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Abstract

We consider a biological cell as a highly interconnected net-
work of chemical reactions, which is constituted of a large
number of semi-autonomous functional modules. Depend-
ing on the global state of the network, the separate functional
modules may display qualitatively different behavior. As an
example, we study a conceptual network of phosphorylation
cycles, for which the steady-state concentration of an output
compound depends on the concentrations of two input en-
zymes. We show that the input-output relation depends on
the expression of the proteins in the network. Hence changes
in protein expression, due to changes in the global regula-
tory network of the cell, can change the functionality of the
module. In this specific example, changed expression of two
proteins is sufficient to switch between the functionalities of
various logical gates.

Introduction
The human body consists of over 200 distinct cell types,
which display a large variety in both morphology and phys-
iology. Often differences between cell types manifest them-
selves in the response to extracellular stimuli. The same type
of molecule may even have a totally different function in
different cell types. An example for this is the response of
cells to the neurotransmitter acetylcholine (see Alberts et al.
(2002)). The extracellular presence of this compound yields
contraction in skeletal muscle cells but a decrease of con-
traction in heart muscle cells and even a multitude of differ-
ent effects in many other cells.

On the other hand, as all cells in an organism descend
from the same zygote, they share the same potential reaction
network, i.e., they are capable of producing the same set of
macromolecules, the interactions among which are based on
the same rules (e.g., rate and diffusion constants). There-
fore, the key to differences in behavior must lie in different
configurations of the network. In a systems theory sense,
these cells can be looked upon as similar systems that due
to a different state show very diverse responses to identical
stimuli. The state variables of these systems are the con-
centrations of chemical species, including species with an
important regulatory function such as transcription factors.

During differentiation, a chain of extracellular stimuli and
cell-cell interactions pushes the network for each cell in a
certain region of its state space. Each of those regions is
characterized by its pattern of present transcription factors
(and other regulatory molecules) and consequently a corre-
sponding pattern of protein expression. Not only through
development, but also in adult individuals, subtle changes
in configuration occur. Examples are synaptic plasticity in
neurons and adaptations to a changed environment, but also
many diseases coincide with a changed configuration of the
reaction network of individual cells: in tumor cells the cell
cycle control is disrupted (Hanahan and Weinberg (2000))
and in metabolic syndrome the cellular respiratory system is
affected (Kitano et al. (2004)).

In order to deal with the vast number of interactions in an
intracellular reaction network, it is common practice to ob-
serve semi-autonomous parts of the system as separate mod-
ules (Hartwell et al. (1999)). Such a separation is not neces-
sarily artificial, as many biological systems have a tendency
towards modularity. Interestingly, modularity has been re-
ported by Variano et al. (2004) to emerge when evolving
artificial networks described by linear differential equations
with a fitness function that rewards network stability . De-
pending on the exact scale of observation and field of inter-
est, many definitions for modules and modularity exist (see
for instance Polani et al. (2005), Bongard (2002)). In this
paper, we use the word module to refer to a group of pro-
teins (and metabolites) that interact with each other on the
level of protein-protein (and protein-metabolite) reactions,
but not with proteins or metabolites outside the module. We
do, however, allow the transcriptional and translational reg-
ulatory systems of the cell to alter the concentrations of pro-
teins inside the module. Hence, as the tuning of transcription
and translation differs between cell types, this may affect
protein concentrations and, because of that, the dynamics of
the module of interest. This applies to all intracellular reac-
tion networks that depend on protein concentrations, among
which metabolic pathways and signaling networks.

Here, we focus on the influence of protein expression on
the functionality of a module. There are a number of ways
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in which proteins expression can influence this functional-
ity. Obviously, when none of the involved proteins are ex-
pressed, the module of interest would be switched off. As
a result, many processes are present in only a few types of
cells. For instance, only a small number of cells synthe-
size certain neurotransmitters, although all cells have the
blueprints for the necessary enzymes in their DNA. Apart
from that, the changes in protein expression can have many
more effects on the input-output relations of functional mod-
ules. We can roughly distinguish two classes of effects.
Firstly, the expression of enzymes involved in a module can
have quantitative effects on the input-output relations of the
module. For instance, muscle cells are set to take up larger
amounts of glucose than less energy consuming cell types
such as skin cells. Secondly, there is the possibility that the
observed functionality itself is changed in a qualitative fash-
ion. An example is the MAP kinase signaling network of
Bhalla et al. (2002), in which the expression of MAP ki-
nase phosphatase determines whether the network displays
a gradual or a bistable response to extracellular stimuli.

