3. �Color online� Comparison of the exact and perturbative
wave functions in the lowest band, for a=0. Shown are the zeroth
order HO solution �dashed line�, the first-order corrected solution
�solid line�, and the exact localized Wannier function �dash-dotted
line�, for CM coordinate R=0. The relative coordinate is scaled on
aHO, with aHO=�2� / �m�� as the harmonic-oscillator length of rela-
tive motion.
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�if =
2�2

3�
Ũ�a2 − a0�, �0 =

1

3�
Ũ�a2 − a0� . �23�

The factor Ũ is here defined as

Ũ =
4��2

m
� d3x�4, �24�

with � as the lowest HO eigenfunction. Ũ depends on the
lattice depth but is independent of the scattering length.
Hence in this approach, differences between interaction en-
ergies are due to scattering-length differences only. The val-
ues of the scattering lengths aF, F=0, 2, corresponding to
collisions in subchannel F, are calculated based on highly
accurate rubidium potentials �4�, and are given in Table I.
Note that � can deviate significantly from the above-
mentioned solution of two interacting atoms in a trap, and
therefore it can be expected that a proper treatment of inter-
atomic interactions could have a large impact on the Rabi
frequency. While this effect will be mostly pronounced when
close to a Feshbach resonance, an effect can also be expected
when highly accurate measurements are performed, as in the
experiment of Widera et al.

The experimental results for the scattering lengths, based
on the above Rabi model �2�, agreed just within error bars
with the predictions. This apparent discrepancy was most
clearly seen for the f =1 case. We will now investigate this
f =1 experiment by calculating the interaction strengths from
our lattice model, and analyze the effects of anharmonic
terms and exact interatomic interactions. Note that anhar-
monic corrections were also taken into account in Ref. �3�,
which already led to a better agreement between theory and
experiment. We can most clearly compare theory and experi-
ment by regarding the frequency �if�

HO at B=0 since the field
dependence does not depend on the interatomic interactions.

As a starting point for comparison, we apply the Rabi
model as described above, with Ũ calculated from HO solu-
tions, and we use the scattering lengths from Table I to ob-
tain the effective Rabi frequency. This gives �if�

HO�B=0�
=2��49.27 Hz. Then, we first calculate �if��B=0� by using
Wannier functions in the expression for Ũ, in order to ana-
lyze the effects of anharmonic terms only. Wannier functions
are exact solutions for a lattice without interactions. This is
similar to the procedure performed by Widera et al. �3�. Sec-
ond, we want to analyze the effect of having exact inter-

atomic interactions only, and calculate the Rabi parameters
by using the solutions for two interacting atoms in a har-
monic trap;

�if =
2�2

3�
�Eint�a2� − Eint�a0�� , �25�

�0 =
1

3�
�Eint�a2� − Eint�a0�� , �26�

where

Eint�a� = E�a� − E�a = 0� . �27�

Here we define the total energy E�a�=ESs
�0��a�=ES+es�a�,

with S= �0,0 ,0� and s= �3,0 ,0�, according to the solution of
two interacting atoms in a trap �14�. Third, the same is done
but also with the anharmonic terms included by taking
E�a�=ESs�a�, in order to compute the combined effect. The
results are shown in Table II by calculating the ratio of the
different �if��B=0� over the initial frequency �if�

HO�B=0�.
The table also shows a comparison with the experimentally
obtained effective Rabi frequency. In all calculations a lattice
depth of V0=45Erec is used. Note that the third calculation is
the most precise one, with exact interactions, giving rise to
modified wave functions and energy levels compared to the
HO calculation. Moreover, the anharmonic effects are also
included via perturbation theory up to high precision. An
upper bound for the computational precision is 1%, which is
estimated by the contribution of second-order terms to �if�.
The contribution of tunneling is less than 2% of the second-
order correction at a lattice depth V0=45Erec.

