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Can we gain the same information as HARDI?
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Abstract. High angular resolution diffusion imaging (HARDI) has proven
to better characterize complex intra-voxel structures compared to its pre-
decessor diffusion tensor imaging (DTI). However, the benefits from the
modest acquisitions and significantly higher signal-to-noise ratios (SNRs)
of DTI make it more attractive for use in clinical research. In this work
we use contextual information derived from DTI data, to obtain similar
crossing information as from HARDI data. We conduct synthetic phan-
tom validation under different angles of crossing and different SNRs. We
corroborate our findings from the phantom study to real human data.
We show that with extrapolation of the contextual information the ob-
tained crossings are the same as the ones from the HARDI data, and the
robustness to noise is significantly better.

1 Introduction

The recent diffusion weighted magnetic resonance imaging (DW-MRI) technique,
first introduced by Basser [1], diffusion tensor imaging (DTI), is subject of in-
tense research mainly due to its feasibility in clinical practice (number of gra-
dients (NG) around 20, b-value of 1000 s/mm2 and total acquisition time of
3-5 minutes [2]). DTI constitutes a valuable tool to inspect fibrous structures
in a non-invasive way. Despite the great potential for clinical applications, DTI
has one obvious disadvantage due to the crude assumption for modeling the
underlying diffusion process as Gaussian. In other words, in the areas of com-
plex intra-voxel heterogeneity the DTI model fails to distinguish multiple fiber
populations. This limits the accurate description of the diffusion process lo-
cally, and influences the accuracy of the fiber tracking algorithms, an important
application of this model. To overcome the limitations of DTI, more complex ac-
quisition schemes known as high angular resolution diffusion imaging (HARDI)
were introduced [3]. These acquisitions come coupled with more sophisticated
reconstruction techniques that tend to avoid any assumptions for the proba-
bility density function (PDF) that describes the underlying diffusion process.
Thus, locally more accurate models for the diffusion process, that allow the
detection of multiple fibrous structures, were introduced [4–9]. However, the in-
creased accuracy in HARDI comes along with a few drawbacks, mainly in more



time consuming acquisitions (60 to few hundreds NG, higher b-values (> 2000
s/mm2) and total acquisition times from 20 minutes to a few hours) [3,10]. This
is one of the biggest impediments in applying HARDI in clinical setting. Another
very important issue is the SNR in the images acquired by the typical DTI or
HARDI acquisition protocols for clinical scanners. Despite the more accurate
local modeling of the underlying diffusion process by the HARDI techniques,
they require acquisitions at higher b-values and denser gradient sampling com-
pared to DTI. Therefore, the acquired datasets have significantly lower SNRs
than in DTI (especially in the diffusion weighted images which is sometimes a
factor of 4 lower). The reconstructed diffusion profiles suffer from major noise
pollution, that often produces false or displaced maxima of the reconstructed dif-
fusion functions and might notably disturb the fiber tracking algorithms. Proper
regularization techniques on the domain of these datasets are thus, important.
However, there is an additional issue with the accuracy of the DW-MRI data.
Since the noise is very prominent in the phase of an MRI signal, it is common
to discard this information, thus considering only the amplitude. This results
in anti-podally symmetric profiles as pointed by Liu et al. [11], that can only
model single fiber or symmetric crossings of multiple fibers. However, this can
not always be assumed to be the case in the white matter of the brain, espe-
cially in the structures as optic chiasm, the hippocampus, the brain stem and
others. Since the data is ill defined, considering the contextual information (i.e.,
neighborhood) can be of outmost importance. There has been previous work on
inter-voxel, contextual based filtering for estimating asymmetric diffusion func-
tions [12] and cross-preserving smoothing of HARDI images [13], by modeling
the stochastic processes of water molecules (i.e., diffusion) in oriented fibrous
structures. However, these approaches increase the complexity of already com-
plex and computationally heavy HARDI data. Rodrigues et al. [14], accelerated
these complex convolutions enabling a fast framework for the noise removal, reg-
ularization and enhancement of HARDI datasets. Notwithstanding, contextual
processing as described above has been applied only on HARDI models, due to
the natural coupling of the space of positions and orientations that describe the
diffusion process.
In this paper we address some of the above mentioned issues. We use data from
typical clinically obtained DTI acquisitions to build spherical diffusion functions
(SDF) that can be used for contextual processing of the data. The data ini-
tially comes with high SNR values making the local reconstruction of the SDFs
reliable. The context information of well defined single direction fibers is extrap-
olated to areas where the fiber structure is considerably complex and therefore
not defined in DTI. We analyze the difference of the contextually modified SDFs
compared with the Qball reconstructions [15] from the same DW-MRI data.