In this paper we exemplify with a conceptual model,
that the steady-state input-output relations of a signal trans-
duction network consisting of phosphorylation cycles may
change dramatically by changing only a few concentrations.
Moreover, this model shows that even if we know the topol-
ogy of a network and the sign (i.e., positive or negative influ-
ence) and strength of its interactions, the behavior depends
heavily on the actual concentrations of proteins. We show
that with the same topology and rate constants, this network,
which consists of only 5 phosphorylation cycles, can have
at least 8 different input-output relations, depending on the
chosen protein concentrations. Note that, from a mathemati-
cal point of view, there is only one function that is calculated
by the network. However, we consider some of the concen-
trations as parameters that are determined outside the model.
The input-output relation for each parameter set is thus con-
sidered as a separate function.

The implementation of Boolean logic in biochemical re-
actions is not new. For instance, Strack et al. (2008) have
recently build wet lab implementations of AND, OR, XOR
and ‘B AND NOT A’ functions using enzymatic reactions.
Boolean logic is also a subject of research in the field of
genetic regulatory networks (see for instance Schilstra and
Nehaniv (2008)). Here, we describe one single network that
with suitable parameters can compute 8 different Boolean
functions.

Model description
Phosphorylation cycles
Phosphorylation cycles are common building blocks of in-
tracellular signaling networks (Cohen (2000)). The generic
phosphorylation cycle involves a single type of protein
which can be in two states: a phosphorylated and a de-
phosphorylated state. In a phosphorylation reaction, a phos-
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Figure 1: (a) Phosphorylation cycle with one kinase A and
one phosphatase B, for which the dynamics can be described
by two Michaelis-Menten reactions with constants kcat1 and
Km1, and kcat2 and Km2, respectively. (b) The steady-
state concentration of Rp as a function of the ratio of the
concentrations of A and B, for the case kcat1 = kcat2 = 1
and Km1 = Km2 = 0.01.

phate group is transferred from a donor molecule (com-
monly ATP) to a specific site on the dephosphorylated pro-
tein. The enzymes that catalyze this ‘forward’ reaction are
called kinases. The ‘backward’ reaction, i.e., the dephos-
phorylation reaction, is catalyzed by a phosphatase enzyme.
A schematic representation of such a cycle is shown in Fig-
ure 1 a.

In this paper we restrict our description of the phospho-
rylation cycle to a highly idealized cycle consisting of two
Michaelis-Menten type reactions (Fersht (1999)). Further-
more, we assume a fixed concentration of phosphate donors.
In this way, we can describe the rates vphos and vdephos of
the reactions

A + R → A + Rp
B + Rp → B + R,

with Michaelis constants Km1 and Km2 and catalytic con-
stants kcat1 and kcat2 by

vphos =
kcat1[A][R]
Km1 + [R]

,

vdephos
kcat2[B][Rp]
Km2 + [Rp]

.

Note that square brackets indicate the concentration of the
corresponding compound. The steady-state of such a cycle
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is given by Goldbeter and Koshland (1981) and can be writ-
ten as (Tyson et al. (2003)):

[Rp] =
2 v1J2Rtot

v2 − v1 + v2J1 + v1J2 + D
,

where

D =
√

(v2 − v1 + v2J1 + v1J2)2 − 4(v2 − v1)v1J2

and Rtot = [R] + [Rp], v1 = [A] kcat1, v2 = [B] kcat2,
J1 = Km1/Rtot, J2 = Km2/Rtot.

Typically, the steady-state response of such a cycle is sig-
moidal as function of [A]/[B](see Figure 1 b). As both the
phosphorylated and dephosphorylated proteins can act as en-
zymes themselves, phosphorylation cycles can be coupled in
a cascade, in which the substrate of one cycle is a kinase or
phosphatase in another reaction. In the next section we in-
troduce a network of such cycles, in which we assume that
only the phosphorylated form is active as an enzyme and
can have either kinase or phosphatase activity but not both.
We do not take into account formation of protein-protein
complexes other than the kinase-substrate and phosphatase-
substrate complexes taken care of in the model of Goldbeter
and Koshland.
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Figure 2: Reaction scheme of the network. System parame-
ters [E1]...[E5], Stot, Ttot, Utot, Vtot determine the response
of [Yp] to input concentrations [A] and [B].