From the results we find that anharmonic terms induce a
negative shift of order of 10%. To the contrary, higher order
interaction effects induce a positive shift, which is of order
of 3%. Hence, anharmonic corrections are dominant while
the first-order approximation for the interaction energy is al-
ready fairly accurate. The net result is a 7% improvement
with respect to the initial model of the Bloch group. Al-
though the theoretical and experimental values still differ by
30%, this is just within theoretical and experimental error
bars. Note that the largest contribution to the theoretical error
bar is due to the small difference a2−a0, which is only a

TABLE I. Theoretical predictions for the scattering lengths of
the F=0 and F=2 channel, for atoms with one-particle spin f =1,
based on accurate rubidium interaction potentials �4�. Here F is the
total two-particle spin. The values are given in units of the Bohr
radius a0.

F
aF

�units of a0�

0 101.78�0.2

2 100.40�0.1

TABLE II. �Left column� Correction factor �if� /�if�
HO of the

effective Rabi frequency �if�, compared with the same quantity
computed in the HO approximation with the interaction treated as
linear perturbation. The first row shows the result when only anhar-
monic effects are taken into account. The result in the second row is
obtained with only higher order interaction effects taken into ac-
count. In the third row the results are given for both effects acting
together. Right column: corresponding values for the ratio between
the theoretical �if� and the experimentally obtained effective Rabi
frequency �if�

exp=2�� �35.4�0.7�Hz.

Included corrections �if� /�if�
HO �if� /�if�

exp

Anharmonic 0.897 1.25

Interatomic interactions 1.033 1.43

Anharmonic+interatomic interactions 0.935 1.30
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percent of the values of a0 and a2 themselves. A second issue

is a possible systematic error in Ũ, related to the uncertainty
in the lattice depth. At present there is no direct measurement
of this coupling constant.

IV. ADIABATIC CREATION OF FESHBACH MOLECULES
WITH A CM MOTION

In the previous section we applied our model to nonreso-
nantly interacting atoms in the lowest lattice band. This
means that the total energy is relatively close to the nonin-
teracting ground states when compared to the level splitting
between ground-state and nonground-state levels. We take
the coupling between CM and relative motions into account
but we neglect the interaction induced coupling between lev-
els since the energy distance to nonground-state levels is too
large. For example, with the lattice depth and scattering
lengths used in the previous section, we have E�1�

�0.23�� /2 while the largest coupling is obtained from the
overlap with the next spherical symmetric level:

���000��300�
�0� H���000��500�

�0� �2

E�000��300�
�0� − E�000��500�

�0� � 0.008��/2. �28�

However, when the interaction strength is increased, sev-
eral CM and relative states become �nearly� degenerate, and
therefore first-order lattice perturbation terms will already
result in an efficient coupling. In this section, we will show
that the coupling between CM and relative states implies that
atoms can be transferred into molecules, with a simultaneous
transfer of quantized energy of the relative motion to the CM
motion, and vice versa. Here molecules should be thought of
as two atoms bound together via the interatomic potential, cf.
Eq. �10�.

Tuning the scattering length through resonance can give
rise to a transfer of atoms from one HO level to the next one
�12�, and under adiabatic conditions this can be observed
experimentally �15�. In Fig. 1 this is illustrated for the rela-
tive energy. A similar graph for the total energy is shown in
Fig. 4, with thin gray lines for the lowest HO levels includ-
ing interaction. From this plot we find that degeneracies oc-
cur around resonance �1 /a�0�, and for the limit a→0−.
Anharmonic terms can lift these degeneracies, and couple the
CM and relative levels. Within first-order perturbation
theory, states of equal total quantum number S1+S2+S3+n
are coupled, with coupling strengths dependent on both scat-
tering length and lattice depth. To compute the first-order
corrected energy we diagonalize the matrix whose elements
are given by

��Ss
�0�HHO + H��S�s�

�0� � = �SS��ss�ESs
�0� + ��Ss

�0�H��S�s�
�0� � .

�29�

Here �ii� is the Kronecker delta. In the limit a→0− these
states are degenerate and correspond to a nonground state of
the lattice well �top right of Fig. 4�. For a being small and
positive the interaction induced coupling becomes negligible,
as was the case in the previous section.

