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Abstract

Timing Analysis of Synchronous Data Flow Graphs

Consumer electronic systems are getting more and more complex. Consequently,
their design is getting more complicated. Typical systems built today are made
of different subsystems that work in parallel in order to meet the functional re-
quirements of the demanded applications. The types of applications running on
such systems usually have inherent timing constraints which should be realized
by the system. The analysis of timing guarantees for parallel systems is not a
straightforward task.

One important category of applications in consumer electronic devices are
multimedia applications such as an MP3 player and an MPEG decoder/encoder.
Predictable design is the prominent way of simultaneously managing the design
complexity of these systems and providing timing guarantees. Timing guarantees
cannot be obtained without using analyzable models of computation. Data flow
models proved to be a suitable means for modeling and analysis of multimedia
applications. Synchronous Data Flow Graphs (SDFGs) is a data flow model of
computation that is traditionally used in the domain of Digital Signal Processing
(DSP) platforms. Owing to the structural similarity between DSP and multimedia
applications, SDFGs are suitable for modeling multimedia applications as well.
Besides, various performance metrics can be analyzed using SDFGs. In fact, the
combination of expressivity and analysis potential makes SDFGs very interesting
in the domain of multimedia applications.

This thesis contributes to SDFG analysis. We propose necessary and sufficient
conditions to analyze the integrity of SDFGs and we provide techniques to capture
prominent performance metrics, namely, throughput and latency. These perfor-
mance metrics together with the mentioned sanity checks (conditions) build an
appropriate basis for the analysis of the timing behavior of modeled applications.

An SDFG is a graph with actors as vertices and channels as edges. Actors
represent basic parts of an application which need to be executed. Channels
represent data dependencies between actors. Streaming applications essentially
continue their execution indefinitely. Therefore, one of the key properties of an
SDFG which models such an application is liveness, i.e., whether all actors can
run infinitely often. For example, one is usually not interested in a system which
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completely or partially deadlocks. Another elementary requirement known as
boundedness, is whether an implementation of an SDFG is feasible using a lim-
ited amount of memory. Necessary and sufficient conditions for liveness and the
different types of boundedness are given, as well as algorithms for checking those
conditions.

Throughput analysis of SDFGs is an important step for verifying throughput
requirements of concurrent real-time applications, for instance within design-space
exploration activities. In fact, the main reason that SDFGs are used for mod-
eling multimedia applications is analysis of the worst-case throughput, as it is
essential for providing timing guarantees. Analysis of SDFGs can be hard, since
the worst-case complexity of analysis algorithms is often high. This is also true
for throughput analysis. In particular, many algorithms involve a conversion to
another kind of data flow graph, namely, a homogenous data flow graph, whose
size can be exponentially larger than the size of the original graph and in practice
often is much larger. The thesis presents a method for throughput analysis of SD-
FGs which is based on explicit state-space exploration, avoiding the mentioned
conversion. The method, despite its worst-case complexity, works well in practice,
while existing methods often fail. Since the state-space exploration method is akin
to the simulation of the graph, the result can be easily obtained as a byproduct
in existing simulation tools.

In various contexts, such as design-space exploration or run-time reconfigu-
ration, many throughput computations are required for varying actor execution
times. The computations need to be fast because typically very limited resources
or time can be dedicated to the analysis. In this thesis, we present methods to
compute throughput of an SDFG where execution times of actors can be param-
eters. As a result, the throughput of these graphs is obtained in the form of a
function of these parameters. Calculation of throughput for different actor exe-
cution times is then merely an evaluation of this function for specific parameter
values, which is much faster than the standard throughput analysis.

Although throughput is a very useful performance indicator for concurrent
real-time applications, another important metric is latency. Especially for appli-
cations such as video conferencing, telephony and games, latency beyond a certain
limit cannot be tolerated. The final contribution of this thesis is an algorithm
to determine the minimal achievable latency, providing an execution scheme for
executing an SDFG with this latency. In addition, a heuristic is proposed for
optimizing latency under a throughput constraint. This heuristic gives optimal
latency and throughput results in most cases.
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Chapter 1

Introduction

1.1 Trends in Embedded Systems

A popular element in the James Bond franchise is the exotic equipment that is
critically useful on his missions. Most of this equipment is no longer just an
excitement factor of fictional novels and movies. Devices like cell phones, MP3
players, PDA’s, etc are inseparable part of our daily lives. Most of these systems
contain one or more processors which realize the functionality of the device. These
devices are called embedded systems.

Not only the number of embedded systems has increased exponentially, but
also the last few years witnessed a tremendous growth in their complexity as
well. Just by comparing the complexity of the functionality of embedded systems
built today, and those built a decade ago, one can get a good idea about the
complications involved in the design of new systems. For example, a simple cell
phone today, is not only a cell phone anymore; it usually works as a camera, an
MP3 player, a video displayer and even an internet browser.

One important category of embedded systems are multimedia embedded sys-
tems in which combinations of different content forms of media are processed. Ex-
amples of such systems are cell phones, game consoles, PDA’s and digital cameras.
In general, multimedia includes a combination of text, audio, animation, video,
and interactivity content forms. These types of data are inherently streaming, i.e.,
they consist of streams of data. Therefore, multimedia embedded systems typi-
cally perform regular sequences of operations on large (virtually infinite) streams
of data.

Next to functional properties, multimedia applications inherently require some
non-functional properties to be fulfilled as well. For example, timing constraints
are usually part of the specification of embedded systems, i.e., the correctness of
the system depends not only on the functional results, but also on the time at
which the results are produced. A similar story is also true for energy consump-
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2 1.2. PREDICTABLE DESIGN

tion, namely, only low powered systems are desirable, and energy consumption ex-
ceeding a certain limit is not acceptable. In addition to the increase in complexity
and the number of different gadgets, costs need to be reduced and time-to-market
has been shortened due to the ever-increasing demand of consumers.

1.2 Predictable Design

All the points explained in the previous section in the design of embedded systems,
make the design of such systems very difficult. In fact, designers are expected
to design multi-functional embedded systems with correct functional and non-
functional properties in a very short time and at a very low cost.

Applications are the motivation for embedded computing, i.e., computation is
not the primary goal of multimedia embedded systems. Therefore, only a fraction
of the total price of the products can go into the computation part. As a result,
embedded systems involve computation that is subject to resource limitations
such as limited memory, processor power and energy consumption.

The various issues mentioned so far have been addressed by splitting activities
into different tasks and distributing them among different specialized processing
cores that work in parallel. Consequential to fulfilling all the requirements of
a system, a very large design space needs to be explored which is very time
consuming. Designers try to use techniques that allow them to predict some of
the properties of the final result in the early stages of the design. In this way a
large part of the state space gets pruned, which leads to a shorter design time,
and consequently shorter time-to-market and lower costs.

As mentioned in the previous section, providing guarantees is one of the most
prominent non-functional features of multimedia embedded systems. An effec-
tive approach for designing systems which realize timing constraints, is to design
systems that provide predictable results in a predictable amount of time. This
method of design is called predictable design. In other words, the main goal
in predictable design is to provide timing guarantees while avoiding the overdi-
mensioning of the system. A system is considered to be predictable in case its
functional behavior as well as non-functional properties (such as performance)
can be forecasted based on models or specifications developed prior to actually
realizing the system with hardware and software.

But predictability is harder to achieve in a multiprocessor system because the
processors typically lack a global view of the system. Therefore, a design method
with the primary goal of achieving end-to-end predictability in a distributed sys-
tem is required which can manage the complexity of the design on the one hand
and provides the timing guarantees while using resources efficiently on the other
hand.
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1.3 Models of Computation for Embedded Systems

Many different activities are required to carry a complex electronic system from
initial idea to physical implementation. Functional modeling captures the spec-
ification of the functional behavior of the system. Performance modeling helps
to understand the non-functional characteristics of the product. Validation and
verification ensure that the final implementation behaves according to its specifi-
cations and expectations.

All these activities operate on models and not on the real physical object. The
most important reason for using a model is that the real product is not available
before the development task is completed. Achieving the optimum solution which
addresses the timing correctly and uses the least amount of resources requires
design-space exploration which in most cases is very time consuming and error-
prone. Today’s short time-to-market usually prohibits the manufacturing of a
complete prototype as part of the development. Besides that, prototypes cannot
replace the hundreds or thousands of different models that are routinely devel-
oped for an average electronic product. Furthermore, realizing predictable designs
cannot be done without using mathematical models, because a model efficiently
determines whether specific constraints are met. In other words, formal features
provided by mathematical models are desirable in predictable design because they
guarantee certain properties or allow us to deploy efficient synthesis procedures.

Various models of computation (MoCs) are used in designing multimedia appli-
cations [34]. MoCs can be compared based on different aspects like expressiveness
and succinctness as well as analyzability. It is obvious that there is a trade-off
involved between the expressiveness and succinctness of a model as opposed to
its analyzability potential.

Among MoCs used for modeling multimedia applications, data flow models in
general proved to be a very successful means to capture properties of such ap-
plications [34, 53, 61]. Typical multimedia applications consist of a set of tasks
(or operations) that need to be performed, while data is transferred or commu-
nicated among those tasks. This set of tasks needs to be performed iteratively,
while consuming and producing fixed amounts of data for each task execution.
This structure of tasks connected with communication channels can be naturally
modeled by data flow graphs. The nodes of a data flow graph are called actors,
modeling tasks, while the edges, called channels, represent FIFO (first-in-first-
out) buffers. They typically model data transfers or control dependencies among
actors. The execution of an actor is referred to as a (actor) firing, the data
items communicated between actors are called tokens, and the amounts of tokens
produced and consumed in a firing are referred to as rates.

Several data flow models with different analyzability potential and expressive-
ness have been proposed. In general, some models give up some descriptive power
in exchange for properties which enable automated analysis. Data flow models
may be distinguished according to whether they allow or disallow branching, i.e.,
actors which perform a decision as to which successor actors take part in the
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execution. In cases where branching is permitted, for instance, such as Boolean
Data Flow Graphs (BDFGs) [42], they are more expressive. BDFGs are Turing
complete; no a priori execution schedule can be determined, as this may be depen-
dent on the initial data which leads to undecidability of for example throughput
analysis for BDFGs. In case where branching is not permitted, some expressivity
is lost in exchange for automated analysis. An example of such a MoC is the
model of Synchronous Data Flow Graphs (SDFGs).

In this thesis, we focus on SDFGs. SDFGs have been traditionally used
for modeling of Digital Signal Processing (DSP) applications [40, 57]. Due to
structural similarity between DSP and multimedia applications, SDFGs provide
a good degree of expressiveness for modeling of multimedia applications as well
[63, 61, 53]. Besides, SDFGs have a lot of analysis potential for measuring exact
performance metrics which are very important in evaluating the worst-case be-
havior of systems. This combination of expressivity and analysis potential makes
SDFGs very interesting in the domain of multimedia applications for embedded
systems.

Figure 1.1: The SDFG model of an H.263 decoder

Figure 1.1 shows the SDFG model of an H.263 decoder. H.263 is a video
codec standard for a low-bitrate compressed format for videoconferencing. The
decoder consists of four actors VLD, IQ, IDCT and MC. Every of the four actors
performs part of the frame decoding. The frame decoding starts in the actor
VLD (variable length decoding) and a complete frame is decoded when the data
is processed by actor MC (motion compensation). Associated with the source
and destination of each channel edge are the rates which are determined by the
numbers written next to edges. Communicated data and control signals are mod-
eled as tokens, denoted with a black dot and an attached number defining the
number of tokens present in the channel. Channel capacities are unbounded, i.e.,
channels can contain arbitrarily many tokens. Channel capacity limitations need
to be modeled explicitly. In the example of Figure 1.1, the partially decoded data
is communicated via the channels at the top (left-to-right). The channels at the
bottom (right-to-left) model the storage-space constraints on the top edges. For
example, the buffer size between VLD and IQ is 2544 tokens. In this case, each
token is one block of data which is in turn 64 pixels. Data that must be preserved
between subsequent firings of an actor is modeled with an initial token on the
self-loop channels (channels with the same source and destination) of the actors.
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Actors are typically annotated with execution times to make SDFGs amenable
to timing analysis. The execution of an SDFG is defined in terms of its actor
firings. An actor is enabled when there are sufficiently many (at least as many as
indicated by the rates) tokens on all of its input channels. An enabled actor can
start its firing and by doing so the number of tokens on each input channel gets
reduced by the number indicated by the rate of that channel. The firing of an
actor is atomic and cannot be interrupted. The duration of the firing of an actor
is determined by its execution time. In case of untimed SDFGs the execution
times of all actors will be considered equal to one. By finishing of the firing of an
actor, the number of tokens of each output channel of the actor is increased by
the rate of the output channel. This example shows that SDFGs are sufficiently
expressive for streaming multimedia applications, which are typically similar to
the H.263 decoder. In the next section, the SDFG analysis potential together
with the limitations of the traditional methods are discussed.

1.4 Problem Statement

In the previous section, we argued that SDFGs are a good means of modeling
multimedia applications as they combine good levels of expressivity and analyz-
ability. Although SDFGs are amenable to many analysis techniques, not many
techniques exist that are practically feasible for multimedia applications. Mainly,
analysis techniques for SDFGs are categorized into two main groups. The first
group, which are exact algorithms, do not often directly work on SDFGs (e.g.
[8, 41, 16]), requiring a potentially costly conversion, which makes them unprac-
tical. The second group consists of heuristics and approximation algorithms (e.g.
[70, 1]) which are either not precise enough or do not provide precise bounds for
the errors made. In the remainder of the section, we explain in more detail the
analysis techniques required for checking some crucial properties as well as cal-
culating the performance metrics of SDFGs. These properties together with the
performance metrics required for realizing predictable designs are explained.

An inherent property of multimedia applications is that they process very large
(virtually arbitrarily long) streams of data. Therefore, SDFGs which deadlock or
cannot execute indefinitely are considered faulty. Also in the definition of SDFGs,
channel buffers are unlimited; however, only SDFGs which use limited amounts
of channel buffers can be implemented in practice. Therefore, we need a method
to be able to check the sanity of constructed SDFGs, i.e., whether they can run
indefinitely using a finite amount of memory. This thesis develops such sanity
checks.

The most prominent metric which has been studied extensively for SDFGs in
the literature is throughput [16, 56, 60], i.e., the average number of actor firings
per time unit. All throughput calculation methods use analysis techniques which
work on a subclass of SDFGs, which is called Homogeneous SDFGs (HSDFG, for
short). All rates of an HSDFG are one. Every arbitrary SDFG can be converted
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to an equivalent HSDFG [41] which makes these methods applicable to SDFGs as
well. The problem with the conversion is that it very often results in a dramatic
increase in the size of the graph [51]. Therefore, the analysis of the huge graph
resulting from the conversion is very time consuming. This thesis develops a
throughput analysis technique that avoids the conversion to an HSDFG.

Another issue with throughput analysis techniques for multimedia applications
is that actor execution times are usually worst-case estimates of the real execution
time of the actor. Therefore, because of the dynamic behavior of software (e.g.
data dependent execution) the estimation of software execution times is often not
tight. To achieve higher levels of precision in throughput prediction, sometimes,
the estimations of actor execution times may change during design-space explo-
ration at design time. Also at run-time, a system may need to reconfigure itself
because of various reasons like when an application starts its execution at the same
platform. In all throughput calculation methods, changing the execution time of
a single actor implies the need for the total recalculation of the throughput.

Although throughput calculation is relatively fast, in some cases huge numbers
of different throughput calculations are required for design-space exploration. At
run time, for reconfiguration purposes, very limited time and resources are avail-
able for calculating the throughput. This thesis investigates parametric through-
put analysis techniques. By assuming parametric execution times for actors, we
can assume a range of values for execution times instead of only fixed numbers. In
this way, the throughput of an SDFG can be specified in terms of a function of the
parameters. As a result, a throughput recalculation will be only the evaluation
of the function for the new execution times. Then, the throughput calculation
becomes very fast using only limited resources.

Furthermore, although throughput is a salient performance metric for multi-
media applications, certain timing features of such applications cannot be specified
using only throughput. Other performance metrics like latency are also required
to specify for example the time difference between executions of different parts of
application. A formal definition of latency was only defined for HSDFGs in the
literature. Consequential to the lack of a formal definition of latency for SDFGs,
no analysis technique for latency calculation of SDFGs were provided. This thesis
develops latency analysis for SDFGs and studies the relation with throughput
analysis.

1.5 Bibliography

Synchronous data flow graphs are essentially Computation Graphs. Computation
graphs were first introduced by Karp and Miller in 1966 [38]. Their work con-
centrates on fundamental properties like determinacy, stating that any admissible
execution yields the same ultimate result or termination (deadlock) conditions.
A large part of their analysis techniques is dedicated to terminating graphs, and
therefore, not directly applicable to multimedia applications. Computation graphs
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are further explored by Reiter [56]. The term synchronous data flow graphs was
first introduced by Lee and Messerschmitt in [43] where they concentrated on the
properties of the model related to digital signal processing (DSP) applications.
One of the main advantages of SDFGs over other models of computations is that
the buffer sizes required to implement channels in SDFGs can be determined at
compile time [24, 64]; consequently, static allocations for buffers become possible
avoiding the overhead of dynamic memory allocation.

There are interesting similarities between SDFGs and Petri nets [48]. In par-
ticular, there is a straightforward translation from SDFGs to a subclass of Petri
nets, called weighted Marked Graphs and vice versa, where actors are transitions,
and channels are places. Marked Graphs, also called T-Graphs, are known to be
the subclass of Petri nets that is most amenable to rigorous analysis [12, 14].

SDFGs have been used for modeling DSP applications (e.g. [40, 57]). Also,
in recent years, they have been used in many publications to model multimedia
streaming applications [63, 61, 53]. Until recently, analysis techniques for the
various mentioned models of computation have not been adapted to and targeted
to the needs for modern embedded multimedia systems.

1.6 Contributions

This thesis makes several contributions to the state-of-the-art of timing analysis
techniques for SDFGs.

• Liveness refers to the fact that an SDFG can execute indefinitely; bounded-
ness refers to the fact that memory needs are finite. Liveness and bounded-
ness of SDFGs are formally defined in this thesis and necessary and sufficient
conditions are provided for checking whether an SDFG is live and bounded.
Three useful interpretations of boundedness are discussed, and these con-
ditions are supported with algorithms to perform the checks (Chapter 3).
This work has been published in [27, 28].

• A new approach for throughput calculation of SDFGs based on state-space
exploration is proposed. This approach, unlike all other existing algorithms,
works directly on SDFGs avoiding the conversion to HSDFGs (Chapter 4).
The method turns out to be fast in practice, and shows much less variation
in execution time than the traditional methods. An earlier version of this
work has been published in [29].

• Three different methods for parametric throughput analysis of SDFGs with
parameters as execution times are presented and compared. The throughput
is given as one over a linear function of parameters (Chapter 5). This work
was published in [26, 25].

• The latency definition known from HSDFGs is extended to arbitrary SDFGs.
A class of scheduling algorithms is proposed which results in the minimum
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achievable latency. A heuristic algorithm for minimizing latency under a
throughput constraint is also given (Chapter 6). An earlier version of this
work has been published in [30, 31].

1.7 Thesis Overview

This thesis is organized as follows. The next chapter discusses the preliminary
definitions of SDFGs. The formal definition of actor throughput is also given in
this chapter. Chapter 3 presents the necessary and sufficient conditions charac-
terizing when SDFGs are live and bounded. Three definitions of boundedness are
discussed in this chapter. All conditions are supported with decision algorithms.
A new approach is presented for throughput calculation of SDFGs in Chapter 4.
Chapter 5 discusses parametric throughput analysis of SDFGs in which execu-
tion times are parameters. In Chapter 6 the definition of latency is generalized
to arbitrary SDFGs, a scheduling scheme is proposed for minimizing the latency.
Furthermore, a heuristic algorithm is presented for obtaining minimum latency
under certain throughput constraints. Chapter 7 concludes this thesis and gives
recommendations for future work.



Chapter 2

Preliminaries

2.1 Overview

This chapter formally defines synchronous data flow graphs (Section 2.2) and a
timed variant of them (Section 2.3). The static structural properties of SDFGs
are discussed in Section 2.4. An operational semantics for SDFGs that formalizes
their execution is given in Section 2.5. Dynamic behavioral properties of SDFGs
are discussed in this section as well. Homogeneous SDF is a subset of SDF and
traditionally most analysis techniques like throughput or latency analysis have
been defined based on this subset. HSDF and the relation between SDFGs and
HSDFGs are explained in Section 2.6. Finally, Section 2.7 summarizes.

2.2 Synchronous Data Flow Graphs

Let IN and IR denote the (non-negative) natural numbers (including 0), and real
numbers respectively. IN+ and IR+ denote the set of positive natural and real
numbers (excluding 0). We also denote the set of non-negative natural and real
numbers including ∞ and 0 by IN∞ and IR∞ respectively.

Formally, an SDFG is defined as follows. We assume a set Ports of ports, and
with each port p ∈ Ports we associate a positive finite rate Rate(p) ∈ IN+.

Definition 2.1. (Actor) An actor a is a tuple (In,Out) consisting of a set
In ⊆ Ports of input ports (denoted by In(a)), a set Out ⊆ Ports of output ports
(Out(a)) with In ∩Out = ∅.

Definition 2.2. (Synchronous Data Flow Graph (SDFG)) An SDFG is
a tuple (A, C) with a finite set A of actors and a finite set C ⊆ Ports × Ports
of (directed) channels. The source p of every channel (p, q) is an output port of
some actor; the destination q is an input port of some actor. All ports of all
actors are connected to precisely one channel. The associated actor of each port p

9
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is denoted by Act(p). For every actor a = (I, O) ∈ A, the set of all channels that
are connected to ports in I (O) is denoted by InC (a) = {(p, q) ∈ C | q ∈ In(a)}
(OutC (a) = {(p, q) ∈ C | p ∈ Out(a)}) and we address them as input (output)
channels of a. We call a channel from actor a to itself a self-loop channel. The set
of all self-loop channels of an actor a is denoted by SLC (a) = InC (a)∩OutC (a).
The predecessors of a, Pred(a) = {b ∈ A | OutC (b) ∩ InC (a) 6= ∅}, are the
actors that are the source of a channel of which a is the destination and similarly
Succ(a) = {b ∈ A | InC (b)∩OutC (a) 6= ∅} are the actors that are the destination
of a channel for which a is the source.

The execution of an actor is defined in terms of firings. When an actor a starts
its firing, it removes Rate(q) tokens from all (p, q) ∈ InC (a) and produces Rate(p′)
tokens on every (p′, q′) ∈ OutC (a). These rates are therefore also referred to as
input resp. output rates, or consumption resp. production rates. The details of
SDFG execution are formalized in Section 2.5.

