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Notes on solving Maxwell equations Part 2:

Green's function for strati�ed media

R.Rook

February 3, 2011

1 Introduction

In the previous report (part 1), the problem and its governing equations are
described and is discarded in this report. The �nite element method in part 1,
or any other method for that matter, determines the �elds in and close to the
scatterer (near-�eld) that is used to construct the �elds in the far-�eld. The
goal of part 2 is to �nd far-�eld expressions formulated as total �elds or the
Radar Cross Section (RCS) of the scattered �elds. The far-�eld is calculated
from the scatterer problem in the contrast formulation. The scatterer then acts
as a radiating object with a known source J . Using Green's function theory,
the far-�eld solution is just the convolution of that source with the fundamental
solution G to the Maxwell equation.

Without loss of generality, the expressions are formulated in total �elds E and
H. Again, the time convention for the time-harmonic term exp(−iωt) is used,
but in contrary to part 1, the quantities are in full dimensions, following closely
the notation used by Chew, Balanis and others.

2 Green's function

The electric �eld dyadic Green's function ḠE in a homogeneous medium is the
starting point. It consists of the fundamental solutions to Helmholtz equation,
which can be written in a Fourier expansion of plane waves. This expansion
allows embedding in a multilayer medium. Finally, the vector potential approach
is used to derive the �potential� Green's function ḠA. The latter is a two-step
derivation, where the electric and magnetic �elds are functions of the vector
potentials and involves less evaluation in case of far-�eld calculations.
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2.1 Homogeneous medium

Recall the Maxwell equation in homogeneous medium (part 1)

∇×∇× E − k2E = iωµJ.

This is written as three Helmholtz equations (Cartesian coordinates)

∇2E(r) + k2E(r) = −iωµ
[
Ī +
∇∇
k2

]
J(r), (1)

which solution is the convolution

E(r) = iωµ

∫
Ω

g(r′ − r)
[
Ī +
∇′∇′

k2

]
J(r′)dr′

or (Chew, page 27)

E(r) = iωµ

∫
Ω

J(r′)
[
Ī +
∇′∇′

k2

]
g(r′ − r)dr′.

with g(r) the fundamental solution to the Helmholtz equation (see next subsec-
tion). Alternatively, this can be written as

E(r) = iωµ

∫
Ω

J(r′)ḠE(r′, r)dr′,

with the dyadic Green's function ḠE(r, r′) (second rank tensor)

ḠE(r′, r) =
[
Ī +
∇′∇′

k2

]
g(r′ − r),

that satis�es the following equation (Chew, page 31)

∇×∇× ḠE(r, r′)− k2ḠE(r, r′) = Īδ(r − r′).

It can be shown that (Chew, page 28)

(ḠE(r′, r))T = ḠE(r, r′) =
[
Ī +
∇∇
k2

]
g(r − r′),

So, the convolution of this dyadic Green's function and the source �nally is
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E(r) = iωµ

∫
Ω

ḠE(r, r′) J(r′)dr′.

This integral is de�ned properly provided that r /∈ Ω as ∇∇ is of order 1/|r−r|3
when r → r′ and should de rede�ned in that case (Chew, page 28).

2.2 Helmholtz equation

The fundamental solution to the scalar wave equation or Helmholtz equation

(∇2 + k2)g(r, r′) = −δ(r − r′)

is

g(r, r′) = g(r′, r) = g(r − r′) =
exp(ik|r − r′|)

4π|r − r′|
.

Suppose that the Fourier transform of the solution exists

g(r, r′) =
1

(2π)3

∞∫
−∞

g̃(kx, ky, kz) exp(ikx(x−x′)+iky(y−y′)+ikz(z−z′))dkxdkydkz.

The Fourier transform of the Helmholtz equation

∞∫
−∞

(k2−k2
x−k2

y−k2
z)g̃(kx, ky, kz) exp(ikx(x−x′)+iky(y−y′)+ikz(z−z′))dkxdkydkz =

∞∫
−∞

exp(ikx(x− x′) + iky(y − y′) + ikz(z − z′))dkxdkydkz

implies the Fourier components

g̃(kx, ky, kz) =
1

k2 − k2
x − k2

y − k2
z

.

Eliminating kz, with use of the poles kz = ±
√
k2 − k2

x − k2
y and Jordan's Lemma

(allowing a small loss) results in the Weyl identity (Chew, page 65)
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exp(ik|r − r′|)
|r − r′|

=
i

2π

∞∫
−∞

1
kz

exp(ikx(x− x′) + iky(y − y′) + ikz|z − z′|) dkxdky,

(2)
where k2

z = k2 − k2
x − k2

y, =m(kz) > 0 and <e(kz) > 0, for all kx and ky in the
integration.

The commonly used spectral decomposition of point source solutions can be
formulated as Fourier integrals.

2.3 Fourier integrals

For short notation we introduce the (shifted) 2D Fourier transforms (cf. Michal-
ski 1990)

f̃ = F (f(x− x′, y − y′)) =

∞∫
−∞

f(x−x′, y−y′) exp(−ikx(x−x′)−iky(y−y′))dxdy.

f = F−1
(
f̃(kx, ky)

)
=

1
4π2

∞∫
−∞

f̃(kx, ky) exp(ikx(x− x′) + iky(y − y′))dkxdky,

which can be used to switch easily from di�erent representations. By introducing
cylindrical coordinates,

x− x′ = ρ cos(φ), y − y′ = ρ sin(φ),

kx = kρ cos(α), ky = kρ sin(α),

ρ =
√

(x− x′)2 + (y − y′)2, φ = arctan
(
y − y′

x− x′

)
,

and k2
ρ = k2

x + k2
y, we can express various inverse Fourier integrals that arise in

Sommerfeld-type integrals

Sn

[
G̃(kρ)

]
(kρρ) =

1
2π

∞∫
0

G̃(kρ)Jn(kρρ)kn+1
ρ dkρ, (3)
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where Jn is the Bessel's function of order n. Explicitly, the inverse Fourier
transforms are

F−1(G̃) = G = S0

[
G̃
]
,

F−1(ikxG̃) =
∂

∂x
G = − cos(φ)S1

[
G̃
]
,

F−1(ikyG̃) =
∂

∂y
G = − sin(φ)S1

[
G̃
]
,

F−1(k2
xG̃) = − ∂2

∂x2
G = −1

2

(
cos(2φ)S2

[
G̃
]
− S0

[
k2
ρG̃
])
,

F−1(k2
yG̃) = − ∂2

∂y2
G =

1
2

(
cos(2φ)S2

[
G̃
]

+ S0

[
k2
ρG̃
])
,

F−1(kxkyG̃) = − ∂2

∂x∂y
G = −1

2
sin(2φ)S2

[
G̃
]
.

The Fourier component of the Sommerfeld identity are easily obtained

F
(

exp(ik|r − r′|)
4π|r − r′|

)
=
i

2
exp(ikz|z − z′|)

kz
, (4)

where the Sommerfeld identity is given by

4πg(r, r′) =
exp(ik|r − r′|)
|r − r′|

= i

∞∫
0

kρ
kz
J0(kρρ) exp(ikz|z − z′|) dkρ

=
i

2

∞∫
−∞

kρ
kz
H

(1)
0 (kρρ) exp(ikz|z − z′|) dkρ. (5)

The physical interpretation is that a spherical wave is expanded as an integral
summation of conical (or cylindrical) waves multiplied by a plane wave in z-
direction (Chew, page 66).

For postprocessing purposes, one may use the standard (non-shifted) Fourier

transform H of f is f̂ (hat). It is given by a well-known of the Fourier transform
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f̂(kx, ky;x′, y′) = H (f(x− x′, y − y′)) =

∞∫
−∞

f(x−x′, y−y′) exp(−ikxx−ikyy)dxdy

=

∞∫
−∞

f(x− x′, y − y′) exp(−ikx(x− x′)− iky(y − y′)) exp(−ikxx′ − ikyy′)dxdy

= f̃(kx, ky;x′, y′) exp(−ikxx′ − ikyy′)

The spectral representation is used to derive the Green's function in terms of
Herzian dipoles where we derive the �elds given point sources.

2.4 Hertzian dipoles

In 3D, a general source is composed of the three (linear independent) vector
sources: the Hertzian dipoles.

Suppose a current source is de�ned as J(r) = α̂I`δ(r − r′), radiating from
r = r′, I` is constant and α̂ is the direction of the dipole). The electric and
magnetic �elds result from the convolution with the Green's function (note that
J(r) = α̂I` in r = r′ and J(r) = 0 elsewhere)

E(r) = iωµ

(
Ī +
∇∇
k2

)
· α̂I`exp(ik|r − r′|)

4π|r − r′|

H(r) = ∇× α̂I`exp(ik|r − r′|)
4π|r − r′|

.

If there is a spectral representation Ẽz(kρ, r) of Ez, the other components can
be derived using the Maxwell equations (see Chew, page 76)

E(r) =

∞∫
−∞

Ẽ(kρ, r)dkρ, H(r) =

∞∫
−∞

H̃(kρ, r)dkρ,

where the x- and y-components for Ẽ and H̃ are given by

(
Ẽx
Ẽy

)
=

1
k2
ρ

[
i

(
kx
ky

)
∂

∂z
Ẽz +

(
−ky
kx

)
ωµH̃z

]
(6)
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(
H̃x

H̃y

)
=

1
k2
ρ

[
i

(
kx
ky

)
∂

∂z
H̃z −

(
−ky
kx

)
ωεẼz

]
, (7)

where Ẽz and H̃z are the spectral components of Ez and Hz, respectively.

The next sections list the explicit relations for the �eld due to the electric dipoles
(Chew, page 71); similar results are obtained by duality (Chew, page 74). Recall
that the z-components determines the TE and TM polarization.

