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Notes on solving Maxwell equations Part 2:
Green’s function for stratified media

R.Rook

February 3, 2011

1 Introduction

In the previous report (part 1), the problem and its governing equations are
described and is discarded in this report. The finite element method in part 1,
or any other method for that matter, determines the fields in and close to the
scatterer (near-field) that is used to construct the fields in the far-field. The
goal of part 2 is to find far-field expressions formulated as total fields or the
Radar Cross Section (RCS) of the scattered fields. The far-field is calculated
from the scatterer problem in the contrast formulation. The scatterer then acts
as a radiating object with a known source J. Using Green’s function theory,
the far-field solution is just the convolution of that source with the fundamental
solution G to the Maxwell equation.

Without loss of generality, the expressions are formulated in total fields £ and
H. Again, the time convention for the time-harmonic term exp(—iwt) is used,
but in contrary to part 1, the quantities are in full dimensions, following closely
the notation used by Chew, Balanis and others.

2 Green’s function

The electric field dyadic Green’s function G¥ in a homogeneous medium is the
starting point. It consists of the fundamental solutions to Helmholtz equation,
which can be written in a Fourier expansion of plane waves. This expansion
allows embedding in a multilayer medium. Finally, the vector potential approach
is used to derive the “potential” Green’s function G*. The latter is a two-step
derivation, where the electric and magnetic fields are functions of the vector
potentials and involves less evaluation in case of far-field calculations.



2.1 Homogeneous medium

Recall the Maxwell equation in homogeneous medium (part 1)

V xV x E—k*E = iwpJ.

This is written as three Helmholtz equations (Cartesian coordinates)

. - VV
VQE(’I") —+ k‘zE(T) = —wWwH |:I + ]{;2:| J(’I"), (1)
which solution is the convolution
! li
E(r) = iwp / g(r' =) [I_ + ka] J(r)dr’

or (Chew, page 27)

E(r) = iwpt / 70) [1 + Vl;gvl} g = r)dr.

with g(r) the fundamental solution to the Helmholtz equation (see next subsec-
tion). Alternatively, this can be written as

E(r) = iwu/J(r')GE(r’,r)dr’,
)

with the dyadic Green’s function G¥(r,7’) (second rank tensor)

6= = 14 55t

L2
that satisfies the following equation (Chew, page 31)

V x V x GE(r,r") — K2GE (r,r") = I5(r —1").
It can be shown that (Chew, page 28)

(G )T = G () = | T4 S5 ot =)

So, the convolution of this dyadic Green’s function and the source finally is



E(r) = iw,u/C_?E(r, ') J(r")dr'.
Q

This integral is defined properly provided that r ¢ Q as V'V is of order 1/|r —r[3
when r — ' and should de redefined in that case (Chew, page 28).

2.2 Helmholtz equation

The fundamental solution to the scalar wave equation or Helmholtz equation

(V2 +k%)g(r,r") = =8(r — ")
is

exp(ik|r — ')

g(r,r') = g(r'sr) = g(r —1') = drlr — 17|

Suppose that the Fourier transform of the solution exists

g(r,r') = / G(ky, by, k) exp(iky, (v—a")+iky (y—y )ik, (z—2"))dk,dk,dk, .
-0

The Fourier transform of the Helmholtz equation

/ (K —k2—ky—k2)§(ke, ky, k=) exp(iky (z—a")+iky (y—y')+ik.(2—2"))dkodk,dk. =
/ exp(iky (x — 2') + iky(y — y') + ik.(z — 2))dk,dk,dk,

implies the Fourier components

1
k2 — k2 — k2

g(km ky’ kz) =

Eliminating k., with use of the poles k, = &, /k? — k2 — k2 and Jordan’s Lemma

(allowing a small loss) results in the Weyl identity (Chew, page 65)



o0

klr — 1
M_z /fexpzk ) +iky(y — y) + iks|z — 2|) dk,dky,
m

|r — 7] k,

(2)
where k2 = k* — k2 — k7, Sm(k.) > 0 and Re(k.) > 0, for all k, and &, in the
integration.

The commonly used spectral decomposition of point source solutions can be
formulated as Fourier integrals.

2.3 Fourier integrals

For short notation we introduce the (shifted) 2D Fourier transforms (cf. Michal-
ski 1990)

oo

F=F(fa—oy—y) = / Fla—a!,y—y) exp(—iks (z—a')—iky (y—y'))dzdy.

— 00

[= F! (f(kmv ky)) = # / f(kma ky) exp(iky(z — ') + iky(y — y/))dkxdkya

— 00

which can be used to switch easily from different representations. By introducing
cylindrical coordinates,

x—a' = pcos(), y —y' = psin(¢),

ky =k, cos(a), ky = k,sin(a),

- I, o (11,

x/

and kﬁ = k2 + ki, we can express various inverse Fourier integrals that arise in
Sommerfeld-type integrals

~ 1 by
7 n+1
Sn [G(k kop) = 27r/ (kpp) k? dky, (3)
0



where J, is the Bessel’s function of order n. Explicitly, the inverse Fourier
transforms are

FY(iky ) = %G — —cos(0)S1 |G,
f*mw%=%G=—mWWﬁ@’
2y - o= (i ] -]
rﬂ@@=—§%0—%@ﬂwﬁﬁ}+&ﬂ ).
F (holky G) = aizyG ~5n20)5 [¢].

The Fourier component of the Sommerfeld identity are easily obtained

exp(ik|r —r'|)\ 1 xp(ik,|z — 2'|)
f( Ar|r — 1| 2 k. ’ )

where the Sommerfeld identity is given by

exp(ik|r —r'|)

/ i _
dmg(r,r') = = /k: (kpp) exp(ik,|z — 2'|) dk,
0
i Tk ,
:i/f%WmmW%m—ﬂmm (5)

The physical interpretation is that a spherical wave is expanded as an integral
summation of conical (or cylindrical) waves multiplied by a plane wave in z-
direction (Chew, page 66).

For postprocessing purposes, one may use the standard (non-shifted) Fourier
transform H of f is f (hat). It is given by a well-known of the Fourier transform



(oo}

Flhw kysa' o) = H (fle — 2,y —y') = / flz—a', y—y') exp(—ik,x—ik,y)dzdy

— 00
= / flx =2,y —y') exp(—iky(x — 2") — iky(y — v')) exp(—ikza’ — ikyy')dady
—o0

= f(ky, ky; 2’ y') exp(—ikya’ — ikyy')

The spectral representation is used to derive the Green’s function in terms of
Herzian dipoles where we derive the fields given point sources.

2.4 Hertzian dipoles
In 3D, a general source is composed of the three (linear independent) vector
sources: the Hertzian dipoles.

Suppose a current source is defined as J(r) = &I¢é(r — r’), radiating from
r = 1/, 1€ is constant and & is the direction of the dipole). The electric and
magnetic fields result from the convolution with the Green’s function (note that
J(r)=allin r = and J(r) = 0 elsewhere)

. - VVY\ _ _exp(ik|r —1'|)
E = I+ — ) - alf———=
(r) = dwp ( + k2 ) art dr|r — 7|

. ot
Hr) = V x argSROEr =)

drlr — 1|

If there is a spectral representation Ez(k:p, r) of E,, the other components can
be derived using the Maxwell equations (see Chew, page 76)

oo oo

E(r) = /E(kmr)dkp, H(r) = /ﬁ(kp,r)dkm

where the z- and y-components for E and H are given by

(5)-gl(h)zae ()] o



(5)-&b(5)an- ()] o

where E, and H, are the spectral components of E, and H,, respectively.

The next sections list the explicit relations for the field due to the electric dipoles
(Chew, page 71); similar results are obtained by duality (Chew, page 74). Recall
that the z-components determines the TE and TM polarization.

2.4.1 Vertical electric dipole (VED)

The VED & = 2 gives the components (Chew, page 71), with

Il 02\ exp(ik|r —r'|)
E, = 24— ) =" "V H =0
° T drwe (k +(’922) drlr —r'| 7 0 ®

Assuming that the dipole is of unit strength (I¢ = 1) and using the Sommerfeld
identity (5), the Fourier components of the z-components of the electric and
magnetic fields are (a function of k,)

2
web, = _ikf) exp(ik,|z — 2'|), H, = 0.