Figure 2.1 shows an example SDFG, consisting of four actors (circles a through
d) and six channels (arrows between actors). The number annotations inside
actors are explained below. Associated with the source and destination ports
of each channel edge are the rates. Channels may contain tokens, the black
dots. Channels can contain arbitrarily many tokens. Capacity limitations can be
modeled explicitly. For example, in Figure 2.1, the channels from left to right
can be interpreted as data connections, transporting data between actors and the
edges in the opposite direction with initial tokens, model available buffer space.
In this way, the difference between the number of firings of each actor and that of
its successors can be controlled, and this leads to a limited number of permitted
tokens on the output channels for an actor. Thus, the SDFG of Figure 2.1 can be
interpreted as a model of a multimedia application with four tasks, a through d,
to be executed iteratively in a pipelined manner. The three channels from left to
right correspond to FIFO buffers with limited sizes of 1, 5, and 1, respectively, as
modeled by the channels in the opposite direction. The example SDFG is in fact
very similar to the SDFG model of the H.263 decoder discussed in Chapter 1.

2.3 Timed Synchronous Data Flow Graphs

The classical SDFG model is untimed. In fact, it assumes unit time [43] for all
actor execution times. However, there is a natural extension to SDFGs in which a
fixed execution time is associated with each actor [60]. This extension makes the
model amenable to timing analysis such as throughput or latency analysis. Each
actor models a task or an operation and its execution time captures the amount
of time the execution of that task may take. In reality, actor execution times may
vary during the execution, and our choice of constant execution times for actors
are for worst-case or best-case analysis of applications.

Definition 2.3. (Execution Time) An execution time models the execution
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Figure 2.1: An example SDFG

duration of actors of an SDFG. In an SDFG (A, C), the execution time is a
function E : A 7→ IR∞ that assigns to each actor the amount of time it takes to
fire. For a ∈ A, E(a) is referred to as the execution time of a.

The infinite execution times are used later on to model deadlocks. Normally,
SDFGs do not have infinite actor execution times. Similarly, an execution time
of zero is sometimes convenient. Real data transformations typically do not have
zero execution times.

Definition 2.4. (Timed SDFG) A timed SDFG is a triple (A, C, E) denoting
an SDFG (A, C) with execution time E.

The SDFG depicted in Figure 2.1 is in fact a timed SDFG and the numbers
in actor nodes denote their execution times.

2.4 Static Properties

SDFGs are also directed (multi-)graphs; therefore, some structural properties
similar to those of graphs can be defined here. Note that all structural properties
are valid for both SDFGs and timed SDFGs.

Definition 2.5. (Path and Cycle) A (n undirected) path p is a sequence of
actors a1a2 . . . al such that ai+1 ∈ Succ(ai) (Pred(ai)∪Succ(ai)) for all 1 ≤ i < l.
Path p is simple iff ai 6= aj for all 1 ≤ i, j ≤ l, i 6= j. If in path p, a1 = al and
l ≥ 2, then p is said to be a cycle. A simple cycle is a cycle p = a1a2 . . . al such
that a1a2 . . . al−1 is simple.

Definition 2.6. (Connected SDFG) SDFG (A, C) is said to be connected iff
an undirected path exists between all pairs of actors.

We assume all SDFGs are connected; SDFGs which are not connected consist
of separate, completely independent graphs, which can be analyzed separately. A
well-known stronger form of connectivity is given by the following definition.

Definition 2.7. (Strongly Connected SDFG) An SDFG is strongly con-
nected iff there exists a directed path from any actor to any other actor. Any
subgraph of an SDFG which is strongly connected is called a strongly connected
component (SCC, for short). An SCC κ is maximal iff there is no SCC κ′ where
κ is a strict subgraph of κ′.
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The SDFG of Figure 2.1 consists of one maximal strongly connected compo-
nent as there is a path between any two actors.

Not all SDFGs are meaningful. Inappropriate rates can lead to undesirable
effects. If, for example, in the SDFG of Figure 2.1, the input rate of actor b of
the c-b channel is changed from 3 to 4, this would result in a guaranteed deadlock
after only a few actor firings (2 times a, and all other actors once); if this rate is
set to 2, it would result in an unbounded increase of tokens in the channel from
b to c. There is a simple property, called consistency, of SDFGs that is necessary
to avoid these kinds of effects [43], although it does not guarantee absence of
deadlocks. Consistency is a structural property of SDFGs which concerns the
correspondence between production and consumption rates.

Definition 2.8. (Consistent SDFG, repetition vector) A repetition vec-
tor q of an SDFG (A, C) is a function A → IN such that for each channel
(o, i) ∈ C from actor a ∈ A to b ∈ A, Rate(o) · q(a) = Rate(i) · q(b). A rep-
etition vector q is called non-trivial if and only if q(a) > 0 for all a ∈ A.

An SDFG is called consistent iff it has a non-trivial repetition vector. For a
consistent graph, there is a unique smallest non-trivial repetition vector, which is
designated as the repetition vector of the SDFG.

The repetition vector of the SDFG of Figure 1 is {(a, 2), (b, 2)(c, 3)(d, 3)} (in
vector notation: [2 2 3 3]T ). The equations Rate(o) · q(a) = Rate(i) · q(b) are
called the balance equations. The solution to these equations determines how
many times each actor should fire till all the tokens produced by the firings of
actors get consumed by some other actors. Therefore, from these equations, it
follows that firing all actors in an SDFG precisely as often as specified by a
repetition vector has no net effect on the distribution of tokens over all channels.
Consistency can be verified in linear time (a linear function of the number of
channels in the graph) (See e.g. [43]).

Definition 2.9. (Iteration) Assume SDFG (A, C) has repetition vector q. An
iteration is a collection of actor firings such that for each a ∈ A, the collection
contains q(a) firings of a.

2.5 Dynamic Properties

We define the behavior (operational semantics) of a timed SDFG formally in
terms of a labeled transition system following [24]. For this, we need appropriate
notions of states and of transitions. The behavior of untimed SDFGs can be easily
deduced from the timed version.

The behavior of an SDFG consists of firings of its actors during which they
consume input data and produce output data. By repeated firings, actors process
streams of data. A firing is enabled by the presence of sufficient tokens on all
of its input channels. An actor consumes its required input tokens at the start
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of its firing, and output is produced at the end of that firing. Channels have
unbounded capacity, which means that sufficient space is always available. Since
we are interested in timing analysis, and not, for example, in functional analysis,
we abstract from the actual data that is being communicated.

To capture the timed behavior of an SDFG, we need to keep track of the
distribution of tokens over the channels, the start and end of actor firings, and the
progress of time. For distributions of tokens on channels, we define the following
concept.

Definition 2.10. (Channel quantity) A channel quantity on the set C of
channels is a mapping δ : C → IN . If δ1 is a channel quantity on C1 and δ2 is a
channel quantity on C2 with C1 ⊆ C2, we write δ1 � δ2 if and only if for every
c ∈ C1, δ1(c) ≤ δ2(c). δ1 + δ2 and δ1 − δ2 are defined by pointwise addition resp.
subtraction of δ1 and δ2 resp. δ2 from δ1; δ1 − δ2 is only defined if δ2 � δ1.

The amount of tokens read at the beginning of a firing of some actor a can be
described by channel quantity Rd(a) = {((p, q),Rate(q)) | (p, q) ∈ InC (a)}, pro-
duced tokens by channel quantity Wr(a) = {((p, q),Rate(p)) | (p, q) ∈ OutC (a)}.

Definition 2.11. (Timed State) The state of a timed SDFG (A, C, E) is a pair
(γ, υ). γ is a channel quantity, referred to as a channel state, which associates
with each channel the amount of tokens present in that channel in that state.
To keep track of time progress, an actor status υ : A → IN IR∞

associates with
each actor a ∈ A a multiset of numbers representing the remaining durations
of different firings of a. Each timed SDFG has an initial timed state which is
given by some initial token distribution γ0, denoting the number of tokens that
are initially stored in the channels and υ0 = {(a, {}) | a ∈ A} (with {} denoting
the empty multiset).

In case of untimed SDFGs, states only consist of a channel state γ with the
initial state γ0.

By using a multiset of numbers to keep track of actor progress instead of a
single number, multiple simultaneous firings of the same actor (auto-concurrency)
are explicitly allowed. This is in line with the standard semantics for SDFGs [43].
If desirable, auto-concurrency can be excluded or limited by adding self-loops to
actors each with a number of initial tokens equal to the desired maximal number
of concurrent actor firings.

The dynamic behavior of the timed SDFG is described by transitions that can
be of any of three forms: start of actor firing, end of firing, or time progress.

Definition 2.12. (Transitions) A transition of a timed SDFG (A, C, E) from

state (γ1, υ1) to state (γ2, υ2) is denoted by (γ1, υ1)
α
→ (γ2, υ2) where label α ∈

(A× {start , end}) ∪ ({clk} × IR+) denotes the type of the transition.

• Label α = (a, start) corresponds to the firing start of actor a. This transition
is enabled if Rd(a) � γ1 and results in γ2 = γ1 − Rd(a), υ2 = υ1[a 7→
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υ1(a) ⊎ {E(a)}], i.e., υ1 with the value for a replaced by υ1(a) ⊎ {E(a)}
(where ⊎ denotes multiset union).

• Label α = (a, end) corresponds to the firing end of a. This transition is en-
abled if 0 ∈ υ1(a) and results in γ2 = γ1+Wr(a) and υ2 = υ1[a 7→ υ1(a)\{0}]
(where \ denotes multiset difference).

• Label α = (clk, l) denotes a clock transition and l ∈ IR+ specifies the length
of the clock transition. l is the minimum remaining execution time of all the
ongoing actor firings. More precisely, l = min{r ∈ IR+ | a ∈ A, r ∈ υ(a)}.

A clock transition is enabled only if no end transition is enabled. Also, at
most one clock transition is enabled and results in γ2 = γ1, υ2 = {(a, υ1(a)⊖
l) | a ∈ A} with υ1(a)⊖ l a multiset of real numbers containing the elements
of υ1(a) (which are all positive, and at least l) reduced by l.

Definition 2.13. (Execution and Maximal Execution) An execution of

a timed SDFG is an alternating sequence of states and transitions s0
α0→ s1

α1→ . . .
starting from the initial state s0 of the graph, such that for all n ≥ 0, sn

αn→ sn+1.
An execution is maximal if and only if it is finite with no transitions enabled in
the final state, or if it is infinite. The execution of an untimed SDFG is similar
to that of a timed SDFG except that it consists only of channel states and lacks
the clock transitions. � � 	 
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Figure 2.2: The self-timed execution of our running example

Figure 2.2 illustrates an execution of the example SDFG of Figure 2.1. Ev-
ery state (γ, υ) is encoded via pairs where γ corresponds to channels a-b, b-c,
c-d, d-c, c-b, b-a, and υ defines the multisets for a, b, c, and d respectively. The
execution starts with the initial state ((0, 0, 0, 1, 5, 1), ({}, {}, {}, {})) where no
actor is firing and the token distribution is determined by the initial tokens de-
picted in the graph. The only enabled actor at this point is a. When a starts
its firing, the state becomes ((0, 0, 0, 1, 5, 0), ({2}, {}, {}, {})) where the token on
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the input channel of a is consumed and its execution time has been added to
υ(a). No other actor can fire before a finishes its firing. Since the only ele-
ment in any of the υ is 2, time progresses for 2 time units changing the state
to ((0, 0, 0, 1, 5, 0), ({0}, {}, {}, {})). Then, the firing of a ends which changes the
state to ((1, 0, 0, 1, 5, 0), ({}, {}, {}, {})) enabling actor b. Similarly actor b starts
its firing and time progresses for 1 time unit and consequently the state changes
to ((0, 0, 0, 1, 2, 0), ({}, {0}, {}, {})). By the finishing of actor b the state changes
to ((0, 3, 0, 1, 2, 1), ({}, {}, {}, {})) which enables both a and c and they start their
firings simultaneously. This creates a new state ((0, 1, 0, 0, 2, 0), ({2}, {}, {3}, {})).
Again time progresses for 2 time units as it is the smallest value among all ele-
ments in υ, which leads to the end of firing of actor a and state ((1, 3, 1, 0, 2, 0),
({}, {}, {1}, {})). This process continues in the same manner.

The order of start and end transitions between two clock transitions is often
irrelevant; therefore, sometimes start and end transitions are conveniently omitted
in the notation of an execution and only the states immediately after clock steps
are shown. Note that these states are always the same, independent of the order of
state and transitions preceding a clock transition. The steps in such an execution
are referred to as macro steps. Hence, the execution of a (timed) SDFG is also
denoted as: σ = S0, S1, . . . where the Si are states obtained from macro steps.

Not all SDFGs are considered to be useful in practice. One normally seeks a
system that is live or at least deadlock-free, as defined below.

Definition 2.14. (Deadlock and Liveness) An SDFG has a deadlock if and
only if it has a maximal execution of finite length. An SDFG is live if and only if
it has an execution in which all actors fire infinitely often.

It is known [38] that the execution of an SDFG is determinate, which means
that the order of execution does not affect the states that can eventually be
reached. Thus, if one execution of an SDFG deadlocks (is maximal and finite),
then all executions deadlock. Absence of deadlock does not imply liveness. It is
possible that only infinite executions exist in which not all actors fire infinitely
often. The SDFG in Figure 2.1 is live which can be seen from Figure 2.2.

The maximal throughput (a precise definition of throughput is given in Chap-
ter 4) of an SDFG is known to be obtained from a specific type of execution,
namely self-timed execution [60], which means that actors fire as soon as they are
enabled.

Definition 2.15. (Self-timed execution) An execution is self-timed if and
only if clock transitions only occur when no start transitions are enabled.

Based on the above observation about macro steps, it can be seen that self-
timed SDFG behavior is deterministic in the sense that all the states immediately
before and after clock transitions are completely determined and independent of
the selected execution. Thus, it is meaningful to refer to the self-timed execution
of an SDFG.
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Figure 2.2 in fact shows the self-timed execution of our running example.
The self-timed execution of the graph of Figure 2.1 consists of a periodic phase
preceded by a so-called transient phase. We show in Chapter 4 that if actor exe-
cution times are rational numbers, then the behavior of the self-timed execution
of strongly connected graphs is always eventually periodic (similar to the figure).

In the following, we define some notations related to the execution of an SDFG,
which are used later for the definition of performance metrics like throughput and
latency. At this point, we already give a definition of actor throughput.

Definition 2.16. (Firing Functions) Given a timed SDFG G = (A, C, E) and
an execution σ, let Sσ

a,k (F σ
a,k) denote the start (end) time of the k-th firing with

k ∈ IN of any actor a ∈ A in execution σ, i.e., the sum of the length of clock

transitions up to the k-th appearance of
(a,start)
→ (

(a,end)
→ ) in σ. If σ is clear from

the context, we write Sa,k and Fa,k for denoting start and end firing functions.
Opposite to the start firing function, Nσ

a,t denotes the number of occurrences

of the transition
(a,start)
→ up to time t.

Nσ
a,t = max{k ∈ IN | Sσ

a,k ≤ t}.

Using the above notations, now we can define the actor throughput of an
SDFG.

Definition 2.17. (Actor throughput) The throughput of an actor a for ex-
ecution σ of an SDFG is defined as the average number of firings of a per time
unit in σ. Since executions can be infinite, this average is defined as the following
limit:

Th(σ, a) = lim
t→∞

Nσ
a,t

t
.

It is easy to see that when the execution includes an infinite number of start
transitions, then this is equal to

Th(σ, a) = lim
k→∞

k

Sσ
a,k

.

Note that this definition expresses the throughput of an SDFG actor for a particu-
lar execution σ. With Th(a), the actor throughput of a, we denote the throughput
of actor a of the self-timed execution, which is known to be maximal among all
executions.

2.6 Homogeneous SDF

SDFGs in which all rates associated to ports equal 1 are called Homogeneous
Synchronous Data Flow Graphs (HSDFGs, [43]). As all rates are 1, any HSDFG
is consistent and the repetition vector for an HSDFG associates 1 to all actors.
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Figure 2.3: The HSDFG equivalent to our running example SDFG.

Every (timed) SDFG G = (A, C, E) can be converted to an equivalent HSDFG
GH = (AH , CH , EH) ([43, 60]) which mimics the execution of G. This conversion
is done by using the conversion algorithm in [60, Section 3.8]. Figure 2.3 shows
the equivalent HSDFG of the SDFG of Figure 2.1. In the conversion, every actor
is copied as many times as its entry in the repetition vector. For example, actor
b has two copies b0 and b1. Every copy receives as many input (output) ports as
the sum of the rates of its input (output) ports in the original SDFG. We can
see in the figure that, for example, all copies of actor b have four output channels
and four input channels. Every channel (p, q) is translated into Rate(p) ·Rate(q)
channels connecting the copies of source and destination actors. The channel
between b and c with rates of 3 and 2 has been replaced by 3× 2 = 6 channels.
The total number of tokens remains the same but the tokens of an SDFG channel
get distributed evenly over all the replacement channels between the copies of the
source and the destination of the channel. Initial tokens also determine the source
and destination ports to which channels should connect as they are depicted in
Figure 2.3.

The equivalence notion between SDFGs and HSDFGs means that there exists
a bijection relation between the SDFG and HSDFG actor firings and it can be
made precise as follows.

For every actor a ∈ A of an SDFG G = (A, C, E), with repetition vector
q, the conversion algorithm creates q(a) copies, a0 . . . aq(a)−1, all with execution
time E(a). The correspondence between an SDFG and its equivalent HSDFG is
as follows: the k-th firing of ar in the HSDFG corresponds to firing k · q(a) + r
of a in the original SDFG. It can be shown ([33]) that for any execution σ of the
SDFG, there is an execution σH of the equivalent HSDFG such that, for the firing
start times of a and its copies, and for all r, k ∈ IN with 0 ≤ r < q(a),

Sσ
a,k·q(a)+r = SσH

ar ,k (2.1)
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Note that the k · q(a) + r-th firing of actor a ∈ A, is also the r-th firing of a
in iteration k of G. Also, since actor a and all its copies in the HSDFG have the
same execution time, there exists a similar equation for the end times of actor
firings in the SDFG and the equivalent HSDFG actor firings.

F σ
a,k·q(a)+r = F σH

ar ,k (2.2)

2.7 Summary

This chapter formalizes the SDFG model and it extends the model to take time
into account. Different properties of SDFGs are discussed in two categories of
static and dynamic properties. Static properties explain the structural properties
of SDFGs. Dynamic properties are defined formally in terms of a labeled transi-
tion system (operational semantics). Most traditional timing analysis techniques
have been defined on a special type of SDFG called an HSDFG. The relation
between SDFGs and their equivalent HSDFGs is also discussed in this chapter.



Chapter 3

Liveness and Boundedness

3.1 Overview

As explained in Chapter 2, an execution of an SDFG is a sequence of actor firings
which respects data dependencies. As long as these dependencies are satisfied,
the exact order of actor firings is not determined. Consequently, several execu-
tions exist for an SDFG. Because of the usage of SDFGs for modelling streaming
applications, typically, only those SDFGs which have executions in which all ac-
tors are fired infinitely often are of interest. This property of SDFGs is called
liveness. Furthermore, only executions that require a finite amount of storage for
the channels are of interest. This chapter formally studies this property, called
boundedness, in combination with liveness.

The chapter investigates two common interpretations, namely ‘normal’ bound-
edness which requires that there exists a bounded execution of an SDFG, and
strict boundedness which is whether all executions are bounded. We prove nec-
essary and sufficient conditions guaranteeing that an SDFG is live and (strictly)
bounded. For strict boundedness, these conditions follow immediately from a
similar result known for Petri nets.

A natural way of scheduling applications on multiprocessors is self-timed as
no extra control mechanism is required for scheduling the processors except the
readiness of the necessary data for each processor. Self-timed schedule is also
desirable because it achieves the maximum attainable throughput of an SDFG.
Therefore, it raises an interesting question of whether the self-timed execution
is feasible in practice using a finite amount of memory for channels. To answer
this question, a new notion of boundedness, namely self-timed boundedness is
introduced. This notion requires that self-timed execution of SDFGs is bounded.
Necessary and sufficient conditions for the liveness and self-timed boundedness of
SDFGs are proved. In this chapter, an algorithm is proposed that determines the
liveness and self-timed boundedness of an SDFG.

19



20 3.2. BOUNDEDNESS DEFINITIONS

c,1b,1a,2

2

2

3

3

1

1

1

1

Figure 3.1: An example timed SDFG Gex .

The rest of this chapter is organized as follows. Section 3.2 formally intro-
duces different definitions of boundedness for SDFGs to allow studying liveness
and boundedness in a rigorous way. Sections 3.3 and 3.4 present necessary and
sufficient conditions for liveness and (strict) boundedness plus algorithms for veri-
fying these conditions. Section 3.5 identifies conditions for self-timed boundedness
of SDFGs and presents an algorithm for verifying the combination of liveness and
this type of boundedness. Section 3.6 discusses related work. Section 3.7 summa-
rizes the conclusions of the chapter. This chapter is based on publication [28].

3.2 Boundedness Definitions

Different useful notions of boundedness can be defined for SDFGs. To enable
identifying these forms, we first define boundedness for a given execution.

Definition 3.1. (Bounded Channel and Bounded Execution) Let γ0, γ1, . . .
represent the sequence of channel states of an execution σ of a (timed) SDFG.
We call a channel ch bounded under σ iff there exists some B ∈ IN such that
γi(ch) ≤ B for all i ≥ 0. If all channels of the SDFG are bounded under σ then
σ is bounded.

Now, we give a definition for the boundedness of an SDFG which intuitively
means that it can be implemented using a finite amount of memory.

Definition 3.2. (Bounded SDFG) A (timed) SDFG is called bounded iff there
exists a bounded maximal execution. It is unbounded otherwise.

A stronger form of boundedness is strict boundedness.

Definition 3.3. (Strictly Bounded Channel, Strictly Bounded SDFG)
A channel of a (timed) SDFG G is strictly bounded iff it is bounded under all
executions of G. A (timed) SDFG is called strictly bounded iff all of its channels
are strictly bounded.

Note that this definition allows that each execution can have a different bound.

Figure 3.1 shows a simple example of SDFG Gex which is consistent with
the repetition vector [3 3 2]T . We use Gex as the running example throughout
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Figure 3.2: Self-timed execution of Gex .

this chapter. Gex is bounded but not strictly bounded because a can be fired
indefinitely without firing b and c.

Note that any strictly bounded SDFG is also bounded. We finally define
another form of boundedness, which only considers self-timed execution of timed
SDFGs.

Definition 3.4. (Self-timed Bounded SDFG) A timed SDFG is self-timed
bounded iff the self-timed execution is bounded. A channel in a timed SDFG is
self-timed bounded iff it is bounded under self-timed execution.

Figure 3.2 illustrates the self-timed execution of the example SDFG Gex of
Figure 3.1. The state contains a channel component with the distribution of
tokens over the channels a-a, a-b, b-c, c-b, respectively, and a time component as
described in Chapter 2.