Network topology
Consider the network of phosphorylation cycles as shown
in Figure 2. Depending on the external concentrations [A]
and [B] (which are further referred to as ‘input concentra-
tions’), the state of the network will change. We focus on

the steady-state concentration of Yp for given concentra-
tions [A] and [B]. Clearly, this concentration depends on
the concentrations of uncoupled enzymes ([E1]...[E5]) and
the total amount of mass in each phosphorylation cycle (i.e.,
Stot = [S] + [Sp], Ttot = [T] + [Tp], Utot = [U] + [Up],
Vtot = [V]+[Vp] and Ytot = [Y]+[Yp]). The regulation of
the amount of protein expression (i.e., transcription, transla-
tion and protein degradation) is part of the chemical network
of the entire cell, but not of the module of interest. There-
fore, the total concentrations of involved proteins are ways
for the global system of the cell to tune the functionality of
the described module. From here on, we refer to these con-
centrations as system parameters. Clearly, the rate constants
of all the reactions are parameters of the module as well.
However, it seems unlikely that the global network, apart
from the expression of inhibitors or activators, can change
the values of these parameters. Therefore, we keep the rate
constants of all reactions at 1.

As there is no feedback, each phosphorylation cycle in our
model has one single stable solution irrespective of its initial
state. As there are only feed-forward connections, there is
only one steady-state solution for the entire network as well
for given system parameters and inputs ([A] and [B]). When
two or more enzymes catalyze the same reaction, we con-
sider the sum of their concentrations as the concentration of
the catalyst.

Parameter values
In the previous section we have defined system parame-
ters as variables of the global cell network that determine
the behavior of functional modules. The presented con-
ceptual model of such a module has 10 system parameters
([E1]...[E5], Stot, Ttot, Utot, Vtot and Ytot), which can be
used to configure the network. In order to obtain more in-
sight in the possible behaviors of the network, we focus on
its possibilities as a logic gate. For the input we define values
below 0.5 as False and above 0.5 as True. We show that only
two system parameters (Stot and Ttot) have to be adjusted
to obtain 8 different logical functions with 2 inputs. For all
reactions we choose the Michaelis constant Km = 0.01 and
the catalytic constant kcat = 1.

The first layer of the network functions as a thresholding
device. That is, as we do not demand inputs [A] and [B] to
be exactly 0 or 1, we want [Sp] be near 0 if [A] < [E1] and
near Stot if [A] > [E1]. The same holds for the T-Tp cycle.
We choose thresholds [E1] = [E2] = 0.5. As both phospho-
rylation cycles in the second layer receive input from both
Sp and Tp, we consider the sum of their concentrations (i.e.
[Sp]+[Tp]) as the output of the first layer. The input-output
relation of layer 1 is given by Table 1. The output of the first
layer [Sp] + [Tp] is approximately one of the four numbers
0, Ttot, Stot or Stot + Ttot. Note that, as Stot and Ttot are
the only adjustable system parameters, these four numbers
are not yet fixed.
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Layers 2 and 3 take [Sp] + [Tp] as input, and have [Yp]
as output. If we also take Utot > 0, [E5] ≈ 0.5 Utot,
Vtot � Utot, and Ytot = 1 and choose any combination
of [E3] and [E4] for which [E3] < [E4], we obtain the input-
output relation for layers 2 and 3 that is shown in Figure 3.
Now, the only parameters that are not yet fixed are Stot and
Ttot.

[A] 0 0 1 1
[B] 0 1 0 1

[Sp] +
[Tp]

0 Ttot Stot Stot +
Ttot

Table 1: Input-output relation of layer 1

[E3]

Ytot

0

[Sp] + [Tp]

[E ]4

Figure 3: Response of layer 3, when layer 2 receives a total
input [Sp] + [Tp].