Several coupling terms are zero due to the symmetry of
the perturbation term. For the actual computation of the cou-

pling terms, we can integrate the three different components
of the CM motion separately:

��Ss
�0�H��S�s�

�0� � = �
s��S1
Hj��S1�

�
s���S2S2�
�S3S3�

+ �cyclic permutations� . �30�

The function

Hj� = Vj�Rj +
rj

2
� + Vj�Rj −

rj

2
� −

1

2
m�2�2Rj

2 +
1

2
rj

2�
�31�

is even in Rj and rj. Hence, CM states with Sj +Sj� do not
couple, i.e., there is only coupling between CM states with
equal parity. Also, due to the cubic symmetry of the pertur-
bation term, the integration has to be performed only for one
axis for each combination Sj and Sj�. The parity of the rela-
tive HO states is determined by the angular part since the
radial part is spherically symmetric. For spherical harmonics
Yl

m�� ,
� the parity is given by

Yl
m�� − �,
 + �� = �− 1�lYl

m��,
� . �32�

Consequently, all states with l+ l� odd vanish. Also with l
+ l� even, not all combinations m and m� give rise to cou-
pling. In particular, there are vanishing contributions for odd
values of m−m� since these introduce an odd term,

e−i�m−m��
 � �x − iy�m−m�, �33�

while the other contributions are even.
We now restrict ourselves to the coupling between the

lowest symmetric states �Ss� that are perturbed by the cubi-
cally symmetric perturbation term. These states can be di-
vided in two sets. The first set consists of a CM ground state
and excited relative states with labels S= �0,0 ,0� and s
= �3, l ,m�, and the second set consist of excited CM states
and a relative ground state with S= �2,0 ,0� �and cyclic per-
mutations�, and s= �1,0 ,0�, which contains a molecular
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�a�1 �units of aHO
�1�
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�Ω
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FIG. 4. �Color online� Total energy of the combined relative and
CM system, as a function of the reciprocal scattering length. The
upper thick lines represent the six states that are coupled by anhar-
monic terms. Thin gray lines denote the zeroth order HO levels. The
scattering length is scaled on aHO, with aHO=�2� / �m�� as the
harmonic-oscillator length of the relative motion.
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bound state for positive a. In the first case, quantum numbers
can be l, m= �0,0� , �2,0� , �2,−2� , �2, +2�; hence four rela-
tive states in total. The number of coupled relative states
exceeds the number of coupled CM states since the spherical
harmonics functions have some redundancy for expressing
cubic symmetry. However, the actual number of relative
states that are coupled reduces to three when we take proper
linear combinations of d waves. Hence, dictated by the sym-
metry of the anharmonic terms, six states are coupled in
total. Note that it is quite remarkable that a coupling to rela-
tive d-wave motion is possible without an interatomic cou-
pling on short range. This coupling between s and d waves is
indirect. The s waves are coupled to excited CM states which
in turn are coupled to d waves, illustrating the long-range
character of the anharmonic coupling.

The main result of this section is shown in Fig. 4. Total
energy for the combined relative and CM motions is shown
as a function of the scattering length. Thick lines represent
the six states that are coupled by anharmonic terms. Thin
gray lines indicate the corresponding zeroth order HO levels.
Also the perturbed uncoupled ground state is shown using a
thick solid line. The calculation is done for a lattice depth of
V0=25Erec. Figure 4 shows the presence of d-wave states in
the upper two solutions, indicated with dashed-dotted and
dashed lines. These solutions have only weak dependence on
the s-wave scattering length, owing to the indirect coupling
via the excited CM states. Below the d-wave states a dashed
solution is shown, which connects asymptotically to two
consecutive levels, similar to the results of the Busch model
for a s-wave scattering state. However, the three remaining
solutions �dotted, dotted, and solid� are of a different nature.
These reflect the presence of excited CM states, and asymp-
totically connect to the molecular state of the relative motion
for positive a. A zoom in around resonance �1 /a=0� is given
in Fig. 5. It can be clearly seen that the coupling between
relative and CM motions, caused by the long-range anhar-
monic terms, gives rise to a transfer of energy between these
two motions. On resonance only the dashed and solid lines

are coupled, giving rise to an energy splitting indicated by
Esplit. The two dotted solutions are coupled at small negative
values of the scattering length and with much smaller split-
ting energies.