2.4.1 Vertical electric dipole (VED)

The VED α̂ = ẑ gives the components (Chew, page 71), with

Ez =
iI`

4πωε

(
k2 +

∂2

∂z2

)
exp(ik|r − r′|)

4π|r − r′|
, Hz = 0. (8)

Assuming that the dipole is of unit strength (I` = 1) and using the Sommerfeld
identity (5), the Fourier components of the z-components of the electric and
magnetic �elds are (a function of kρ)

ωεẼz = −1
2
k2
ρ

kz
exp(ikz|z − z′|), H̃z = 0.

By using (7), the other components are

ωεẼx = ±1
2
kx exp(ikz|z − z′|), ωεẼy = ±1

2
ky exp(ikz|z − z′|)

H̃x =
1
2
ky
kz

exp(ikz|z − z′|), H̃y = −1
2
kx
kz

exp(ikz|z − z′|).

2.4.2 Horizontal electric dipole (HED)

The HED α̂ = x̂ is given by the components

Ez =
iI`

ωε

∂2

∂z∂x

exp(ik|r − r′|)
4π|r − r′|

, Hz = −I` ∂
∂y

exp(ik|r − r′|)
4π|r − r′|

. (9)

Assuming that I` = 1 and using the Sommerfeld identity (5), the Fourier com-
ponents are

ωεẼx = −1
2

(k2 − k2
x)

1
kz

exp(ikz|z − z′|), ωεẼy =
1
2
kxky

1
kz

exp(ikz|z − z′|)
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ωεẼz = ±1
2
kx exp(ikz|z − z′|)

H̃x = 0, H̃y = ∓1
2

exp(ikz|z − z′|)

H̃z =
1
2
ky
kz

exp(ikz|z − z′|).

For the HED in y-direction, the z-components are

Ez =
iI`

ωε

∂2

∂z∂y

exp(ik|r − r′|)
4π|r − r′|

, Hz = I`
∂

∂x

exp(ik|r − r′|)
4π|r − r′|

with the Fourier components

ωεẼx =
1
2
kxky

1
kz

exp(ikz|z − z′|), ωεẼy = −1
2

(k2 − k2
y)

1
kz

exp(ikz|z − z′|)

ωεẼz = ±1
2
ky exp(ikz|z − z′|),

H̃x = ∓1
2

exp(ikz|z − z′|), H̃y = 0

H̃z =
1
2
kx
kz

exp(ikz|z − z′|).

The Ẽ components form the elements of the electric Green's function ˜̄GE . The
H̃ is here the magnetic �eld due to the electric dipoles.

2.4.3 Summary

The spectral components of the dyadic Green's function ḠE for the electric
�eld in an homogeneous medium is simply the 2D Fourier transform of the dyad
ḠE(r, r′) =

[
Ī +∇∇/k2

]
g(r − r′), explicitly

˜̄GE(kx, ky; z, z′) =
1
k2

 k2 − k2
x −kxky ikx

∂
∂z

kxky k2 − k2
y iky

∂
∂z

ikx
∂
∂z iky

∂
∂z k2

ρ

 g̃(kx, ky; z, z′).

Given the relation iωµH̃ = ∇̃ × Ẽ, it can readily be seen that the columns of
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...

...

region m

region 1

region N

sourcez z=z’

z=−d_{N−1}

z=−d_m

z=−d_1

Figure 1: strati�ed medium

∇̃ × ˜̄GE = ∇̃ × Ī g̃ =

 0 − ∂
∂z iky

∂
∂z 0 −ikx
−iky ikx 0

 g̃(kx, ky; z, z′)

are the magnetic �elds due to the two HEDs and the VED, respectively.

When dipoles are placed in a strati�ed medium, re�ection from the interfaces
should be incorporated. The general solution is a linear sum of planar waves,
which propagation through strati�ed media can be calculated explicitly.

2.5 Strati�ed Media

The construction of this (dyadic) Green's function is done via the homogeneous
Green's function for homogeneous media and its convolution. The Sommerfeld
(5) or Weyl identities (2) expand the solution in planar waves travelling in z-
direction. The z-variation of the solution in free space in z′ is given by

F (z, z′) = exp(ikz|z − z′|).

Suppose the strati�ed medium consists of N layers and a (dipole) source is
located in medium m (see Figure 1), the solution is constructed inside this
medium and the solution outside this medium is constructed recursively.

2.5.1 Planar waves

The simplest case of a strati�ed medium is the half-plane, which consists of two
layers or N = 2.

An incoming TE planar wave in region 1 is re�ected by the layer in region 2
and is written as

Em1y(z) = e0 [exp(−ik1zz) +R12 exp(2ik1zd1 + ikzz)] .
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At z = −d1 the �eld matches to the transmitted wave in region 2

Em2y(z) = e0T12 exp(−ik2zz).

Using the boundary conditions for the electric and magnetic �elds, the Fresnel
coe�cients are calculated

R12 =
µ2k1z − µ1k2z

µ2k1z + µ1k2z
,

T12 =
2µ2k1z

µ2k1z + µ1k2z
.

This procedure can be generalized for multiple layers.

2.5.2 Generalized re�ection coe�cient

The R̃ij are the generalized re�ection coe�cients in the strati�ed media. For
both TE and TM these are derived from a recursive relation (Chew, pages
52+53)

R̃i,i+1 =
Ri,i+1 + R̃i+1,i+2 exp(2iki+1,z(di+1 − di))
1 +Ri,i+1R̃i+1,i+2 exp(2iki+1,z(di+1 − di))

, R̃N,N+1 = 0,

and

R̃i,i−1 =
Ri,i−1 + R̃i−1,i−2 exp(2iki−1,z(di − di−1))
1 +Ri,i−1R̃i−1,i−2 exp(2iki−1,z(di − di−1))

, R̃10 = 0,

with the Fresnel re�ection and transmission coe�cients for layers i and i+ 1 as
if they would be in half-space (Chew, page 49)

RTEi,i+1 =
µi+1kiz − µiki+1,z

µi+1kiz + µiki+1,z
,

RTMi,i+1 =
εi+1kiz − εiki+1,z

εi+1kiz + εiki+1,z
.

Furthermore, Rji = −Rij and the transmission coe�cient is Tij = 1 + Rij and
kiz/µi(1−Rij) = kjz/µjTij .
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2.5.3 Inside the source region

If the source is embedded in same medium m, this wave is accompanied by the
re�ection from the layer beneath and transmission wave from above. For TE or
TM modes, we replace F by

F (z, z′) = exp(ikmz|z − z′|) +Am exp(−ikmzz) + Cm exp(ikmzz), (10)

where kmz is the z-component of the wave vector in region m. The two extra
terms are re�ections at the boundaries z = −dm−1 and z = −dm and constraints
can be found for Am and Cm. For z > z′ at z = −dm−1,

Am exp(ikmzdm−1) = R̃m,m−1 [exp(ikmz|dm−1 + z′|) + Cm exp(−ikmzdm−1)]

and for z < z′ at z = −dm,

Cm exp(−ikmzdm) = R̃m,m+1 [exp(ikmz|dm + z′|) +Am exp(ikmzdm)] ,

where R̃ij are the generalized re�ection coe�cients. Solving Am and Dm from
the two relations gives

Am = exp(−ikmzdm−1)R̃m,m−1[
exp(−ikmz(dm−1 + z′)) + R̃m,m+1 exp(ikmz(2dm − dm−1 + z′))

]
M̃m

Cm = exp(ikmzdm)R̃m,m+1[
− exp(ikmz(dm + z′)) + R̃m,m−1 exp(−ikmz(2dm−1 − dm + z′))

]
M̃m,

with

M̃m =
[
1− R̃m,m+1R̃m,m−1 exp(2ikmz(dm − dm−1)

]−1

.

Using this F , the contributions by the re�ection and transmission waves to the
dipoles can be derived.
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2.5.4 Vertical electric dipole (VED)

If the re�ected waves from the top and bottom layers are included and the
components of the electric �elds are

ωεẼx =
1
2
kx [± exp(ikz|z − z′|) +Aev exp(ikzz)−Bev exp(−ikzz)]

ωεẼy =
1
2
ky [± exp(ikz|z − z′|) +Aev exp(ikzz)−Bev exp(−ikzz)]

ωεẼz = −1
2
k2
ρ

kz
[exp(ikz|z − z′|) +Aev exp(ikzz) +Bev exp(−ikzz)] ,

and the magnetic �eld components are

H̃x = −1
2
ky
kz

[exp(ikz|z − z′|) +Aev exp(ikzz) +Bev exp(−ikzz)]

H̃y =
1
2
kx
kz

[exp(ikz|z − z′|) +Aev exp(ikzz) +Bev exp(−ikzz)] (11)

H̃z = 0

2.5.5 Horizontal electric dipole (HED)

In the strati�ed medium, the re�ected waves from the top and bottom layers
are included and the electric �eld components are

ωεẼx = −1
2

[
(k2 − k2

x)
1
kz

exp(ikz|z − z′|)+

1
k2
ρ

(
−k2

xk
2
zB

e
h + k2

yk
2Aeh

) 1
kz

exp(−ikzz)+

1
k2
ρ

(
k2
xk

2
zD

e
h + k2

yk
2Ceh

) 1
kz

exp(ikzz)
]

ωεẼy =
1
2
kxky

[
1
kz

exp(ikz|z − z′|)+

1
k2
ρ

(
k2
zB

e
h + k2Aeh

) 1
kz

exp(−ikzz) +
1
k2
ρ

(
−k2

zD
e
h + k2Ceh

) 1
kz

exp(ikzz)
]
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ωεẼz =
1
2
kx [± exp(ikz|z − z′|) +Beh exp(−ikzz) +De

h exp(ikzz)]

and the magnetic �eld components

H̃x =
1
2
kxky
k2
ρ

[(Aeh +Beh) exp(−ikzz) + (De
h − Ceh) exp(ikzz)]

H̃y = ∓1
2

exp(ikz|z − z′|) +
1
2

1
k2
ρ

[
(k2
yA

e
h − k2

xB
e
h) exp(−ikzz)+

(−k2
yD

e
h − k2

xC
e
h) exp(ikzz)

]
(12)

H̃z =
1
2
ky
kz

[exp(ikz|z − z′|) +Aeh exp(−ikzz) + Ceh exp(ikzz)]

Note that the re�ected up-going wave De
h exp(ikzz) will have a minus sign due

to the negative sign of the primary down going �eld exp(ikz|z − z′|) in ωεẼz.