Network behavior
Different combinations of Stot and Ttot can yield different
computable functions, as shown in Figure 4. Because the
response of the network is built up of sigmoidal functions,
the borders between the shown regions do not indicate dis-
crete changes in functionality but rather narrow continuous
transitions.

For instance, to compute the XOR function, we choose
Stot and Ttot such that [E3] < Stot < [E4], [E3] < Ttot <
[E4] and [E4] < Stot + Ttot. Similarly, to compute the OR
function we require [E3] < Stot < [E4], [E3] < Ttot < [E4]
and [E3] < Stot + Ttot < [E4]. It is easily verified from
Table 2 and Figure 3 that indeed the XOR respectively OR
function are computed. Note that the conditions on Stot and
Ttot for the OR function require that [E3] < [E4]/2. As can
be seen from Figure 4, all 8 Boolean functions that yield 0
for input [A] = [B] = 0 can be computed if [E3] < [E4]/2.

If we consider both concentrations [Y] and [Yp] as out-
puts, our network is able to calculate all 16 possible log-
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[B]
[A]
AND

NOT
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Figure 4: Network output for combinations of Stot and Ttot.
Only relative concentrations are shown, see Figure 5 for ex-
amples of actual parameter values.

XOR
[A] 0 1 0 1
[B] 0 0 1 1

[Sp]+[Tp] 0 > [E3], > [E3], > [E4]
< [E4] < [E4]

[Yp] 0 1 1 0

OR
[A] 0 1 0 1
[B] 0 0 1 1

[Sp]+[Tp] 0 > [E3], > [E3], > [E3],
< [E4] < [E4] < [E4]

[Yp] 0 1 1 1

Table 2: Computing the XOR or the OR function. The val-
ues of Stot and Ttot (see Figure 4) determine the range of
values of [Sp] + [Tp] and by that the value of [Yp] for the
possible combinations of input values [A] and [B].

ical functions for two inputs. The reason is that, because
[Y] = 1 − [Yp], we can consider [Y] as the negation of
[Yp].

The possible outputs of the network are shown in Fig-
ure 5. Also, without considering [Y], other logical functions
may be calculated, as well as functions with a more gradual
response to different inputs. To this end, alternative choices
for system parameters, other than Stot and Ttot should be
used. Even more possibilities may appear by adding extra
enzymes (kinases or phosphatases) to some of the phospho-
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rylation cycles. However, this is beyond the scope of this
paper.
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Figure 5: Depending on the network configuration, the
steady-state concentrations of Yp and Y correspond to one
of the 16 logical functions for 2 inputs [A] and [B]. (Gray
levels indicate concentration: Black ≈ 0 , White ≈ 1).
All sub-figures were plotted using [E3] = 6, [E4] = 16,
[E5] = 0.5, Utot = 1, Vtot = 10 and the values for Stot and
Ttot that are given in brackets for each sub-figure.

We have shown how the values of only two parameters
determine the response of the network. The importance of
parameter values is even more strikingly exemplified if we
use the same network as a unary logic operator. In order
to do that, we consider [B] as a system parameter instead
of an input, choose Stot and Ttot within the ‘XOR region’
and leave the other parameter values unchanged. In that case
changing the value of [B] is sufficient to switch the output
[Yp] of the network from identity to negation of input [A].

Biological Plausibility
Although the topology and parameters of the model are op-
timized to display specific idealized behavior rather than to

describe any known intracellular pathway, the model con-
sists of building blocks that are common in intracellular sig-
naling. It may therefore be possible to find a similar topol-
ogy within existing biological networks. Indeed, in the Hu-
man Protein Reference Database (see Peri et al. (2003) and
Mishra et al. (2006)), we have found a number of protein
kinases and phosphatases that show similar patterns of inter-
actions. More specifically, we have searched this database
(Release 7, downloaded from http://www.hprd.org) for com-
binations of five proteins S,T,U,V and Y for which the pro-
teins S and T are each known to phosphorylate at least one
site on the proteins U and V. In addition, protein U has to
phosphorylate protein Y and protein V has to dephosphory-
late Y. Furthermore, we require that both S and T are targets
for phosphorylation by other protein kinases. We did not
discriminate between multiple phosphorylation sites on the
same protein.