By using (7), the other components are

~ 1 ~ 1
wek, = iikm exp(ik.|z — 2'|), weE, = iiky exp(ik,|z — 2'|)

1k, . w5 Lk . ,
= ik—z exp(ik;|z — 2'|), Hy, = ik: exp(ik,|z — 2']).

2.4.2 Horizontal electric dipole (HED)

The HED & = # is given by the components

il 9% exp(ik|r —1'|)
E,=— H,=-1{—
* we 020x Axmlr—r'| T F

Assuming that I¢ = 1 and using the Sommerfeld identity (5), the Fourier com-
ponents are

- 1 1 - 1 1
wek, = —§(k2 - k‘i)k— exp(ik,|z — 2'|), weE, = ikxkyk— exp(ik.|z — Z'|)



~ 1
wek, = :I:ikm exp(ik.|z — 7'|)

~ _ 1
H,=0, H, = F3 exp(ik.|z — 7'|)

1k
L, = ili exp(ik.|z — 2/|).

For the HED in y-direction, the z-components are

il 97 exp(ik|r — /|

0 exp(ik|r —1'|)
© we 020y Arw|r — /|

)
H,=1If
’ or  Ax|r —1/|

with the Fourier components

-~ 1 1 ~ 1 1
wekb, = ikzzkyk—z exp(ik,|z — 2']), weE, = f§(k2 - ky)k—z exp(ik.|z — 2'|)

. 1
weE, = :i:iky exp(ik.|z — 2'|),

. 1 . .
H, = F5 exp(ik,|z — 2'|), H, =0

[ 1km .
H, = 3 exp(ik.|z — 2'|).

The E components form the elements of the electric Green’s function GP. The
H is here the magnetic field due to the electric dipoles.

2.4.3 Summary

The spectral components of the dyadic Green’s function G¥ for the electric
field in an homogeneous medium is simply the 2D Fourier transform of the dyad
GE(r,r") = [T+ VV/k?*] g(r — 1), explicitly

N L[ Kk —kaky ke
GE (kg ky; 2,2) = = koky K2 — k2 iky S | G(ka. kyi 2, 2).
ke ikyZ k2

Given the relation iwuH = V x E, it can readily be seen that the columns of
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Figure 1: stratified medium

0 —-Z ik
= ~E = T~ o . ~ /
VxG¥=VxIg= = 0 —iky | glks,ky;2,2")
—ik, ik, 0

are the magnetic fields due to the two HEDs and the VED, respectively.

When dipoles are placed in a stratified medium, reflection from the interfaces
should be incorporated. The general solution is a linear sum of planar waves,
which propagation through stratified media can be calculated explicitly.

2.5 Stratified Media

The construction of this (dyadic) Green’s function is done via the homogeneous
Green’s function for homogeneous media and its convolution. The Sommerfeld
(5) or Weyl identities (2) expand the solution in planar waves travelling in 2-
direction. The z-variation of the solution in free space in 2’ is given by

F(z,2") = exp(ik.|z — 2|).

Suppose the stratified medium consists of N layers and a (dipole) source is
located in medium m (see Figure 1), the solution is constructed inside this
medium and the solution outside this medium is constructed recursively.

2.5.1 Planar waves

The simplest case of a stratified medium is the half-plane, which consists of two
layers or N = 2.

An incoming TE planar wave in region 1 is reflected by the layer in region 2
and is written as

ETy(2) = eo [exp(—iki1.2) + Riz exp(2iky.di + ik.2)].



At z = —d; the field matches to the transmitted wave in region 2

Eg,(2) = eoTiz exp(—ika.2).

Using the boundary conditions for the electric and magnetic fields, the Fresnel
coefficients are calculated

p2k1, — pika,
Rig = —"——""—,
,U/2k51z + M1k22
2uoky,

Ty =—"""2——.
2 poki, + ko,

This procedure can be generalized for multiple layers.

2.5.2 Generalized reflection coefficient

The Rij are the generalized reflection coefficients in the stratified media. For
both TE and TM these are derived from a recursive relation (Chew, pages
52+53)

~ R+ Ri1iv2exp(2ikiy1 - (dig1 — di)) 5 B
Riit1= = : , Ry n41 =0,
L+ Riit1Riq1,ip2 exp(2ikip1 . (diyr — dy))
and
~ Rii1+Ri 14 2ik;—1 . (dy — di— ~
Rii1=— 14 R i xD(2iRioy ) Rip =0,

1+ Ry 1 Ri1 iz exp(2iki—1 .(di — di1))’

with the Fresnel reflection and transmission coefficients for layers ¢ and 7+ 1 as
if they would be in half-space (Chew, page 49)

e Mit1kiz — pikig .
it = )
vt Mit1kiz + ki

RTM _ €it1kiz — €kit1 -
€ir1kiz +€ikiv1,z

1,0+1

Furthermore, R;; = —R;; and the transmission coefficient is T;; = 1 + R;; and
kiz/pi(1 — Rij) = kjz /1 Tij.

10



2.5.3 Inside the source region
If the source is embedded in same medium m, this wave is accompanied by the

reflection from the layer beneath and transmission wave from above. For TE or
TM modes, we replace F' by

F(z,2") = exp(ikm:|z — 2'|) + Am exp(—ikmz2) + Cr, exp(ikm2), (10)
where k,,, is the z-component of the wave vector in region m. The two extra

terms are reflections at the boundaries 2 = —d,,,—1 and z = —d,,, and constraints
can be found for A,, and C,,. For z > 2’ at 2 = —d,,_1,

Am exp(ikmzdmfl) = Rm,mfl [exp(ikmz|dm71 + Z/D + Cm exp(_ikmzdmfl)]

and for z < 2’ at 2 = —d,,,

Crm exp(—ikm2dm) = Rum+1 [€xp(ikmz|dm + 2'|) + Am exp(ikm.dyn)],

where Rij are the generalized reflection coefficients. Solving A,, and D,, from
the two relations gives

A = exp(—ikmzdm 1) Romm—1
(XD (ki (1 + ) + Ronms1 exp(ikim= (2 — din1 + 2')) | M

Cn = exp(ikmzdm)Rm,m—i—l
[— exp(ikmz(dm + 2')) + Ronm—1 €xXp(—ikpm(2dm 1 — dy + z’))} M,,,

with

~ ~ —1
M, = |:1 - Rm,erlRm,mfl exp(2lkmz(dm - dmfl)} .

Using this F', the contributions by the reflection and transmission waves to the
dipoles can be derived.

11



2.5.4 Vertical electric dipole (VED)

If the reflected waves from the top and bottom layers are included and the
components of the electric fields are

1
wek, = ikx [+ exp(ik,|z — 2'|) + AS exp(ik.z) — BS exp(—ik.z)]

1
wekby, = §ky [+ exp(ik,|z — 2'|) + AS exp(ik,z) — BS exp(—ik,z)]

2
wekl, = fik—p lexp(ik.|z — 2'|) + AS exp(ik,z) + BS exp(—ik,z)],

and the magnetic field components are

1k
. = fik—y lexp(ik,|z — 2'|) + AS exp(ik.2) + BE exp(—ik.z)]

~ 1k, , , ,
H, = 2% lexp(ik,|z — 2'|) + AS exp(ik,2) + BS exp(—ik.z)] (11)

z

2.5.5 Horizontal electric dipole (HED)

In the stratified medium, the reflected waves from the top and bottom layers
are included and the electric field components are

~ 1 1
weF, = —= | (k* — k) — exp(ik.|z — 2/|)+
5 k.

1 1 .
(—K2k2Bj, + k k> Af) s exp(—ik,z)+

ks

1 1
= (k2K2Dj, 4+ k;k*Cy) = exp(ikzz)]
P z

~ 1 1
weE, = ikrky = exp(ik.|z — 2'|)+
z

1 1
= (k2B5, + k*A5) — exp(—ik.z) +

P z

1 1
= (—k2Dj, + K*CF) = exp(ikzz)]
P z

12



1
weF, = 51% [+ exp(ik;|z — 2'|) + By, exp(—ik.z) + Dj, exp(ik,z)]
and the magnetic field components

-~ 1kgk . .
Hy = 5 =57 (A} + B) exp(—ik.2) + (D, = Cf) exp(ik.2)]
P

- 1 11 . . ,
H, = :F§ exp(ik,|z — 2'|) + 37 [(kgAh — k2Bf) exp(—ik.z)+

(—k2Dj, — k2Cy) exp(ik.2)]  (12)

~ 1k
H, = ik—y [exp(ik,|z — 2'|) + Af exp(—ik,z) + Cj, exp(ik,2)]

z

Note that the reflected up-going wave Df exp(ik.z) will have a minus sign due
to the negative sign of the primary down going field exp(ik.|z — 2|) in weE,.