2 Methods

In this section we present our method for creating extrapolated SDFs (E-SDFs)
from diffusion tensors (DT) estimated from our DW-MRI data. We additionally
give details on the contextual image processing and perform an evaluation.

2.1 Creating spherical diffusion functions from diffusion tensors

In DTI, the signal decay is assumed to be mono-exponential [16], and yields the
equation:

Sg = S0 exp(−bgTDg) (1)

where Sg is the signal in the presence of diffusion sensitizing gradient, and S0 is
the zero-weighted baseline signal, b-value is the parameter of the scanner closely
related to the effective diffusion time, and the strength of the gradient field, g
are the diffusion gradient vectors, and D is the 2nd order symmetric, positive
definite diffusion tensor (DT). Once the DT is calculated per voxel, the spherical
diffusivity function (SDF) can be reconstructed, and sampled on the sphere

SDF (n) = nTDn (2)

where n is the direction vector defined by the tessellation. Figure 1 shows a typ-
ical linear DT and the correspondent diffusivity profile sampled on a sphere (in
our case icosahedron of order 4, 642 points on a sphere). Note that this SDF, since
it is derived from the DT, does not hold any crossing information and should
not be confused with the apparent diffusion coefficient (ADC) whose crossing
information does not necessarily coincide with the underlying fiber population
as pointed by Özarslan et al. [7].

Fig. 1. A linear diffusion tensor (left) and the corresponding tessellated SDF (right).

Following Anonymous [14], from a tensor field, we create an SDF field, i.e.,
a HARDI-like dataset U , a coupled space of positions and orientations:

U : R3 o S2 → R+ : U(y,n(β, γ)) (3)

This means that on every position y ∈ R3, the probability of finding a water
particle in a certain direction n(β, γ) is given by a scalar. Here, β and γ are the
spherical coordinates. To stress the coupling between orientation and positions
we write R3 o S2 rather than R3 × S2. Such an image U can now be enhanced.
Throughout this article we consider DTI-data as the initial condition, which
means that we set U(y,n) = nTD(y)n.



2.2 Kernels for contextual enhancing of spherical diffusion functions

Duits [13,17] proposed a kernel implementation that solves the diffusion equation
for HARDI images. The full derivation is beyond the scope of this manuscript.
This kernel represents the Brownian motion kernel, on the coupled space R3oS2

of positions and orientations. Next, we present a close analytic approximation
of the Green’s function. This approximation is a product of two 2D kernels on
the coupled space p2D : R2 o S1 → R+ of 2D-positions and orientations:

pD33,D44,t
3D ((x, y, z)T ,n(β, γ)) ≈

N(D33, D44, t) · pD33,D44,t
2D ((z/2, x), β) · pD33,D44,t

2D ((z/2,−y), γ) ,
(4)

where y = (x, y, z)T , and N(D33, D44, t) ≈ 8√
2

√
πt
√
tD33

√
D33D44 takes care

that the total integral over positions and orientations is 1. For details adhere to
the work of Duits [13,17] and Rodrigues [14].

The diffusion parameters D33 and D44 and stopping time t allow the adap-
tation of the kernels to different purposes:

1. t > 0 determines the overall size of the kernel, i.e. how relevant is the neigh-
borhood;

2. D33 > 0, the diffusion along the principal axis, determines how wide is the
kernel;

3. D44 > 0 determines the angular diffusion, so the quotient D44/D33, models
the bending of the fibers along which diffusion takes place.

We can now convolve this kernel with the SDF image U , using the HARDI
convolution [14], as expressed in equation 5. We chose the parameters for the
kernel in order to give a high relevance to the diffusion along the principal axis
D33 = 0.6, D44 = 0.01 and t = 1.4.

Φ(U)[y,nk] =
∑
y′∈P

∑
n′∈T

py,nk
(y′,n′)U(y′,n′) ∆y′∆n′ (5)

where py,nk
is the kernel at position y and orientation nk, such that

p(RTn′(y− y′), RTn′nk) = py,nk
(y′,n′) (6)

and R is any rotation such that Rnez = n. ∆y′ is the discrete volume mea-
sure and ∆n′ the discrete surface measure, which in case of (nearly) uniform
sampling of the sphere, such as tessellations of icosahedrons, can reasonably be
approximated by 4π

|T | . P is the set of lattice positions neighboring to y and T

is the set of tessellation vectors. The convolution with such a kernel will result
on the extrapolation of crossing profiles where the neighborhood information so
indicates, i.e., the E-SDFs.

In order to achieve the desired results, care should be taken on the sharpness
of the input image U . Before applying the convolution, the SDFs are min-max
normalized and a power of 2 is employed to achieve a sharper version of the
SDFs.