For the HED in y-direction, change the role of x and y gives the z-components

ωεẼz =
1
2
ky [± exp(ikz|z − z′|) +Beh exp(−ikzz) +De

h exp(ikzz)]

H̃z = −1
2
kx
kz

[exp(ikz|z − z′|) +Aeh exp(−ikzz) + Ceh exp(ikzz)] .

Note the sign change in the magnetic �eld component Hz = I` ∂∂xg(r, r′).

2.5.6 Coe�cients

The coe�cients A,B,C and D represent TM and TE waves as given in the table

Aeh Amh Aev Amv Beh Bmh Bev Bmv
TE TM TM TE TM TE TM TE

Ceh Cmh Cev Cmv De
h Dm

h De
v Dm

v

TE TM TE TM TM TE TM TE

and are functions of the source location z′. In the above notation we have (the
superscripts e and m are omitted, −dm < z′ < −dm−1)

13



Bv = Ah = exp(−ikmzdm−1)R̃m,m−1 [exp(−ikmz(dm−1 + z′))
+R̃m,m+1 exp(ikmz(2dm − dm−1 + z′))

]
M̃m

(13)

Av = Ch = exp(ikmzdm)R̃m,m+1 [exp(ikmz(dm + z′))
+R̃m,m−1 exp(−ikmz(2dm−1 − dm + z′))

]
M̃m

(14)

Dv = Bh = exp(−ikmzdm−1)R̃m,m−1 [exp(−ikmz(dm−1 + z′))
−R̃m,m+1 exp(ikmz(2dm − dm−1 + z′))

]
M̃m

(15)

Cv = Dh = exp(ikmzdm)R̃m,m+1 [− exp(ikmz(dm + z′))
+R̃m,m−1 exp(−ikmz(2dm−1 − dm + z′))

]
M̃m.

(16)

Note the minus signs appearing in the square brackets of coe�cients Dv = Bh
and Cv = Dh. This is due to the minus sign of the down going wave from the
HED (and HMD) solutions. Also useful are the relations between the coe�cients

∂

∂z′
Ah = −ikmzBh

∂

∂z′
Ch = −ikmzDh

∂

∂z′
Bh = −ikmzAh

∂

∂z′
Dh = −ikmzCh,

Aev = Cmh , B
e
v = Amh , D

e
v = Bmh , C

e
v = Dm

h .

For m = 1, we may also write

De
h − Ceh = Dm

h − Cmh ,

and for m = N ,

Aeh +Beh = Amh +Bmh .

14



2.5.7 Summary

These components build up the electric �eld dyadic Green's function ˜̄GE for
problem de�ned on a strati�ed medium. The next subsection uses the Fourier
modes of dipole solutions derived previously in the vector potential approach.

2.6 Vector potential approach

In a source free medium, the magnetic �ux B and electric �ux D are soleniodal,
i.e.

∇ ·B = 0, ∇ ·D = 0.

Then the arbitrary vectors A and F , the potential vectors, exist such that

BA = µHA = ∇×A,

DF = εEF = −∇× F.

The de�nition of the curl above together with the divergence of A and F ,
uniquely de�ne the vector potentials. We choose the Lorentz condition or gauge
to de�ne the divergence (Balanis, page 257). Substituting this into the Maxwell
equations, the total electric E = EA + EF and magnetic H = HA + HF �elds
yield (Balanis, page 260)

E = iω

[
Ī +
∇∇
k2

]
A− iω

ε
∇× F (17)

H = iω

[
Ī +
∇∇
k2

]
F +

iω

µ
∇×A. (18)

So, a �eld is a result of both vector potentials; the scatterer problem gives the
vector potentials in terms of Green's functions and sources and is described in
the next sections.

2.6.1 Green's function

The Green's function is not unique and one of the commonly used is the �tra-
ditional� form for the vector potentials ḠA and ḠF (Michalski 1990) and are
given by

15



ḠA,F =

 Gxx 0 0
0 Gxx 0
Gzx Gzy Gzz

 . (19)

For the x- and y-horizontal dipoles only two components per column (direction)
need to be speci�ed (Sommerfeld, page 257). Using this form, the following
integrals de�ne vector potentials for volume sources, with J the electric �eld
density and M the (non-physical) magnetic �eld density, are de�ned (Balanis,
page 276)

A =
∫
V

ḠA(r, r′) J(r′)dV ′ (20)

F =
∫
V

ḠF (r, r′)M(r′)dV ′. (21)

For a radiating surface S (in free space) with linear densities JS and MS

A =
∮
S

ḠA(r, r′) JS(r′)dS′ (22)

F =
∮
S

ḠF (r, r′)MS(r′)dS′. (23)

For magnetic and electric currents Ie and Im these reduce to line integrals over
C

A =
∫
C

ḠA(r, r′) Ie(r′)dl′

F =
∫
C

ḠF (r, r′) Im(r′)dl′.

The direct relation between the electric/magnetic Green's function from the
previous section and vector potential Green's functions are

µ ḠE(r, r′) =
[
Ī +
∇∇
k2

]
ḠA(r, r′). (24)

ε ḠH(r, r′) =
[
Ī +
∇∇
k2

]
ḠF (r, r′). (25)

In the next section, the elements in the vector potential Green's function are
derived for an observer at z and source at z′ situated in the same layer. The
solution outside the source layer is determined in the Appendix.
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2.6.2 Observer inside source layer

By using VED, HED, VMD and HMD dipoles the contributing elements to
dyadic ḠA,F can be constructed.

Use the TEz- and TMz-components of the �elds generated by the dipoles and
derive the components as explained in the previous section. Then look for a
vector potential A in spectral domain such that

∇×A = µHA

or in spectral form

 ikyÃz − ∂
∂z Ãy

−
(
ikxÃz − ∂

∂z Ãx

)
ikxÃy − ikyÃx

 =

 µH̃x

µH̃y

µH̃z

 .
The vector potential A only needs two components to be speci�ed. The result
will be the �rst column in the dyadic ḠA.

For a HED in x-direction, the spectral components of the magnetic �eld is given
by (12). The vector potential components for a HED become, with the choice
Ãy = 0,

ikyÃz = µH̃x, −ikyÃx = µH̃z

or

Ãx = − µ

2ikz
[exp(ikz|z − z′|) +Aeh exp(−ikzz) + Ceh exp(ikzz)] ,

Ãy = 0,

Ãz =
µ

2i
kx
k2
ρ

[(Aeh +Beh) exp(−ikzz) + (De
h − Ceh) exp(ikzz)] .

The HED in y-direction one chooses Ãx = 0, which implies

ikxÃy = µH̃z, −ikxÃz = µH̃y

or

Ãx = 0,

17



Ãy = − µ

2ikz
[exp(ikz|z − z′|) +Aeh exp(−ikzz) + Ceh exp(ikzz)] ,

Ãz =
µ

2i
ky
k2
ρ

[(Aeh +Beh) exp(−ikzz) + (De
h − Ceh) exp(ikzz)] ,

which is the same as switching role x and y in the derivation for the HED in
x-direction.

For a VED the magnetic components are given by (11). Thus, the choice Ãy = 0
in the potential vector results in

Ãx = 0, −ikzÃz = µH̃y, ikyÃz = µH̃x

or

Ãx = 0,

Ãy = 0,

Ãz = − µ

2ikz
[exp(ikz|z − z′|) +Aev exp(ikzz) +Bev exp(−ikzz)] .

All components of the vector potential Green's functions G̃A,F can be obtained
(cf. Dural & Aksun 1995)

G̃Axx = − µ

2ikz
[exp(ikz|z − z′|) +Aeh exp(−ikzz) + Ceh exp(ikzz)]

G̃Azx =
µ

2ikz

[
kxkz
k2
ρ

(Aeh +Beh) exp(−ikzz) +
kxkz
k2
ρ

(De
h − Ceh) exp(ikzz)

]

G̃Azz = − µ

2ikz
[exp(ikz|z − z′|) +Aev exp(ikzz) +Bev exp(−ikzz)]

G̃Fxx = − ε

2ikz
[exp(ikz|z − z′|) +Amh exp(−ikzz) + Cmh exp(ikzz)]

G̃Fzx =
ε

2ikz

[
kxkz
k2
ρ

(Amh +Bmh ) exp(−ikzz) +
kxkz
k2
ρ

(Dm
h − Cmh ) exp(ikzz)

]

18



G̃Fzz = − ε

2ikz
[exp(ikz|z − z′|) +Amv exp(ikzz) +Bmv exp(−ikzz)] .

The elements from the y-oriented HED and HMD follow directly by rotation in
the x, y-plane

G̃A,Fyy = G̃A,Fxx , G̃A,Fzy /ky = G̃A,Fzx /kx.