For the HED in y-direction, change the role of  and y gives the z-components

1
weFE, = iky [+ exp(ik,|z — 2'|) + By, exp(—ik,z) + Dy, exp(ik,2)]

H, = ~3% [exp(ik,|z — 2'|) + Af, exp(—ik,2) + Cj exp(ik,z)] .

Note the sign change in the magnetic field component H, = M%g(r, ).

2.5.6 Coefficients

The coefficients A, B, C' and D represent TM and TE waves as given in the table

A T Ay [ As [A7 [ By | By | B | BI
TE | T™M | TM | TE | TM | TE | T™M | TE
Cilcplcelcy | D | Dy| De | D
TE | T™M | TE | TM | TM | TE | TM | TE

and are functions of the source location z’. In the above notation we have (the
superscripts e and m are omitted, —d,, < 2’ < —dy_1)

13



Bv = Ah = eXp(_ikmzdmfl)Rm,mfl [exp(_ikmz(dmfl + Z/))

+ Ry i1 €xXP ik (2dm — dp1 + z’))] M, (13)
Ay = Cp = exp(ikmzdm) Rt 1 [€xp(ikmz (dm + 2')) »
+Rm,m—1 exp(—ikmz(2dm—1 — dm + Z,))} Mm (14)

D, =B, = exp(—ikmzdm_l)ém,m_l [exp(—ikmz(dm_1 + 2')) )

—Rupms1 €Xp (ki (2 — dipy + z'))] M,

Cy = Dy, = exp(ikmzdm) R m+1 [— exp(tkmz (dm + 27)) 16
+Rm,m71 exp(—ikm,(2dm—1 — dpm + z’))} M,,. (16)
Note the minus signs appearing in the square brackets of coefficients D, = By,

and C, = Dj,. This is due to the minus sign of the down going wave from the
HED (and HMD) solutions. Also useful are the relations between the coefficients

%Ah — ik, B,
%Ch = —ikm.Dp
%Bh = —ikp.Ap
%Dh = —ikm.Ch,

A, =Gy By = Ay, Dy = By, € = Dyt

For m = 1, we may also write

Dy, = Gy, = Dy* = ¢4,

and for m = N,
A} + By, = Ay + By

14



2.5.7 Summary

These components build up the electric field dyadic Green’s function GF for
problem defined on a stratified medium. The next subsection uses the Fourier
modes of dipole solutions derived previously in the vector potential approach.

2.6 Vector potential approach

In a source free medium, the magnetic flux B and electric flux D are soleniodal,
i.e.

V.-B=0,V-D=0.

Then the arbitrary vectors A and F', the potential vectors, exist such that

BAZIUHAZVXA,

DFZEEF:—VXF.

The definition of the curl above together with the divergence of A and F,
uniquely define the vector potentials. We choose the Lorentz condition or gauge
to define the divergence (Balanis, page 257). Substituting this into the Maxwell
equations, the total electric E = E4 + Er and magnetic H = Hy + Hp fields
yield (Balanis, page 260)

Eeiv|l+ Y| A-®gyp (17)
k2 €

H =iw f+ﬂ F+2vxA (18)
k2 i

So, a field is a result of both vector potentials; the scatterer problem gives the
vector potentials in terms of Green’s functions and sources and is described in
the next sections.

2.6.1 Green’s function
The Green’s function is not unique and one of the commonly used is the “tra-

ditional” form for the vector potentials G4 and G¥ (Michalski 1990) and are
given by

15



Gew 0 0
GA = 0 Gu 0 |. (19)
GZJJ Gzy Gzz

For the z- and y-horizontal dipoles only two components per column (direction)
need to be specified (Sommerfeld, page 257). Using this form, the following
integrals define vector potentials for volume sources, with J the electric field
density and M the (non-physical) magnetic field density, are defined (Balanis,
page 276)

A= [ GArr") J(r")aV’ (20)
/

in/GF&JﬂﬂiﬁﬂdVﬁ (21)
v
For a radiating surface S (in free space) with linear densities Jg and Mg

A= ¢ GAr,r") Jg(r')dS’ (22)
f

F= ¢ GF(r,7") Ms(+')dS". (23)
/

For magnetic and electric currents I, and I,,, these reduce to line integrals over

C

A:/Gﬁmﬂgwmr
C

F = /GF(T, ') I, (r')dl’.
C

The direct relation between the electric/magnetic Green’s function from the
previous section and vector potential Green’s functions are

W GE(r, ') = [ﬂ ka] G (). (24)
eGH(r,r") = [I+ vkzv} G (r,r"). (25)

In the next section, the elements in the vector potential Green’s function are
derived for an observer at z and source at 2z’ situated in the same layer. The
solution outside the source layer is determined in the Appendix.

16



2.6.2 Observer inside source layer

By using VED, HED, VMD and HMD dipoles the contributing elements to
dyadic GA*" can be constructed.

Use the TE,- and TM,-components of the fields generated by the dipoles and
derive the components as explained in the previous section. Then look for a
vector potential A in spectral domain such that

VXxA= ,uHA
or in spectral form
iky Az = 3 Ay nH,
(koA = 2A,) | = | pi,
iky Ay — ik, A, pH:

The vector potential A only needs two components to be specified. The result
will be the first column in the dyadic G4.

For a HED in z-direction, the spectral components of the magnetic field is given
by (12). The vector potential components for a HED become, with the choice
Ay, =0,

zkyflz = ﬂf;’m —z’kyflz = ;uffz

or
A, = _QZ'MTZ [exp(ik,|z — 2'|) + A} exp(—ik,2) + Cf exp(ik.z)],
A, =0,
Ao = 57 (4 + B oxpl-ik2) + (D~ G exalib)].

The HED in y-direction one chooses A, = 0, which implies

tky Ay = uﬁz, —iky A, = uﬁy

or



= f

Ay = =5 [expliks|z = 2')) + Af exp(—ik=2) + Cf exp(ik=2)],
A= 25 g 4 Bg)exp(—ik.2) + (D — Cf) explik.2)]
2T g VT PR LT hT RSP

which is the same as switching role x and y in the derivation for the HED in
x-direction.

For a VED the magnetic components are given by (11). Thus, the choice Ay =0
in the potential vector results in

A, =0, —ik, A, = uH,, ik,A, = pH,

or

A, = —% lexp(ik.|z — 2'|) + A exp(ik.z) + BS exp(—ik,z)].
1Rz

All components of the vector potential Green’s functions G4 can be obtained
(cf. Dural & Aksun 1995)

~ H
GA = —
v k.

[exp(ik,|z — 2'|) + A exp(—ik.z) + Cj, exp(ik,2)]

G4, = 5o | (A5 + Bf) exp(—ik.2) + == (Df, - CF) exp(ik.2)

2ik, 2 k2
G4 = —% [exp(ik,|z — 2'|) + A exp(ik.z) + B exp(—ik.z)]
IRz
GE = — 2; [exp(ik.|z — 2'|) + A}l exp(—ik,2) + C}* exp(ik.z)]

~F € kik.
= 90k, kg

kyk. .
(AV + Bp) exp(—ik.z) + ?(D,T — CM) exp(ik,z)
P
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GE = — 2; lexp(ik.|z — 2'|) + Al exp(ik.z) + B] exp(—ik.z)].

The elements from the y-oriented HED and HMD follow directly by rotation in
the z, y-plane

GLE =GEF, GAT [ky = G k..