Gex is self-timed bounded, as Figure 3.2 illustrates. Hence, it is also bounded.
In fact, self-timed bounded SDFGs are by definition bounded. They are not
necessarily strictly bounded. SDFG Gex is not strictly bounded, which follows
for example from the execution that fires actor a infinitely often. It is not difficult
to construct bounded SDFGs that are not self-timed bounded. If the execution
times of actors b and c in Gex are changed to 3, for example, then the SDFG
remains bounded but it is no longer self-timed bounded. This example graph and
its variant show that the notion of self-timed boundedness does not coincide with
other notions of boundedness. Given the importance of self-timed execution, it is
worth investigating this notion of boundedness in some detail.

Figure 3.3 shows the three-way relations between different notions of bound-
edness, liveness and deadlock-freeness together with consistency. In fact, only
SDFGs which can be categorized in the fraction in dark gray are of interest or
considered well-constructed SDFGs. The light gray fractions are empty; the white
fractions are not empty. The correctness of this diagram follows from the defini-
tions and examples given so far, as well as from results proven in the remainder
of this chapter.
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Figure 3.3: Liveness and boundedness diagram.

3.3 Boundedness

In this section, we study necessary and sufficient conditions under which an SDFG
is live and bounded.

Theorem 3.1. A live SDFG is bounded iff it is consistent.

Proof. Let G be a live SDFG. The sufficient (if) part: If the graph is consis-
tent, then there exists a non-trivial repetition vector q for G. So, starting from
the initial state s0, if every actor a ∈ A fires q(a) times, then according to the
definition of the repetition vector the channel state of G goes back to s0. Ac-
cording to [41], an SDFG is live (called deadlock free in [41]) iff it is possible to
execute every actor as many times as indicated by its repetition vector entry. As
the number of initial tokens, the number of firings and the rates are bounded,
therefore the number of produced tokens during such an iteration is limited. So,
we conclude that the required memory under these firings is bounded. Therefore,
the execution consisting of repeating the same actor firing pattern is bounded.
The necessary (only if) part: If G is live and bounded, then there exists an infinite
execution which is bounded. This implies that also an infinite and bounded
sequential execution σ exists in which no two actor firings are simultaneously
active. Execution σ visits some state in which no actors are firing and with
channel state γ repeatedly because the execution is infinite and a bounded SDFG
can only have a finite number of different token distributions. Let γ0, γ1, . . . be
the sequence of channel states resulting from σ. Let F#

a,k for some actor a denote
the number of (a, end) transitions that have occurred up-to and including channel

state γk; Note that by assumption F#
a,k equals the number of (a, start) transitions

that occurred up-to that point.
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Suppose γn = γn′ . We can calculate the number of tokens on every channel
ch from a to b with production and consumption rates of p and c respectively
in any state with channel state γn in which no actors are firing by the following
expression

γk(ch) = γ0(ch) + pF#
a,k − cF#

b,k.

Assume without loss of generality that n′ > n and that there is at least one actor
firing between them. Since G is connected, it is impossible to return to the same
state without having fired every actor at least once. Therefore, F#

a,n′ > F#
a,n and

F#
b,n′ > F#

b,n. Since we have γn = γn′ , it follows that

(F#
a,n′ − F#

a,n)p = (F#
b,n′ − F#

b,n)c.

Hence, if we take for all a ∈ A, q(a) = F#
a,n′ −F#

a,n then q is a non-trivial solution
for the balance equations, which means G is consistent.

Theorem 3.1 states the consistency of an SDFG as a necessary and sufficient
condition for boundedness of live SDFGs. If a subgraph of an SDFG deadlocks
(which means that the SDFG is not live) then the consistency of an SDFG is not
sufficient for boundedness. For example, consider Gex of Figure 3.1 without the
initial token in the c-b channel. Execution times may be ignored. The resulting
SDFG is consistent (consistency is independent of the number of tokens) but not
bounded, because the SCC of the graph that consists of actors b and c deadlocks
after the first firing of both actors. However, actor a can continue its firing,
and must do so in any maximal execution, which leads to an unbounded channel
between a and b.

According to Theorem 3.1 we cannot have neither consistent and live graphs
which are not bounded nor bounded and live graphs which are not consistent.
These two fractions are in fact empty and shown with the light gray inside the
live circle in Figure 3.3. Similarly, we cannot have consistent SDFGs which are
neither deadlock-free nor bounded.

Proposition 3.1. [68] A strongly connected SDFG is live iff it is deadlock-free.

The definition of liveness states that a live SDFG has an execution in which
all actors fire infinitely often. If a live SDFG is strongly connected, then all actors
fire infinitely often in all maximal executions.

Lemma 3.1. If one maximal SCC in an SDFG G deadlocks then either G dead-
locks or it is unbounded.

Proof. If G consists of only one maximal SCC then the lemma follows immedi-
ately. In case it consists of multiple SCCs, at least one deadlocked and at least
one deadlock-free, then there exists an SCC (possibly a single actor) which is
deadlock-free and connected to an actor in a deadlocked SCC (an SCC is said to
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be deadlocked when it deadlocks in isolation of the rest of the SDFG). This con-
necting channel must necessarily go from the deadlock-free SCC to the deadlocked
SCC. Since in a deadlock-free SCC all actors must necessarily fire infinitely often,
this channel must be unbounded. The case where the graph consists of multiple
SCCs and all of them deadlocking is trivial.

This lemma implies that in a deadlock-free and bounded SDFG no maximal
SCCs deadlock and so the SDFG is live.

Corollary 3.1. An SDFG is live and bounded iff it is deadlock-free and bounded.

As a consequence, we cannot have SDFGs which are deadlock-free and bounded
but not live. Therefore, the light gray fraction in Figure 3.3 inside the deadlock-
free circle and outside the live circle denotes the lack of existence of these types
of SDFGs.

The following theorem follows from Theorem 3.1, Proposition 3.1, Lemma 3.1,
and Corollary 3.1.

Theorem 3.2. An SDFG is live and bounded iff it is consistent and all its max-
imal SCCs are deadlock-free.

Proof. For the necessary (only if) part, note that Theorem 3.1 states that an
SDFG which is live and bounded is also consistent. Liveness and boundedness
together with Lemma 3.1 show that all maximal SCCs must be deadlock-free. For
the sufficient (if) part, observe that the fact that all maximal SCCs are deadlock-
free implies liveness of the SDFG, because the maximal SCCs of the SDFG without
input channels from other maximal SCCs can, by Proposition 3.1, always continue
feeding tokens into the SDFG, which again by Proposition 3.1 implies all actors in
all maximal SCCs can fire infinitely often and hence the SDFG is live. Theorem
3.1 then implies that the SDFG is also bounded.

The example SDFG Gex is live and bounded because it is consistent and all
its maximal SCCs are deadlock-free. Next, we give an algorithm to check liveness
and boundedness of an SDFG.

Algorithm isLive&Bounded(G)
Input: A connected (timed) SDFG G
Output: “live and bounded” or “either deadlock or unbounded”
1. if G is inconsistent
2. then return “either deadlock or unbounded”
3. for each maximal SCC S in G
4. do if S deadlocks
5. then return “either deadlock or unbounded”
6. return “live and bounded”

Algorithm isLive&Bounded first checks the consistency of the graph and then
verifies the deadlock-freeness of all of its maximal SCCs in isolation. If the graph
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is consistent and all of its maximal SCCs are deadlock-free then the graph is
announced live and bounded. Consistency of SDFGs can be verified efficiently
as explained in [8]. Maximal SCCs of a graph can also be computed efficiently
[15]. Algorithms for detecting deadlock for consistent strongly connected SDFGs
that are efficient in practice are given in [29, 41]. The algorithm in [29] is the
throughput analysis algorithm discussed also in Chapter 4 of this thesis. An
SDFG can be checked for deadlock by a straightforward state-space exploration.
Note that it is in this way also straightforward to distinguish deadlock cases from
unbounded ones, but as they are both uninteresting, they are not identified in the
algorithm.

3.4 Strict Boundedness

This section identifies necessary and sufficient conditions for the liveness and strict
boundedness of an SDFG.

Theorem 3.3. [68, Theorem 4.11] A live SDFG is strictly bounded iff it is con-
sistent and strongly connected.

This theorem in combination with Proposition 3.1 implies the following theorem.

Theorem 3.4. An SDFG is live and strictly bounded iff it is deadlock-free, con-
sistent and strongly connected.

Proof. First we prove the sufficient (if) part. According to Proposition 3.1, a
deadlock-free strongly connected SDFG is live. Therefore, according to Theorem
3.3 a deadlock-free, consistent and strongly connected SDFG is live and strictly
bounded. The necessary (only if) part follows directly from Theorem 3.3.

Algorithm isLive&StrictBounded(G)
Input: A connected (timed) SDFG G
Output: “live and strictlyBounded” or “either not strictly bounded or deadlock”
1. if G is consistent & strongly connected & deadlock free
2. then return “live and strictly bounded”
3. else return “either not strictly bounded or deadlock”

So the algorithm for checking liveness and strict boundedness first checks
whether the SDFG is strongly connected and consistent, and then whether it
is deadlock-free using the algorithms from [8, 15, 29, 41]. The example of Figure
3.1 is not strictly bounded because it is not strongly connected. An execution
which only fires a forever fills up channel a-b.



26 3.5. SELF-TIMED BOUNDEDNESS

3.5 Self-timed Boundedness

In this section, we investigate the liveness and self-timed boundedness of timed
SDFGs. A self-timed execution of a live and self-timed bounded SDFG uses a
finite amount of memory and all actors fire infinitely often in such an execution.
Necessary and sufficient conditions are given, and an algorithm for checking these
conditions. As self-timed boundedness is directly related to the periodic behavior
of the self-timed execution, we only allow rational numbers for the execution
times of actors in this section. As already mentioned in Chapter 2, and shown
in Chapter 4, Proposition 4.1, self-timed execution of an SDFG with rational
execution times is periodic, as illustrated in for example Figures 2.1 and 3.1.
It is unknown whether an SDFG with real actor execution times exhibits the
same periodic behavior. The next subsection defines a concept on which self-
timed boundedness heavily depends, namely local throughput of an actor and
investigates some basic properties related to self-timed boundedness.

3.5.1 Local Throughput and Basic Self-timed Boundedness Properties

We define the local throughput of an actor as the throughput of an actor when it
does not need to wait for data from other actors; in other words, the throughput
of that actor in the self-timed execution where all non-self-loop input channels
are removed.

Definition 3.5. (Local Throughput) The local throughput LTh(a) of an
actor a for a self-timed execution with initial channel state γ0 of a timed SDFG
(A, C, E) is defined as

LTh(a) =



















0, if there is a ch = (p, q) in SLC (a)
such that Rate(p) < Rate(q) or γ0(ch) < Rate(q)

min
ch = (p, q) ∈ SLC (a)
withRate(p) = Rate(q)

⌊γ0(ch)/Rate(q)⌋/E(a), otherwise.

If an actor has a self-loop channel with a lower production rate than consump-
tion rate or insufficient tokens for an initial firing, it deadlocks at some point in
time, i.e., its local throughput is zero. Otherwise, the local throughput is deter-
mined by the self-loop channels with equal production and consumption rates.
If there are no such channels, i.e., there are no self-loop channels or all self-loop
channels have a higher production than consumption rate, local throughput is by
definition infinite (A min qualification over an empty domain results in ∞).

Consider again SDFG Gex of Figure 3.1. The local throughput of actor a is
1
2 , whereas it is ∞ for b and c. The regular throughput of the three actors, as
depicted in Definition 2.17 equals 3

6 = 1
2 , 3

6 = 1
2 , and 2

6 = 1
3 , respectively, as can

be seen from the self-timed execution in Figure 3.2.
In the following, some properties for the throughput as well as the relation

between boundedness and throughput of timed SDFGs are given which are used



3. LIVENESS AND BOUNDEDNESS 27

later for checking the self-timed boundedness of an SDFG. The following lemma
specifies that the throughput of an actor is determined by the throughput of its
predecessors and its local throughput.

Lemma 3.2. The throughput of an actor b ∈ A of a timed SDFG G = (A, C, E)
satisfies the equation

Th(b) = min{ min
(p,q)∈InC (b)\SLC (b)

Rate(p)

Rate(q)
Th(Act(p)),LTh(b).} (3.1)

Proof. It is not difficult to see that the local throughput of an actor is an upper
bound for its throughput. So, we prove the theorem for the case

min
(p,q)∈InC (b)\SLC (b)

(Rate(p)/Rate(q))Th(Act(p)) ≤ LTh(b).

Let channels chi = (pi, qi) be all input channels of b. Suppose am = Act(pm)
is a predecessor of actor b for which (Rate(pm)/Rate(qm))Th(am) is minimal.
First, consider the case that Rate(qm)Th(b) − Rate(pm)Th(am) = k > 0. By
substituting the definition of actor throughput we get

lim
t→∞

Rate(qm)Nb,t − Rate(pm)Nam,t

t
= k.

According to the definition of a limit, for any ǫ > 0, there exists a time T where
for all t > T , we have

|
Rate(qm)Nb,t − Rate(pm)Nam,t

t
− k| < ǫ.

If we set ǫ to k/2, we can conclude that for t > T ,

Rate(qm)Nb,t − Rate(pm)Nam,t >
k

2
t,

which means that regardless of the number of initial tokens on the channel, there
exists a T , such that for all t > T the number of produced tokens plus the
number of initial tokens is less than the consumed ones, which is impossible.
Hence, Rate(qm)Th(b)− Rate(pm)Th(am) ≤ 0.
Second, similarly, we can show that if Rate(qm)Th(b)−Rate(pm)Th(am) < 0, then
there exists a time T , where for times t > T , there were enough tokens on chm to
fire and due to the choice for am (minimality of (Rate(pm)/Rate(qm))Th(am)) on
all other input channels of b, while b did not start a new firing, which contradicts
the self-timed execution scheme.

Thus, Rate(qm)Th(b)−Rate(pm)Th(am) = 0, and Th(b) = Rate(pm)
Rate(qm)Th(am) =

min(p,q)∈InC (b)\SLC (b)(Rate(p)/Rate(q))Th(Act(p)) which completes the proof.

The throughput of actor b of Gex , for example, is 1
2 , because its predecessor a has

that throughput, the rates of channel a-b are 1 and its local throughput is ∞.
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Corollary 3.2. If actors a, b ∈ A of an SDFG G are connected by a channel
(p, q) then Th(b) ≤ (Rate(p)/Rate(q))Th(a).

After having illustrated the factors that are involved in calculating the through-
put of an actor, we now show that the only case that a channel is not self-timed
bounded, is when the production of tokens into one channel is larger than the
consumption of tokens out of that channel.

Lemma 3.3. SDFG (A, C, E) is self-timed bounded iff Th(b) ≥ (Rate(p)/Rate(q))
Th(a) for every channel (p, q) ∈ C connecting a to b.

Proof. We know that there is a time tp such that for all t ≥ tp, the execution
of G is in the periodic phase. Let d be the amount of time that one period of a
self-timed execution σ of G takes. Then for any actor a ∈ A and time t ≥ tp we
have

Na,t+d −Na,t = dTh(a).

Although the number of firings of one actor in one period is always fixed, the
firings of a in one period can be spread over the period. Therefore, we have the
following inequality, where k = ⌊(t− tp)/d⌋,

kdTh(a) ≤ Na,t −Na,tp
≤ (k + 1)dTh(a). (3.2)

Let γt(ch) be the number of tokens on channel ch = (p, q) ∈ C from a to b at
time t; then γt(ch) can be bounded as follows

γt(ch) ≤ γ0(ch) + Rate(p)Na,t − Rate(q)Nb,t. (3.3)

Note that γt(ch) is strictly less than the right-hand side if at time t actor b has
active firings. For t > tp, by using Equation (3.2), we have

γt(ch) ≤ γ0(ch)+Rate(p)(Na,tp
+(k+1)dTh(a))−Rate(q)(Nb,tp

+kdTh(b)).

Since the only part of the above inequality that depends on k is kd(Rate(p)Th(a)
−Rate(q)Th(b)), γt(ch) is bounded if Rate(p)Th(a) ≤ Rate(q)Th(b).

Using a similar argument, looking at the number of firing starts of actors a
and b instead of ends, we can conclude that ch is not bounded if Rate(p)Th(a) >
Rate(q)Th(b).

The next proposition gives necessary and sufficient conditions for self-timed
boundedness of a live strongly connected SDFG.

Proposition 3.2. A live and strongly connected SDFG G is self-timed bounded
iff it is consistent.
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Proof. The sufficient (if) part can be deduced directly from Theorem 3.3 as
strict boundedness ensures self-timed boundedness. For the necessary (only if)
part, the same argument as used in the proof of Theorem 3.1 is valid.

Lemmas 3.4 and 3.5 and Proposition 3.3 prove some useful properties about the
relation between the throughput of different actors of the same graph. Lemma
3.4, which follows immediately from Corollary 3.2 and Lemma 3.3, shows the
relation between producer and consumer actors of an arbitrary self-timed bounded
channel. Lemma 3.5 shows the relation between the actor throughputs for any
two actors in an SCC of an SDFG. Proposition 3.3 gives the relation between the
throughput of two arbitrary actors in consistent self-timed bounded SDFGs.

Lemma 3.4. If a channel (p, q) connecting a to b is self-timed bounded then
Th(b) = (Rate(p)/Rate(q))Th(a).

Lemma 3.5. If a and b are two actors of an SCC of a consistent SDFG with
repetition vector q, then Th(a)/q(a) = Th(b)/q(b).

Proof. We know that actors a and b are on a cycle. Let a = i1, i2, . . . , ik =
b, . . . , il = a denote this cycle. If actors i1 and i2 are connected by channel
(p1, q1), and i2 and i3 by (p2, q2) and so forth, then, by Corollary 3.2, we know
that

Th(a) ≤
Rate(pl−1)

Rate(ql−1)
Th(il−1),

Th(il−1) ≤
Rate(pl−2)

Rate(ql−2)
Th(il−2),

. . . ≤ . . . ,

Th(ik+1) ≤
Rate(pk)

Rate(qk)
Th(b),

Th(b) ≤
Rate(pk−1)

Rate(qk−1)
Th(ik−1),

. . . ≤ . . . ,

Th(i2) ≤
Rate(p1)

Rate(q1)
Th(a).

By combining the above equations, we obtain

Th(a) ≤
Rate(pl−1)Rate(pl−2) . . .Rate(pk)

Rate(ql−1)Rate(ql−2) . . .Rate(qk)
Th(b), (3.4)

and

Th(b) ≤
Rate(pk−1)Rate(pk−2) . . .Rate(p1)

Rate(qk−1)Rate(qk−2) . . .Rate(q1)
Th(a). (3.5)
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Because q satisfies the balance equations, we can also write

Rate(ql−1)q(a) = Rate(pl−1)q(il−1)⇒
Rate(pl−1)

Rate(ql−1)
=

q(a)

q(il−1)
,

Rate(ql−2)q(il−1) = Rate(pl−2)q(il−2)⇒
Rate(pl−2)

Rate(ql−2)
=

q(il−1)

q(il−2)
,

. . . = . . . ,

Rate(qk)q(ik+1) = Rate(pk)q(b)⇒
Rate(pk)

Rate(qk)
=

q(ik+1)

q(b)
,

Rate(qk−1)q(b) = Rate(pk−1)q(ik−1)⇒
Rate(pk−1)

Rate(qk−1)
=

q(b)

q(ik−1)
,

. . . = . . . ,

Rate(q1)q(i2) = Rate(p1)q(a)⇒
Rate(p1)

Rate(q1)
=

q(i2)

q(a)
.

By substitution into Inequalities (3.4) and (3.5) we have Th(a) ≤ (q(a)/q(b))Th(b)
and Th(b) ≤ (q(b)/q(a))Th(a). Rewriting this result yields Th(a)/q(a) ≤ Th(b)/q(b)
and Th(b)/q(b) ≤ Th(a)/q(a), which means that Th(a)/q(a) = Th(b)/q(b), com-
pleting the proof.

Proposition 3.3. If a and b are two actors of a consistent self-timed bounded
SDFG G with repetition vector q then Th(a)/q(a) = Th(b)/q(b).

Proof. Assume that a and b are actors of a consistent self-timed bounded SDFG.
Suppose path a = i1, i2, . . . , ik = b is an undirected path connecting a to b. If
actors i1 and i2 are connected by (p1, q1) and i2, i3 are connected by (p2, q2) and
so on, then according to Lemma 3.4 we have

Th(b) =
Rate(pk−1)

Rate(qk−1)
Th(ik−1),

Th(ik−1) =
Rate(pk−2)

Rate(qk−2)
Th(ik−2),

. . . = . . .

Th(i2) =
Rate(p1)

Rate(q1)
Th(a).

The proof can now be completed along the lines of the proof of Lemma 3.5.

3.5.2 Reduction to an HSDFG

In this section, we propose a method for reducing a consistent SDFG G to an
HSDFG GH which preserves (non-)liveness and self-timed (un)boundedness of
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G. In GH , every actor has a self-loop channel with one initial token, rates of
all channels are one (i.e., it is an HSDFG), and, ignoring self-loops, it is acyclic.
Because of these simple properties, we use the reduced graph for verifying the
liveness and self-timed boundedness of the original SDFG.

The reduction requires the notion of local throughput of an SCC of an SDFG,
and it is illustrated in Figure 3.4 which provides the reduced graph for the running
example.

Definition 3.6. (Local Throughput of an SCC) The local throughput
LTh(κ) of an SCC κ = (Aκ, Cκ, Eκ) in a consistent SDFG G = (A, C, E) with
repetition vector q is defined as the actor throughput of an arbitrary actor a ∈ Aκ

when all input channels from A\Aκ to Aκ are removed, divided by q(a).

Lemma 3.5 implies that this definition is sound.� � � �� � � �� �� � � �
Figure 3.4: The reduced HSDFG for Gex .

Definition 3.7. (Reduced Graph) Let a consistent SDFG G = (A, C, E) con-
tain n maximal SCCs κ1 = (Aκ1

, Cκ1
, Eκ1

), . . . , κn = (Aκn
, Cκn

, Eκn
). Suppose q

is the repetition vector of G. We define the reduced SDFG GH = (AH , CH , EH)
as follows: AH = {xi|1 ≤ i ≤ n} (which means one actor for each maximal SCC
in G); CH contains a channel ch connecting actor xi to actor xj with production
and consumption rates of one for every channel ch′ ∈ C connecting actor a to
b where a ∈ Aκi

, b ∈ Aκj
, i 6= j; CH also contains self-loop channels for every

actor xi with production and consumption rates of one; the execution time EH(xi)
equals 1/LTh(κi) if κi does not deadlock and ∞ if it does. Note that we obtain an
HSDFG as the result. Finally, every self-loop channel in GH contains one initial
token, and all the other channels are empty.

Since the HSDFG resulting from the reduction is acyclic when ignoring self-
loops, the preservation of (non-)liveness and self-timed (un-)boundedness that we
are aiming at, is independent of the number of initial tokens on the non-self-loop
channels. Hence, we choose to leave those channels empty.