The spatial Green's function are obtained using the inverse Fourier transforms

GAxx = F−1(G̃) = S0[G̃] = S0[G̃Axx] =
1

2π

∞∫
0

G̃AxxJ0(kρρ)kρdkρ

= − µ

4πi

∞∫
0

[exp(ikz|z − z′|) +Aeh exp(−ikzz) + Ceh exp(ikzz)]
kρ
kz
J0(kρρ)dkρ

= µ
exp(ik|r − r′|)

4π|r − r′|
− µ

4πi

∞∫
0

[Aeh exp(−ikzz) + Ceh exp(ikzz)]
kρ
kz
J0(kρρ)dkρ

GAzx = F−1(ikxG̃) = − cos(φ)S1[G̃] = − cos(φ)S1

[
G̃Azx
ikx

]
= − cos(φ)

1
2π

∞∫
0

G̃Azx
ikx

J1(kρρ)k2
ρdkρ

=
µ

4π
cos(φ)

∞∫
0

[(Aeh +Beh) exp(−ikzz) + (De
h − Ceh) exp(ikzz)] J1(kρρ)dkρ,

GAzz = F−1(G̃) = S0[G̃] = S0[G̃Azz] =
1

2π

∞∫
0

G̃AzzJ0(kρρ)kρdkρ

= − µ

4πi

∞∫
0

[exp(ikz|z − z′|) +Aev exp(ikzz) +Bev exp(−ikzz)]
kρ
kz
J0(kρρ)dkρ

= µ
exp(ik|r − r′|)

4π|r − r′|
− µ

4πi

∞∫
0

[Aev exp(ikzz) +Bev exp(−ikzz)]
kρ
kz
J0(kρρ)dkρ.
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Figure 2: Waves re�ection

2.6.3 Example

In the example problem N = 3, where sources are in region 1 and 2. The
interfaces are located at z = −d1 and z = −d2.

First, a source at z = z′ in region 1 (m = 1 and n = 1). The generalized
re�ection coe�cient is

R̃12 =
R12 +R23 exp(2ik2z(d2 − d1))
1 +R12R23 exp(2ik2z(d2 − d1))

with k2z =
√
k2

2 − k2
ρ (and M̃1 = 1). The spectral Green's functions become

G̃Axx = − µ1

2ik1z
[exp(ik1z|z − z′|) + Ceh exp(ik1zz)]

G̃Azx =
µ1

2ik1z

[
kxk1z

k2
ρ

(De
h − Ceh) exp(ik1zz)

]

G̃Azz = − µ1

2ik1z
[exp(ik1z|z − z′|) +Aev exp(ik1zz)]

G̃Fxx = − ε1
2ik1z

[exp(ik1z|z − z′|) + Cmh exp(ik1zz)]

G̃Fzx =
ε1

2ik1z

[
kxk1z

k2
ρ

(Dm
h − Cmh ) exp(ik1zz)

]

G̃Fzz = − ε1
2ik1z

[exp(ik1z|z − z′|) +Amv exp(ik1zz)] ,

with coe�cients (either TE or TM)

Av = Ch = R̃12 exp(ik1z(2d1 + z′))
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Dh = −R̃12 exp(ik1z(2d1 + z′)).

To obtain the closed-form spatial Green's functions by doing the Fourier inverses
(3). The construction of the solution for observers outside the source layer is
described in the Appendix.

Now, we have relations for the �elds as function of the sources applied in the
whole domain. We use these to calculate the �elds in the desired subdomain.

2.6.4 Summary

The electric Green's function is obtained using the dipole solution directly (sec-
tions 2.5.4 and 2.5.5) or by applying (24) to the vector potential Green's function

µ ˜̄GE =
1
k2

 k2 − k2
x −kxky ikx

∂
∂z

−kxky k2 − k2
x iky

∂
∂z

ikx
∂
∂z iky

∂
∂z k2 − k2

z

 ˜̄GA

and similarly ε ˜̄GH = 1/k2[· · · ] ˜̄GF by duality.

3 Far-�eld reconstruction

The ingredient for the calculation of RCS for a scatterer is a far-�eld description
of the electric �eld E.

The far-�eld is constructed using Green's functions for a given electric and
magnetic currents on the scatterer. The idea is to evaluate or approximate the
convolutions to obtain the far-�eld quantities as function of the currents in the
scatterer.

3.1 Radar Cross Section

The bi-static RCS is de�ned in terms of the time-averaged Poynting vector

RCS(θ, φ) ≡ lim
r→∞

[
4πr2Pscat

Pinc

]
, (26)

where Pi = 1
2<e(E × H∗) is the power density. A property of solutions for

point sources in homogeneous media is the exp(ikr)/r behavior in the far �eld.
Furthermore, it can be shown that Pi = |Eiθ|2 + |Eiφ|2 for the far-�eld, where
the radial components Er and Hr vanish (Balanis, page 280).
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For 2D problems, the bistatic scattering width is de�ned as

SW (θ) = lim
r→∞

[
2πr
|Es|2

|Ei|2

]
.

The observation points far from the scatterer, r ≥ 2D2/λ, de�nes the far-�eld
(Fraunhofer) region, where D is the maximal dimension of the scatterer and
λ is the wavelength . In this region the maximum phase error is π/8 ∼ 22.5◦

(Balanis, page 286). The limit is the minimum distance for the RCS to be valid.
Another limit de�nes the near-�eld r ≤ 0.62

√
D3/λ3 (Fresnel).

For r → ∞ in a homogeneous medium, the �elds are orthogonal to the ra-
dial direction (plane waves and ∇∇ ∼ 1/r2); we may write in terms of vector
potentials A and F (Balanis, page 285).

4 Numerical evaluation

All representations involve (multiple) integrals over in�nite (frequency) domains
of rapid oscillating functions containing singularities. Also the sheer number of
integrals, for each location requires a new evaluation, makes the evaluation of
the solution costly. Straightforward numerical integration requires many sample
points or do not even converge due to singularities.

The next subsections describe techniques to deal with the problems. The path
in the Sommerfeld intergrals can be extended to the complex plane to avoid
singularities. Some singularities can be subtracted analytically. Finally, the
integrand can be approximated by exponentials, which integral is derived ana-
lytical.

4.1 Sommerfeld integration path (SIP)

Sommerfeld integrals can be evaluated using Cauchy theorem. The integral

I =

∞∫
0

f(x)dx

is an integration of complex function f along the real x-axis. Suppose the
function f has a singularity at x = x0. A new contour C is parametrized by
s(t), with s(0) = 0 and s(∞) =∞ can be de�ned and

I =
∫
C

f(z)dz =

∞∫
0

f(s(t))
ds
dt

dt.
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Figure 3: Real part of ln of a typical integrand.

Im(k )
k =k

Re(k )

ρ
ρ

ρ

Figure 4: FSIP, dot represents a pole.

For semi-in�nite Sommerfeld integrals, a pole is at kρ = k. In this context, the
contour s(t) is the so-called Sommerfeld integration path (SIP) or folded SIP
(FSIP).

4.2 Singularity subtraction

For sources and observation point are close, the integrand in the Sommerfeld
integrals can be highly oscillatory for large frequencies and singular in the limit.
However, we have (Sommerfeld)

∞∫
0

exp(ikzα)
kz

J0(kρρ)dkρ =
exp(ikr)

r
, r =

√
ρ2 + α2

∞∫
0

exp(kρα)J1(kρρ)dkρ =
1
ρ

(
1 +

α√
ρ2 + α2

)
.

Take the limit of the integrand for kρ →∞ and use the above identities to add
and subtract the singularity from the integrand.
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Figure 5: Deformed SIP for GPOF method

4.3 GPOF

The general pencil-of-function method (GPOF) can be used to approximate the
integrand in the Sommerfeld integrals. The idea is to approximate the Fourier
components, for given z and z′, as function of kρ in a sum of exponentials, i.e

G̃(kρ(t))|z,z′ = − µ

2ikz

M∑
i=1

bi exp(sit)

where t is the running variable in a linear parametrization of kz(t)/k = α + βt
and by using kρ(t) =

√
k2 − k2

z(t).

Then we can write as a function of kz(kρ) =
√
k2 − k2

ρ

G̃(kρ)|z,z′ = − µ

2ikz

M∑
i=1

bi exp
(
si
kz(kρ)/k − α

β

)
=

− µ

2ikz

M∑
i=1

bi exp
(
−si

α

β

)
exp

(
ikz(kρ)

si
iβ

)
.

Use the Sommerfeld identity here to get a closed-form 3D Greens' function

G(r, r′)|z,z′ = F−1(G̃) = µ

M∑
i=1

bi exp
(
−si

α

β

)
exp(ikri)

4πri

with ri =
√

(ρ− ρ′)2 − (si/β)2 (which are complex functions).

The residues bi and the poles si are obtained using GPOF method (Cheng &
Yang, 2005).

The approximation can be improved by taking two piecewise linear parametriza-
tions of the SIP in the complex kz plane. One starting from k going to the
positive imaginary axis and the other is on the positive imaginary axis. This is
the two-level DCIM (Aksun 1996, Aksun 2005).

The GAzx and GAzy elements are approximated in the same way. We have

F−1(G̃Azx/ikx) =
∫
GAzxdx, when using Gprim(r) = exp(ikr)/(4πr), we get
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GAzx =
∂

∂x

(
F−1

(
G̃zx
ikx

))
= µ

M∑
i=1

bi exp
(
−si

α

β

)
dGprim

dr
∂ri
∂x

,

with

dGprim

dr
=

d
dr

(
exp(ikr)

4πr

)
= (ikr − 1)

exp(ikr)
4πr2

.

For second-order derivatives (e.g. in GExx and GEyy)

∂2Gprim

∂x2
=

d2Gprim

dr2

(
∂r

∂x

)2

+
dGprim

dr
∂2r

∂x2

and mixed derivatives (e.g. in GExy)

∂2Gprim

∂x∂y
=

d2Gprim

dr2

∂r

∂x

∂r

∂y
+

dGprim

dr
∂2r

∂x∂y

both using

d2Gprim

dr2
=
(
(ikr − 1)2 + 1

) exp(ikr)
4πr3

.

The partial derivatives of the radius r = r(x, y) are

∂r
∂x = x−x′

r
∂2r
∂x2 = 1

r −
(x−x′)2

r3
∂2r
∂x∂y = −(x− x′)(y − y′) 1

r3 .

The derivatives ∂/∂x(F−1(...)) can be done in a straightforward fashion (either
symbolically or numerically).