The spatial Green’s function are obtained using the inverse Fourier transforms

1

G2, = F HG) = S[G] = So[G4,] 27r/ (kop)k,dE,
0

o0

B / lexp(ik,|z — 2'|) + Af exp(—ik,2) + Cj, exp(ik,z)] %Jg(kpp)dkp

0
exp(ik|lr —7'|) T ) . , k
= 4;|T_T/| e % exp( zkzz)+Chexp(zkzz)]k—pJo(kpp)dkp
0
kG Si[G S G| _ ! Ooé?rj kpp)k2dk
(i ) = —cos(¢)S1[G] = — cos(¢)S1 ik **COS(@% ik 1(kpp) pdRp

GL=F""
0

= — cos / & + Br)exp(—ik.z) + (D}, — Cf) exp(ik.z)] J1(k,p)dk,,
0

- 1 by
Gl = F1(G) = $,16) = SalGA) = o [ G
0

zz

(kpp)kpdk,

oo

__H* ; —
= 4m/[exp(zk’2\z z

0

k
") + AS exp(ik,2) + BS exp(—ik.z)] k—pJo(kp,o)dk:p

Kl — r k
expliklr —17l) _ _p /Ae exp(ik,z) + By exp(— ikzz)}k—pJo(kpp)dkp.
z

0

Cdmlr—r| r’| - Ami
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Figure 2: Waves reflection

2.6.3 Example

In the example problem N = 3, where sources are in region 1 and 2. The
interfaces are located at z = —d; and z = —ds.

First, a source at z = 2’ in region 1 (m = 1 and n = 1). The generalized
reflection coefficient is

By — Ri2 + Rog exp(2iks,(do — dy))
12 — .
1+ R12R23 exp(?zkgz (dg — dl))

with ko, = (/K2 — l-c,% (and M, = 1). The spectral Green’s functions become

G, = — i lop(ikaz]z = 2') + Cf exp(ikaz2)]

5 kykiz ;
GA = 1 { 2 (Ds — Cf) expl(iky.z)

ik, | k2
GA = — Lt [exp(iki.|z — 2'|) + AS exp(iky.2))
Q%klz
GE = — Y fexp(ikis|z — 2/|) + O exp(iky»2)]
27,k‘1z
~ kxk z .
r 1 ! (D — CFY) exp(ik122)

7 iky, | k2

GE = - “ [exp(ik1.|z — 2'|) + A" exp(ik1.2)],
22k1z
with coefficients (either TE or TM)

A, =C = ng exp(iklZ(le + Z/))
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Dy, = —ng eXp(ilez(le + Z/))

To obtain the closed-form spatial Green’s functions by doing the Fourier inverses
(3). The construction of the solution for observers outside the source layer is
described in the Appendix.

Now, we have relations for the fields as function of the sources applied in the
whole domain. We use these to calculate the fields in the desired subdomain.

2.6.4 Summary

The electric Green’s function is obtained using the dipole solution directly (sec-
tions 2.5.4 and 2.5.5) or by applying (24) to the vector potential Green’s function
k2 — k2 —koky, ik,

_ 2 2 . b 5 A
koky k*—ky  ikys | G

. le] . 9
Zka‘ng Zky& k2 — kg

—
E __
neT =03

and similarly eGH = 1/k[-- ]éF by duality.

3 Far-field reconstruction

The ingredient for the calculation of RCS for a scatterer is a far-field description
of the electric field E.

The far-field is constructed using Green’s functions for a given electric and
magnetic currents on the scatterer. The idea is to evaluate or approximate the
convolutions to obtain the far-field quantities as function of the currents in the
scatterer.

3.1 Radar Cross Section
The bi-static RCS is defined in terms of the time-averaged Poynting vector
— 1; QIjscat
RCS(0,¢) = lim [471'7“ } ) (26)

where P; = %?Re(E x H*) is the power density. A property of solutions for
point sources in homogeneous media is the exp(ikr)/r behavior in the far field.
Furthermore, it can be shown that P; = |Ej|* + |E}|* for the far-field, where
the radial components F, and H, vanish (Balanis, page 280).
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For 2D problems, the bistatic scattering width is defined as

5|2
SW(#) = lim |:27T’I“|E | }

r—00 |f§'2|2

The observation points far from the scatterer, 7 > 2D? /), defines the far-field
(Fraunhofer) region, where D is the maximal dimension of the scatterer and
A is the wavelength . In this region the maximum phase error is 7/8 ~ 22.5°
(Balanis, page 286). The limit is the minimum distance for the RCS to be valid.
Another limit defines the near-field r < 0.624/D3/A3 (Fresnel).

For r — oo in a homogeneous medium, the fields are orthogonal to the ra-
dial direction (plane waves and VV ~ 1/r?); we may write in terms of vector
potentials A and F' (Balanis, page 285).

4 Numerical evaluation

All representations involve (multiple) integrals over infinite (frequency) domains
of rapid oscillating functions containing singularities. Also the sheer number of
integrals, for each location requires a new evaluation, makes the evaluation of
the solution costly. Straightforward numerical integration requires many sample
points or do not even converge due to singularities.

The next subsections describe techniques to deal with the problems. The path
in the Sommerfeld intergrals can be extended to the complex plane to avoid
singularities. Some singularities can be subtracted analytically. Finally, the
integrand can be approximated by exponentials, which integral is derived ana-
lytical.

4.1 Sommerfeld integration path (SIP)

Sommerfeld integrals can be evaluated using Cauchy theorem. The integral

Io/f(:c)dx

is an integration of complex function f along the real z-axis. Suppose the
function f has a singularity at * = z¢g. A new contour C is parametrized by
s(t), with s(0) = 0 and s(c0) = oo can be defined and

Iz/f(z)dzz/f(s(t))%dt.
C 0
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Figure 3: Real part of In of a typical integrand.

Im(k) ok

Re(ky)

Figure 4: FSIP, dot represents a pole.

For semi-infinite Sommerfeld integrals, a pole is at k, = k. In this context, the
contour s(t) is the so-called Sommerfeld integration path (SIP) or folded SIP
(FSIP).

4.2 Singularity subtraction
For sources and observation point are close, the integrand in the Sommerfeld

integrals can be highly oscillatory for large frequencies and singular in the limit.
However, we have (Sommerfeld)

Ooex ik, o exp(ikr
/%Jg(kpp)dkp = #, r=+/p?+a?
0

7 1 «
exp(kya)Jy(kop)dk, = = [ 1+ ——— | .
0/ (P)I(PP) P ,0< \/m)

Take the limit of the integrand for k, — co and use the above identities to add
and subtract the singularity from the integrand.
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Figure 5: Deformed SIP for GPOF method

Re(ky)

4.3 GPOF

The general pencil-of-function method (GPOF) can be used to approximate the
integrand in the Sommerfeld integrals. The idea is to approximate the Fourier
components, for given z and 2/, as function of k, in a sum of exponentials, i.e

Gk (1))

M
___H , ,
z,2" = _2ikz ; bz exp(slt)

where ¢t is the running variable in a linear parametrization of k,(t)/k = o + (Ot

and by using k,(t) = \/k? — E2(1).

Then we can write as a function of k.(k,) = /k? — k2

G (kp)

M
H Z kz(kp)/k —
5 = — b  —_— =
2,2 2’Lk'z - ; €XP <31 ﬁ

M
K _ _. G : Si
Sk, ; b; exp ( SZﬂ) exp (zkz(kp) iﬂ) .

Use the Sommerfeld identity here to get a closed-form 3D Greens’ function

M a\ exp(ikr;)
/ _ =1/ _ ) P i
G(r,r)|ze =F(G) = p ;:1: bi exp < Si ﬁ) 4mr;

with r; = /(p — p/)? — (s;/3)? (which are complex functions).
The residues b; and the poles s; are obtained using GPOF method (Cheng &
Yang, 2005).

The approximation can be improved by taking two piecewise linear parametriza-
tions of the SIP in the complex k. plane. One starting from £ going to the
positive imaginary axis and the other is on the positive imaginary axis. This is
the two-level DCIM (Aksun 1996, Aksun 2005).