It is interesting to consider possible applications of this
anharmonic coupling at long range, and interatomic coupling
at short range. This can be done by exploiting different time
scales when changing the scattering length. The scattering
length can be changed by utilizing the magnetic field depen-
dence of the scattering length via a Feshbach resonance.

One can transfer for instance atoms from the lowest band
into the next band by ramping the magnetic field, and by
slowly ramping back associate molecules with an excited
CM motion. This would result in molecular energy levels
that deviate significantly from the energy of ground-state
molecules labeled with S= �0,0 ,0� and s= �1,0 ,0�. Such
higher molecular levels correspond to molecules in different
�partly filled� Brillouin zones, which should be possible to
detect �16�. We note that these excited CM molecules, com-
pared to ground-state molecules, have a larger spatial extent
in the CM motion.

The typical time scale � for slowly ramping back is given
by ��� /Esplit. In contrast to other lattice induced molecules,
see, e.g., �17–19�, these excited CM molecules do not arise
from tunneling to neighboring sites but from the anharmonic
shape of a single lattice site. In addition, these excited CM
molecules could be observable even for rather deep lattices
�V0�50ER� since the anharmonic effects decay only weakly
with increasing lattice depth, whereas tunneling effects decay
exponentially.

V. CONCLUSION

In conclusion, we proposed an easy to use method to
solve interacting atoms in optical lattices, where the relative
and center-of-mass motions of the two interacting atoms are
coupled via the anharmonic terms of the lattice. The interac-
tions are treated exactly using a boundary condition rising
from a pseudopotential. The anharmonic terms of the lattice
potential are treated as a perturbation of the exact solution
for two cold interacting atoms in a harmonic trap. We applied
this model to the Mainz spin-dynamics experiment �2,3� for
f =1. The interaction energy is computed as the difference
between two-atom energy levels with and without interac-
tions. This model gives a more rigorous interpretation of the
experiment compared to previous descriptions in terms of
two-body scattering properties. We find that the derived scat-
tering lengths agree within the experimental and theoretical
error bars. Apart from applying our model to spin dynamics,
we are in a good position to analyze future optical lattice
experiments where the interactions are made very strong by
utilizing Feshbach resonances. Strong interactions can in-
duce coupling between the relative and center-of-mass mo-
tions, which allows for an energy exchange between these
two motions, and which can be used to produce �Feshbach�
molecules with an excited center-of-mass motion. This
model can also be used as a starting point for a description of
photoassociation in an optical lattice near a Feshbach reso-
nance �20,21�.
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FIG. 5. �Color online� Zoom in of Fig. 4 around resonance
�1 /a=0�. The scattering state �dashed line� is coupled to one ex-
cited CM state �solid line�, which contains a molecular bound state
for positive a, while the other two states �dotted line� are degenerate
and remain uncoupled around resonance. The splitting energy is
indicated by Esplit.
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APPENDIX: EXACT LATTICE SOLUTION WITHOUT
INTERACTION

In this appendix we derive exact solutions for noninter-
acting atoms in a cubic optical lattice, which we need to
estimate the effect of tunneling and anharmonic terms in our
system of consideration. First we will introduce Bloch func-
tions and Wannier functions for the lattice. Second we will
show how these functions can be expressed in terms of
Mathieu functions.