With these requirements, we have identified the combi-
nations of S,T,U,V and Y, that are listed in Table 3. Note
that proteins S and T are interchangeable. For each of the
possible proteins for S and T, known kinases (i.e. potential
network inputs A and B) are listed in Table 4. On protein
PRKACA there are at least 5 different sites that are known
targets for phosphorylation, but for which no upstream ki-
nases are known. Finding these networks with similar topol-
ogy makes it more plausible that this type of multifunctional
modules can occur in nature. However, due to the current
limited knowledge about parameters of signalling networks,
it remains unclear whether such functionality is indeed used
in biology.

S T U V Y
FYN LCK SHC1 ACP1 ZAP70
LCK LYN PRKCD PTPN6 EGFR

MAPK1 PRKACA RAF1 PTPN7 MAPK1
PRKCA PRKACA SRC PTPN12 ABL1
PRKCA PRKACA SRC PTPN12 PTK2

Table 3: Real networks with same topology. S and T are
interchangeable.

Substrate (S or T) Kinase (A or B)
FYN FYN, CSK, PDGFRB
LCK CSK, LCK, PRKCA, MAPK1,

SYK, PRKACA, MAPK3
LYN LYN, MATK, CSK
MAPK1 MAPK1, RET, MAP2K1, RAF1
PRKACA Kinase unknown
PRKCA PRKCZ, SYK

Table 4: Kinases working on possible substrates S and T.
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Discussion
In order to get some grip on the overwhelming complexity of
biochemical interactions within a cell, it is common practice
in biology to analyze separate pathways or modules instead
of the whole system. We have defined a module in such a
way that it can be analyzed separately from the larger net-
work to which it belongs. Changes outside the module are
therefore considered as changes in parameters or boundary
conditions, rather than changes of the state of the module
itself. Because of this, the same module may have different
parameters in two different cell types, and may therefore dis-
play different functionalities. Since a small module, such as
the conceptual network presented in this paper, can already
behave totally different depending on the values of two pa-
rameters, it is likely that also in real networks changes in
protein expression result in changes in observed function-
ality. Note that, from a mathematical point of view, there
is no such thing as a change in functionality, as the network
of interactions is still the same. However, when dealing with
small parts of the system, different behavior can be observed
as different functionalities. The model presented in this pa-
per gives an example how small changes in parameters of a
phosphorylation network can already yield a different func-
tionality. For example, the presence or absence of the com-
pound B is sufficient to switch the input-output relation be-
tween [A] and [Yp] from identity to negation.

Although this model is not based on any known intracel-
lular pathway, we have shown that similar topologies can be
found in the Human Protein Interaction Database. Despite
the idealized sigmoidal response of the phosphorylation cy-
cles, this small network can already behave in at least 8 dif-
ferent ways, depending on how it is configured. This makes
it plausible that modules of real biological networks display
such multifunctional properties as well, which gives a clue
how the same protein in different cells can be involved in
different processes and can even show contradictory behav-
ior among cell types. Moreover, this multifunctionality may
also be exploited by evolution to use the same modules for
different purposes in different cell types. Spatial isolation of
proteins may even allow the exploitation of different func-
tionalities in separate regions in the same cell. On the other
hand, the same functionality may be needed in many differ-
ent cell types. In that case it appears to be advantageous if
the involved genes are co-regulated, as this would preserve
the ratios between the protein concentrations and by that the
functionality of the module.

As for many signaling networks quantitative data is lack-
ing or unreliable, an often used technique is to use Boolean
networks to model positive and negative interactions be-
tween nodes (Kauffman (1969), see de Jong (2002) for a re-
view). Although this technique is useful to understand some
interactions within a complicated network, a lot of qualita-
tive effects are missing with this approach. We can illustrate
this with our conceptual model. Cycles U-Up and V-Vp are

both positively influenced by cycles S-Sp and T-Tp and in-
directly by external concentrations [A] and [B]. As in a clas-
sical Boolean network interactions only have a sign but not
a weight, the U-Up and V-Vp cycles are identical. The Y-
Yp cycle receives positive influence from Up and negative
influence from Vp. As the topology and interactions remain
the same, a purely qualitative approach would be insufficient
to describe the different ‘modes’ of the network. This also
shows that for understanding the dynamics of these com-
plex networks, it is necessary to perform multiple quantita-
tive measurements at the same time.
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