Consider the reduced graph shown in Figure 3.4. The original graph Gex

has two maximal SCCs, containing actor a, and actors b and c, respectively.
These SCCs are reduced to actors x1 and x2. Since actor a has throughput 1

2
and repetition-vector entry 3, the local throughput is (1/2)/3 = 1/6 and the
execution time of x1 is set to 6, illustrating that 3 firings of a take 6 time units.
Considering the other SCC in isolation, it can be verified that one period of this
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SCC containing 3 firings of b and 2 of c consists of 4 time units. Given the
repetition vector of Gex and Definition 3.6, this gives a local throughput of 1

4 and
an execution time of 4 for x2.

The following proposition shows the relation between the throughput of actors
in a maximal SCC of an SDFG and the throughput of the actor corresponding to
that SCC in the reduced SDFG.

Proposition 3.4. Let GH be the reduced SDFG of a consistent timed SDFG G
with repetition vector q. If a maximal SCC κ = (Aκ, Cκ, Eκ) in G is replaced by
actor x in GH , then for any a ∈ Aκ, Th(a) = q(a)Th(x).

Proof. For proving this proposition, first we define an intermediate reduced
graph in which only one of the SCCs is reduced. Then, we prove the proposition
for this intermediate SDFG; Finally, the result is proven for the entire reduction.
Let κ = (Aκ, Cκ, Eκ) be a maximal SCC in G, q be the repetition vector of G
and LTh(κ) be the local throughput of κ. For any fresh actor name x 6∈ A, we
define the κ-reduced SDFG Gκ→x = (Ax, Cx, Ex) as follows: Ax = (A\Aκ)∪{x};
Cx equals C\Cκ with every input channel connecting a to k with production and
consumption rates of p and c where a ∈ A\Aκ and k ∈ Aκ is replaced by a channel
connecting a to x with production rate p and consumption rate cq(k). Similarly,
every output channel connecting k to a with production and consumption rates of
p and c where a ∈ A\Aκ and k ∈ Aκ replaced by a channel connecting x to a with
production rate pq(k) and consumption rate c. An extra self-loop channel for x
with production and consumption rates of one and one initial token is added to
Cx. The execution time Ex(a) equals E(a) for all actors a ∈ A\Aκ, and for actor
x it is set to 1/LTh(κ) if κ does not deadlock and ∞ if it does. The channels of
Gκ→x contain the same number of initial tokens as the corresponding channels in
G.
Next, for Gκ→x, we prove the following equation, for every a ∈ Aκ.

Th(a) = q(a)Th(x). (3.6)

First, assume κ has only self-timed unbounded input channels, if it has any input
channels at all. Since κ is a maximal SCC, the actor firings in κ do not have impact
on the production of any tokens in the input channels of κ. By the construction
of Gκ→x, any part of the graph producing tokens into input channels of κ remains
unchanged in Gκ→x. Furthermore, because all input channels of κ are self-timed
unbounded, κ is not constrained by its input channels realizing a throughput
equal to LTh(κ), and because Th(x) ≤ LTh(x) = LTh(κ), x consumes tokens in
a self-timed execution at most as fast as κ consumes the corresponding tokens.
Therefore, also all input channels of x in Gκ→x are self-timed unbounded. This
means that at some point in time x never has to wait for input tokens, which
implies that Th(x) = LTh(x). By the definition of the local throughput of an
SCC, LTh(x) = LTh(κ) = Th(a)/q(a), for some arbitrary a in Aκ, which proves
Equation (3.6).
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Second, we may assume that not all input channels of κ are unbounded. By
Lemma 3.5, it suffices to prove Equation (3.6) for an arbitrary actor of κ.
Let channels chi be all channels connecting some actor bi in A \ Aκ to an actor
ai in Aκ with production and consumption rates of pi and ci. Denote this set as
InC (κ). Based on Corollary 3.2, Th(ai) ≤ (pi/ci)Th(bi) for all i. The definition
of Cx in Gκ→x implies that for all i,

Th(x) ≤
pi

ciq(ai)
Th(bi).

Let chm be a channel from actor bm ∈ A\Aκ to actor am ∈ Aκ with production
and consumption rates of pm and cm, such that, for all i,

pm

cmq(am)
Th(bm) ≤

pi

ciq(ai)
Th(bi),

i.e., chm is a channel which constrains the throughput of x the most. We continue
to prove Equation (3.6) for actor am, i.e., we prove that Th(am) = q(am)Th(x).
We show that chm is bounded. To show this by contradiction we assume that
chm is unbounded. According to Lemma 3.3 we have

pmTh(bm) > cmTh(am)⇒
pm

cmq(am)
Th(bm) >

Th(am)

q(am)
.

Since we assumed that not all chi are unbounded, there exists a bounded channel
chk ∈ InC (κ). Therefore using first Lemma 3.5 and then Lemma 3.4 we can
conclude that

pm

cmq(am)
Th(bm) >

Th(am)

q(am)
=

Th(ak)

q(ak)
=

pk

ckq(ak)
Th(bk),

which means that
pm

cmq(am)
Th(bm) >

pk

ckq(ak)
Th(bk), (3.7)

which contradicts the choice of chm. Hence, channel chm must be bounded.
According to Lemma 3.2, the throughput of x can be calculated as follows:

Th(x) = min{ min
chi∈InC (κ)

pi

ciq(ai)
Th(bi),LTh(κ)}.

The choice for chm implies that we can calculate the throughput of x as

Th(x) = min{
pm

cmq(am)
Th(bm),LTh(κ)}.

If the result of this minimum is LTh(κ) then from the definition of the local
throughput of an SCC and the definition of the execution time of x, Equation
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(3.6) follows for am. In the other case, as chm is bounded, using Lemma 3.4, we
have

Th(x) =
pm

cmq(am)
Th(bm) =

Th(am)

q(am)
,

which completes the proof for actor am, and hence for all actors in Aκ.
Finally, it is not difficult to see that by replacing all SCCs of SDFG G via the above
intermediate reduction results in the reduced SDFG as defined in Definition 3.7
but with rates pq(a) and cq(a) for every channel resulting from a channel between
actors a and b in G with rates p and c. Therefore, we can extend Equation (3.6) to
all SCCs of G. According to the balance equations we know that for each channel
in the original graph connecting actor a to b with production and consumption
rates of p and c, pq(a) = cq(b). Thus, the production and consumption rates for
every channel obtained via the reductions so far are equal. Therefore, we can
simplify the graph obtained so far to the reduced graph as defined in Definition
3.7. Since the simplification of the rates does not change the throughput of actors,
the desired result follows.

Consider for instance actor x2 of the reduced graph of the running example. Its
throughput in the reduced graph is fully determined by the throughput of x1

and becomes therefore 1
6 . Proposition 3.4 states that Th(b) = 3(1

6 ) = 1
2 and

Th(c) = 2(1
6 ) = 1

3 , which agrees with the throughput values for b and c computed
in Section 3.5.1.

Proposition 3.4 also implies that non-zero throughput (i.e., (non-)liveness) is
preserved.

Corollary 3.3. A consistent timed SDFG is live iff its reduced graph is live.

The reduction also preserves self-timed (un-)boundedness.

Theorem 3.5. A consistent timed SDFG is self-timed bounded iff its reduced
graph is self-timed bounded.

Proof. In this proof, we also use the intermediate reduced graph as explained in
the proof of Proposition 3.4, in which only one of the SCCs is replaced by an actor
in the intermediate reduced SDFG. Let an SCC κ = (Aκ, Cκ, Eκ) of G be replaced
by an actor x in Gκ→x. According to Theorem 3.3, channels in a live and strongly
connected SDFG are strictly bounded, which implies the self-timed boundedness
of channels in Cκ. We want to prove that the input and output channels of actor
x in the reduced graph are self-timed bounded iff the corresponding channels
to/from κ are self-timed bounded.
First, we prove the sufficient (if) part. If an input channel connecting actor
b ∈ A\Aκ to a ∈ Aκ with production and consumption rates p and c in G is
self-timed bounded, by Lemma 3.3 and Proposition 3.4 we have

pTh(b) ≤ cTh(a) = cq(a)Th(x).
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Thus, by Lemma 3.3 the channel from b to x with production and consumption
rates p and cq(a) is also self-timed bounded.
Now, we prove the sufficient part for output channels from κ in the same way.
Suppose the channel from actor a ∈ Aκ to actor b ∈ A\Aκ with production and
consumption rates p and c is self-timed bounded. We prove that the channel
connecting x to b with production and consumption rates pq(a) and c is also
self-timed bounded. Again using Lemma 3.3 and Proposition 3.4 we have

pTh(a) ≤ cTh(b)⇒ pq(a)Th(x) ≤ cTh(b),

which by Lemma 3.3 proves self-timed boundedness of the channel connecting x
to b.
Next, we prove the necessary (only if) part of the proof, namely, if the channel
connecting an actor b ∈ A\Aκ to actor a inside Aκ with production and con-
sumption rates p and c is not self-timed bounded, then the channel connecting
b to x with production and consumption rates p and cq(a) is also not self-timed
bounded.
Again in a similar way by replacing Th(a) with q(a)Th(x) in the following in-
equality we can prove this part of theorem.

pTh(b) > cTh(a) = cq(a)Th(x).

Also for the case of an output channel which connects a to b with production and
consumption rates p and c.

pTh(a) > cTh(b)⇒ pq(a)Th(x) > cTh(b).

Thus, we may conclude that the reduction of one SCC to a single actor preserves
self-timed (un-)boundedness.
Applying the intermediate reduction on G can be done iteratively in different and
independent steps. Therefore, applying the intermediate reduction for each max-
imal SCC of G results in the reduced HSDFG as defined by Definition 3.7 when
after all the intermediate reductions all rates are changed to one. As proven in
this theorem, each intermediate reduction preserves self-timed (un)boundedness.
Using similar arguments as those at the end of Proposition 3.4, it follows that the
rate changes do not affect self-timed boundedness. Consequently, we can conclude
that the reduced SDFG preserves self-timed (un)boundedness.

3.5.3 Verifying Self-timed Boundedness

This section introduces an algorithm that determines whether an SDFG is live
and self-timed bounded.

Algorithm isLive&SelftimedBounded(G=(A, C, E))
Input: A connected timed SDFG G
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Output: “yes” if self-timed bounded and live, “no” otherwise
1. if not isLive&Bounded(G)
2. then return “no”
3. GH = (AH , CH , EH) ←reduce(G)
4. AL[1..|AH |] ←topologicalSort(GH)
5. if |AH | = 1
6. then return “yes”
7. for i ←1 to |AH |
8. do AL[i].Th ← 1

EH(AL[i])

9. if Pred(AL[i]) = {AL[i]} and AL[i].Th =∞
10. then return “no”
11. maxPTh ← 0
12. for each j ∈ Pred(AL[i])\{AL[i]}
13. do AL[i].Th ←min(AL[i].Th,AL[j].Th)
14. maxPTh ←max(maxPTh ,AL[j].Th)
15. if maxPTh > AL[i].Th
16. then return “no”
17. return “yes”

The algorithm works in two steps. The first step (lines 1 and 2) checks the liveness
and boundedness (as defined by Definition 3.2) of the graph by calling algorithm
isLive&Bounded. If the graph is not live and bounded, it cannot be live and self-
timed bounded and “no” is returned. The second step (lines 3 to 17) concerns
determining whether the reduced HSDFG is self-timed bounded.

If isLive&Bounded returns “yes”, we know that the SDFG is consistent (Theo-
rem 3.1). Then, line 3 of the algorithm reduces the SDFG according to Definition
3.7 and stores the result in GH . Note that the reduction requires throughput cal-
culations for all SCCs. For efficiency reasons, these throughput calculations can
be delayed till the algorithm really needs this information. Calculations may then
be avoided if the algorithm returns “no” early. We have not made this explicit
in the algorithm. How throughput calculations are performed is the subject of
Chapter 4. Since G is at this point known to be live and consistent, by Corollary
3.3, also GH is live. It remains to determine self-timed (un-)boundedness.

Ignoring self-loops, GH is acyclic. Line 4 topologically sorts the actors of GH ,
and stores them in array AL, so that the predecessors of an actor AL[i] are only
among the AL[j] for j ≤ i. If GH contains only one actor, then G is strongly
connected, and hence, by Proposition 3.2, self-timed bounded, and the algorithm
terminates.

Each iteration i, with 1 ≤ i ≤ |AH |, of the loop of lines 7 to 16 starts by
calculating the local throughput of the corresponding actor AL[i], storing the
result in AL[i].Th. If a source actor is detected (an actor without any input
channel except its self-loop channel) with an infinite throughput, the algorithm
returns “no”, because this implies that its output channels are unbounded. The
loop continues by setting maxPTh to zero. This variable is a temporary variable
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for storing the maximum throughput of the predecessors of actor AL[i]. In the
loop of lines 12 to 14, the minimum between the local throughput of actor AL[i]
and the minimum throughput of its predecessors is assigned to AL[i].Th. This
value, according to Lemma 3.2, is the throughput of the actor AL[i]. Note that
since the actors are topologically sorted in AL, the throughputs of all predecessors
have already been calculated. The maximum throughput of the predecessors of
actor AL[i] is assigned to maxPTh.

The test of line 15 checks whether the maximum throughput of predecessors
of actor AL[i] (excluding AL[i]) is greater than the throughput of actor AL[i]
itself. In case it is, according to Lemma 3.3, at least one channel connecting a
predecessor of actor AL[i] to AL[i] is unbounded.

If the algorithm reaches line 17, then no unbounded channel has been detected,
and the graph is live and self-timed bounded. The following theorem follows.

Theorem 3.6. A timed SDFG G is live and self-timed bounded iff isLive&Selftimed
Bounded(G) returns “yes”.

3.6 Related Work

Both liveness and boundedness are standard properties studied for all subclasses
of Petri nets [48]. Recall that SDFGs are a subclass of Petri nets. Thus, it makes
sense to compare the results obtained in this chapter with the corresponding
results in the literature concerning Petri nets. We studied liveness in combination
with three different definitions of boundedness (Definitions 3.2, 3.3 and 3.4) for
(timed) SDFGs.

We do not know of any related results for boundedness as defined by Definition
3.2. The only reference we know to this type of boundedness is in [50] which only
introduces it without providing necessary and sufficient conditions, as we do.

For strict boundedness in the sense of Definition 3.3, the problem has been
studied from different viewpoints in the Petri-net literature (see for an overview
[20, 48]). In particular, [68] gives necessary and sufficient conditions for strict
boundedness of live weighted Marked Graphs (our Theorem 3.3). Strict bound-
edness is also the only kind of boundedness which has been investigated formally
in the literature on SDFGs themselves; Karp and Miller in their seminal paper
[38] introduced computation graphs, which are slightly more general than SDFGs.
They proved necessary and sufficient conditions for liveness and strict bounded-
ness in their model. Their results as well as those in [68] are the same as those
presented in this chapter.

Our third definition of boundedness, self-timed boundedness (see Definition
3.4) is defined only on timed SDFGs. Therefore, we need to compare it with
time-enabled Petri nets. Petri nets have been extended with quantitative time in
different ways, by adding timing information to places, transitions and/or tokens
(see [10] for a survey). The timed Petri net model that comes closest to timed
SDFGs is the “time Petri net” model originally defined by [45]. This extension
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of Petri nets associates a duration (delay) and a deadline to transitions. We are
not aware of any study of the self-timed boundedness problem for the subclass
of time Marked Graphs. In [55], the liveness and strict boundedness problem for
time Petri nets is studied but only some sufficient conditions are given. These
conditions guarantee that once a time Petri nets satisfies certain syntactic con-
straints, it is live and strictly bounded if the underlying untimed Petri net is
live and strictly bounded. Unfortunately, the results of [55] cannot be applied in
our setting since the syntactic constraints require the absence of either duration
or deadline both of which are necessary for translation of timed SDFGs to time
Petri nets. [36] proves a general undecidability result for strict boundedness of
time Petri net of [45]. However, in [6], two sufficient conditions are given for strict
boundedness of time Petri nets. We are not aware of any result about self-timed
boundedness as defined in Definition 3.4. To the best of our knowledge, both the
concept and the derived results are novel.

3.7 Summary

We have studied the liveness and boundedness of Synchronous Data Flow Graphs.
Liveness and boundedness are prerequisites of any meaningful SDFG model of a
streaming multi-media application. Two known notions of boundedness, namely
boundedness and strict boundedness, have been studied rigorously, and in partic-
ular necessary and sufficient conditions for liveness in combination with these two
types of boundedness have been given. For strict boundedness, these conditions
are known from the Petri-net literature. Furthermore, a new notion, self-timed
boundedness, is introduced. Self-timed boundedness checks whether self-timed
execution of an SDFG is bounded. A self-timed execution yields the maximum
throughput attainable by an SDFG. Necessary and sufficient conditions for self-
timed boundedness and liveness are given and proven for SDFGs with fractional
actor execution times. An algorithm for checking these conditions is presented.
The results depend on the periodicity of self-timed execution, which is proven
in Proposition 4.1 in Chapter 4. It is an open problem whether this periodicity
result can be generalized to SDFGs with arbitrary real execution times.



Chapter 4

Throughput

4.1 Overview

The main aim of modeling applications using Synchronous Data Flow Graphs is
to provide performance metrics to be used in predictable designs. Among different
performance indicators, throughput is the most prominent one.

Throughput analysis of dataflow graphs has been extensively studied in the
literature ([16, 17, 37, 56, 73]). All existing throughput analysis approaches for
SDFGs suggest algorithms which are based on an analysis of the structure of the
graphs. The drawback of these approaches is that they are not directly applicable
to SDFGs, but can only be applied to homogeneous SDFGs (HSDFGs). Therefore,
these methods require a conversion from an SDFG to an equivalent HSDFG, which
is always possible in theory as explained in Section 2.6, but frequently leads to a
prohibitively large increase in the size of the graph, causing algorithms to fail to
produce a result within reasonable time.

In this chapter, we propose a different method for computing the throughput
of SDFGs. This method, unlike existing methods, works directly on an SDFG,
avoiding the costly conversion to an HSDFG. The method generates and analyzes
the SDFG’s dynamic state space by executing the graph. Although the number of
states that may need to be generated can also be large in unfavorable situations,
experiments show that the method performs well in practice because the number
of states that actually needs to be stored is almost always very limited.

The rest of the chapter is organized as follows. Section 4.2 discusses through-
put of data flow graphs and our method for analyzing throughput, initially fo-
cussing on strongly connected graphs. Our approach for throughput calculation
has direct links with a method in the data flow literature called Max-Plus algebra.
To show these links, Section 4.3 places the method in the context of Max-Plus
algebra and shows that the results are equivalent to spectral analysis of the Max-
Plus equivalent of an SDFG. Section 4.4 explains our experimental method and

39
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presents the results of the experiments, comparing the performance of the pro-
posed method with state-of-the-art throughput analysis through minimum cycle
mean algorithms. Section 4.5 extends the results to arbitrarily connected graphs.
Section 4.6 discusses related work and finally Section 4.7 summarizes. This chap-
ter is based on publication [29].

4.2 Throughput Analysis of SDF Graphs

In this section, the maximum throughput of (executions of) SDFGs is studied.
First, some of the properties of SDFG state spaces are shown, then the definition
of throughput for SDFGs is given. Prevailing methods for throughput analysis of
SDFGs are explained and the new approach given in this thesis is also formulated
in this section. Initially, the throughput analysis of strongly connected SDFGs is
studied; later on in Section 4.5, this method is extended for arbitrary SDFGs. In
the remainder of this section, SDFGs are assumed to be strongly connected and
consistent. We also assume rational numbers for actor execution times.

4.2.1 The Self-timed Execution State-Space

The operational semantics of SDFGs with a self-timed execution policy leads to
a state-space of a particular shape, illustrated in Figures 2.2 and 3.2 for graphs
depicted in Figures 2.1 and 3.1, respectively. It consists of a finite sequence of
states and transitions (called the transient phase), followed by a sequence that is
periodically repeated ad infinitum (the periodic phase). The following proposition
shows that self-timed execution of SDFGs always constructs a similar shape as
the above mentioned examples.

Proposition 4.1. For every live, consistent and strongly connected SDFG, the
self-timed state-space consists of a transient phase, followed by a periodic phase.

Proof. Self-timed execution is deterministic if we consider the execution in macro
steps as explained in Section 2.5. Also, according to Proposition 3.2 in Sec-
tion 3.5.1, a live, consistent and strongly connected SDFG is self-timed bounded.
Therefore, the number of states of an SDFG in self-timed execution is finite. This
guarantees that the execution will eventually revisit some state that was visited
before, signifying the fact that (because of determinism) the execution is then in
the periodic regime.

If we have a closer look at the periodic behavior of the graph, we observe the
following.

Proposition 4.2. The periodic behavior of a live and strongly connected SDFG
consists of a whole number of iterations.
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Proof. A single execution of the periodic behavior has no net effect on the number
of tokens in the different channels, because it returns to the same state, which
includes the amounts of tokens in channels. From this, it follows immediately
that the number of actor firings (starts and ends) satisfies the SDFG’s balance
equations and thus must be a multiple of the repetition vector.

4.2.2 Throughput

The maximum throughput of a timed SDFG G = (A, C, E) is achieved with the
self-timed execution of G [33, 60], as no actor a ∈ A can start a firing without
having enough tokens in all of its input channels and any delay in the start of
firing of an actor is of no use in increasing the number of firings of a itself or any
other actor in the graph. Hereafter in this thesis, the focus is on the throughput
associated with the self-timed execution, unless mentioned otherwise.

Lemma 4.1. For every live, consistent and strongly connected timed SDFG G =
(A, C, E), the throughput of an actor a ∈ A is equal to the average number of
firings per time unit in the periodic part of the self-timed state space.

Proof. Considering the state space of the self-timed execution of G, there is
some K such that for all i > K, the i-th firing of a is in the periodic phase. Let
|p| and |p|a respectively, be the sum of the lengths of the clock transitions and

the number of
(a,start)
→ transitions in one period. The k-th firing of a, when in

the periodic phase, can be decomposed as follows: k = K + m|p|a + r for some
non-negative m and r where 1 ≤ r ≤ |p|a. The corresponding time of the start of
that firing Sa,k = T + m|p| + Tr, where T is the start time of the k-th firing of
a and Tr the time of the r-th firing of a in the period, relative to T . Then using
Proposition 4.2,

Th(a) = lim
k→∞

k

Sa,k

= lim
m→∞

K + m|p|a + r

T + m|p|+ Tr

=
|p|a
|p|

.

Lemma 3.5, proven in Section 3.5.1, can also be immediately concluded from
Lemma 4.1 and Proposition 4.2 and the observation that it is trivial for non-live
strongly connected components. This lemma implies the following proposition.

Proposition 4.3. For a consistent and strongly connected timed SDFG (A, C, E)
with repetition vector q and actors a, b ∈ A, Th(a)/q(a) = Th(b)/q(b).

This proposition means that we can define a normalized notion of (maximal)
throughput, independent of any specific actor, that applies to the self-timed ex-
ecution. Intuitively, it expresses the number of iterations of the graph executed
per time unit.
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Definition 4.1. (SDFG throughput) The throughput of a consistent strongly

connected timed SDFG G = (A, C, E) is defined as Th(G) = Th(a)
q(a) , for an arbi-

trary a ∈ A.