4.4 Summary

Assuming that the current density J(r′) in a domain Ω′ is given, the solution to
the Maxwell equations can be constructed by the following steps in the vector
potential approach (no need for the equivalence principle). The main ingredient
is the Green's function ḠA.
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4.4.1 Green's function

1. Each column in the (dyadic) Green's function (19) is derived from the
solutions for 2 HEDs and a VED, using equations (9) and (8).

2. These solutions are expanded in planar waves in z-direction using Fourier
transformations (3), resulting in Sommerfeld type integrals.

3. The strati�ed medium is included by adding the re�ected waves from the
adjacent layers as in (10), which are either TE or TM waves.

4. The vector potential A for the electric �eld is the integral (20).

5. The �eld E outside that domain is evaluated by relations (17) and (18).

The resulting expression for the total �eld can be evaluated numerically.

4.4.2 Numerical evaluation

1. De�ne observer points in which the Ī +∇∇/k2 operator can be approxi-
mated by �nite di�erence (central di�erence and bi-linear interpolation).

2. Do volume integration of the potential vector (20) involving the product
ḠA(r, r′) · J(r′) for the components (ḠA · J)x, (ḠA · J)y and (ḠA · J)z
for each observer point (adaptive rules like Romberg or Filon integration;
Gauss-Chebychev or Clenshaw-Curtis integration rules).

3. Evaluate the Sommerfeld integrals contained in ḠA using a SIP as de-
picted in Figure 4 (integration rules for slowly decaying, highly oscillating
integrands) or create closed-form approximations using GPOF method.

The evaluation of ∇∇-operator can be avoided by using the Green's function for
the electric �eld ḠE . This involves more Sommerfeld integrals to be evaluated.

5 2D problem

The relations for the full 3D Maxwell equations reduce when the solution is
(semi)constant in one direction (say y-direction). The derivations in the next
section follow the same recipe as in the 3D case.

5.1 Homogeneous medium

The Green's function is a dyadic function and has the same functionality as
in 3D. However, the fundamental solution g(r, r′) is the solution of the 2D
Helmholtz equation.
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5.2 Helmholtz equation

The fundamental solution to the 2D Helmholtz equation,

(∇2 + k2)g(r, r′) = −δ(x− x′)δ(z − z′)

is

g(r, r′) =
i

4
H

(1)
0 (k|r − r′|).

Suppose that the Fourier transform g̃ of the solution exists

g(r, r′) =
1

2π

∞∫
−∞

g̃(kx, kz) exp(ikx(x− x′) + ikz(z − z′))dkxdkz.

The Fourier transform of the 2D Helmholtz equation

∞∫
−∞

(k2−k2
x−k2

z)g̃(kx, kz) exp(ikx(x−x′)+ikz(z−z′))dkxdkz =

∞∫
−∞

exp(ikx(x−x′)+ikz(z−z′))dkxdkz

implies the Fourier components

g̃(kx, kz) =
1

k2 − k2
x − k2

z

eliminating kz with poles kz = ±
√
k2 − k2

x and using Jordan's Lemma (allowing
a small loss) gives

g(r, r′) =
i

4π

∞∫
−∞

exp(ikx(x− x′) + ikz|z − z′|)
kz

dkx =

i

2π

∞∫
0

exp(ikz|z − z′|)
kz

cos(kx(x− x′))dkx

with kz =
√
k2 − k2

x. Here we recognize the F (z, z′) = exp(ikz|z − z′|) term,
which allows the use of equation (10) and the other following derivations.
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5.3 Fourier integrals

The inverse Fourier transform

F−1(G̃) =
1
π

∞∫
0

G̃(kx) cos(kx(x− x′))dkx,

F−1(ikxG̃) =
∂

∂x
G = − 1

π

∞∫
0

G̃(kx) sin(kx(x− x′))kxdkx,

F−1(k2
xG̃) = − ∂2

∂x2
G =

1
π

∞∫
0

G̃(kx) cos(kx(x− x′))k2
xdkx.

The Fourier transform of the fundamental solution is (cf. Weyl identity)

F
(
i

4
H

(1)
0 (k|r − r′|)

)
=
i

2
exp(ikz|z − z′|)

kz
. (27)

The next subsections discusses the oblique incidence case (TE/TM) and the
conical case (general).

5.4 Hertzian dipoles

The 2D solution satis�es the 3D Maxwell equations. So, a dipole at r = r′ (is
actually a line source at x = x′ and z = z′) gives

E(r) = iωµ

(
Ī +
∇∇
k2

)
α̂I`

i

4
H

(1)
0 (k|r − r′|)

H(r) = ∇× α̂I` i
4
H

(1)
0 (k|r − r′|).

We use the dipoles to derive the columns of the dyadic function. Suppose
I` = 1, then the HED α̂ = x̂ (e.g. J(r) = x̂I`δ(r − r′)) gives the TM and TE
components

Ez =
i

ωε

∂2

∂z∂x

i

4
H

(1)
0 (k|r − r′|), Hz = 0,

the HED α̂ = ŷ gives the TM and TE components
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Ez = 0, Hz =
∂

∂x

i

4
H

(1)
0 (k|r − r′|),

and the VED α̂ = ẑ gives the TM and TE components

Ez =
i

ωε

(
k2 +

∂2

∂z2

)
i

4
H

(1)
0 (k|r − r′|), Hz = 0.

From these relations, the spectral z-components are easily extracted. The other
components are derived from (6) and (7), with kρ = kx, or

Ẽx =
i

kx

∂

∂z
Ẽz, Ẽy =

1
kx
ωµH̃z

H̃x =
i

kx

∂

∂z
H̃z, H̃y = − 1

kx
ωεẼz

For the α̂ = x̂, the components are (TM)

ωεẼx = −1
2
kz exp(ikz|z − z′|), Ẽy = 0,

ωεẼz = ±1
2
kx exp(ikz|z − z′|)

H̃x = 0, H̃y = ∓1
2

exp(ikz|z − z′|), H̃z = 0

for α̂ = ŷ, (TE)

Ẽx = 0, ωεẼy = −1
2
k2

kz
exp(ikz|z − z′|), Ẽz = 0,

H̃x = ±1
2

exp(ikz|z − z′|), H̃y = 0,

H̃z = −1
2
kx
kz

exp(ikz|z − z′|)

and for α̂ = ẑ, (TM)

ωεẼx = ±1
2
kx exp(ikz|z − z′|), Ẽy = 0,
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ωεẼz = −1
2
k2
x

kz
exp(ikz|z − z′|)

H̃x = 0, H̃y =
1
2
kx
kz

exp(ikz|z − z′|), H̃z = 0.

These are columns of the electric and magnetic dyadic Green's function.

5.5 Vector potential

The 2D Green's function ḠA for strati�ed media will be (call it the traditional
form)

ḠA =

 GAxx 0 0
0 GAyy 0
0 0 GAzz

 .
For the construction of the vector potential we have to satisfy

µHA = ∇×A

or the spectral representation

 − ∂
∂z Ãy

−
(
ikxÃz − ∂

∂z Ãx

)
ikxÃy

 =

 µH̃x

µH̃y

µH̃z

 .
For HED α̂ = x̂, from H̃x = H̃z = 0 directly follows Ãy = 0 and with the choice

Ãz = 0 we have

Ãx = − µ

2ikz
exp(ikz|z − z′|), Ãy = Ãz = 0.

HED α̂ = ŷ, from H̃y = 0 with the choice Ãz = 0 follows

Ãx = 0, Ãy = − µ

2ikz
exp(ikz|z − z′|), Ãz = 0.

VED α̂ = ẑ, from H̃x = 0 (and H̃z = 0) that Ãy = 0 with the choice Ãx = 0

Ãx = Ãy = 0, Ãz = − µ

2ikz
exp(ikz|z − z′|).
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5.6 Strati�ed media

Adding the strati�ed media to the expressions do not add extra elements to the
dyad ḠA.

For HED α̂ = x̂ the previous results are replaced by (TM)

ωεẼx = −1
2
kz [exp(ikz|z − z′|)−Beh exp(−ikzz) +De

h exp(ikzz)]

Ẽy = 0

ωεẼz =
1
2
kx [± exp(ikz|z − z′|) +Beh exp(−ikzz) +De

h exp(ikzz)] ,

H̃x = 0

H̃y = −1
2

[± exp(ikz|z − z′|) +Beh exp(−ikzz) +De
h exp(ikzz)]

H̃z = 0

thus with ∂
∂z Ãx = −µ 1

kx
ωεẼz we get

Ãx = − µ

2ikz
[exp(ikz|z − z′|)−Beh exp(−ikzz) +De

h exp(ikzz)] .

The Ãx is the �rst element of the �rst column in the dyad (TM)

G̃Axx = − µ

2ikz
[exp(ikz|z − z′|) +Beh exp(−ikzz) +De

h exp(ikzz)] .

The other components are derived in a similar way (TE and TM, respectively)

G̃Ayy = − µ

2ikz
[exp(ikz|z − z′|) +Aeh exp(−ikzz) + Ceh exp(ikzz)] ,

G̃Azz = − µ

2ikz
[exp(ikz|z − z′|) +Aev exp(ikzz) +Bev exp(−ikzz)] .