The GZ, and ny elements are approximated in the same way. We have
FY G4, Jik,) = [ GA dx, when using GP''™ (r) = exp(ikr)/(47r), we get
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0 G M a\ dGPrm
A= [F 1222 ) = , 5= 7
G”_&c <}— <2k$>> ,u;blexp< Slﬁ) dr oz’

with

dGrrim 4 [exp(ikr) ) exp(ikr)
= & (EPUET) ) (e — 1) SR
dr dr ( 47y (ikr = 1) 472

For second-order derivatives (e.g. in GE, and GL)

aQGprim B dQGprim g 2 derim&
ox2  dr2 ox dr 0x2

and mixed derivatives (e.g. in G£,)

PGP RGP gr gy dGPT™ 9Pr

dxdy  dr2 8?67y+ dr 9xzdy

both using

d2 Gprim
dr?

exp(ikr)

= ((ikr —1)* +1) =

The partial derivatives of the radius r = r(x,y) are

or _ z—a’
or — 1
r _ 1 (z—2')?
o2 Ox2 r r3 .
ro_ / /
950y (x_x)(y_y)fs

The derivatives 9/dx(F~1(...)) can be done in a straightforward fashion (either

symbolically or numerically).

4.4 Summary

Assuming that the current density J(r') in a domain Q' is given, the solution to
the Maxwell equations can be constructed by the following steps in the vector
potential approach (no need for the equivalence principle). The main ingredient

is the Green’s function G4.
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4.4.1 Green’s function

1. Each column in the (dyadic) Green’s function (19) is derived from the
solutions for 2 HEDs and a VED, using equations (9) and (8).

2. These solutions are expanded in planar waves in z-direction using Fourier
transformations (3), resulting in Sommerfeld type integrals.

3. The stratified medium is included by adding the reflected waves from the
adjacent layers as in (10), which are either TE or TM waves.

4. The vector potential A for the electric field is the integral (20).

5. The field F outside that domain is evaluated by relations (17) and (18).

The resulting expression for the total field can be evaluated numerically.

4.4.2 Numerical evaluation

1. Define observer points in which the I + V'V /k? operator can be approxi-
mated by finite difference (central difference and bi-linear interpolation).

2. Do volume integration of the potential vector (20) involving the product
GA(r,r") - J(r') for the components (G* - J),, (G4 -J), and (G4 - J),
for each observer point (adaptive rules like Romberg or Filon integration;
Gauss-Chebychev or Clenshaw-Curtis integration rules).

3. Evaluate the Sommerfeld integrals contained in G4 using a SIP as de-
picted in Figure 4 (integration rules for slowly decaying, highly oscillating
integrands) or create closed-form approximations using GPOF method.

The evaluation of VV-operator can be avoided by using the Green’s function for
the electric field G¥. This involves more Sommerfeld integrals to be evaluated.

5 2D problem

The relations for the full 3D Maxwell equations reduce when the solution is
(semi)constant in one direction (say y-direction). The derivations in the next
section follow the same recipe as in the 3D case.

5.1 Homogeneous medium
The Green’s function is a dyadic function and has the same functionality as

in 3D. However, the fundamental solution g(r,r’) is the solution of the 2D
Helmholtz equation.
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5.2 Helmholtz equation

The fundamental solution to the 2D Helmholtz equation,

(V2 + k%) g(r, ") = —6(x — 2')6(2 — &)

is
7
g(r,r') = iHél)(kh“ —7'|).

Suppose that the Fourier transform § of the solution exists

o0

g(r,r') = QL / G(ky, k) exp(iky(x — 2') + ik, (2 — 2'))dk,dk,.
i

— 00

The Fourier transform of the 2D Helmholtz equation

/ (K*—k2—k2)G(ka, k. ) exp(iky (z—2')+ik, (z—2"))dk,dk, = / exp(iky (v—2')+ik,(2—2"))dk,dk,
— 0o

—00
implies the Fourier components

~ 1
9ke b2) = 15—
eliminating k, with poles k, = +1/k? — k2 and using Jordan’s Lemma (allowing
a small loss) gives

oo

7 /exp(ikx(x—x')+ikz|z—z’|)

/ —_— =
g(r,r') = i dk,

/ exp(ik: |Z — 1) cos(ky(x — 2'))dk,
0

with k, = \/k? — k2. Here we recognize the F(z,2') = exp(ik.|z — Z/|) term,
which allows the use of equation (10) and the other following derivations.
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5.3 Fourier integrals

The inverse Fourier transform

~ 9 1 7.
—1 _ _ - : s
F ik, G) = 2 - G(ky) sin(ky (z — ) kydks,
0
Fige) = -L g1 /ooé(k ) cos(ky (2 — o)) k2dk
e Oz T * ’ S

0

The Fourier transform of the fundamental solution is (cf. Weyl identity)

i) o) _ dexp(iks|z — 2))
F (4Ho (k|lr —r |)) B A — (27)

The next subsections discusses the oblique incidence case (TE/TM) and the
conical case (general).

5.4 Hertzian dipoles

The 2D solution satisfies the 3D Maxwell equations. So, a dipole at r =’ (is
actually a line source at x = 2’ and z = 2’) gives

. - VVY\ ., 1
E(r) = iwp (I + k2> OJEZH(SI)(MT —7r'))

H(r) =V x &Lt HEY (kir —1)).

We use the dipoles to derive the columns of the dyadic function. Suppose
I¢ =1, then the HED & = & (e.g. J(r) = 2I¢5(r — r')) gives the TM and TE
components

i 0% i
= o aam g He (Rl —r'l), H. =0,

the HED & = ¢ gives the TM and TE components
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and the VED & = 2 gives the TM and TE components

(2 EN O e, H =
E, = e (k +822) 4H0 (klr —7'|), H, = 0.

From these relations, the spectral z-components are easily extracted. The other
components are derived from (6) and (7), with &k, = k,, or

A I T
E,=——F, EBy=— H,
ooz T B
- 1 0 =~ ~ 1 ~
A=Y 0, 0, = wek,
I A T
For the & = &, the components are (TM)
weE, = ——k, exp(ik,|z — 2'|), E, = 0,

~ 1
well, = :|:§l£3c exp(ik,|z — 2'|)

. . 1 .
H, =0, H, = F3 exp(ik.|z — 2'|), H, =0

for & = 7, (TE)

_ - 1 k2 -
E, =0,weE, = “3h exp(ik,|z — 2'|), E, = 0,

1 -
H, = :|:§ exp(ik,|z — 2']), H, =0,

. 1k, _
H, = 3k exp(ik.|z — Z'|)

and for & = 2, (TM)

. 1 .
wek, = igkx exp(ik,|z — 2'|), E, = 0,
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These are columns of the electric and magnetic dyadic Green’s function.

5.5 Vector potential

The 2D Green’s function G4 for stratified media will be (call it the traditional
form)

G 0 0
~A
G'=| 0 Gp O
0o 0 G

For the construction of the vector potential we have to satisfy

,uHA =VxA
or the spectral representation
o A ~
_~EAy ~ wH,
(koA = ZA) | = | pi,
kaﬁy UHZ

For HED & = #, from H, = H. = 0 directly follows fly = 0 and with the choice
A, =0 we have

~ 7 . ~ -
Ay = ik exp(ik,|z — 2|), A, = A, = 0.

HED & = g, from ﬁy = 0 with the choice A, = 0 follows

A, =0, A, = _QZ'MTZ exp(ik,|z — 2'|), A, = 0.

VED & = 2, from H, =0 (and H. = 0) that A, = 0 with the choice A, =0

A, =A,=0, A, = —2;; exp(ik.|z — 2']).
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5.6 Stratified media

Adding the stratified media to the expressions do not add extra elements to the
dyad G4.

For HED & = & the previous results are replaced by (TM)

1
weFE, = _ikz [exp(ik,|z — 2'|) — Bj, exp(—ik.z) + Dy, exp(ik,2)]
E, =0
1
weE, = ikw [+ exp(ik,|z — 2'|) + By, exp(—ik.z) + Dj, exp(ik.2)],

H,=0

1
H, = -5 [+ exp(ik,|z — 2'|) + Bj, exp(—ik,2) + Dy, exp(ik,z)]

H,=0

thus with 2 A, = —ptweE, we get

.= — 2;2} lexp(ik,|z — 2'|) — Bj, exp(—ik.z) + Dy, exp(ik,2)].

The A, is the first element of the first column in the dyad (TM)

GA = — 2;}; lexp(ik,|z — 2'|) + Bj, exp(—ik,z) + Dy, exp(ik,z)].

The other components are derived in a similar way (TE and TM, respectively)

NA H . e . e .
Gy = — 2ik lexp(ik,|z — 2'|) + A exp(—ik,z) + Cj exp(ik.z)],
éfz = ——252 [exp(ik,|z — 2'|) + AS exp(ik.2z) + BS exp(—ik.z)].