2.3 Data

Synthetic Data - To validate and analyse our methodology artificial datasets
were generated. DT datasets were created where two fiber bundles forming
’tubes’ with radii of 2 voxels intersect each other. Here, the tensors, with eigen-
values λ = [17, 3, 3]× 10−3mm2/s and oriented tangentially to the center line of
the tube, are estimated using a mixed tensor model [5]. Gaussian noise with dif-
ferent SNRs, is added to the real and complex part of the signal reconstructed
from equation 1. In order to evaluate the angular resolution we vary the an-
gle between the two fiber tubes θ ∈ {50◦, 60◦, 70◦}, while keeping a constant
SNR = 20. We made a choice for these angles, given that the accuracy of Qball
to detect multiple fiber orientations, especially at low b-values, is around 60◦ [18].
In order to evaluate the robustness to noise, we fix the angle to θ=70◦, and we
vary the SNR {5, 10, 20}.
Real Human Data - Diffusion acquisitions were performed using a twice fo-
cused spin-echo echo-planar imaging sequence on a Siemens Allegra 3T scanner,
with FOV 208 × 208 mm, isotropic voxels of 2mm. 10 horizontal slices were
positioned through the body of the corpus callosum and centrum semiovale.
Uniform gradient direction scheme with 49 directions was generated with the
electrostatic repulsion algorithm [19] and the diffusion-weighted volumes were
interleaved with b0 volumes every 12th scanned gradient direction. Dataset was
acquired at b-values of 1000 s/mm2.

3 Results

On figure 2 we present the results of the performance of the proposed E-SDFs
compared to the Qballs [15] for different angles of crossings. We fix the SNR to
20, as in a typical DTI acquisition. We observe that for the angle of 50◦, E-SDFs
and the Qball fail to find multiple maxima in the crossing areas. For the angle of
60◦ the performance of E-SDFs (angular error of 55◦ with standard deviation of
12◦) is as for Qball truncated at order of spherical harmonics l = 6 (angular error
of 54◦ with standard deviation of 15◦). At angle of 70◦, the E-SDFs (angular
error of 12◦ with standard deviation of 5◦) outperform the best Qball scenario
at order l = 8 (angular error of 24◦ with standard deviation of 8◦).

Figure 3 demonstrates the robustness to noise of the E-SDFs, compared to
Qballs of order l = 6. At higher order of truncation Qball performs much worse,
giving many false positives in the linear areas where the SNR is low. We observe
that regardless the SNR, the E-SDFs preserve the coherence of the linear and
crossing regions, and preserve the angular error, to almost constant (see the plot
on figure 3).

The centrum semiovale was used to illustrate the qualitative analysis of the
classification results. It is an interesting region for analysis, since fibers of the
corpus callosum (CC), corticospinal tract (CST), and superior longitudinal fas-
ciculus (SLF) form different two-fiber and three-fiber crossing configurations in
that area. The region-of-interest (ROI) was defined on a coronal slice (see fig-
ure 4 a). Even though the crossing information is missing in the original data, as



Fig. 2. E-SDFs and Qballs for different angles of crossing at fixed SNR=20.

Fig. 3. E-SDFs and Qballs for different SNRs at fixed angle of 70◦. a) plot of the
angular error and standard deviation for the E-SDFs.

well as the created SDFs (figure 4 a and figure 4 b respectively), we observe that
after the processing of the DTI data the crossing information is extrapolated
(see figure 5 b ) and very much comparable to the Qball reconstructions of order
l = 4 from the same DW-MRI data. The benefits of the regularization feature
of the contextual processing are also evident in figure 5 b, where clearly can be



Fig. 4. The centrum semiovale. Left: the original DTI data, color coded by FA. Right:
the SDFs from the DTI data, RGB color coded by orientation and min-max normalized.

Fig. 5. Left: Qball of order 4. Right: E-SDFs of the same region.

observed the structure of CR intersecting the CC. This becomes more prominent
compared to Qball truncated at higher l-order.

4 Conclusions and Future Work

In this work we presented a method for extrapolating crossing information us-
ing image processing of the coupled space of positions and orientations in DTI
data. We show that with typical acquisition schemes for DTI, the local diffusion
information gain can be similar as 6th order Qball. The robustness to noise of
the presented method is significantly better than from the Qballs reconstructed



from the same data. The main contribution from this work lies on demonstrating
that modest acquisitions modeled by DTI, and using contextual information can
result on the same information gain as in some of the popular HARDI recon-
struction techniques that require more expensive acquisitions. The chosen kernel
sets an overall reasonable probabilistic model that governs how the context of a
fiber fragment is taken into account. Consequently, our framework lacks adap-
tivity. Future work addresses more adaptive fiber context models to the data,
such that context is only included where it is required by the data. Future work
should additionally bear more extensive validation to assess the exact differ-
ences between HARDI models and E-SDFs concerning acquisition parameters
and anatomical areas of the brain.
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