Applying the inverse Fourier transform �nally gives
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GAxx = F−1(G̃Axx) =
1
π

∞∫
0

G̃Axx(kx) cos(kx(x− x′))dkx =

− µ

2πi

∞∫
0

[exp(ikz|z − z′|) +Beh exp(−ikzz) +De
h exp(ikzz)]

1
kz

cos(kx(x−x′))dkx =

µ
i

4
H

(1)
0 (k|r−r′|)− µ

2πi

∞∫
0

[Beh exp(−ikzz) +De
h exp(ikzz)]

1
kz

cos(kx(x−x′))dkx,

GAyy = F−1(G̃Ayy) =
1
π

∞∫
0

G̃Ayy(kx) cos(kx(x− x′))dkx =

− µ

2πi

∞∫
0

[exp(ikz|z − z′|) +Aeh exp(−ikzz) + Ceh exp(ikzz)]
1
kz

cos(kx(x−x′))dkx =

µ
i

4
H

(1)
0 (k|r−r′|)− µ

2πi

∞∫
0

[Aeh exp(−ikzz) + Ceh exp(ikzz)]
1
kz

cos(kx(x−x′))dkx,

GAzz = F−1(G̃Azz) =
1
π

∞∫
0

G̃Azz(kx) cos(kx(x− x′))dkx =

− µ

2πi

∞∫
0

[exp(ikz|z − z′|) +Aev exp(ikzz) +Bev exp(−ikzz)]
1
kz

cos(kx(x−x′))dkx =

µ
i

4
H

(1)
0 (k|r−r′|)− µ

2πi

∞∫
0

[Aev exp(ikzz) +Bev exp(−ikzz)]
1
kz

cos(kx(x−x′))dkx.

The coe�cients Beh, D
e
h, A

e
h, C

e
h, A

e
v and C

e
v are solved at the boundaries of the

source region and are given by relations (13) to (16).

In a similar way the total �elds for a multi-layer medium are derived. For α̂ = ŷ,
we get (TE)

Ẽx = 0

ωεẼy = −1
2
k2

kz
[exp(ikz|z − z′|) +Aeh exp(−ikzz) + Ceh exp(ikzz)]
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Ẽz = 0,

H̃x =
1
2

[± exp(ikz|z − z′|)−Aeh exp(−ikzz) + Ceh exp(ikzz)]

H̃y = 0

H̃z = −1
2
kx
kz

[exp(ikz|z − z′|) +Aeh exp(−ikzz) + Ceh exp(ikzz)]

For α̂ = ẑ, (TM)

ωεẼx =
1
2
kx [± exp(ikz|z − z′|) +Aev exp(ikzz)−Bev exp(−ikzz)]

Ẽy = 0

ωεẼz = −1
2
k2
x

kz
[exp(ikz|z − z′|) +Aev exp(ikzz) +Bev exp(−ikzz)] ,

H̃x = 0

H̃y =
1
2
kx
kz

[exp(ikz|z − z′|) +Aev exp(ikzz) +Bev exp(−ikzz)]

H̃z = 0.

The columns in dyadic Green's function ˜̄GE are the corresponding dipole solu-
tions Ẽ. The non-zeros in this dyadic for the electric �eld are

G̃Exx

(
=

i

kx

∂

∂z
G̃Ezx

)
= − 1

k2

1
2i
kz [exp(ikz|z − z′|)−Beh exp(−ikzz) +De

h exp(ikzz)]

G̃Ezx =
1
k2

1
2i
kx [± exp(ikz|z − z′|) +Beh exp(−ikzz) +De

h exp(ikzz)]

G̃Eyy = − 1
2i

1
kz

[exp(ikz|z − z′|) +Aeh exp(−ikzz) + Ceh exp(ikzz)]
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G̃Exz

(
=

i

kx

∂

∂z
G̃Ezz

)
=

1
k2

1
2i
kx [± exp(ikz|z − z′|) +Aev exp(ikzz)−Bev exp(−ikzz)]

G̃Ezz = − 1
k2

1
2i
k2
x

kz
[exp(ikz|z − z′|) +Aev exp(ikzz) +Bev exp(−ikzz)] .

Note again that GA ∼ µGE ∼ E/(iωµ) or µGE ∼ ωεE/ik2. This is also
obtained by applying (24) to the vector potential Green's function, giving the
expression

µ ˜̄GE =
1
k2

 k2 − k2
x 0 ikx

∂
∂z

0 k2 0
ikx

∂
∂z 0 k2 − k2

z

 ˜̄GA.

Here you can see that for the TMz case, only the Gyy component is needed.

5.7 Conical case

In the conical case, the solution has the same y-dependency as the incoming �eld,
namely g(y) = exp(ikyy). We need a reformulation of the Maxwell equation
to get the 2D equation for this case. Start with (1) and solve this with the
separation of variables E(x, y, z) = Ê(x, z)g(y) and J(x, y, z) = Ĵ(x, z)g(y).
The ∇-operator reduces to ∇̂ = [∂x + iky + ∂z]

T
. So

∇2E(r) + k2E(r) = −iωµ
[
Ī +
∇∇
k2

]
J(r)

becomes

(
∂2

∂x2
+

∂2

∂z2

)
Ê(x, z) + k̂2Ê(x, z) = −iωµ

[
Ī +
∇̂∇̂
k2

]
Ĵ(x, z),

with k̂2 = k2 − k2
y and

∇̂∇̂ =

 ∂2
x iky∂x ∂2

xz

iky∂x −k2
y iky∂z

∂2
zx iky∂z ∂2

z

 .
This again leads to the solution using 2D Green's function (free space)
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ˆ̄GE(r, r′) =

[
Ī +
∇̂∇̂
k2

]
ĝ(r, r′),

with ĝ(r, r′) is the fundamental solution to the 2D Helmholtz equation

ĝ(r, r′) =
i

4
H

(1)
0

(
k̂2|r − r′|

)
=

i

2π

∞∫
0

exp(ikz|z − z′|)
kz

cos(kx(x− x′))dkx

and kz =
√
k̂2 − k2

x. The strati�ed media is added as done before and the
relation between the �eld and vector potential Green's function is given by

µ
˜̄̂
GE =

1
k2

 k2 − k2
x −kykx ikx

∂
∂z

−kykx k2 − k2
y iky

∂
∂z

ikx
∂
∂z iky

∂
∂z k2 − k2

z

 ˜̄̂
GA. (28)

Note that ky is a constant �xed by the incident wave. Following the de�nition
in part 1, set ky = k0 sin(θ) sin(φ).

5.8 GPOF

The 2D Green's functions are easily obtained by substituting the termGprim(r) =
(i/4)H(1)

0 (kr) in which the radius reduces to ρ−ρ′ = x−x′. For the derivatives
use

dGprim

dr
=

d
dr

(
i

4
H

(1)
0 (kr)

)
= − ik

4
H

(1)
1 (kr)

and

d2Gprim

dr2
= − ik

2

8

(
H

(1)
0 (kr)−H(1)

2 (kr)
)
.

For the conical case we apply (28) to obtain the �eld Green's function. In this

case 7 function need to be approximated, i.e.
˜̂
GAxx,

˜̂
GAyy,

˜̂
GAzz,

∂
∂z

˜̂
GAxx,

∂
∂z

˜̂
GAyy,

∂
∂z

˜̂
GAzz and

∂2

∂z2
˜̂
GAzz, or if the primary term is subtracted

˜̂
GAxx −

˜̂
Gprim = − µ

2i
1
kz

[Beh exp(−ikzz) +De
h exp(ikzz)]
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˜̂
GAyy −

˜̂
Gprim = − µ

2i
1
kz

[Aeh exp(−ikzz) +Beh exp(ikzz)]

˜̂
GAzz −

˜̂
Gprim = − µ

2i
1
kz

[Aev exp(ikzz) +Bev exp(−ikzz)]

∂

∂z

( ˜̂
GAxx −

˜̂
Gprim

)
= −µ

2
[−Beh exp(−ikzz) +De

h exp(ikzz)]

∂

∂z

( ˜̂
GAyy −

˜̂
Gprim

)
= −µ

2
[−Aeh exp(−ikzz) +Beh exp(ikzz)]

∂

∂z

( ˜̂
GAzz −

˜̂
Gprim

)
= −µ

2
[Aev exp(ikzz)−Bev exp(−ikzz)]

∂2

∂z2

( ˜̂
GAzz −

˜̂
Gprim

)
=
µ

2i
kz [Aev exp(ikzz) +Bev exp(−ikzz)] .

The GPOF sum can directly be transformed to the closed-form Green's functions
using identity (27). The x-derivatives are applied analytically to these functions
using the derivatives of the primary Green's functions as described above, with
k = k̂.

5.9 Far-�eld

For the 2D case you can �nd the expressions in the book of Allen Ta�ove (Ta�ove
2000), where the Hankel functions are approximated.

In order to obtain the leading order far-�eld spectral �eld, we can use a stationary-
phase approximation. This gives a relation of the spectral �eld at in�nity in a
�xed direction from the origin. Suppose the electric �eld at z ≥ 0 component
can be written as

E(x, z) =

+∞∫
−∞

Ê(kx; 0) exp(ikxx+ ikzz)dkx.

We are interested in the far-�eld value of this �eld at r∞ in the direction

s =
(x
r
,
z

r

)
,

where r =
√
x2 + z2 is the distance from r∞ to the origin. So, we may write
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E∞(sx, sz) =
∫

|kx|≤k

Ê(kx; 0) exp
(
ikr

(
kx
k
sx +

kz
k
sz

))
dkx.

if the evanescent waves decay at in�nity (homogeneous waves). Changing vari-
able p = kx/k we then have

E∞(sx, sz) =
∫
|p|≤1

kÊ(kp; 0) exp (ikr (psx +m(p)sz)) dp,

with m(p) =
√

1− p2. Now, we have the far-�eld E∞ written in the desired

form. Given a direction s = (sx, sz) (remember that sz =
√

1− s2
x), approxi-

mate the function

F (κ; sx) =

1∫
−1

a(p) exp (iκg(p; sx)) dp,

with F (κ; sx) = E∞(sx, sz), κ = kr, a(p) = kÊ(kp; 0) and g(p; sx) = psx+msz,
using the stationary-phase method as κ→∞. It can be shown that the critical
points of the second kind (end points of the integration path) are of order 1/κ.
Let we continue with the critical points of the �rst kind, thus the points p1

where g′(p1) = 0. We have

g′(p) = sx +m′sz = sx −
p

m
sz

g′′(p) = −sz
(
m− pm′

m2

)
= −sz

m

(
1 +

p2

m2

)
.