Applying the inverse Fourier transform finally gives
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oo

GA = F(Gh) =1 / G (k) cos(ka( — 2'))dk, =
v

0
00

1
B lexp(ik.|z — 2'|) + By, exp(—ik,z) + Dj, exp(ik,z)] = cos(ky(x—2"))dk, =

2mi .

r 1
fH(1 (klr—r'| e / [By, exp(—ik.z) + Dj exp(ik.z)] . cos(ky(z—2"))dk,,
0

211 .

oo

~ 1 ~
A A A
Gl = %G):;/Gﬁmnm@@fwm@:
0
_QLﬂ'i / lexp(ik.|z — 2'|) + AS, exp(—ik.z) + Cj, exp(ik,2)] ki cos(ky(x—2"))dk, =
0 z

. o0 1
,u%H(()l)(kh‘—r —%/ [Af exp(—ik,z) + Cf exp(ik,z)] — o cos(ky(z—2a'))dk,,
7r
0

aw

GA = F Y / GA (ky) cos(ky(z — 2'))dk, =
0

—% / lexp(ik.|z — 2'|) + AS exp(ik,2) + BS exp(—ik,z)] k;i cos(ky(x—2"))dk, =
Uy z
0

EHO (kfr—/))— L e N o
u4H0 (klr—r'| 57 ¢ exp(ik,z) + B exp(—ik,z)] " cos(ky(x—2z"))dk,.
0

The coefficients B}, D7, A, C};, Af and Cy are solved at the boundaries of the
source region and are given by relations (13) to (16).

In a similar way the total fields for a multi-layer medium are derived. For & = g,
we get (TE)

E,=0

- 1 k2
weE, = —fk— exp(ik,|z — 2'|) + AS exp(—ik,z) + Cf exp(ik.z
Y 2k h h
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3
Y

Il
=

~ 1
H, = 3 [+ exp(ik,|z — 2'|) — Af exp(—ik,2) + Cj, exp(ik,z)]

Hy=0

~ 1k, . . )
H, = 3% lexp(ik,|z — 2'|) + Af, exp(—ik,2) + Cj, exp(ik,z)]

E, =0

1 k2
weE, = —ik—m lexp(ik.|z — 2'|) + AS exp(ik,z) + BS exp(—ik,z)],

z

H,=0

1k, . . .
H, = % lexp(ik,|z — 2'|) + AS exp(ik.2) + BE exp(—ik.z)]

H,=0.

The columns in dyadic Green’s function GF are the corresponding dipole solu-
tions . The non-zeros in this dyadic for the electric field are

ap (L 0ap\__11 Felz— 2/]) — BE exp(—i ¢ oxp(i
G <_k5 8sz)_ 12 Qikz lexp(ik,|z — 2'|) — By, exp(—ik,z) + D5, exp(ik,z)]

~ 11 : e . e .
GE = ﬁ%kT [+ exp(ik,|z — 2'|) + By, exp(—ik,2) + Dy, exp(ik,z)]

11
B : c , . .
Gl = 5 [exp(ik,|z — 2'|) + A exp(—ik.z) + Cj. exp(ik,2)]

z
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- ; ~ 11
GE (: kiéGE ) = — —k, [fexp(ik.|z — 2|) + AS exp(ik.z) — BS exp(—ik,z)]

vz 0z ** k2 21
~E 11 ka2: . ! e . e .
G, = b [exp(ik.|z — 2'|) + AS exp(ik,z) + BS exp(—ik,2)].

Note again that G4 ~ uGP ~ E/(iwp) or uG¥ ~ weE/ik?. This is also
obtained by applying (24) to the vector potential Green’s function, giving the
expression

D
K-k 0 ik ]

0 k2 0 G4,

; 9
ke 0 k2 K2

= 1
E _
HeT= e

Here you can see that for the TM, case, only the G, component is needed.

5.7 Conical case

In the conical case, the solution has the same y-dependency as the incoming field,
namely g(y) = exp(ikyy). We need a reformulation of the Maxwell equation
to get the 2D equation for this case. Start with (1) and solve this with the
separation of variables E(xz,y,2) = E(z,2)g(y) and J(z,y,2) = J(x,2)g(y).
The V-operator reduces to V = [, + ik, + 9.]". So

- VV
V2E(r) + K*E(r) = —iwp {I + kQ} J(r)
becomes
32 32 R PO . - @@ S
(8952 + 8,22) E(x,z)+ k*E(x, 2) = —iwp | I + 2 J(x,2),

with &% = k2 — k2 and
B 02 iky0, 02,
UV = | ik,0, —k2 iky0.
0%, ik,0. O

This again leads to the solution using 2D Green’s function (free space)
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2 = VV
GE(T?TI): I+? g(r,r/),

with §(r,7') is the fundamental solution to the 2D Helmholtz equation

sy = L (12 _ ) = L [ expliks]z — 2]) o
glr,r') = 4H0 (k |r —r |> = 27r/ . cos(ky(z — z'))dk,
0

and k, = (/k2 — k2. The stratified media is added as done before and the
relation between the field and vector potential Green’s function is given by

I
WGE = = | —hyke K2R ik, L | GA (28)
ik ik, 8 k? — k?

Note that k, is a constant fixed by the incident wave. Following the definition
in part 1, set k, = ko sin(6) sin(¢).

5.8 GPOF

The 2D Green s functions are easily obtained by substituting the term GP"™(r) =

(i/4)H, (kr) in which the radius reduces to p— p’ = x —2’. For the derivatives
use

dGprim d (1 ik
i = (e ) == e

and

dQGprim ikQ 1 1
=~ (B ) — H (k).

For the conical case we apply (28) to obtain the field Green s function. In this
GA GA 0 GA 0 GA

case 7 function need to be approximated, i.e. Gm, vy YUzz 5; Ve 57 Cyys
8 GA and z GA

2., or if the primary term is subtracted

é?x _ Gprim _ _QE [By, exp(—ik,z) + Dj exp(ik,z)]

k.
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x X . 1
G;;ly — GPT = —% [Af, exp(—ik,z) + By exp(ik,z)]

k.

éfz _ Grrim —% Af explik,z) + B; exp(—ik,z))

1
7 |

8 :A prim \ __ 1% e . e .
P (Gm -G ) =-3 [— By, exp(—ik,z) + Dy, exp(ik,z)]

a A A rim 1% e . e .
e (G;‘y —GP ) =-3 [—Aj exp(—ik,z) + By exp(ik,z)]

9 AA :prim _ H e . e .
% (Gzz -G ) =-5 [AS exp(ik,z) — By exp(—ik.z)]

82 AA :prim M e . e .
9.2 (GZZ -G ) = z—ikz [AS exp(ik,z) + By exp(—ik,z)] .

The GPOF sum can directly be transformed to the closed-form Green’s functions
using identity (27). The z-derivatives are applied analytically to these functions
using the derivatives of the primary Green’s functions as described above, with
k=k.

5.9 Far-field

For the 2D case you can find the expressions in the book of Allen Taflove (Taflove
2000), where the Hankel functions are approximated.

In order to obtain the leading order far-field spectral field, we can use a stationary-
phase approximation. This gives a relation of the spectral field at infinity in a
fixed direction from the origin. Suppose the electric field at z > 0 component
can be written as

“+oo
E(z,z) = / E(ky; 0) exp(ikya + ik, z)dk,.