Lemma 4.3 guarantees that the result is independent of the chosen actor a and
thus the definition is well-defined. From Lemma 4.1 we know that the throughput
of a strongly connected SDFG can be determined from the periodic part of the
state space.

Corollary 4.1. The throughput of a strongly connected SDFG is equal to the
number of actor firings per time unit during one period normalized by the repe-
tition vector. This in turn is equal to the number of iterations executed in one
period divided by the duration (the sum of the lengths of clock transitions) of one
period.

Continuing the example of Figure 2.2 of Section 2.5, it can be seen that the
periodic phase takes 12 time units and includes one iteration of the graph. Actor d
executes 3 times during this period. Hence, the throughput of d equals 3/12 = 1/4.
The normalized throughput of the SDFG itself is 1/12, corresponding to the
execution of one graph iteration per 12 time units.

We are now also able to express the relation between throughput of an SDFG
and its equivalent HSDFG.

Theorem 4.1. Let G be an SDFG and H the corresponding HSDFG obtained
from the conversion algorithm of [60] (see Section 2.6), then Th(G) = Th(H).

Proof. Trivial in case of deadlock. Otherwise, let a be an actor of G and q the
repetition vector of G. For any k, we have i ≥ 0 and 0 ≤ r < q(a) such that
k = i · q(a) + r and

Th(G) =
1

q(a)
lim

i→∞

i · q(a) + r

Sa,i·q(a)+r

.

From the correspondence between the SDFG and HSDFG discussed in Section
2.6, we have that Sa,i·q(a)+r = Sar ,i. Thus,

Th(G) =
1

q(a)
lim

i→∞

i · q(a) + r

Sar ,i

= lim
i→∞

i + r/q(a)

Sar,i

= lim
i→∞

i

Sar,i

= Th(H).

The throughput of the SDFG can be determined from the state space. Often,
it is also interesting to determine the critical components, i.e., the actors and
channels that are constraining the throughput. These are candidates to improve
(speed of an actor or capacity of a channel) if we need to increase throughput.
This type of information can also be extracted from the state space, see [64] for
an example.
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Traditionally (see e.g., [60]), throughput of an SDFG is defined as 1 over the
Maximum Cycle Mean (MCM) of the corresponding HSDFG. The cycle mean
of some cycle of an HSDFG or weighted directed graph in general is defined as
the total execution time or total weight of the cycle divided by the number of
tokens or the number of arcs in that cycle for the HSDFG and weighted directed
graph respectively. The maximum cycle mean over all cycles in the HSDFG or
weighted directed graph is called the MCM of the graph. The MCM can be shown
([56],[60, Lemma 7.3]) to be equal to the average time between two firings of any
of the HSDFG actors. Given Theorem 4.1, and the observation that all repetition
vector entries of an HSDFG are 1, it is easy to see that Definition 4.1 of SDFG
throughput is the same as the traditional definition of throughput.

Corollary 4.2. Let G be an SDFG and H the HSDFG obtained from the con-
version of [60], then Th(G) is equal to 1/λ∗ if λ∗ is the MCM of H.

The suggested method (see, e.g., [60]) for computing the throughput of an
SDFG is as follows. First, convert the SDFG to an equivalent HSDFG and then
compute the throughput on this graph. The throughput of the HSDFG can be
computed through an MCM algorithm ([17, 37]). In Sections 2.5.3 and 2.5.4
of [3] an approach is described to convert an HSDFG to a weighted directed
graph in which each channel contains one token and is annotated with a cost
(execution time). The MCM of this graph then equals one over the throughput
of the HSDFG. An alternative method to compute the throughput is the use of a
Maximum Cycle Ratio (MCR) algorithm [17]. Each edge in the weighted directed
graph for the MCR algorithm has a cost (execution time of the producing actor in
the HSDFG) and a transit time (number of tokens on the channel in the HSDFG).
Efficient algorithms for calculating MCMs/MCRs exist, which are compared in
[16]. However, MCM/MCR analysis can only be applied to an HSDFG which
is often exponentially larger in size than the original SDFG. This makes the
approach as a whole not particularly efficient for SDFG throughput analysis, as
the experiments below confirm.

4.2.3 The State-Space Exploration Method

We propose a method that calculates the throughput of an SDFG by directly
executing its self-timed behavior. For our method, we enforce a deterministic
order of the interleaving of concurrent transitions corresponding to simultaneous
start and end transitions in between clock transitions (see Section 2.5). This
has no effect on the throughput, but in this way, the entire state space becomes
deterministic.

In principle, we can execute the SDFG while remembering all states we visit
until we detect that we are in the periodic phase when we encounter a state that
we have visited before. At that point, by Corollary 4.1, we can calculate the
throughput of the graph by counting, for one period, the number of iterations
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that were executed and the total lengths of clock transitions. Their quotient is
the throughput.

We have to store states to detect the periodic phase, but the lengths of the
transient and periodic phases can be fairly long and we may need to store a
large number of states. The determinism in the state space however, allows us to
store only selected states. Suppose we pass a state that was visited before, but
not stored. We then continue the execution in the same way as the first time,
revisiting the same states. We only need to be sure that at least one of the states
in the periodic part is actually stored and when we revisit it, we encountered
the cycle. Knowing from Proposition 4.2 that the periodic behavior consists of a
whole number of iterations, we choose to only store one state for every iteration.
In this way, the periodic behavior always includes at least one state that is stored.
It further allows us to know without extra cost how many iterations occurred in
the period.

We can do this as follows. We pick an arbitrary actor a. Then every iteration
includes q(a) start (and end) transitions of a. We choose to store all the states
reached immediately after every q(a)-th execution of a start transition of a.

Using this method, one can detect the period and also the number of iterations
of the period and the length in clock transitions can be easily calculated if we
additionally store the sum of clock-transition lengths between each two stored
states. With this information, we can calculate the throughput of an SDFG. In
this manner we can significantly decrease the number of states that need to be
stored and compared in comparison to the naive approach that stores all states,
and consequently we can reduce the memory and time needed for the algorithm.

Since the method is obtained by some additions (storing and comparing states)
to the execution of the behavior of the SDFG, it is relatively simple to integrate
the analysis method into existing simulation tools for SDFGs.

4.3 Max-Plus Algebraic Characterization

A very elegant model to reason about (H)SDFGs is the Max-Plus algebra [3, 13].
Execution of a data flow graph is captured as a linear transformation in a special
algebra and linear algebra theory is used to analyze such systems. In particu-
lar, spectral analysis is directly related to the throughput analysis problem. In
Section 4.2, the relation between throughput of an SDFG and the MCM of the
equivalent HSDFG was shown. The relation between the MCM and Max-Plus
algebra is discussed in [3]. In this section, we study directly the relation between
throughput of SDFGs, our throughput analysis algorithm, and Max-Plus alge-
bra. The discussion in this section intends to provide additional insights into the
asymptotic behavior of the state-space based throughput calculation algorithm.
Reading it is however not required to understand the rest of this chapter.

We first explain some basics of Max-Plus algebra and then talk about the re-
lation between our state-space exploration method and the Max-Plus formulation
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of (H)SDFG.

4.3.1 The Max-Plus model of (H)SDFGs

In a self-timed execution of an HSDFG, each actor starts a firing when there is at
least one token on all of its input channels. The existence of these tokens on the
input channels depends in turn on the end of actor firings which provide tokens to
the channels. In this way, the start times of each actor firing can be expressed in
terms of the start times of certain other actor firings. In this section, we assume
an HSDFG (A, C, E) with initial token distribution γ0.

Recall that Sa,k denotes the start time of the k-th firing of actor a ∈ A in the
self-timed execution. When it ends, it produces the k + γ0(c)-th token on every
channel c connected to one of its output ports. We additionally define Fc,k as the
time at which the k-th token is produced on channel c ∈ C (where Fc,k = 0 for
all 0 ≤ k < γ0(c), because the initial tokens are already there from the start).
Sa,k depends on the availability of tokens on all of its inputs and starts as soon
as the last of the required tokens has arrived. The tokens are produced when
the actor writing to that channel finishes its firing. From this, we derive the
following equations for the firing times of actors. For each actor a ∈ A, we have
the equations (for all k ≥ 0):

Sa,k = max
c∈InC (a)

Fc,k.

For each a ∈ A and channel c ∈ OutC (a), we have the equations (for all k ≥ γ0(c)):

Fc,k = Sa,k−γ0(c) + E(a).

Combined, this gives a set of equations in which the k-th firing time of every actor
is related to the k-th or earlier firing times of other actors. Through substitution
and introduction of auxiliary variables (see [13] for details), this set of equations
is converted to a set of difference equations of the form:

Si,n = max
j

Sj,n−1 + Ei,j (4.1)

where the set of variables Si,n includes the firing times of the actors Sa,n.
It is convenient to formulate these equations using Max-Plus algebra [3] nota-

tion. Max-Plus algebra, like conventional algebra, is defined on real numbers IR.
In Max-Plus algebra the maximum operator is used in the role of addition and
is denoted by ⊕, and addition, denoted by ⊗, is used instead of multiplication.
From this, a linear algebra is obtained and equation (4.1) can be represented using
the Max-Plus formulation as follows:

Si,n =
⊕

j

Sj,n−1 ⊗ Ei,j .
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This set of sum-of-products equations can be encoded as a matrix equation.

tn = Mtn−1.

where vector tn consists of all Si,n. M is a matrix with the coefficients Ei,j . If
t0 encodes the initial token distribution, then the sequence {tk | k ≥ 0}, where
tk = Mkt0 describes the evolution of the HSDFG over time. The eigenvalue
equation plays a special role in this.

Mt = λ∗ ⊗ t.

The solution characterizes the graph in its periodic phase. For such a vector
t all execution times of the next iteration (Mt) are equal to the corresponding
execution times of the current iteration, shifted by λ∗ units of time. With t being
an eigenvector, the same shift occurs for the next iteration and so on. Hence the
behavior is periodic and the corresponding throughput is 1/λ∗ where λ∗ equals
the MCM of the graph. Note that through the connection between firing times
in SDFGs and in their corresponding HSDFGs, as discussed in Section 2.6, this
model also applies to the execution of SDFGs if we take all firing times of one
iteration in a single vector. We use this fact in the next section to model our state
space exploration method.

4.3.2 A Max-Plus Model of the State-Space Exploration

We now show how computation of throughput with the state space exploration
method can be interpreted as a computation of the eigenvalue of the corresponding
matrix. This is akin to the so-called power method for computing the dominant
eigenvalue in conventional linear algebra (see e.g., [4]).

The vectors tn of the previous section capture the absolute firing times of
the actors in the execution of the graph. In the state space we defined, and
our exploration of the state space, we are not concerned with the absolute firing
times, but only relative times, such as remaining execution times of actors. Since
we store one state for every iteration, we can build a vector of all actor firing times
of an entire iteration, counting relative to the starting time of the particular actor
firing used to determine which state is being stored. Assume (without loss of
generality) that the time of that actor firing is the first element of the vector:
tn(1). Define uk as the relative version of tk, by subtracting the first entry from
each of the entries, which gives all of the firing times relative to the moment the
state was last stored,

uk =
tk

tk(1)
.

(A division by a scalar t denotes a Max-Plus multiplication (⊗) with the inverse
of t, i.e., a subtraction of t in conventional algebra.) We can then derive the
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following equation.

uk+1 =
tk+1

tk+1(1)
=

Mtk

(Mtk)(1)
=

1
tk(1)Mtk

1
tk(1) (Mtk)(1)

=
M tk

tk(1)

(M tk

tk(1) )(1)
=

Muk

(Muk)(1)
.

We now have a recursive equation which characterizes the execution of the state-
space exploration method. Similarly, one can show that for any k ≥ 0 and d ≥ 0.

uk+d =
Mduk

(Mduk)(1)
.

From the fact that this execution ends in a periodic phase, we conclude that there
exist m and d such that:

um+d = um =
Mdum

(Mdum)(1)
.

Hence, with µ = (Mdum)(1), we have a solution to the eigenvalue equation:

Mdum = µ⊗ um.

Here, µ is the total length of the d iterations in the periodic phase and hence,
µ = λ∗d (µ = d·λ∗ in common algebra), i.e., d times the eigenvalue λ∗ of M which
is identical to d times the MCM of the equivalent HSDFG which is identical to d
divided by the throughput of the SDFG.

4.4 Experimental Results

In this section, we discuss the experimental validation of our throughput analysis
method and tool. We first discuss some implementation details of the tool. Then,
the experimental setup is discussed and the benchmarks we have selected for eval-
uation. Subsequently, we present the results of the evaluations and conclusions.

4.4.1 The SDFG Throughput Analysis Tool

This section very briefly explains the implementation of the throughput anal-
ysis algorithm based on the method proposed in this chapter. This method has
been implemented in the tool, called SDF 3 [65], which takes an XML description
of an SDFG as input and can then calculate among others the throughput for the
supplied SDFG.
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The state of an SDFG consists of a tuple (γ, υ). To implement γ, an array with
the size of the number of channels can be used. The function υ associates with
each actor a multiset of numbers representing the remaining times of different
actor firings of the actors.

The algorithm builds the state space of the graph as outlined in Section 4.2.3.
A recurrent state (i.e., a cycle) must be detected from which the throughput can be
computed. States are stored on a stack, indexed using a heap. This heap reduces
the number of states which must be compared for equality even further, which
makes the throughput calculation faster. When a recurrent state is detected, the
program computes the throughput from the period.

4.4.2 Experimental Setup

To the best of our knowledge, all existing techniques to compute the throughput
use a conversion to an HSDFG, followed by MCR analysis or via an additional
conversion to a weighted directed graph followed by MCM analysis. Alternatively,
spectral analysis of the Max-Plus formulation of the HSDFG can be used. In
[18], Dasdan et al. give an extensive comparison of existing MCM, MCR and
spectral analysis algorithms. It shows that Dasdan & Gupta’s algorithm (DG)
[17] which is a variant of Karp’s algorithm [37] and Howard’s algorithm (HO)
[13] that uses spectral analysis have the smallest running times when tested on a
large benchmark. In [16], Dasdan shows that also Young-Tarjan-Orlin’s algorithm
(YTO) [73] has a very good practical running time. Originally YTO is formulated
as an MCM problem, but Dasdan gives pseudo-code for an MCR formulation of
the problem. In our experiments, we compare the running times of our state-space
exploration method with these state-of-the-art analysis algorithms.

All algorithms are implemented in SDF3 for comparison. For the implementa-
tion of HO, the source code offered by the authors of [13] is used. An implemen-
tation of YTO is available via [46]. It uses the MCM formulation of the problem.
The implementation of the DG algorithm was provided by Sander Stuijk, the
main developer of SDF3 tool, using the pseudo-code given in [17]. These algo-
rithms compute the minimum cycle mean of a graph, while throughput analysis
requires a maximum cycle mean computation. All implementations were modi-
fied to compute this maximum cycle mean. Our comparison requires a conversion
from an SDFG to the weighted directed graphs which are input for the MCM
algorithms. This conversion consists of two steps. First, an SDFG is converted
into an equivalent HSDFG using the algorithm proposed in [60]. Second, the HS-
DFG is converted into a weighted directed graph using the approach suggested in
Sections 2.5.3 and 2.5.4 of [3]. This step requires the computation of the longest
path through a graph from each edge with initial tokens to any node in the graph
reachable from this edge without using other edges that contain initial tokens.

We measure the running times of each of the two conversion steps and the
MCM algorithms individually. These three values per experiment provide insight
in the contribution of the different steps to the total running time required for
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computing an SDFG throughput. We also measure the running time of our state-
space exploration method. For this approach, the measured running time consists
of the time needed for the self-timed execution, storing and comparing states and
computing the throughput from the state space.

4.4.3 Benchmark

Currently no standard benchmark set of SDFGs exists. (Note that the benchmark
used in [16, 18] is a set of directed graphs, and cannot be used for our purposes.)
To compare the running times of existing approaches for calculating throughput to
our approach, we developed specific sets of test graphs. The first set of graphs in
the benchmark are actual DSP and multimedia applications, modeled as SDFGs.
From the DSP domain, the set contains a modem [8], a satellite receiver [58] and a
sample-rate converter [8], and from the multimedia domain an MP3 decoder [61],
an H.263 decoder [61], an H.263 encoder [49], and an MP3 playback application
[71]. In all graphs, a bound on the storage space of each individual channel is
modeled in the graph. Their bounds are set to the minimal storage space required
for a non-zero throughput and is computed using the technique from [24].

As a second set of graphs (‘Mimic DSP’), the benchmark contains 100 random
SDFGs generated with SDF3 [65] in which actor ports have small rates and the
actors have small execution times. These settings for the rates and execution
times make the graphs representative for SDFGs of DSP applications.

The practical problem with the existing state-of-the-art algorithms for through-
put of an SDFG is that the conversion to an HSDFG can lead to an exponential
increase in the number of actors [51]. Our approach should not be affected by
this problem. To test this hypothesis, the benchmark contains a set (‘Large HS-
DFG’) of 100 randomly generated graphs in which the rates have a large variation
(which tends to cause the exponential increase in the conversion) and all actors
have equal execution times (this avoids long transient phases).

A potential problem with our approach is that the self-timed execution must
first go through the complete transient phase, while the existing MCM algorithms
are not affected by this issue. To test the impact of this potential problem on
our approach, the benchmark contains a set (‘Long transient’) of 100 randomly
generated SDFGs in which all actors have a large execution time with a small
variation. Such SDFGs typically have a transient phase with a large number of
transitions. Further all ports have a rate of 1, which makes the SDFGs effectively
HSDFGs. This avoids an exponential increase in the number of actors during the
SDFG to HSDFG conversion, which is also favorable to traditional throughput
analysis methods and thus represents the most difficult input for our algorithm.

4.4.4 Results

Using the three algorithms described in Section 4.4.2 and our state-space explo-
ration method (SS), we computed the throughput for all SDFGs contained in the



50 4.4. EXPERIMENTAL RESULTS

Table 4.1: DSP and multimedia applications

SS DG HO YTO

Modem [s] 1·10−3 82·10−3 81·10−3 81·10−3

Sample rate [s] 1.99·10−3 > 1800 > 1800 > 1800
Satellite [s] 54.99·10−3 > 1800 > 1800 > 1800
MP3 decoder [s] <1·10−3 1·10−3 1·10−3 1·10−3

MP3 Playback [s] 12.99·10−3 > 1800 > 1800 > 1800
H.263 decoder [s] 6.99·10−3 > 1800 > 1800 > 1800
H.263 encoder [s] 1·10−3 > 1800 > 1800 > 1800

four sets of our benchmark. Table 4.1 shows the measured running times for the
real DSP and multimedia applications. The MCM algorithms can only compute
the throughput for the MP3 decoder and modem within 30 minutes. They do not
complete the HSDFG to weighted directed graph conversion for the other models.
Our algorithm computes the throughput for all graphs within 0.1 seconds, and
often finishes within a few milliseconds.

The most important characteristics of the SDFGs in the three synthetic bench-
mark sets are shown in the first three rows of Table 4.2. The size of transient and
periodic phases of the state space of the SDFGs are given in the table in terms
of the average number of iterations. For the MCM algorithms, we measured the
running time of the conversion from the SDFG to the HSDFG, the running time of
the conversion from the HSDFG to the weighted directed graph and the running
time of DG, HO, and YTO, separately. For the state-space exploration method,
we measured the total running time of the algorithm.

For some of the graphs, it was not possible to compute the throughput within
30 minutes using the HO, YTO or DG algorithms. This is caused by the expo-
nential increase in the number of actors when converting an SDFG to an HSDFG.
For these graphs, the throughput calculation is stopped and the running times
are not taken into account in the results. This provides an optimistic estimate of
the real average running time of the existing approaches on the benchmark.

The columns labeled ‘Mimic DSP’, ‘Large HSDFG’ and ‘Long transient’ in
Table 4.2 show the results of our experiments for the corresponding set of SDFGs.
For the MCM algorithms, two conversion steps must be performed before the
actual MCM analysis can be performed. The section labeled ‘SDFG to HSDFG
conversion’ in Table 4.2 shows the measured running time for the conversion from
an SDFG to an HSDFG. For 10 graphs from the set ‘large HSDFG’, it was not
possible to complete the conversion within 30 minutes. The second step is the
conversion from an HSDFG to a weighted directed graph. The results for the step
are shown in the section labeled ‘HSDFG to digraph conversion’ in the Table. 53
graphs fail to finish this step before the time deadline (see row ‘#SDFGs not
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Table 4.2: Experimental results on synthetic benchmark sets

Mimic DSP Large HSDFG Long transient

avg #actors (SDFG) 20 13 14
avg #actors (HSDFG) 1008 8166 14

avg #iterations transient phase 2.72 16.85 47.76
avg #iterations periodic phase 1.04 1.02 1.58

SDFG to HSDFG conversion

avg to HSDF [s] 242·10−3 2 −

var to HSDF [s2] 264·10−3 11 −

#SDFGs not solved 0 10 0

HSDFG to digraph conversion

avg to digraph [s] 479·10−3 218 <1·10−3

var to digraph [s2] 17·103 95·103
<1·10−3

#SDFGs not solved 9 44 0

MCM algorithms

avg MCM (DG)[s] 271·10−3 2 <1·10−3

avg MCM (HO)[s] 1·10−3 9·10−3
<1·10−3

avg MCM (YTO)[s] 1·10−3 8·10−3
<1·10−3

var MCM (DG)[s2] 565·10−3 120 <1·10−3

var MCM (HO)[s2] <1·10−3
<1·10−3

<1·10−3

var MCM (YTO)[s2] <1·10−3
<1·10−3

<1·10−3

MCM based throughput analysis

avg total (DG) [s] 48 222 <1·10−3

avg total (HO) [s] 48 220 <1·10−3

avg total (YTO) [s] 48 220 <1·10−3

var total (DG) [s2] 17·103 97·103
<1·10−3

var total (HO) [s2] 17·103 96·103
<1·10−3

var total (YTO) [s2] 17·103 96·103
<1·10−3

State-space based throughput analysis

avg total (SS) [s] 1.12·10−3 4.47·10−3 1.7·10−3

var total (SS) [s2] <1·10−3
<1·10−3 77·10−3
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solved’ of the section ‘HSDFG to diagraph conversion’).

The measured running times for the MCM algorithms are shown in the section
‘MCM algorithms’. The overall required running time using the existing MCM-
based approaches is shown in the section ‘MCM based throughput analysis’ and
the running time for our approach is shown in the section ‘State-space based
throughput analysis’.

We summarize the most important results from the experiments. The results
for the set ‘mimic DSP’ show that our approach solves all problems in about
a millisecond each, while the others did not complete 9 problems due to the
conversion to the directed graph. The column ‘Large HSDFG’ in Table 4.2 shows
the running times for SDFGs with a large increase in the number of actors when
going from the SDFG to the HSDFG. The running time of the existing approaches
is strongly impacted by this increase and has grown considerable with respect to
the results in the previous set. In contrast, our running times are still in the
order of milliseconds. It is further important to note that the set contains 10
SDFGs for which the conversion to an HSDFG does not complete, and another 44
SDFGs for which the combined conversion from the SDFG to a weighted directed
graph cannot be completed. The results for the ‘Long transient’ set confirm our
expectations that SDFGs with a long transient phase impact the running times
of our algorithm while not influencing the running times of the other algorithms.
The effect is visible in the increased variance. However, the running times of our
algorithm are on average still in the order of milliseconds.