The (�rst and only) critical point is at p1 = sx and concequently m1 = sz. So,

g′′(p1) = −

[
1 +

(
sx
sz

)2
]

= − 1
s2
z

< 0

and we have the approximation, as κ→∞

F (1)(κ; sx) ∼

√
−2π

κg′′(p1)
a(p1) exp(iκg(p1)) exp

(
− iπ

4

)
.

The electric �eld is then given by
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E∞(sx, sz) ∼
√
s2
z

2π
kr
kÊ(ksx; 0) exp(ikr) exp

(
− iπ

4

)

where the far-�eld approximation of the Hankel function H
(1)
0 (kr) can be rec-

ognized, or

E∞(sx, sz) ∼ kszπÊ(ksx; 0)H(1)
0 (kr).

For a given direction s, the mode kx = ksx (kz = ksz) is the only contribution
for r →∞ and is given by

Ê(kx; 0) =
E∞(kx/k, kz/k)

πkzH
(1)
0 (kr)

.

Plugging this back into the Fourier transformation we started with gives

E(x, z) =
1

πH
(1)
0 (kr)

∫
|kx|≤k

E∞(kx/k, kz/k)
1
kz

exp(ikxx+ ikzz)dkx.

For a analytical solution to a problem, the far-�eld E∞ should be derived. For
instance, the general solution to a conducting or dielectric cylinder

E(x, z) =
n=∞∑
n=−∞

AnH
(1)
n (kr) exp(inφ)

using the far-�eld aproximation for the Hankel functions, we arrive at

Ê(kx; 0) =

∑
An

√
2
πkr exp(i(kr − π/4)) exp(−inπ/2) exp(inφ)

πkz

√
2
πkr exp(i(kr − π/4))

This simpli�es to

Ê(kx; 0) =
1
πkz

n=∞∑
n=−∞

An exp(in(π/2− φ)).

Higher-order terms can be obtained using the Method of Steepest Descent
(Chew, page 82).
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6 1D problem

For the sake of competeness, the one-dimensional Helmholtz equation has the
trivial solution

g(z, z′) =
i

2
exp(k|z − z′|)

k
.

Using this in the derivation of the vector potential, the (free space) Green's
function reduces to

µ ḠE(z, z′) = ḠA(z, z′) = µ

 1 0 0
0 1 0
0 0 0

 g(z, z′),

which convolution gives TEMz waves (Hz = Ez = 0).

Inclusion of multiple layers follows the same way as in 2D and 3D. Note that
kz ≡ k is the only wave number present in a 1D problem. Basically, g(z, z′) is
a single Fourier mode.

Also for the 1D problem the oblique and conical case the Green's functions can
be derived in the same way.

7 Integral equation

The Green's function convolutions give rise to integral equations (integro-di�erential
equations) for the electric �elds (EFIE and MPIE). The equations can be solved
using for instance the Method of Moments (MoM).

7.1 Equivalence principle

Huygens' principle or surface equivalence theorem uses the Gauss' divergence
theorem to replace the volume integral with a integral over surface S and Sinf .

Assuming that the solution and Green's functions vanish at Sinf →∞, we may
write (Chew, page 32)

E(r′) = −
∮
S

n× E(r) · ∇′ × ḠE(r, r′)− iωµ(n×H(r)) · ḠE(r, r′)dS.

It can be shown (Chew, page 32) that this is equivalent to

39



S

Sinf

r’

Figure 6: Equivalence principle.

E(r′) = −∇′ ×
∮
S

ḠH(r′, r) · n× E(r)dS + iωµ

∮
S

ḠE(r′, r) · n×H(r)dS,

which is similar to the potentional approach (22) and (23), with JS = n × H
and MS = −n × E (use ∇ × ∇∇/k2 = 0, relations (24) and (25)). From
the uniqueness theorem (Chew, page 32), the solution can be derived either
from given JS or MS , provided that the Green's functions satisfy the boundary
conditions ∇′ × ḠH = 0 or ḠE = 0 on the surface S, respectively. For an
unbounded homogeneous medium ḠH = ḠE .

7.2 EFIE

The Green's function can be de�ned via the contrast �eld Ec = E−Em, where
Em is the known background solution. This �eld sati�es the Maxwell equation

∇×∇× Ec − k2Ec = k2Em −∇×∇× Em

or

∇×∇× Ec − k2
mE

c = (k2 − k2
m)(Em + Ec),

where km is the wave number in the strati�ed media (without the scatterer).
Using the Green's function ḠE for multi-layer media we obtain the following
electric �eld integral equation (EFIE) for Ec (use iωµJ = (k2− k2

m)(Em +Ec))

Ec(r) =
∫
V

ḠE(r, r′)(k2
res − k2

0)(Em(r′) + Ec(r′))dr′,
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with V is the scattering object area, kres and k0 constant material properties in
the scatterer (k2 − k2

m vanishes outside this area). Rearranging terms gives

Ec(r)
k2

res − k2
0

−
∫
V

ḠE(r, r′)Ec(r′)dr′ =
∫
V

ḠE(r, r′)Em(r′)dr′.

The 2D TEz half plane problem, with Em = ŷEm
y , simpli�es the EFIE consid-

erably. In this case, ḠE = ḠA/µ resulting in

Ec
y(r)

k2
res − k2

0

− 1
µ

∫
V

GAyy(r, r′)Ec
y(r′)dr′ =

1
µ

∫
V

GAyy(r, r′)Em
y (r′)dr′,

Take Ec
y(r) =

∑N
n=1 angn(r) and N test functions wm(r) = δ(r − rm), with

rm the locations in the center of segment Sm. Note that this method of mo-
ments is now similar to the point-matching method. The basis functions are
piecewise constant gn(r) = 1 for r in segment Sn and zero outside. Em

y (r) is
the background plane wave solution for the problem without scatterer (normal
incident)

Em
y (r) = exp(−ik1zz) +R12 exp(2ik1zd1 + ik1zz)

which is evaluated in all rm and approximated by Em
y (r) =

∑N
m=1E

m
y (rm)gm(r).

The EFIE can be written as a linear system [Zmn] [In] = [Vm]

Zmn =
1

k2
res − k2

0

−Amn, Vm = AEm
y (rm), In = an,

with Amn = 1
µ

∫
Sn
GAyy(rm, r′)dr′.

7.3 MPIE

The Mixed Potential Integral Equation (MPIE) is a reformulation of the EFIE
and is given by

E(r) = iω

∫
V

ḠA(r, r′) J(r′)dr +
1
k2
∇φA(r)

 ,
with

φA(r) =
∫
V

[
∇ · ḠA(r, r′)

]
J(r′)dr
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The equation of continuity states that ∇ · J = iωq. By assuming that there
exist a scalar function KA

φ (r, r′) and a vector function PA(r, r′), such that

∇ · ḠA(r, r′) = ∇′KA
φ (r, r′) + PA(r, r′),

then (provided that the scatterer does not intersect with the interfaces, Michal-
ski 1990)

φA(r) =
∫
V

KA
φ (r, r′)∇′ · J(r′)dr′ +

∫
V

PA(r, r′) · J(r′)dr′

= iω

∫
V

KA
φ (r, r′) q(r′)dr′ +

∫
V

PA(r, r′) · J(r′)dr.

Add ∇PA to ḠA to obtain an alternative dyadic Green's function K̄A = ḠA +
∇PA. Together with the scalar potential kernel KA

φ , the solution can be written
as the mixed �eld integral equation

E(r) = iω

∫
V

K̄A(r, r′) J(r′)dr +
iω

k2
∇
∫
V

KA
φ (r, r′) q(r′)dr′

 .
The choice PAx = PAy = 0 result in the �alternative� Green's function and has
all the continuity properties in z and z′ at the interfaces (Michalski 1990).

8 Appendix

In the appendix, various problems are presented which have known analytical
solutions. Furthermore, the Green's function for observers that are not in the
same layer as the sources is given. At the end, some useful identities are given.

8.1 Problems

The following problems can be solved analytically and are used to validate the
methods.

8.1.1 Conducting cylinder

The perfectly conducting cylinder is oriented in the direction of the z-axis (Bal-
anis, page 603 converted to exp(−iωt) convention). De�ne the total electric
�eld as Et = Ei + Es, with
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Ei = ẑEi
z = ẑE0 exp(ikx) = ẑE0

∞∑
n=−∞

inJn(kρ) exp(inφ).

The boundary condition for PEC, n×Et = 0 implies Et
z = 0, and the outgoing

waves are combination of Hankel functions H
(1)
n

Es
z =

∞∑
n=−∞

cnH
(1)
n (kρ).

Then, for all n at the boundary ρ = a,

E0i
nJn(ka) exp(inφ) + cnH

(1)
n (ka) = 0.

Solving coe�cients cn

cn = −inE0
Jn(ka)

H
(1)
n (ka)

exp(inφ)

The total �eld is

Es
z(φ, ρ) = −E0

∞∑
n=−∞

inJn(ka)

H
(1)
n (ka)

H(1)
n (kρ) exp(inφ)

The induced current is (Balanis, page 605)

JS(φ) = ẑ
2E0

πaωµ

∞∑
n=−∞

in exp(inφ)

H
(1)
n (ka)

The vector potential A for this problem is de�ned as

A = ẑµ

2π∫
0

i

4
H

(1)
0 (k|r − r′|)JS(φ′)a dφ′.

Note that from the vector potential approach Es = iω(I +∇∇/k2)A = iωA as
in this problem the vector A only has a z-component.
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8.1.2 Dielectric cylinder

The material inside the cylinder with radius a has refraction index n2 and
outside the cylinder n1, with the corresponding wave numbers ki = 2πni/λ.
The the scattered �eld is given by (exp(iωt)-convention)

Es
y(ρ, φ) =

∞∑
n=−∞

AnH
(2)
n (k1ρ) exp(inφ)

An = −Bext
n /Cn

Bext
n = in exp

[
−in

(π
2

+ θ
)]

Cn =
H

(2)
n (k1a)J ′n(k2a)−H(2)

n
′(k1a)Jn(k2a)

Jn(k1a)J ′n(k2a)− J ′n(k1a)Jn(k2a)
.