—0o0

We are interested in the far-field value of this field at r, in the direction

where r = v/x2 + 22 is the distance from 7., to the origin. So, we may write
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Eoo(8y,8,) = / EA’(kz;O) exp (z’kr <str + k];zsz>> dk,.

|k | <k

if the evanescent waves decay at infinity (homogeneous waves). Changing vari-
able p = k,/k we then have

Bulssiss) = [ BE(wi0)exp (i (pso + m(p)s.)) dp
Ip|<1
with m(p) = /1 — p?. Now, we have the far-field F., written in the desired

form. Given a direction s = (s, s,) (remember that s, = /1 — s2), approxi-
mate the function

1
F(k;s:) = /a(p) exp (ikg(p; sz)) dp,

with F'(k; $z) = Foo(Sz, 82), & = kr, a(p) = kE(kp;0) and g(p; ;) = pse +ms.,
using the stationary-phase method as k — oo. It can be shown that the critical
points of the second kind (end points of the integration path) are of order 1/x.
Let we continue with the critical points of the first kind, thus the points p;
where ¢’'(p1) = 0. We have

p
gl(p) =Sz + m/sz =8z — —S2
m

,, m —pm/ S P2
= —S, _— = —— 1 —_— .
g"(p)=—s ( — ) - ( + m2>

The (first and only) critical point is at p; = s, and concequently m; = s.. So,

2
Sy 1
1+<> 1 =—-— <0
S 52

and we have the approximation, as K — oo

g" () = -

salpy) explirg(o)) exw (-7 ).

kg (p1

-2
FU (k;5,) ~ T

The electric field is then given by
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2 R .
Eoo(52,82) ~ @Mg(k%;o) exp(ikr) exp (-ZZ)

where the far-field approximation of the Hankel function Hél)(kr) can be rec-
ognized, or

Eoo(Sz,8,) ~ k;szﬂ'EA(k:sm; O)Ho(l) (kr).

For a given direction s, the mode k, = ks, (k. = ks.) is the only contribution
for r — oo and is given by

. B (b ks oo K
E(kmo): ( /(1) / )
ke, HY (k)

Plugging this back into the Fourier transformation we started with gives

E(x,z) 1 : / Eoo(ky/k, kz/k)ki exp(tkyx + ik,2z)dks.

)
wHy (kr o

For a analytical solution to a problem, the far-field £, should be derived. For
instance, the general solution to a conducting or dielectric cylinder

n=oo

E(z,z) = Z A HWY (kr) exp(ing)

n=—oo

using the far-field aproximation for the Hankel functions, we arrive at

) S A, ﬂir exp(i(kr — w/4)) exp(—inm/2) exp(ing)
k. % exp(i(kr — w/4))

This simplifies to

n=oo

Z Ay exp(in(n/2 — ¢)).

n=—oo

1

wk,

E(ky;0) =

Higher-order terms can be obtained using the Method of Steepest Descent
(Chew, page 82).
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6 1D problem

For the sake of competeness, the one-dimensional Helmholtz equation has the
trivial solution

- S
9(z,7') = %*eXp(Mz 2D

k

Using this in the derivation of the vector potential, the (free space) Green’s
function reduces to

1 0 O
HGP(2,2) =Gz =pu | 0 1 0 | g(z2),
0 0 O

which convolution gives TEM, waves (H, = E, = 0).

Inclusion of multiple layers follows the same way as in 2D and 3D. Note that
k. = k is the only wave number present in a 1D problem. Basically, g(z, 2’) is
a single Fourier mode.

Also for the 1D problem the oblique and conical case the Green’s functions can
be derived in the same way.

7 Integral equation

The Green’s function convolutions give rise to integral equations (integro-differential
equations) for the electric fields (EFIE and MPIE). The equations can be solved
using for instance the Method of Moments (MoM).

7.1 Equivalence principle
Huygens’ principle or surface equivalence theorem uses the Gauss’ divergence
theorem to replace the volume integral with a integral over surface S and Sjy¢.

Assuming that the solution and Green’s functions vanish at Si,y — 0o, we may
write (Chew, page 32)

E(r')=- j{n x E(r)- V' x GE(T, r") —iwp(n x H(r)) - G’E(r, r')dS.

S

It can be shown (Chew, page 32) that this is equivalent to
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Figure 6: Equivalence principle.

E(r')=-V'x f@H(r',r) -n x E(r)dS + iwujééE(r’,r) -n x H(r)dS,
S S

which is similar to the potentional approach (22) and (23), with Jg = n x H
and Mg = —n x E (use V x VV/k? = 0, relations (24) and (25)). From
the uniqueness theorem (Chew, page 32), the solution can be derived either
from given Jg or Mg, provided that the Green’s functions satisfy the boundary
conditions V' x GH = 0 or G¥ = 0 on the surface S, respectively. For an
unbounded homogeneous medium G¥ = GF.

7.2 EFIE

The Green’s function can be defined via the contrast field £F¢ = E — E™, where
E™ is the known background solution. This field satifies the Maxwell equation

VxVxE—KE =kFE™-VxVxE™
or
V xV x E°—k2E° = (k* — k2)(E™ + E°),

where k,, is the wave number in the stratified media (without the scatterer).
Using the Green’s function G¥ for multi-layer media we obtain the following
electric field integral equation (EFIE) for E° (use iwuJ = (k% — k2)(E™ + E°))

Ee(r) = / G (r, ) (k2, — K3)(E™(r') + E°(r"))dr,
1%
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with V is the scattering object area, ks and kg constant material properties in
the scatterer (k* — k2, vanishes outside this area). Rearranging terms gives

/G (r,r")E(r dr—/G (r," Y E™(r")dr".

res

The 2D TE, half plane problem, with E™ = gE®, simplifies the EFIE consid-
erably. In this case, G¥ = G4 /u resulting in

B 1 C | .
Rz = kz2 - ;/G‘;y(r, T’)Ey(r’)dr’ = ;/G;‘y(r, T’)Ey (r"Ydr’,
v v

Take Ey(r) = 22;1 angn(r) and N test functions wy,(r) = d(r — r,,), with
r.m, the locations in the center of segment S,,,. Note that this method of mo-
ments is now similar to the point-matching method. The basis functions are
piecewise constant g,(r) = 1 for r in segment S,, and zero outside. E;'(r) is
the background plane wave solution for the problem without scatterer (normal
incident)

E;’“(r) = exp(—iki1,2) + Ri2 exp(2ik1,d1 + ik1.2)

which is evaluated in all 7, and approximated by £} (r) = Zi:i:l B (1m)gm(r)-
The EFIE can be written as a linear system [Z,, ] 1] = [Vin]

1 m
Zmn - ereS — kz - Amna Vm - AEy (Tm)a In = Qnp,
with A, = + fs () dr
7.3 MPIE

The Mixed Potential Integral Equation (MPIE) is a reformulation of the EFIE
and is given by

= jw / A (r"Ydr + 2V¢A(r) ,

with
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The equation of continuity states that V - J = iwq. By assuming that there
exist a scalar function K7'(r,r’) and a vector function P*(r,r’), such that

V- GA(r,r") = V'K r,r') + PA(r,r),

then (provided that the scatterer does not intersect with the interfaces, Michal-
ski 1990)

oA (r) = /Kf(r, YV - J(r)dr + /PA(T, ') - J(r")dr’
v

1%
_y / KA (r ") qr')dr' + / PA(r ') - J()dr.
\74 14

Add VP4 to G to obtain an alternative dyadic Green’s function K4 = G4 +
VP4, Together with the scalar potential kernel & j;, the solution can be written
as the mixed field integral equation

E(r) =iw /KA(T,T') J(r")dr + %V/Kﬁ(r,ﬂ) q(r")dr’
v v

The choice P;' = P;* = 0 result in the “alternative” Green’s function and has
all the continuity properties in z and 2’ at the interfaces (Michalski 1990).

8 Appendix

In the appendix, various problems are presented which have known analytical
solutions. Furthermore, the Green’s function for observers that are not in the
same layer as the sources is given. At the end, some useful identities are given.

8.1 Problems

The following problems can be solved analytically and are used to validate the
methods.

8.1.1 Conducting cylinder

The perfectly conducting cylinder is oriented in the direction of the z-axis (Bal-
anis, page 603 converted to exp(—iwt) convention). Define the total electric
field as E* = E' + E°, with
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E' = 2E! = 2Fyexp(ikz) = 2E Z 1" Jn (kp) exp(ing).

n=—oo

The boundary condition for PEC, n x E* = 0 implies E¢ = 0, and the outgoing
waves are combination of Hankel functions H,(f)

oo

B= Y L (kp).

n=—oo

Then, for all n at the boundary p = a,

Eoi"J, (ka) exp(ing) + cn HY (ka) = 0.