The conversion to a weighted directed graph is required for MCM analysis
and often a bottleneck for analysis as results show. However it is not required
for an MCR analysis. Dasdan gives in [16] an MCR formulation of YTO (YTO-
MCR). One can argue however that the running time of the YTO-MCR algorithm
will always be larger than the running time of the SDFG to HSDFG conversion
(which is still required) plus the running time of the YTO algorithm used in our
experiments; the graph used in YTO is never larger than the graph used in YTO-
MCR. Therefore, we can conclude from the experimental results that also MCR
analysis using YTO-MCR will be slower than our state-space exploration method.

Overall, the experiments show that the running time of the existing approaches
is greatly impacted by the SDFG to HSDFG conversion. The results of the ex-
periments on the real applications show also that this problem appears frequently
in practice. On the other hand, our method tends to have acceptable running
times even if it is confronted with adverse graphs. We observe that our method
has on average better run times than the existing MCM approaches and it can
compute the throughput of all tested SDFGs within milliseconds while the MCM
approaches fail to produce results on a substantial number of SDFGs.



4. THROUGHPUT 53

4.5 Throughput Analysis of Arbitrary SDFGs

So far, the throughput of an SDFG was defined only for strongly connected SDFGs
(Definition 4.1). In this section, we first generalize the definition to an arbitrary
SDFG and then we propose a method to calculate its throughput.

The normalized actor throughputs may vary in non-strongly connected SDFGs
as opposed to strongly connected graphs in which they are always equal. Since
throughput is the indication of the average performance of the whole model, we
intuitively generalize the throughput definition by taking the throughput of the
slowest strongly connected component as the throughput of the whole SDFG.

Definition 4.2. (Throughput of an Arbitrary SDFG) The throughput of
an arbitrary consistent SDFG is defined as the normalized actor throughput of the
actor with minimum normalized actor throughput among all actors in the SDFG.
Formally, the throughput of a consistent SDFG G = (A, C, E) with repetition
vector q is,

Th(G) = mina∈A

Th(a)

q(a)
.

Now we need to generalize our approach to be able to calculate the through-
put of a non-strongly connected SDFG. First of all, the state-space method does
not always work because non-strongly connected SDFGs may be self-timed un-
bounded. The unboundedness leads to an infinite number of states, implying that
the state-space method cannot detect the period. For the purpose of throughput
calculation, we use the same reduced graph as used in Section 3.5.2 for checking
self-timed boundedness. Definition 3.7 shows the reduction of an arbitrary SDFG
to a special kind of HSDFG where every actor has a self-loop channel, and dis-
regarding self-loop channels the resulting HSDFG is acyclic. It has been shown
that the reduction preserves certain properties like normalized actor throughput
(Proposition 3.4) and self-timed boundedness (Theorem 3.5). The throughput
calculation of the resulting HSDFG can be easily done owing to its acyclicity. Let
GH = (AH , CH , EH) be this HSDFG. Considering Definitions 3.7 and 4.2; the
throughput of GH then is

Th(GH) = min
x∈AH

1

EH(x)
.

Considering Proposition 3.4 we get the following theorem.

Theorem 4.2. Given an arbitrary consistent timed SDFG G. Th(G) = Th(GH),
with GH the HSDFG of Definition 3.7.

To compute throughput of a non-strongly connected SDFG, we first apply the
conversion of Definition 3.7, and then compute its throughput according to the for-
mula above. The conversion uses the state-based throughput calculation method
on all maximal SCCs, to compute the actor execution times in the constructed
HSDFG.
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4.6 Related Work

Throughput analysis of HSDFGs has been studied extensively [16, 17, 37, 56,
73]. All these studies are applicable to SDFGs only through a conversion to
an HSDFG described in Section 2.6. Maximum Cycle Mean (MCM) analysis or
Maximum Cycle Ratio (MCR) analysis are then used to determine throughput.
Karp proposed an algorithm in [37] which forms the basis for other improved
algorithms like [13, 17, 73]. An in-depth comparison of the timing behavior of
different MCM (related) algorithms is given in [16, 17]. Behavior of HSDFGs and
their throughput can also be analyzed using Max-Plus algebra [3, 13]. In this
context, it is refered to as spectral analysis.

Throughput analysis has been studied extensively in the Petri-net literature
as well. In [59], an MCM-related analytical method is presented for marked
graphs (HSDFGs), which in [12] is extended to specific cases of weighted marked
graphs (SDFGs) where all the initial tokens must be only on one channel on each
cycle. In [11], using a linear programming approach, lower and upper bounds on
throughput of a certain class of Petri nets are given. The upper bound is exact for
marked graphs, and a conversion from weighted marked graphs to marked graphs
similar to the conversion of SDFGs to HSDFGs is used to calculate throughput
for weighted marked graphs.

Unlike all previous approaches, this thesis proposes a technique based on ex-
plicit state-space exploration for finding the throughput, which directly works on
SDFGs. Because of this, we save the extra step for explicitly converting an SDFG
to an HSDFG, which can be exponentially larger.

4.7 Summary

We have introduced a new approach to throughput analysis of Synchronous Data
Flow Graphs. Existing methods for throughput analysis include a transformation
to Homogeneous Data Flow Graphs and suffer from an exponential blowup in the
number of graph nodes, which makes the approaches fail in certain cases. Our
approach is based on explicit state-space exploration and avoids the translation to
HSDFGs. We have studied properties of the state-space and derived a method for
computing throughput based on the state-space. We have shown that the state-
space-based definition of throughput corresponds to the classical definitions in
terms of Maximum Cycle Mean of the equivalent HSDFG and the eigenvalue of the
corresponding Max-Plus matrix equation. Experiments show that our throughput
analysis method performs significantly better in practice than existing approaches
which is an important enabler for extensive design-space explorations.



Chapter 5

Parametric Throughput

5.1 Overview

Throughput of SDFGs has been discussed in the previous chapter as the most
prominent performance metric. Throughput is a crucial indicator of performance
used both at design time (e.g., in design-space exploration, DSE) and run-time
(e.g., resource management). In DSE many different settings of the system are
explored [61, 62], which leads to many throughput calculations. At run-time,
prediction of throughput is required for proper assignment of resources to ap-
plications during reconfigurations [54]. In both cases, throughput calculations
need to be as fast as possible with very strict time and resource requirements for
run-time applications.

Previously, throughput analysis has been studied with the assumption of fixed
numbers for the execution times. Therefore, any change in the execution time of
one or more actors of an SDFG leads to a recomputation of the throughput from
scratch.

In this chapter, we consider parametric SDFGs, a generalization of SDFGs
where actors can have parameters as their execution times. As a result, through-
put is specified in the form of a simple function of parameters, where the resulting
function gives the throughput of the SDFG for any value in the range of the pa-
rameters. Such a function can be used in DSE, or at run-time for resource or
quality management. It is an important enabler for a scenario-based design ap-
proach [32] aiming at throughput predictability. Another application of having
parametric throughput is for example the study of the impact on throughput of
variation of execution times under production process variations [22].

We study three algorithms to calculate the throughput of a parametric SDFG.
The first two algorithms are variants of the standard throughput analysis algo-
rithms based on MCM analysis of HSDFGs and the state-space method explained
in the previous chapter for SDFGs with parametric actor execution times. The

55
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Figure 5.1: An example SDFG Gex .

third algorithm is based on a divide-and-conquer (DC) strategy. In the experi-
mental results, we compare the advantages and the drawbacks of these algorithms.
The DC algorithm turns out to be the most efficient in practice.

Section 5.2 briefly explains different methods of throughput analysis and it
introduces parametric synchronous data flow graphs. Sections 5.3, 5.4 and 5.5
explain the different methods for finding the throughput of parametric SDFGs,
initially focussing on strongly connected graphs. Comparison of the methods
is done in Section 5.6. Section 5.7 extends the results to arbitrarily connected
graphs. Section 5.8 discusses the related work and finally Section 5.9 summarizes.
This chapter is based on publication [26].

5.2 Parametric SDFGs and Throughput Analysis Methods

In this section, we first briefly summarize the different throughput analysis meth-
ods that we discussed in the previous chapter. We also define parametric SDFGs.
Then we explain in general, how these throughput analysis methods can be used
for analyzing the throughput of parametric SDFGs. For brevity, we focus on
strongly connected SDFGs. The extension of the results to general graphs can be
done by combining the results of the strongly connected components of the SDFG
which we explain at the end of the chapter.

Generally speaking, there are two different methods for calculating throughput
of an SDFG.

HSDFG method: In Chapter 4, we showed that the throughput of an SDFG
is equal to the inverse of the maximum cycle mean (MCM) of the equivalent
HSDFG [60]. The main problem of this method was that the conversion of an
SDFG to an equivalent HSDFG may lead to an exponential explosion in the size
of the graph.

State-space method: This method was explained in detail in Chapter 4,
Self-timed execution of an SDFG ends in a repetitive sequence of actor firings,
the periodic phase of execution (Proposition 4.1). The throughput of an actor
can be calculated by dividing the length of the period by the number of firings of
the actor in one period.

Throughout this chapter, we use a simple timed HSDFG Gex depicted in Fig-
ure 5.1 as our running example. Gex contains two actors, a and b, with execution
times 2 and 3 respectively.
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So far in previous chapters, actor execution times were always fixed numbers.
Here we introduce a parametric SDFG, as an SDFG where the execution time of
at least one of its actors is a parametric expression, where a parametric expression
is a linear expression in terms of some parameters. In principle, parametric ex-
pressions can take any value of positive real numbers. For example, Gex of Figure
5.1 becomes a parametric SDFG, Gpar

ex , if we assume that the execution times of
a and b are given by parameters p, q ∈ IR+. We are interested in the through-
put of a parametric SDFG in the form of a function of the parameters: f(p, q).
The domain of this function, the set of values that the parameters can take, is
called the parameter space of the graph, which is d-dimensional when the number
of parameters is d. Evaluating this function for a point in the parameter space
is computationally much cheaper than redoing any of the traditional through-
put calculations for those parameter values. We formally define the parametric
execution times in the following definition.

Definition 5.1. (Parametric Execution Time) Assume a d-dimensional vec-
tor of parameters. A parametric execution time models the execution duration
of actors of a parametric SDFG, in terms of these parameters. In a paramet-
ric SDFG (A, C, Ep), (A, C) is an SDFG and the execution time is a function
Ep : A → T that associates with each actor a ∈ A a linear combination of pa-

rameters, formally denoted by a vector t in T = IQd+1 containing the coefficients
of the linear expression. For a ∈ A, Ep(a) assigns the amount of time it takes to
complete a firing of actor a.

We know that the throughput of an SDFG corresponds to the inverse of the
maximum cycle mean of its equivalent HSDFG. The cycle mean of each cycle
equals the sum of the execution times of actors in the cycle divided by the
number of tokens on the cycle. Consequently, any cycle mean in a parametric
HSDFG is a linear combination of parameters plus a constant, representing the
non-parameterized actors in the cycle, which is 0 when there are no such actors.
We call these linear combinations cycle mean expressions. 1

3p + 1
3q + 0 is a cy-

cle mean expression of Gpar
ex corresponding to the cycle through a and b. A cycle

mean expression is represented by a vector e whose elements are the coefficients of
the linear expression, e.g., (1/3, 1/3, 0) in the example. If cycle c has cycle mean
expression ec, then its cycle mean, λc, for each point p ∈ IRd in the parameter
space can be calculated by λc(p) = ec ·(p, 1), where “·” is the inner product of two
vectors. For example, for Gpar

ex , λ(1, 2) = (1/3, 1/3, 0) · (1, 2, 1) = 1. We denote
the evaluation of a point p in a cycle mean expression ec, by ec(p). The maximum
cycle mean of an HSDFG G for each point p in the parameter space, denoted by
λ∗(p), can be calculated via

λ∗(p) = max
c∈cycles(G)

ec(p).

Note that λ∗ is a continuous function as it is the composition of continuous
functions max and ec. Any expression that has the maximum cycle mean value for
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some point is called a maximum cycle mean expression (mcme). Any mcme that
has the maximum cycle mean value for some point for which no other mcme has
the maximum value is a dominating mcme. It is shown below that the dominating
mcmes are sufficient to compute λ∗. The other cycle mean expressions, including
the other mcmes, are called redundant expressions.

Definition 5.2. (DCMS) Given an HSDFG, the dominating cycle mean set
(DCMS) is the set of dominating mcmes.

Proposition 5.1. Given an SDFG G and a parameter space, the maximum cycle
mean of G for any value of parameters can be obtained by its DCMS.

λ∗(p) = max
e∈DCMS

e(p).

Proof. Suppose the parameter space has d dimensions. For any arbitrary point
p in the parameter space, if only one mcme is maximum at p then that mcme is
in DCMS by definition. If only two mcmes e1 and e2 are maximum at p, then
p can only lie in the plane characterized by e1(p) = e2(p) which has less than d
dimensions as the mcmes are linear combinations of parameters. In other words,
p is on the border of the regions in parameter space for which e1 or e2 are mcmes.
So, there is a region around p in the parameter space for which either e1 or e2 is
uniquely maximum. Therefore, at least one of e1 or e2 belongs to the DCMS. If
more than two mcmes are valid at p, we can use a similar argument to show that
at least one of them belongs to the DMCS. We showed that for any point p in the
parameter space at least one dominating mcme belongs to the DCMS.

Note that when we talk about the DCMS of an SDFG we refer to the DCMS of
its equivalent HSDFG. Conversion of a parametric SDFG to an equivalent HSDFG
can be done using the algorithm for non-parametric graphs, since execution times
have no impact on the conversion algorithm.

Thus, throughput analysis for a parametric SDFG can be done by finding its
DCMS. This minimum set can be obtained from the set of all expressions/mcmes
by removing all redundant expressions. Checking the redundancy of an expression
is equivalent with checking the infeasibility of a system of linear equations [21].
However, since in our case the values of parameters are positive, there is a fast way
to remove a large part of the redundant expressions. An expression is redundant if
all of its coefficients are less than or equal to those of another expression. In other
words, if we look at the vectors e of the expressions, then all points (expressions)
are dominated by a subset of points with larger coefficients. Those points which
are not dominated by other points using this redundancy check are called pareto
points. In other words, pareto points are dominating all non-pareto points. We
denote e1 4 e2 to express that e1 is dominated by e2. A pareto dominance test is
much easier than the general redundancy checks. Although finding the pareto set
of expressions often removes a large part of the redundant expressions, the pareto
set is not necessarily the DCMS. For example, suppose our set of expressions
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is {p, q, (p + q)/3}, or, in terms of vectors {(1, 0, 0), (0, 1, 0), (1/3, 1/3, 0)}. Even
though (1/3, 1/3, 0) is a pareto point (it is not dominated by either (1, 0, 0) or
(0, 1, 0)), there is no point in the parameter space where (p + q)/3 has a larger
value than all other expressions, making it redundant. Nevertheless, pruning
the set of expressions via a pareto dominance test before applying any general
redundancy test is worthwhile. Figures 5.2(a) and 5.2(b) visualize this set of
throughput expressions and their related mcmes for parameter ranges of [1, 5].
The horizontal axes are parameters and the vertical axes give throughput and
mcme values for Figures 5.2(a) and 5.2(b) respectively. As it can be seen from
the figure, the red plane (expression (p + q)/3) is always dominated by either
green (p) or blue (q) planes for any point in the parameter space (similar for the
throughput expressions in Figure 5.2(a)).
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Figure 5.2: mcmes and related throughput expressions of the running example.

Existing methods of calculating throughput for SDFGs are not directly appli-
cable to parametric SDFGs. The efficient MCM analysis algorithms which work
on HSDFGs cannot be applied on parametric SDFGs. The conversion of SDFGs
to HSDFGs can easily be adapted though. Therefore, a naive MCM analysis leads
to enumerating all simple cycles of the HSDFG and collecting the expressions in
the DCMS. Also, the state-space method, explained in the previous chapter, can-
not be directly used for parametric throughput analysis, but it can be generalized.
In the remainder, we introduce two variations of the existing methods and one
new method for calculating the throughput of a parametric SDFG.
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5.3 HSDFG Method

This section shows how a parametric throughput can be calculated using the
conversion of an SDFG to an HSDFG. The MCM of an HSDFG can be found by
enumerating all simple cycles. The cycle mean of each cycle can be calculated by
summing up all of the execution times of actors in the cycle and dividing it by
the number of tokens on the cycle. Finally, the DCMS of the parametric HSDFG
is obtained by removing the redundant expressions as explained in Section 5.2.
While enumerating the cycles and calculating their cycle mean expressions only
the pareto points are kept.

The example in Figure 5.1 is already an HSDFG, so no conversion is needed.
This graph has three simple cycles (a, a), (b, b) and (a, b, a) with one, one and
three tokens respectively. The corresponding cycle mean expressions are p, q and
(p + q)/3. Since all expressions are pareto points no points get eliminated in the
pareto test.

In the next step of the algorithm, we see that (p + q)/3 is redundant. This
follows from the infeasible set of linear equations {(p + q)/3 > p, (p + q)/3 > q}.
Therefore, DCMS (Gpar

ex ) = {p, q} and λ∗(p, q) = max{p, q}.

Algorithm HSDFG Method(G)
Input: A parametric SDFG G
Output: DCMS of G
1. DCMS = ∅

2. Convert G to equivalent HSDFG H
3. for each simple cycle c in H
4. do if ec 64 ei for all ei ∈ DCMS
5. then remove all ei from DCMS for which ei 4 ec

6. insert ec in DCMS
7. Remove redundant expressions from DCMS
8. return DCMS

Note that finding a set of dominating expressions among expressions (Line 7 of
the algorithm) has been solved efficiently in the context of determining the upper
envelope of pairwise linear functions [19]. Since the time spent on this part of
the algorithm is negligible compared to the first part, we used the straightforward
redundancy check explained above in our experiments using a linear programming
C library (LPsolve [5]).

5.4 State-Space Method

State-space-based throughput calculation for SDFGs avoids the conversion to HS-
DFGs. This section generalizes the state-space based method to calculate the
throughput of a parametric SDFG.
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5.4.1 A Parametric State Space

In Chapter 2, we explained that the behavior of an SDFG can be defined in
terms of a state transition system. For example, in Figure 5.1, the initial state
is ((1, 1, 1, 2), ({}, {})), where the first vector, γ, shows the token distribution of
channels, starting from the self-loop channel of a and continuing counterclockwise.
The second vector, υ, is the vector of multisets of the remaining execution times
of a and b. Initially, both multisets are empty. At this point, both a and b are
enabled and they start their firings, changing the token distribution vector γ to
(0, 0, 0, 1) and the vector of remaining execution times υ to ({2}, {3}). No more
actor firings can occur before actor a finishes. So the time goes forward for 2 time
units. Completing the firing of a leads to state ((1, 1, 0, 1), ({}, {1})). Firing actor
a once again then results in ((0, 1, 0, 0), ({2}, {1})), after which time progresses
for 1 time unit, b completes its firing, and so on.

We generalize this model to parametric SDFGs. In the state space of a para-
metric SDFG, υ contains parametric elements, expressions in terms of the param-
eters. Since the relations between parameters are not known, we cannot always
be sure which firing finishes first. The next example shows how we solve this
problem.

The parametric state space of Gpar
ex with execution times p and q for actors a

and b is given in Figure 5.3. To simplify the figure, the details of states are not
shown. Each dot represents a state. The start and end of firings in each state
is denoted by the actor name with subscript s or e respectively. For example as

shows the start of a firing of actor a.

After starting firings of a and b, υ changes to ({p}, {q}). At this stage, a
time step equal to the smallest among all elements in the multisets of υ must
be taken, but the relation between p and q is unknown. Therefore, we split the
parameter space into two mutually exclusive parts with p < q and p > q. For each
of these parts, the state space continues in a separate branch. Since our final goal
is finding λ∗ and since λ∗ is continuous, we do not need to consider the case p = q
as the cycle means of this part of the parameter space are covered by expressions
obtained by both the cases p < q and p > q.

In case p > q, the first vertical arrow in the figure, after a time step as
large as q, b finishes its firing. So γ and υ become (0, 0, 1, 2) and ({p − q}, {}).
The execution proceeds by a time step as large as p − q which leads to the end
of the firing of a and consequently the start of new firings of actors a and b,
changing υ to ({p}, {q}). Since in this branch we already assumed that p > q,
no new partitioning of the parameter space is needed and the execution proceeds
by a time step as large as q. The state space in this branch ends in a periodic
phase repeating the last two steps. From the periodic phase, we can compute the
throughput. The length of the period is (p − q) + q = p and during the period
only one firing of actors a and b occurs. Therefore, the throughput is 1/p if p > q.

We proceed for the case where p < q. After a time step as large as p, actor
a finishes its firing and starts a new firing. So γ and υ become (0, 1, 0, 0) and
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Figure 5.3: The parametric execution of Gpar
ex .

({p}, {q − p)}) respectively. At this state, the parameter space needs to be split
again into two parts: p < q − p and q − p < p (or 2p < q and 2p > q). Note
that the state-space exploration only continues if the newly added constraints do
not conflict with the previously made assumptions in the earlier states. In this
case, both 2p < q and 2q < p are compatible with p < q. The case 2p < q
gets periodic in a few steps with throughput 1/q. The other case requires a new
partitioning of the parameter space. Each branch continues till either it ends up in
its periodic phase or the constraint set contains conflicting constraints. As shown
in the figure, the state space of the example continues to repeat a similar pattern.
All subsequent branches have the same throughput 1/q. We can conclude that,
as before, DCMS (Gpar

ex ) = {p, q} for the whole parameter space.
From the example, we can see that the multisets in υ of remaining execution

time expressions contain linear combinations of parameters throughout the execu-
tion of the graph. We also observe that the equations partitioning the parameter
space need to be stored in the states.

Definition 5.3. (Parametric State) The state of a parametric SDFG (A, C, Ep)
is a tuple (γ, υ, Φ). γ, as in a regular state a channel state, associates with each
channel the amount of tokens present in that channel in that state. Actor status
υ : A → INT associates with each actor a ∈ A a multiset of linear combinations
of parameters, each such combination is denoted by a vector t in T = IQd+1 con-
taining the coefficients of the linear expression t(p). The state constraint set Φ
is a subset of T , which contains all of the assumptions, t(p) > 0, in the form of
inequalities on the parameters made so far.

Similar to timed SDFGs, the dynamic behavior of a parametric SDFG is de-
scribed by transitions that can be of any of three forms: start of actor firing, end
of firing, or time progress. These transitions are direct translations of the concrete
transitions of Definition 2.12 into parametric form.