For noninteracting particles there is separation in the
single-particle coordinates, and the 3D wave function for
each particle can be conveniently written as product 1D
wave functions. We thus have to solve a 1D Schrödinger
with a periodic potential. According to the Bloch theorem,
the solution can be written as

�qs�x� = eiqxuqs�x� , �A1�

with quasimomentum q, band index s, and uqs�x� having the
same periodicity as the potential. This Bloch function can
also be expressed as a sum over localized solutions. This
follows when we consider the Bloch function as function of
q. Because �qs is periodic in q, we can write it as a Fourier
series in q,

�qs�x� = � d

2�
�1/2

�
n=−�

�

ws�x − dn�eiqdn, �A2�

with d as the lattice spacing. The coefficients ws�x−dn� of
this Fourier series are �regarded as function of x� the Wannier
functions of band s. They are given explicitly in terms of
Bloch functions by the inversion formula,

ws�x − dn� = � d

2�
�1/2�

−�/d

�/d

e−iqdn�qs�x�dq . �A3�

Hence, the Wannier function of a given band is a linear com-
bination of all Bloch functions of that same band. An exten-
sive analysis of the properties of Wannier functions is given
by �22�. For example, it can be proven that, with Bloch func-
tions normalized over a single site, such that

2�

d
�

0

d

�qs�x�2dx = 1, �A4�

Wannier functions at different sites and different bands are
orthonormal

�
−�

�

ws�
� �x − dn��ws�x − dn�dx = �s�s�n�n, �A5�

with �mm� as the Kronecker delta. Although the Wannier
functions are a linear combination of Bloch functions, they
do not satisfy the time-independent Schrödinger equation.
This is because Bloch functions of different quasimomentum
have different energies. In addition, Wannier functions do not
satisfy periodic boundary conditions; however, by construc-
tion they are required to decay exponentially for large x̃. To
obtain the differential equation of the Wannier function, we
should similarly expand the energy in q :Eq=�neneiqdn. In
case the lattice is very deep and hence the bands are practi-
cally flat, i.e., dE /dq=0, the differential equation for the
Wannier function does reduce to the Schrödinger equation.

For the case of an optical lattice potential of the form Eq.
�4�, Bloch and Wannier functions can be obtained in closed
form, including the corresponding characteristic energies
�band structure�. This can be seen with the introduction of
the parameters

e = Ẽ −
1

2
Ṽ0, �A6�

h = −
1

4
Ṽ0, �A7�

in the 1D Schrödinger equation. This gives

d2�

dx̃2 + �e − 2h cos 2x̃�� = 0, �A8�

where x̃=kLx, Ẽ=E /Erec, and Ṽ0=V0 /Erec, with Erec
=�2kL

2 / �2m� as the recoil energy and kL as the wave number
corresponding to the laser frequency. The standard solutions
of Eq. �A8� are called Mathieu functions, denoted as
ce��x̃ ,h� and se��x̃ ,h�, which are even and odd as function of
x̃, respectively. Mathieu functions and their characteristic en-
ergies are conveniently implemented in modern computer al-
gebra systems. Here we will mention only briefly the prop-
erties which are relevant for us; for an extensive discussion
of Mathieu functions we refer to �13,23�.

For noninteger �, the functions ce� and se� are two inde-
pendent solutions with characteristic energy e��h�. At a given
lattice depth h, e��h� as function of � gives the band structure
in the extended zone scheme �� plays the role of quasimo-
mentum�. With �=n integer valued, cen and sen are periodic
with the same periodicity as the lattice but at different ener-
gies: en

c�h� and en
s�h�. The other independent solutions for

this case contain a logarithmic term that does not satisfy
periodic boundary conditions. The characteristic energies
en

c�h� and en
s�h� correspond to band tops and band bottoms.

For our optical lattice potential we have h�0. In this case
the band top and bottom of even bands �s even� are e2n−1

c �h�
and e2n−2

c �h�, respectively. The band top and bottom of the
odd bands �s odd� are given by e2n

s �h� and e2n−1
s �h�. Hence

we have e0
c �e1

c �e1
s �e2

s �e2
c � . . .. These band tops and bot-

toms are used in Sec. II to compute Et and Eb, and estimate
the effects of tunneling and anharmonic terms.
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With the general solution of the Schrödinger equation in
closed form, the Bloch function can be obtained by imposing
boundary conditions according to the Bloch theorem. With
this Bloch function, we also have the Wannier function in

closed form, as an integral over Mathieu functions, weighted
by an exponential. The Wannier function obtained this way is
used in Sec. II to check the accuracy of our model for the
case without interaction.
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