Solving coefficients ¢,

Cn = fi"E()% exp(ing)
Hy ' (ka)
The total field is
=i (ka) .
EZ(¢,p) = —Ep — 2 HWY (kp) exp(ing)
2 k)

The induced current is (Balanis, page 605)

L 2E) = i"exp(ing)
J, =2z
s(0) =2 H:Z_Ioo 70 (k)

The vector potential A for this problem is defined as

27
A= [ LH Hr = )Is(¢)add
0

Note that from the vector potential approach E® = iw(I + VV/k?*)A = iwA as
in this problem the vector A only has a z-component.
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8.1.2 Dielectric cylinder
The material inside the cylinder with radius a has refraction index mno, and

outside the cylinder ny, with the corresponding wave numbers k; = 27wn;/\.
The the scattered field is given by (exp(iwt)-convention)

Ej(p,¢) = Y A HP (k1p) exp(ing)

n=—oo

A, = —BC,

B&* = " exp [—z’n (g + 0)]

H? (kya)J! (ksa) — HP ' (kya) T, (kaa)
Jn(kla)J;L(kga) - J{L(kla)Jn(k:ga)

Cy =

8.2 Green’s function for the stratified medium

The case that the observer is outside the source region is presented here.

8.2.1 Outside source region

The solution has amplitudes that are related to the amplitudes on the boundary
of the source region (Chew, page 79).

If 2/ € R, and z € R,, n < m (above the source), the up going field can be
written as

Fi(z,2)=A} [exp(ikmz) + Ry exp(—2iknodp 1 — ikn22)

Factor A is related to the amplitude at the upper boundary of the source
region z = —d;,—1

At = exp(—ikmz (2 + dm_1)) + Cr exp(—ikmzdm_1) + A exp(ikmzdm_1)

or

Al = lexp(—ikpm.2") + exp(ikm. (2 + Qdm))Rm7m+1 exp(fikmzdm_l)Mm
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in a recursive way as
Aj exp(ik;.d;) = Aitrl eXp(ikiH’Zdi)S;SrM (29)

T Tiy1,i

Sit1i = = ; .
1= Ry Rii—1exp(2iki.(di — di—1))

Similarly, if 2’ € R,, and z € R,,, n > m (beneath source), we have the down
going wave

F (2,2)=A, [exp(—iknzz) + Ryyn1 exp(2iknzdy + ikn.2)| .

Factor A is related to the amplitude at the lower source region boundary
z2=—d,,

A = exp(ikm: (2" + dm)) + Am exp(ikm.dm) + Cp exp(2ikpm.dp,)

or

A, = [exp(ikmzz’) 4 exp(—ikmz (2" + 2dm—1)) Ron 1| exp(ikmzdpm ) My,
in a recursive way as

Az— exp(ikizdi) = Ai_—l exp(iki_17zdi_1)5»_ (30)

i—1,2

g - Ti 1
TN = Rigoa R exp(2ikis(di — dio1))

8.2.2 Observer outside source layer

The fields outside the source region m are related to the amplitude A} and A,
of outgoing fields at the boundary of the source region. At z = —d,,_1 and
z = —dy,, the amplitudes of the x-component of the waves from a HED /HMD
dipole

AnJrq = eXp(—iksz(Z/ + dm—l)) +Ch eXp(_ikmzdm—l) + A exp(ikmzdm—l)

A, = exp(ikpm: (2" + dp)) + Chexp(—ikm.dm) + Ap exp(ikmzdpm),
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the z-component from a HED or HMD dipole

Al = k2 (Ap, + Bp,) exp(ikmzdm—1) + 2 (Dp, — Ch) exp(—ikmzdm—1)
p P
kykm kykms .
AL = 2 (A + By,) exp(ikp.dpm) + k2 (Dy, — C,) exp(—ikydim)
p

and the z-component from a VED or VMD dipole
Al = exp(—ikpm, (2" + dm_1)) + Ay exp(—ikm.dy—1) + By exp(ik.dm_1)

A = exp(ikm: (2" + dm)) + Ay exp(—ikpzdpm) + By exp(ikmzdm)-

The corresponding elements of Green’s function are (n < m)

éfm = éfz = 2zk At [exp(zknzz) + Rnn 1exp(—2iky.dp_1 — zkmz)} ,
~’Z43; o 22k A {exp(zknzz) + Rnn 1exp(—2ikp.dp—1 — kaz)] ,

- - € . ~ . ,

Gfm = sz = —ﬁA: [exp(zknzz) + Ry, -1 exp(—2tky,dp_1 — zkmz)} ,
v _ 2;: At [exp(iknzz) + Rt exp(—2iknodn_y — iknzz)] ,

Z mz
and (n > m)

GA =G4 = — 2;;” A [exp(—iknzz) + Rn7n+1 exp(2ikp.d, + iknzz)} ,
A = 2;]:7" A [exp(—ikmz) + Rn7n+1 exp(2ikn.dy, + iknzz)] ,

GE =GF = - 2;: A [exp(—iknzz) + Rn7n+1 exp(2iky.d, + iknzz)} ,

éfx = 2;;’ A, [exp(—ikmz) + Rn,n-{-l exp(2iky.d, + iknzz)] ,

where R corresponds to either TE, or TM, waves (note that component G
has both) and amplitudes A;7 and A, satify the recursive relations (29) and
(30) , respectively.
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Figure 7: Wave reflections.

8.2.3 Example

A source in region 2 (m = 2 and n = 1). The fields in region 1 can be written
as

aA M {kxklefexp(iklzz)}

=7 Qiky, | k2
éfw = éi = —2;]; A exp(iky,2)
= €1 krklz .
GE = AT ki

22 = ik { K2 exp(iky Z)}

and the amplitudes A} of the up-going wave in region 1

A-li_ = exp(fiklzdl)A;' exp(ikgzdl)Tgl

is written in terms of the amplitudes AJ at the boundary z = —d; of region 2
for the six types of waves (3 x TE, + 3 x TM,)

AT = [exp(—ika,2") + Cp) exp(—ikg.d;)
AT = (D, — Cy,) exp(—ika.dy)

A = exp(—iko.2") + Ay] exp(—ika.dy),

with coefficients for the up going waves given by

A, =C), = Ro3 [exp(ikgz(le + Z’)) + Roy exp(—ikgz(Q(dl — dg) + Zl))} Mo
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Dh = R23 [— exp(ik22(2d2 + Z,)) —+ R21 exp(—ikgz(Q(dl — dg) + Z’))] Mg.

Mg = []. — R23R21 exp(Qikgz(dg — dl))}il .
Again, coefficients A, C, and D are either TE, or TM,.

8.3 Useful identities

Beside the identities mentioned in Part 1, more of those particularly for the
Green’s function theory.

8.3.1 Spherical coordinates

r= /721 42 + 22
0 = arccos(z/r)
¢ = arctan(y/x)
x = rsinf cos ¢
Yy = rsinf cos ¢

z=rcosf
E, sinfcos¢ sinfsing cosé E,
E, | =| coscos¢ cosfsing —sinf Ey
E, —sin ¢ cos ¢ 0 Ey
with the inverse
E. sinfcos¢p cosfcos¢p —sing E,
FEyp | = | sinfsing cosfsing cos¢ £,
Ey cos —sinf 0 E,

8.3.2 Cylindrical coordinates

In cylindrical coordinates (r, ¢, 2) and E = (E,, Ey, E,)T

E, cos¢ sing O E,
Ey | =| —sing cos¢ 0 E,
E, 0 0 1 E,

The curl operator is



8.3.3 Hankel and Bessel’s functions

J,, are the Bessel’s functions of the first kind and Y,, the Bessel’s functions of
the second kind. Valid relation (you may interchange J and Y)

— (™I () = " I m—1 ()

2" (2)) = =2 " g (2)

In(@) = 5 (Jm-1(2) + Jm41(2)) -

Hankel functions are defined as Hr(ll)(z) = Jn(2)+1iY,(2) and H,(f)(z) = Jn(2)—
1Yy (%). So,

JIn(z) cos(nm) — J_p(2) '

Yalz) = sin(nm)

~—

d 1
SHE) =5 (H @) - B @) = =2 - 1))

Addition theorem (Balanis, page 597)

H™ (Blo—p/l) = > Ju(Bp)VH (Bp) exp(in(é — &), p > of

n=—oo

o0

exp(+ifz) = exp(ifpcos(¢)) = Z it T, (Bp) exp(ing)

n=—oo
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8.3.4 Limits
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