Definition 5.4. (Transitions) A transition of a parametric SDFG (A, C, Ep)
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from state (γ1, υ1, Φ1) to state (γ2, υ2, Φ2) is denoted by (γ1, υ1, Φ1)
α
→ (γ2, υ2, Φ2)

where label α ∈ (A × {start , end}) ∪ ({clk} × T × 2T ) denotes the type of the
transition.

• Label α = (a, start) corresponds to the firing start of actor a. This transition
is enabled if Rd(a) � γ1 and results in γ2 = γ1 − Rd(a), υ2 = υ1[a 7→
υ1(a) ⊎ {Ep(a)}], and Φ2 = Φ1.

• Label α = (a, end) corresponds to the firing end of a. This transition is en-
abled if 0 ∈ υ1(a) and results in γ2 = γ1+Wr(a) and υ2 = υ1[a 7→ υ1(a)\{0}]
(where 0 is a vector with all coefficients equal to zero) and Φ2 = Φ1.

• Label α = (clk, lj, φj) denotes a clock transition. lj ∈ T is a remaining
execution time of an actor in υ1, which is a vector denoting a linear com-
bination of parameters and a constant number, and it specifies the length of
the clock transition. Suppose li, 1 ≤ i ≤ k, are all the remaining execution
times of ongoing actor firings in υ1. For every lj, 1 ≤ j ≤ k in the range
of υ1, φj is a set of inequalities lj < li, for all i with 1 ≤ i ≤ k, i 6= j. In
this way, φj ⊆ T is a set of assumptions imposing that lj to be the smallest
element of υ1.

A clock transition is enabled only if no end transition is enabled and Φ1∪φj

is feasible. The clock transition results in γ2 = γ1, υ2 = {(a, υ1(a) ⊖ lj) |
a ∈ A} with υ1(a)⊖ lj a multiset of vectors containing the elements of υ1(a)
reduced by lj (subtracting lj from each of the vectors) and Φ2 = Φ1 ∪ φj.

In Figure 5.3, the horizontal branches of the state space continue to partition
the parameter space into ever smaller pieces ad infinitum. The further split-
ting of the parameter space does not result in the infeasibility of the system of
inequalities. This shows that the state space can be infinite.

5.4.2 Throughput Calculation

Algorithm coverStateSpace shows the state-space method for the throughput cal-
culation of a parametric SDFG. It works recursively in a depth-first-search fash-
ion, branching the parameter space as explored. Below we assume that parameter
ranges are bounded. The algorithm receives a parametric SDFG G, initial state
s = (γ, υ, Φ), and a bound on the depth of the recursion D as arguments and
returns the DCMS of G. The latter is needed since a parametric state space is
potentially infinite. Upon reaching the bound on the depth, the remainder of the
parameter space is searched via the divide-and-conquer algorithm explained in the
next section. D can thus be used as a control parameter to steer the algorithm
towards a (mostly) state-space-based method or a divide-and-conquer method.
We use the absence of integer points in the remainder of the parameter space to
be explained as an extra criterion to switch to the divide-and-conquer method,
as this avoids spending a lot of time in searching increasingly smaller parts of the
parameter space.
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Algorithm coverStateSpace(s, G, D)
Input: A parametric state s = (γ, υ, Φ)
Input: A strongly connected parametric SDFG G = (A, C, Ep)
Input: A bound D on the recursive depth
Output: DCMS of G
1. if (D = 0)
2. then Divide&Conquer(G, Φ);
3. else for all t ∈ ∪a∈Aυ(a)
4. do n = (γn, υn, Φn) = nextState(t, s, G);
5. if (n 6= INT INF and not BS )
6. then if (n ∈ nBList)
7. then e = calcCMExp(nBList , n);
8. insert(DCMS , e);
9. else push(nBList , n);
10. coverStateSpace(n, G, D− 1);
11. else if (n 6= INT INF )
12. then reset(nBList);
13. coverStateSpace(n, G, D− 1);
14. else if (n 6= INF )
15. then Divide&Conquer(G, Φn);
16.

The algorithm first checks if the maximum execution depth has been reached.
If so, it calls Algorithm Divide&Conquer of the next section; if not, it uses pro-
cedure nextState which accepts parameter expression t (an element of a mul-
tiset in υ) as a clock step, thereby assuming that t is the minimum time that
should elapse before any event can occur. Then, nextState returns the next
state n = (γn, υn, Φn) if Φn contains integer solutions within the given parameter
bounds. For cases where Φn lacks integer solutions or it has no solution at all
INT INF and INF are returned respectively. nextState also marks the current
state as a branching state (BS) or a non-branching state depending on whether
the parameter space is split.

If the algorithm is invoked for state s, for every element t ∈ ∪a∈Aυ(a), a
new branch is explored, the procedure nextState is called and the new state
n = (γn, υn, Φn) is created. We know that none of the states in a periodic phase
can be branching since the constraints in the sets of the recurrent states should
be identical. Therefore, the search for a recurrent state only occurs in nBList ,
which stores the non-branching states visited since the last branching state. If Φn

is feasible and n is non-branching, then the algorithm checks whether the state
is recurrent (has already been visited) by comparing it with already stored non-
branching states in nBList . If the state is recurrent, the algorithm calculates the
cycle mean expression, by calling calcCMExp. This function finds the length of
the periodic phase |P | by adding up the length of clock transitions between the
two recurrent states and counts the number of firings |a|p of an arbitrary actor a
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in the periodic phase. The throughput can be calculated as |a|p/(|P |q(a)) where
q is the repetition vector of the graph. The obtained expression, which is always a
dominating mcme, is stored in DCMS. Then the algorithm returns and continues
at the last stored branching state if any is left. If n is not recurrent, it is stored
in nBList and the algorithm is invoked recursively for n, decrementing bound D.

In case n is a branching state and integer solutions are left, the algorithm is
invoked recursively after clearing nBList . If Φn is not infeasible but contains no
integer solutions, the Divide&Conquer algorithm that is explained in the next
section is called. This algorithm finds the mcmes of all points in the region Φn.

Theorem 5.1. Given a parametric SDFG G and parameters with bounded ranges,
algorithm coverStateSpace finds all the dominating mcmes in the parameter space
of the parameters of G.

Proof. We can visualize the parametric state space as a tree with the initial state
as its root and leaves which are either recurrent states, or states with depth D or
states whose constraint sets lack integer solutions. Algorithm coverStateSpace is
a depth-first traversal algorithm on this tree, where leaf detections are at Lines
1, 6, and 14 for detecting states with maximum recursive depth, recurrent states,
and states whose constraint sets lack integers solution respectively. If a recurrent
state is detected, then an mcme is found on the periodic phase of that branch
which is valid for the region specified by the constraint set of the states. In case
of a leaf without integer parameter solutions or with maximum depth, Algorithm
Divide&Conquer whose correctness is proven in Theorem 5.2 is called to cover
points in the remaining region of the parameter space. Note that the algorithm
covers all the parameter space because at each branching state bs = (γb, υb, Φb)
with successor states (γi, υi, Φi), i = 1 . . . k when k states are feasible, then Φis
partition Φb except for the borders of Φis. The borders are covered by expressions
found for the interior, as λ∗ is continuous.

5.4.3 Discussion

In Section 5.4.1 we showed that the parametric state space of our running ex-
ample SDFG of Figure 5.1 is infinite. Algorithm 4 assumes two stop criteria to
avoid an unbounded number of recursive calls. The first criterion is achieved by
restricting the depth of the recursion which is specified by input parameter D of
the algorithm. The other criterion holds whenever a branch reaches a state whose
constraint set lacks integer solutions. The reason that we have the latter criterion
in the algorithm is that we conjecture that we can find the recurrent state of the
branch related to any point in the parameter space, in a finite number of steps.
The intuition behind this conjecture is that every branch of a parametric state
space can be translated to a non-parametric state space. Every parametric state
(γ, υ, Φ) of the parametric state space can be translated into a state (γ, υp) in the
non-parametric state space, where υp is a multiset whose parametric remaining
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execution times of ongoing actors are replaced by their evaluation for p. The ex-
ecution of both parametric and non-parametric state spaces are defined based on
the same semantics. Furthermore, according to Proposition 4.1, we know that the
non-parametric state space is periodic for consistent and strongly connected SD-
FGs, implying that the parametric state space is also periodic for consistent and
strongly connected SDFGs for any concrete point in the parameter space. Our
experiments are also in line with this conjecture as the recursion depth stopping
criterion never executed.

In fact, if the conjecture holds, and if we limit our interest to integer parameter
values, we can remove the depth criterion and stop when a branch in the paramet-
ric state space reaches a state whose constraints set lacks integer solutions. Note
that the restriction to integer values is not a limitation in practice, because the
ranges can be chosen such that the actor execution times are arbitrarily precise.
In this way, we can also have a pure state-space method if it assumes integer
parameter values. This version of the state-space method stops either when it
reaches a recurrent state, in which case, it finds the related mcme of the related
points of that branch, or it ends if it reaches a state whose constraint set lacks
integer solutions. In this case, there is no integer solution in the interior of the re-
gion specified by the constraint set of the state. The mcme of the integer points on
the border of these regions can also be found by applying the state-space method
for concrete points as proposed in Chapter 4 individually on each of them.

5.5 Divide-and-Conquer Method

If we have a closer look at the parts of the parameter space that share the same
mcme, we observe that these parts form convex polyhedra. In this section, using
this fact, we propose a divide-and-conquer algorithm to find these regions as well
as their related mcmes.

Proposition 5.2. {p ∈ IRd | λ∗(p) = e(p)} is a convex polyhedron for any mcme
e.

Proof. To show that the throughput region associated with e is convex, we need
to prove that any point p = tp1 + (1 − t)p2 where 0 < t ≤ 1 belongs to the
throughput region of e, i.e., e(p) = λ∗(p) for every two points p1 and p2 belonging
to the throughput region of e.
Because e is a linear function, if e(p1) = λ∗(p1) and e(p2) = λ∗(p2), we have

e(tp1 + (1− t)p2) = te(p1) + (1− t)e(p2). (5.1)

According to the definitions e(p1) = λ∗(p1) = maxei∈DCMS ei(p1) and e(p2) =
λ∗(p2) = maxei∈DCMS ei(p2), for all ei ∈ DCMS, we can write

ei(p1) ≤ e(p1)
ei(p2) ≤ e(p2).
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Therefore, for all ei ∈ DCMS,

te(p1) + (1− t)e(p2) ≥ tei(p1) + (1− t)ei(p1)

which means that

e(p) = max
ei∈DCMS

ei(p) = λ∗(p).

We call these convex polyhedra throughput regions. Figure 5.4 shows two
throughput regions for the running example, corresponding to e1 = q and e2 = p
within a rectangular area between corner points v1, . . . , v4. The following corollary
directly follows from Proposition 5.2.

p

q
1e q=

2e p=

rp

1v 2v

3v
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Figure 5.4: Divide-and-Conquer Method.

Corollary 5.1. If for every corner point v of an arbitrary polyhedron of the
parameter space, λ∗(v) = e(v) for some mcme e, then for every point p in that
region, λ∗(p) = e(p).

Hence, the parameter space is composed of throughput regions. Suppose e is
the mcme of an arbitrary interior point of a convex polyhedron C. By comparing
the evaluation of e for every vertex (corner point) of C and the actual maximum
cycle mean value of that vertex, we can detect whether C is a subset of a single
throughput region or whether it is covered by parts of more regions. If for any
vertex, these two compared values are different, then C is covered by more than
one throughput region; otherwise it is part of a single throughput region (namely
that of dominating mcme e). This idea can be used in a divide-and-conquer
method if we add a partitioning strategy, to be applied after detecting a region
with more than one mcme. Partitioning continues till all the created regions have
a single mcme. All obtained mcmes together form the DCMS.



68 5.5. DIVIDE-AND-CONQUER METHOD

Since λ∗ is continuous, the mcmes of two neighboring regions are valid for
all points on the border of the regions. This means that for any two neighbor-
ing regions with mcmes e1 and e2, their border is characterized by the equation
e1(p) = e2(p). We address this (hyper) plane as the splitting plane; in Figure 5.4,
this is the line p = q. In other words, if we have two mcmes for two neighboring
regions, we can directly calculate the border of the two regions. The following
proposition shows that a splitting plane obtained from two different mcmes of a
convex region always passes through the region and splits the region into smaller
ones.

Proposition 5.3. Let e1 and e2 be mcmes associated to points p1 and p2 re-
spectively. If e1(p1) 6= e2(p1) and e1(p2) 6= e2(p2), then e1(p1) − e2(p1) > 0 and
e1(p2)− e2(p2) < 0.

Proof. Considering the definition of mcme for a point, we have

e1(p1) = maxei∈DCMS ei(p1)
e2(p2) = maxei∈DCMS ei(p2)

Therefore, since e1(p1) 6= e2(p1) and e1(p2) 6= e2(p2), e1(p1) > e2(p1) and e2(p2) >
e1(p2). Therefore,

e1(p1)− e2(p1) > 0
e1(p2)− e2(p2) < 0

Geometrically speaking, Proposition 5.3 means that the plane characterized
by equation e1(p2)− e2(p2) = 0 intersects the line connecting p1 and p2; in other
words, p1 and p2 are on the opposite sides of the plane, and the plane splits the
convex region into two smaller and again convex regions. Using Proposition 5.3
and Corollary 5.1 we have our complete algorithm if we can find the mcme of
a point in the parameter space. This is achieved by adapting the state-space
exploration of Section 5.4. The difference with the generic parametric state-space
method is that the evaluation of the expressions in the constraint set is known
when searching for an mcme for a concrete point and no branching is required.

Some points in the parameter space may have more than one mcme, if differ-
ent HSDFG cycles happen to be simultaneously critical. In that case, we may get
an expression from this method that does not correspond to any real cycle mean
expression of the graph because it contains fragments of different cycles. How-
ever, our partitioning strategy only works if the expressions relate to real cycle
means. So we need to avoid obtaining such expressions. We show that this is a
‘coincidence’, that only happens on the border of throughput regions and can be
avoided by selecting a random point from the parameter space.

Proposition 5.4. A randomly selected point from the parameter space has only
one mcme with probability one.
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Proof. Let p be a randomly selected point in the parameter space. If two different
e1 and e2 are both valid mcmes for p, then the evaluation of both e1 and e2 for p
must be equal. Therefore, we have

e1(p) = e2(p).

Suppose we denote the jth coefficient of expression ei, i = 1, 2, with ei,j and of
p with pj . Now, knowing that the constants in e1 and e2 must be equal, we can
rewrite the above equation in the following form.

d
∑

j=1

(e1,j − e2,j)pj = 0

We know that p is randomly selected from a uniformly continuous distribution.
Therefore,

∑d
j=1 (e1,j − e2,j)pj is also a random variable in a continuous space.

The probability of a continuous random variable being a constant number is zero.
Therefore, with probability one, e1(p) 6= e2(p) and e1 and e2 are not both valid
for p.

Every convex region can be represented in two different ways using half spaces
(H-representation) or vertices of the convex region (V-representation) and these
two representations are convertible in a very efficient way [21]. In our algorithm,
we use both representations, the V-representation for finding the vertices, and the
H-representation for calculating the splitting plane. As before, we assume that
parameter ranges are bounded. Algorithm Divide&Conquer , given below, receives
G and a convex region CR as input. Initially, when applying the algorithm to
the entire parameter space, CR is a d-dimensional box obtained by the ranges of
the parameters. In Line 4 and 5, all the cycle mean values of all the vertices of
CR are checked for the validity of the mcme obtained for a random point rp in
the interior of CR. Th(vi) is the throughput of G for point vi, obtained using
the non-parametric state-space method of Chapter 4. In case the mcme of rp
is not valid for a vertex vi, then the splitting plane obtained from mcmes of vi

and rp splits CR (illustrated in Figure 5.4 for the example with v3 in the role
of vi) by adding half-spaces characterized by vectors erp − evi

and evi
− erp to

CR, respectively. Then the algorithm is invoked for both subregions in Lines 9
and 10. Procedure ranCornerExpr receives a vertex vi, expression erp , and rp.
It produces the mcme valid in vi which will be different from erp . Note that
inside this procedure, instead of using vi itself which is typically on the border
between throughput regions, for the reason explained, a randomly selected point
in its neighborhood on the line through vi and rp is used instead. In fact, in
our algorithm this point is chosen as the first point on this line with different
associated mcme from that of rp by moving in a zeno-fashion toward vi. Of
course, this is our choice in this algorithm and any other arbitrary point in the
region with different mcme is suitable for constructing the splitting plane as well.
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The algorithm is guaranteed to terminate, because there is a finite number of
mcmes and hence a finite number of borders between regions exist that can be
used for splitting. The correctness of the algorithm is proven in the following
theorem.

Theorem 5.2. Given a parametric SDFG G and a parameter space CR, algo-
rithm Divide&Conquer finds all the mcmes of parameter space CR and it termi-
nates.

Proof. We prove the correctness of this function by induction on the number of
throughput regions of CR. The base case for the induction is when all the corner
points of CR have the same mcmes as a randomly generated point erp in the
interior of CR. Then, due to the convexity of the throughput region, proven by
Proposition 5.2 we know that only one mcme is valid for CR, i.e., CR is part of
only one throughput region. In this case, Algorithm Divide&Conquer calculates
this mcme and terminates immediately. This check is done in the for-loop of Line
4. In case that at least one of the corner points has a different mcme, then the
splitting plane made by the mcme of erp and the mcme of another point in the
interior of the mcme splits CR. This splitting plane due to Proposition 5.3 cuts
CR into two smaller regions, CR1 and CR2, in Lines 7 and 8. Both CR1 and
CR2 must have at least one throughput region less than CR, because we know
that the splitting plane used for cutting CR into CR1 and CR2, is constructed by
removing an mcme from both CR1 and CR2. This implies that the used mcme
from CR1 cannot be dominating in CR2 and vice versa. In other words, CR1 lacks
the throughput region related to the mcme of CR1 which is used for the splitting
plane. Similar reasoning is valid for CR2 as well. By induction, we know that the
mcmes of both regions CR1 and CR2 are found in the recursive calls. The final
set of mcmes is the union of the expressions found in each of the recursive calls.

We know that the HSDFG corresponding to G has only a finite number of sim-
ple cycles and that each mcme relates to a cycle in this HSDFG. Therefore, there
are only a finite number of different mcmes. Therefore, the algorithm terminates.

Algorithm Divide&Conquer(G,CR)
Input: A strongly connected parametric SDFG G
Input: A convex region CR
Output: DCMS of G
1. Let rp be a random point in CR;
2. erp ← findMCME(G, rp);
3. insert(DCMS , erp);
4. for all vertices vi ∈ CR
5. if (erp(vi) 6= 1/Th(vi))
6. then evi

= ranCornerExpr(vi, erp, rp);
7. CR1 ← CR ∪ {erp − evi

};
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8. CR2 ← CR ∪ {evi
− erp};

9. Divide&Conquer(G, CR1);
10. Divide&Conquer(G, CR2);

It remains to explain how an mcme for a given point in the parameter space can
be found (findMCME in the algorithm above). As already mentioned, an adapted
version of the state-space method of the previous section is used for finding the
mcme of the graph for a concrete point p. In fact, this method keeps two multisets
for remaining execution times. One contains the parametric expressions obtained
from the parametric execution times, the other contains the concrete values of the
remaining execution times which are in fact the evaluation of the expressions of
the first multiset for the concrete point p. The modified algorithm only explores
the part of the state space corresponding to concrete point p. The multiset with
the concrete remaining execution times is used for detecting the recurrent state,
omitting the check on depth of the recursion. The multiset of expressions is
used for calculating the mcme of the SDFG at point p. This makes the method
equivalent to the concrete state-space throughput analysis method of Chapter 4,
and a recurrent state is guaranteed to be found (by Proposition 4.1).

5.6 Experimental Results

We implemented our methods in the SDF3 tool [65]. We have evaluated the exe-
cution times of our algorithms using SDFG models of seven real applications. We
used the same benchmark as in Chapter 4, consisting of an H.263 decoder, an MP3
decoder, a modem, a satellite receiver, a sample-rate converter, an H.263 encoder
and an MP3 playback application. In Divide&Conquer , the CDDLib library [21]
is used for all polyhedra operations. In coverStateSpace, all operations related to
linear inequality systems have been done using LPSolve [5]. All experiments were
performed on a P4 PC running at 3.4 Ghz.

In each graph, to each actor with varying execution times a parameter has
been assigned. Actors with constant execution times received fixed execution
times. In cases where more than one copy of an actor exists in the SDFG, the
same parameter was dedicated to all copies. Two experiments with the same
parameter set and different ranges for the parameters have been carried out. We
used two different ranges for parameters with the same lower-bounds and upper-
bounds as large as 110% and 150% of the lower-bounds. These ranges were chosen
in line with the worst-case estimates of the execution times of the benchmarks, if
any were given.

One can interpret coverStateSpace and Divide&Conquer as one algorithm
where the depth input parameter D of coverStateSpace can be used to deter-
mine the amount of parametric state-space exploration vs. the amount of calls
to the concrete state-space method made by Divide&Conquer . To test whether
true parametric state-space exploration is beneficial, we execute coverStateSpace
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Table 5.1: Experimental results

#pa #act rep
110% 150%

st[s] dc[s] #e st[s] dc[s] #e
H.263 decoder 4 4 1190 0.854 0.590 1 0.862 0.589 1
H.263 encoder 5 5 201 0.119 0.212 1 0.241 0.211 1
modem 7 16 48 51 0.568 1 168 0.570 1
MP3 decoder 8 14 14 0.196 0.889 1 0.253 0.896 1
MP3 playback 1 4 10601 8.643 1.268 1 17 8.177 2
sample-rate conv. 4 6 612 102 1.040 2 266 1.246 2
satellite rec. 9 23 4515 - 480 3 - 450 3

without checking the recursion depth, observing that in line with our conjecture
in Section 5.4.3 the algorithm terminates in all cases. We furthermore execute
Divide&Conquer on the entire parameter space without parametric state space
exploration. We did not entirely test the HSDFG Method of Section 5.3 because
it is too slow for practical use. The reason is that the HSDFG Method works on
the HSDFGs, and even though we have implemented the fastest cycle enumera-
tion algorithm [35], the algorithm takes generally too long. It only worked for the
MP3 decoder for which it only took few a milliseconds to compute the DCMS.

The results of the experiments are shown in Table 5.1 in two different columns.
For each experiment, for each graph, the time for both the state-space method
(st) and divide-and-conquer (dc) in seconds, as well as the number of expressions
in the DCMS (#e) are shown. In all cases, only very few dominating mcmes
(up to 3) have been found, which is a good indication for the simplicity of the
resulting throughput expression.

The number of parametric execution times (#pa), the number of actors (#act)
and the sum of their repetition vector entries (rep, which is also the number of ac-
tors in the equivalent HSDFG) of each graph is shown. Since the number of cycles
in the equivalent HSDFG directly corresponds to the number of different cycle
mean expressions, the sum of repetition vector entries is an important indication
for the expected run-time, besides the actor and parameter counts.