8.2 Green's function for the strati�ed medium

The case that the observer is outside the source region is presented here.

8.2.1 Outside source region

The solution has amplitudes that are related to the amplitudes on the boundary
of the source region (Chew, page 79).

If z′ ∈ Rm and z ∈ Rn, n < m (above the source), the up going �eld can be
written as

F+(z, z′) = A+
n

[
exp(iknzz) + R̃n,n−1 exp(−2iknzdn−1 − iknzz)

]
Factor A+

n is related to the amplitude at the upper boundary of the source
region z = −dm−1

A+
m = exp(−ikmz(z′ + dm−1)) + Cm exp(−ikmzdm−1) +Am exp(ikmzdm−1)

or

A+
m =

[
exp(−ikmzz′) + exp(ikmz(z′ + 2dm))R̃m,m+1

]
exp(−ikmzdm−1)M̃m
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in a recursive way as

A+
i exp(ikizdi) = A+

i+1 exp(iki+1,zdi)S+
i+1,i (29)

S+
i+1,i =

Ti+1,i

1−Ri,i+1R̃i,i−1 exp(2ikiz(di − di−1))
.

Similarly, if z′ ∈ Rm and z ∈ Rn, n > m (beneath source), we have the down
going wave

F−(z, z′) = A−n

[
exp(−iknzz) + R̃n,n+1 exp(2iknzdn + iknzz)

]
.

Factor A−n is related to the amplitude at the lower source region boundary
z = −dm

A−m = exp(ikmz(z′ + dm)) +Am exp(ikmzdm) + Cm exp(2ikmzdm)

or

A−m =
[
exp(ikmzz′) + exp(−ikmz(z′ + 2dm−1))R̃m,m−1

]
exp(ikmzdm)M̃m

in a recursive way as

A−i exp(ikizdi) = A−i−1 exp(iki−1,zdi−1)S−i−1,i (30)

S−i−1,i =
Ti−1,i

1−Ri,i−1R̃i,i+1 exp(2ikiz(di − di−1))
.

8.2.2 Observer outside source layer

The �elds outside the source region m are related to the amplitude A+
m and A−m

of outgoing �elds at the boundary of the source region. At z = −dm−1 and
z = −dm, the amplitudes of the x-component of the waves from a HED/HMD
dipole

A+
m = exp(−ikmz(z′ + dm−1)) + Ch exp(−ikmzdm−1) +Ah exp(ikmzdm−1)

A−m = exp(ikmz(z′ + dm)) + Ch exp(−ikmzdm) +Ah exp(ikmzdm),
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the z-component from a HED or HMD dipole

A+
m =

kxkmz
k2
ρ

(Ah +Bh) exp(ikmzdm−1) +
kxkmz
k2
ρ

(Dh − Ch) exp(−ikmzdm−1)

A−m =
kxkmz
k2
ρ

(Ah +Bh) exp(ikmzdm) +
kxkmz
k2
ρ

(Dh − Ch) exp(−ikmzdm)

and the z-component from a VED or VMD dipole

A+
m = exp(−ikmz(z′ + dm−1)) +Av exp(−ikmzdm−1) +Bv exp(ikmzdm−1)

A−m = exp(ikmz(z′ + dm)) +Av exp(−ikmzdm) +Bv exp(ikmzdm).

The corresponding elements of Green's function are (n < m)

G̃Axx = G̃Azz = − µn
2ikmz

A+
n

[
exp(iknzz) + R̃n,n−1 exp(−2iknzdn−1 − iknzz)

]
,

G̃Azx =
µn

2ikmz
A+
n

[
exp(iknzz) + R̃n,n−1 exp(−2iknzdn−1 − iknzz)

]
,

G̃Fxx = G̃Fzz = − εn
2ikmz

A+
n

[
exp(iknzz) + R̃n,n−1 exp(−2iknzdn−1 − iknzz)

]
,

G̃Fzx =
εn

2ikmz
A+
n

[
exp(iknzz) + R̃n,n−1 exp(−2iknzdn−1 − iknzz)

]
,

and (n > m)

G̃Axx = G̃Azz = − µn
2ikmz

A−n

[
exp(−iknzz) + R̃n,n+1 exp(2iknzdn + iknzz)

]
,

G̃Azx =
µn

2ikmz
A−n

[
exp(−iknzz) + R̃n,n+1 exp(2iknzdn + iknzz)

]
,

G̃Fxx = G̃Fzz = − εn
2ikmz

A−n

[
exp(−iknzz) + R̃n,n+1 exp(2iknzdn + iknzz)

]
,

G̃Fzx =
εn

2ikmz
A−n

[
exp(−iknzz) + R̃n,n+1 exp(2iknzdn + iknzz)

]
,

where R̃ corresponds to either TEz or TMz waves (note that component G̃zx
has both) and amplitudes A+

n and A−n satify the recursive relations (29) and
(30) , respectively.
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1

Figure 7: Wave re�ections.

8.2.3 Example

A source in region 2 (m = 2 and n = 1). The �elds in region 1 can be written
as

G̃Axx = G̃Azz = − µ1

2ik1z
A+

1 exp(ik1zz)

G̃Azx =
µ1

2ik1z

[
kxk1z

k2
ρ

A+
1 exp(ik1zz)

]

G̃Fxx = G̃Fzz = − ε1
2ik1z

A+
1 exp(ik1zz)

G̃Fzx =
ε1

2ik1z

[
kxk1z

k2
ρ

A+
1 exp(ik1zz)

]
and the amplitudes A+

1 of the up-going wave in region 1

A+
1 = exp(−ik1zd1)A+

2 exp(ik2zd1)T21

is written in terms of the amplitudes A+
2 at the boundary z = −d1 of region 2

for the six types of waves (3 x TEz + 3 x TMz)

A+
2 = [exp(−ik2zz

′) + Ch] exp(−ik2zd1)

A+
2 = (Dh − Ch) exp(−ik2zd1)

A+
2 = [exp(−ik2zz

′) +Av] exp(−ik2zd1),

with coe�cients for the up going waves given by

Av = Ch = R23 [exp(ik2z(2d1 + z′)) +R21 exp(−ik2z(2(d1 − d2) + z′))] M̃2
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Dh = R23 [− exp(ik2z(2d2 + z′)) +R21 exp(−ik2z(2(d1 − d2) + z′))] M̃2.

M̃2 = [1−R23R21 exp(2ik2z(d2 − d1))]−1
.

Again, coe�cients A, C, and D are either TEz or TMz.

8.3 Useful identities

Beside the identities mentioned in Part 1, more of those particularly for the
Green's function theory.

8.3.1 Spherical coordinates

r =
√
x2 + y2 + z2

θ = arccos(z/r)
φ = arctan(y/x)
x = r sin θ cosφ
y = r sin θ cosφ
z = r cos θ Ex

Ey
Ez

 =

 sin θ cosφ sin θ sinφ cos θ
cos θ cosφ cos θ sinφ − sin θ
− sinφ cosφ 0

 Er
Eθ
Eφ


with the inverse Er

Eθ
Eφ

 =

 sin θ cosφ cos θ cosφ − sinφ
sin θ sinφ cos θ sinφ cosφ

cos θ − sin θ 0

 Ex
Ey
Ez

 .
8.3.2 Cylindrical coordinates

In cylindrical coordinates (r, φ, z) and E = (Er, Eφ, Ez)T Er
Eφ
Ez

 =

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1

 Ex
Ey
Ez

 .
The curl operator is

∇× E =

 1
r
∂
∂φEz −

∂
∂zEφ

−( ∂∂rEz −
∂
∂zEr)

1
r ( ∂∂r (rEφ − ∂

∂φEr)

 .
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8.3.3 Hankel and Bessel's functions

Jn are the Bessel's functions of the �rst kind and Yn the Bessel's functions of
the second kind. Valid relation (you may interchange J and Y )

d
dx

(xmJm(x)) = xmJm−1(x)

d
dx
(
x−mJm(x)

)
= −x−mJm+1(x)

J−m = (−1)mJm

d
dx
Jm(x) =

1
2

(Jm−1(x)− Jm+1(x)) =
mJm(z)

z
− Jm+1(z)

Jm(x) =
x

2m
(Jm−1(x) + Jm+1(x)) .

Hankel functions are de�ned as H
(1)
n (z) = Jn(z)+ iYn(z) and H(2)

n (z) = Jn(z)−
iYn(z). So,

Yn(z) =
Jn(z) cos(nπ)− J−n(z)

sin(nπ)
.

H
(1)
0 (−z) = −H(2)

0 (z)

d
dz
H(1,2)
n (z) =

1
2

(
H

(1,2)
n−1 (x)−H(1,2)

n+1 (x)
)

=
nH

(1,2)
n (z)
z

−H(1,2)
n+1 (z)

Addition theorem (Balanis, page 597)

H
(1,2)
0 (β|ρ− ρ′|) =

∞∑
n=−∞

Jn(βρ′)H(1,2)
n (βρ) exp(in(φ− φ′)), ρ ≥ ρ′

exp(±iβx) = exp(±iβρ cos(φ)) =
∞∑

n=−∞
i±nJn(βρ) exp(inφ)
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8.3.4 Limits

Jn(x) ∼
√

2
πx

cos
(
x− nπ

2
− π

4

)
, x→∞

Yn(x) ∼
√

2
πx

sin
(
x− nπ

2
− π

4

)
, x→∞

H(1)
n (x) ∼

√
2
πx

exp
(
i
(
x− nπ

2
− π

4

))
, x→∞

H(2)
n (x) ∼

√
2
πx

exp
(
−i
(
x− nπ

2
− π

4

))
, x→∞
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