The two methods compared in Table 5.1 are fast in most cases with only the
satellite receiver taking substantially more than a few seconds. The divide-and-
conquer method is fast in all the cases. It is also less sensitive to the ranges of
parameters than the state-space method. However, its execution time does scale
up exponentially with an increasing number of parameters. On the other hand,
typically, in practical applications only a few parameters are needed since the
number of actors with varying execution times is limited and the variations can
be captured by the same underlying parameters.

The state-space method works very fast for applications like the H.263 decoder,
the H.263 encoder, the MP3 playback and the MP3 decoder, which have a few
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actors with large execution times. In a few cases, it is faster than divide and
conquer. On the other hand, it performs poorly on graphs whose actors have
approximately equal execution times. For example, for the satellite receiver, the
algorithm took more than a few hours.

Summarizing, the results show that a design-time parametric throughput anal-
ysis is feasible, with a purely divide-and-conquer approach over the entire param-
eter space performing best. Considering the results in, for example, the context of
a run-time resource- or quality management application as proposed e.g. in [54],
it is clear that the processing time and memory usage of a throughput calculation
for concrete values of the execution time parameters, consisting of an evaluation of
the maximum value of the obtained dominating mcmes, are negligible compared
to the processing time and memory usage of the typical streaming application.
They are in general also small compared to the processing time and memory us-
age of a traditional throughput calculation, which is typically too expensive to
perform at run-time.

5.7 Parametric Throughput Analysis of Arbitrary SDFGs

So far in this chapter, all the throughput calculation techniques explained above
work on consistent and strongly connected parametric SDFGs. In this section, we
extend the throughput calculation techniques to arbitrary consistent parametric
SDFGs. Definition 4.2, in Section 4.5, defines the throughput of an arbitrary
SDFG as the normalized throughput of its slowest actor. Proposition 4.3 states
that the normalized throughput of all actors in a consistent strongly connected
SDFG are equal. Furthermore, the normalized throughput of an actor in a con-
sistent and strongly connected parametric SDFG for every point in the parameter
space can be obtained by the value of an mcme in the graph’s DCMS which has
the maximum value in that point. So, the throughput of a parametric SDFG can
be found as follows.

First, we find the DCMS of every maximal strongly connected component of
the graph separately. By unifying these sets, we obtain a set which gives the
inverse throughput of the arbitrary graph for every point in the parameter space.
However, during the unification, some of the mcmes may get dominated by others.
The DMCS of an arbitrary parametric SDFG can be obtained by removing the
redundant mcmes of this set using the techniques explained in Section 5.3.

5.8 Related Work

The only directly related work we are aware of is [52] which is only applicable
on the weighted directed graphs explained in the previous chapter. This work
has been proposed in Max-Plus algebra notations and it studies the variations of
mcmes if all the actor execution times change with the same value, which means
it only allows one parameter in actor execution times.
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The main idea of having throughput regions in the Divide&Conquer algorithm
has been inspired by the regions from timed automata [2] in which, similar to
throughput regions, each region shares the same property.

5.9 Summary

We have extended throughput analysis of SDFGs to parametric SDFGs so that
actors can have parameters as their execution times. The throughput of such
graphs is a function of the parameters. Evaluating these functions is in general
faster than concrete throughput analysis methods. We adapted existing methods
for computing throughput to parametric SDFGs and proposed a new, faster,
algorithm.



Chapter 6

Latency

6.1 Overview

The main goal of using synchronous data flow graphs is to provide predictable
performance. Throughput as one of the most prominent performance metrics
is discussed in the previous chapters. Other performance indicators are storage
requirements and latency. Buffer minimization for SDFGs has also been studied
[24, 64, 70], but latency has until recently only been studied for HSDFGs [39, 44,
60]. Latency is important in interactive applications such as video conferencing,
telephony and games, where latency beyond a certain bound becomes annoying
to the users. It is in principle possible to compute latency metrics for an SDFG
via a conversion to a homogeneous SDFG. However, as mentioned before, this
conversion might lead to an exponential increase in the number of nodes in the
graph, which makes it prohibitively expensive in some cases.

In this chapter, we present a technique to compute the minimal achievable
latency between the executions of any two actors in an SDFG. We also present
an execution scheme that defines a class of static order schedules, i.e., the order
of actor firings is determined a priori, which gives a minimal latency. Since this
scheme may negatively affect throughput, we also propose a heuristic to minimize
latency under a throughput constraint. We prove that simultaneously optimal
throughput and latency is not achievable in all cases. We evaluate our schemes
in a single-processor context and in a multi-processor context with sufficiently
many resources to maximally exploit parallelism, for various buffering schemes.
In the multi-processor context, we compare our execution schemes with self-timed
execution. In many cases, substantial gains in latency are possible. It further
turns out that for all real models and for most synthetic cases minimal latency and
maximal throughput can be achieved simultaneously. For example, we calculated
the latency and the throughput of the self-timed execution of an MP3 decoder
modeled as an SDFG, taken from [61] and already used in Chapters 4 and 5,
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assuming the availability of enough resources for achieving maximum parallelism.
Our calculation shows that the latency between actors requantization and Sub-
band inversion for self-timed execution is as large as 43ms. We can achieve the
same throughput of a frame per 10ms while reducing the latency to 27ms just by
changing the order of actor firings.

Section 6.2 defines a notion of latency for SDFGs, generalizing a definition of
latency for homogeneous SDFGs [60]. Section 6.3 introduces an execution scheme
that minimizes latency, while Section 6.4 presents latency-optimal static order
scheduling policies for single-processor systems and for a multi-processor context
with sufficient resources to exploit maximal parallelism. Section 6.5 gives our
technique for minimizing latency under a throughput constraint. It also disproves
the existence of a general scheduling scheme for achieving simultaneous optimal
throughput and latency in all cases by providing a counter example. In Section
6.6, we experimentally evaluate our techniques. Section 6.7 discusses related work
and finally Section 6.8 summarizes. This chapter is based on publication [30].

6.2 Latency

This section formally defines a notion of latency for timed SDFGs. Generally
speaking, latency is the time delay between the moment that a stimulus occurs
and the moment that its effect begins or ends. In timed SDFGs, stimuli are actor
firings and their effects are the consumptions of produced tokens by some other
actors. In the remainder of this chapter we limit ourselves to consistent, live and
strongly connected SDFGs. The latency concepts developed in the chapter can be
extended to non-live and non-strongly connected graphs, but the definitions and
reasoning becomes much more tedious. Furthermore, as argued before, non-live
SDFGs are of little interest in the multimedia domain, and many SDFGs in that
domain are strongly connected either inherently or due to buffering constraints
(See [40, 64]). To define latency, first, we need to define the following.

Definition 6.1. (Corresponding Firing) Let a1, a2, . . . , ak ∈ A be actors of a
timed SDFG (A, C, E) on a directed path a1, a2, . . . , ak connecting a1 to ak. We
say that the j1-th firing of a1 corresponds to the jk-th firing of ak iff there exist
ji ∈ IN such that j2 is the first firing of a2 which consumes at least one token
produced by the j1-th firing of a1, j3 is the first firing of a3 which uses at least
one token produced by the j2-th firing of a2, and so on. We denote the firing of
ak corresponding to the j1-th firing of a1 by cf (a1, j1, ak).

Note that in general the time that tokens need to travel from some source
actor to some destination actor may differ in different firings of the source actor.
In an HSDFG, where all production and consumption rates are one, there is a
one-to-one correspondence between actor firings of some source and some desti-
nation. Because of differing firing rates, this correspondence does not exist, in
general, between actors in an SDFG. In order to arrive at a proper definition of
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Figure 6.1: An example latency SDFG.

latency for SDFGs, we add an explicit source actor to the source of our latency
measurement and a destination actor to the intended destination, each of which
fires by construction exactly once in every iteration of the graph. If an SDFG
already has meaningful input and output actors with repetition vector entries of
one, these actors can function as source and destination and no actors need to be
added.

Definition 6.2. (Latency Graph) Let a, b ∈ A be two actors of a timed SDFG
(A, C, E) with repetition vector q, and let src, dst /∈ A be two new actors. We
define the latency graph for actors a and b as GL(a,b) = (AL, CL, EL), where
AL = A∪{src, dst}, CL = C∪{csrc , cdst} where csrc is a channel from src to a with
production and consumption rates of q(a) and 1, and cdst is a channel from b to dst
with production and consumption rates 1 and q(b) and EL = E∪{(src, 0), (dst , 0)}.

The latency between two actors is defined through the latency of different
firings of actors src and dst in their latency graph. Note that src and dst have
execution time 0 and unlimited auto-concurrency, so that their addition does not
influence the timing behavior of the graph, as further clarified below.

In this chapter we use the SDFG example depicted in Figure 6.1 as our run-
ning example. It has six actors src, dst , a, b, j, k and its repetition vector q is
{(src, 1), (a, 2), (j, 3), (k, 2), (b, 1), (dst , 1)}. Observe that the example of Figure
6.1 shows in fact the latency graph for actors a and b of the SDFG obtained when
omitting the src and dst actors. As src does not have any input channel it can
fire as often as needed; therefore it puts no restriction on the firings of a. Also,
as channels are unbounded, the firing of actor b is not restricted by actor dst .
Furthermore, because both actors src and dst have execution times zero, and do
not impose any restrictions on the firings of the other actors, any execution of
the latency graph is an execution of the original graph too when src and dst are
omitted from that execution.

The following proposition shows that there is a one-to-one correspondence
between src and dst firings (where dst may have some initial firings without
corresponding src firing).
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Proposition 6.1. Let GL(a,b) be some latency graph. There is some δ ∈ IN0

such that the k-th firing of source actor src for arbitrary k ∈ IN , corresponds to
the (k + δ)-th firing of dst, i.e., cf (src, k, dst) = k + δ for all k ∈ IN .

Proof. According to the definition of the repetition vector and of an iteration,
we know that if a graph executes a complete iteration i.e., each actor a fires as
many times as q(a), then the channel state does not change. Therefore, firing a
complete iteration does not change the relation of corresponding firings of any
two actors in the graph. Because src and dst each have entry 1 in the repetition
vector, the corresponding firing of the k-th firing of src is always firing k + δ for
some fixed δ, if δ is the dst firing corresponding to the first firing of actor src.

In practice, we are mostly interested in the latency of actors which are con-
sidered the input and the output of the system, and these actors often have a
repetition vector entry of one already. Furthermore, usually, only executions of
complete iterations of graphs are meaningful. Therefore, in case actors have rep-
etition vector entries different from one, we do not look at all firings of those
actors. Instead, via the addition of the src and dst actors, the latency is defined
(below) on the groups of firings of each actor that contain as many firings of the
actors as their repetition vector entries.

Executions of SDFGs and consequently their latencies directly depend on the
platform they are mapped onto. In other words, due to resource constraints, such
as for example a limited number of processing units, some executions might not
be feasible. The set of feasible executions is denoted FE . Later in this chapter,
feasible executions are defined assuming two types of platforms. The first platform
is assuming a single processing element in which only one actor can fire at a time
and excludes any concurrent firings of actors. The second platform is assumed
to have sufficiently many processing elements in order to exploit all potential
parallelism of the applications, i.e., each actor can essentially start its firing as
soon as all of its input data is available.

Definition 6.3. (Latency) Let a, b ∈ A be two actors of a timed SDFG (A, C, E)
with latency graph GL(a,b). The k-th latency of a and b for an execution σ is
defined as the time delay between the k-th firing of src and its corresponding
firing of dst in σ, and it is denoted by Lσ

k (a, b):

Lσ
k(a, b) = F σ

dst,cf (src,k,dst) − F σ
src,k.

The latency of actors a and b in execution σ, Lσ(a, b), is defined as the maximum
k-th latency of a and b for all firings of a:

Lσ(a, b) = max
k∈IN

Lσ
k(a, b).

The minimal latency of actors a and b, Lmin(a, b), is defined as the minimum
over all feasible executions in FE:

Lmin(a, b) = min
σ∈FE

Lσ(a, b).
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Figure 6.2: A timed execution of the example SDFG.

When assuming that src fires immediately before an a firing and dst as soon
as it gets enabled, this definition implies that latency is measured from the start
time of a firing of actor a (or group of firings), intuitively corresponding to the
consumption of some input, to the finishing time of the corresponding (group of)
firing(s) of actor b, intuitively corresponding to the production of output directly
related to the consumed input. The current definition is consistent with and
generalizes the definition of latency given for HSDFGs in [60].

Figure 6.2 shows a scheduling trace of the running example. The horizontal
axis represents the progress of time. Each row is dedicated to the firing sequences
of an actor. To actors with simultaneous firings more rows are dedicated. For
example, actors j and k have two rows each. Each actor firing is represented
by a box which starts at the time where the firing starts and lasts as long as
the execution time of that actor. As the execution times of actors src and dst
are zeros, they are shown by very small boxes. All the executions shown in this
chapter are periodic, and the periodic part which repeats indefinitely is specified
between two vertical lines. The latency between actors a and b for the execution
of Figure 6.2 of the running example equals 7, being the total delay between
the firings of actors src and dst in any period. It will turn out below that the
execution shown minimizes the latency between firings of actors src and dst (and
hence between firings of a and b).

6.3 Minimum Latency Executions

In this section, we introduce an execution scheme to determine the minimal pos-
sible latency.

The idea of having an execution in which the latency between actors src and
dst is minimal, is by minimizing the number of actor firings between each firing
of src and its corresponding firing of dst . In other words, by allowing only the
necessary set of actor firings between each firing of src and corresponding dst
firing we get a class of executions with minimum latency between src and dst.
The following definition characterizes this class of executions in more detail.

Definition 6.4. (Minimum Latency Execution) Let GL(a,b) be the latency
graph of a strongly connected timed SDFG G = (A, C, E) with actors a and b. A
feasible execution consisting of the repetition of the following four phases is called
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a minimum latency execution.

Phase 1 Execute actors except src until src is the only enabled actor and no
other actor firings are ongoing. (Note that src is always enabled because it
does not have any inputs.)

Phase 2 Fire src once.

Phase 3 Execute, without any unnecessary delays, the minimum set of required
actor firings for enabling dst for one firing.

Phase 4 Fire dst once.

Let Pn with n ∈ IN the part of the execution trace which represents the n-th
execution of the four phases.

Figure 6.2 shows a minimum latency execution of the running example. In
Phases 1 and 3, execution is self-timed. Phase 1 finishes after a finite number of
actor firings because we assumed that the original SDFG is strongly connected,
i.e., all the actors in the graph are causally dependent on each other. Therefore, if
actor a stops firing, only a finite number of firings of other actors can occur. Note
that an SDFG may exhibit more executions that realize minimum latency than
those defined in Definition 6.4. However, the defined executions are guaranteed
to have minimum latency (proved below).

Proposition 6.2. Let G = (A, C, E) be a live timed SDFG with GL(a,b) the
latency graph for actors a and b in A. Any minimum latency execution of GL(a,b)

has the following properties.

1. Pn equals one iteration for all n > 1 and the state reached after Phase 1 is
the same for all n ≥ 1.

2. The n-th firing of src and its corresponding firing cf (src, n, dst) of dst occur
in the same Pn.

3. The set of actor firings between any firing of src and its corresponding firing
of dst is the smallest possible set among all executions.

Proof. Part 1: After Phase 1, no actor is enabled, except src. Strong connected-
ness of G implies that Phase 1 terminates. The repetition vector entry is one for
src, and by construction a firing of actor src enables actor a for q(a) firings, when
q is the repetition vector. This number of firings of a enables all successors of a
for as many firings as their repetition vector entries, and so on. In fact, there is
such an execution trace for all live SDFGs [41]. Since there is only one firing of
src, no actor can also be fired more often than its repetition vector entry. Some
part of these firings happen in Phase 1 and the rest happen in Phases 3 and 4.
While going from the end of Phase 1, through Phases 2, 3, 4 and 1 again, the
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numbers of firings correspond exactly to the repetition vector and, hence, by the
balance equations (Definition 2.8), the state reached must be the same.
Part 2: During the execution of Phase 1 in P1, dst fires as often as it can without
using any tokens from the first firing of src. Hence, the first firing of dst after
this phase depends on a token from the first firing of src after this phase, which
is the first firing of src ever. src fires in Phase 2 of P1 and dst in Phase 4 of P1.
In each of the following Pn, based on Part 1 of the proof and the fact that both
src and dst have repetition vector entry one, both src and dst fire once in Phases
2 and 4 respectively and because of Proposition 6.1, these firings are each pairs
of corresponding firings.
Part 3: By definition of Phase 1, we know that none of the firings of Phase 3 can
fire in Phase 1, since all of them depend on the firing of src. Besides, Phase 3
only fires the minimum set of actor firings needed for enabling dst after the firing
of src. Therefore, the set of actor firings in Phase 3 is the minimum set of firings
possible between the corresponding src and dst . Hence, for any other execution
of the SDFG, the firings between the corresponding src and dst firings contain at
least those firings of Phase 3.

Proposition 6.2 shows that the set of firings in between the designated src and
dst actors is minimal in any minimum latency execution (part 3), that a minimum
latency execution is periodic, in a sense that the states reach after the execution
of phase 1 follow a periodic behavior (part 1), and that the pairs of corresponding
src and dst firings that determine the latency always occur in one period (part
2). The precise duration of the firings between src and dst firings depends on
the particular execution. The set of allowed executions may be constrained by
the available platform; a single-processor platform, for example, does not allow
concurrent execution. If Phase 3 firings are executed within platform constraints
without unnecessary delays, the following result follows in a straightforward way
from Proposition 6.2.

Theorem 6.1. Let σ be any minimum latency execution of a latency graph GL(a,b)

taken from the set of feasible executions FE. Then, we have

Lσ(a, b) = Lmin(a, b).

Proof. Part 3 of Proposition 6.2 states that the set of firings in between a src
firing and its corresponding dst firing is the smallest possible. Thus, execution
of this necessary set, without any unnecessary delay, leads to an execution with
a minimum possible latency. Note that executing a set of actors without any
unnecessary delay means that each actor in the set starts its firing as soon as it is
enabled and there is a free processor available in the platform on which the graph
is executed. In the other words, they are executions in which all actors fire as
soon as they have their required data and resources available.

Observe that Proposition 6.2 proves that a minimum latency execution has
a periodic phase consisting of one iteration of the SDFG. In general, executions,
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Figure 6.3: A single-processor minimum latency static order schedule of the ex-
ample SDFG.

such as for example self-timed execution, that optimize throughput, might have
a periodic phase consisting of multiple iterations [29]. In the example execution
of Figure 6.2, the throughput of (output) actor b is 1/9. Below, it becomes clear
that this is not optimal.

6.4 Static Order Scheduling Policies

In general, scheduling an application involves assigning actors to processing ele-
ments, ordering the execution of each actor on each processing element and finally
determining the firing times for each actor such that data and control dependen-
cies are met. In this chapter, we only look into two types of platform. In both of
our platforms, the single-processor and sufficiently-many-processor actor assign-
ments are trivial. Also the last two cases of scheduling in both of these steps are
combined by specifying the order of actor firings.

A well-known schedule type in which the firing orders of all actors are de-
termined at the compile time is called the static order schedule. The minimum
latency execution given in Definition 6.4 results in a static order schedule as it
determines the order of firings of all actors in the execution. In the following, we
explain the minimum latency execution for each of the two discussed platforms.

6.4.1 Single-Processor Scheduling

In the previous section, we have seen that any minimum latency execution leads to
a minimum latency between the designated pair of actors. To create a static order
schedule for a single processor, it only remains to order the various executions in
Phases 1 and 3 of the scheme. If only considering latency, this order can be
arbitrary, as long as it satisfies the data and control dependencies specified by
the channels in the SDFG. One could decide to try to optimize other constraints
such as code size, using for example single appearance scheduling techniques [8,
67]. With respect to throughput, it can be observed that the order in which the
individual actors are scheduled in any feasible schedule of a consistent SDFG on a
single processor does not impact the average throughput of the application as long
as there are no idle periods. Therefore, any minimum latency execution combines
minimum latency with the maximal throughput that can be obtained on a single
processor.
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Figure 6.3 shows a single-processor static order schedule for our running exam-
ple that adheres to the minimum latency execution scheme. The latency between
actors a and b is 8 and the throughput of b is 1/12. Both latency and throughput
are optimal for a single processor.

6.4.2 Scheduling with Maximal Parallelism

An interesting case in a multi-processor context, is the case that sufficiently many
resources are available to maximally exploit parallelism, or in other words, a case
with unlimited processing resources so that any enabled actor can always make
progress and feasibility of executions is only determined by the data dependencies
specified by the graph structure. As mentioned, this allows to determine the
minimum achievable latency constrained only by the dependencies in the SDFG.
The result can be used as a feasibility check for the application latency in a
(multi-processor) design trajectory.

Observe that the crucial point in the 4-phase minimum latency execution
scheme is that the actor firings of Phase 1 cannot interfere with the firings in
Phase 3. In a single-processor context, this simply means that these two phases
have to be executed completely separately. However, in a context with sufficient
resources, the two phases can be allowed to execute concurrently, in a self-timed
manner, because firings of Phase 1 that are executed concurrently with firings
of Phase 3 do not interfere with those Phase 3 firings. Furthermore, self-timed
execution minimizes the execution time of the critical path of the actor firings
in Phase 3. Since also the firing of dst (Phase 4) can be integrated into this
self-timed execution scheme, these observations lead to the following execution
scheme.

Definition 6.5. (Minimum Latency Execution Scheme with Unlimited
Resources)

Phase 1 Execute actors of the latency graph except src in a self-timed manner
until src is the only enabled actor and there are no ongoing firings.

Phase 2 Fire src once, and repeat.

This scheme suggests a concrete multi-processor static order schedule that
simply schedules the actor firings in the two phases of this minimum latency
execution scheme iteratively in a self-timed manner. Note that the first execution
of Phase 1 might be different from the other executions of Phase 1, so that the
resulting static order schedule still has a transient part and a periodically repeated
part. Figure 6.4 shows a latency-optimal static order schedule adhering to this
scheme. The latency between actors a and b is 7, which is of course the same
latency as in the execution of Figure 6.2 which was already optimal given the
dependencies inherent in the SDFG. The advantage of the new execution scheme
shows in the improved throughput. The throughput of actor b in the execution
of Figure 6.4 is 1/7, whereas it is 1/9 in the execution of Figure 6.2.
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Figure 6.4: A minimum latency static order schedule using the optimized execu-
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Figure 6.5: A counter example G for simultaneously optimizing throughput and
latency.

It is interesting to observe that the minimal achievable latency given some
unspecified amount of processing resources is always between the minimal latency
with maximal parallelism and the minimum latency for a single processor.

6.5 Throughput Constraints

A multimedia application is often subject to multiple performance constraints
such as latency, throughput and memory usage. So far, we have seen several
scheduling policies for obtaining minimum latency. The single-processor policy
achieves also the maximum throughput since it fully utilizes the only processing
unit.

The maximum parallelism policy, as the other policies, disallows overlap be-
tween multiple iterations of the SDFG. This potentially influences throughput
negatively. By allowing simultaneous firings of the source actor in Phase 1 of Def-
inition 6.5, multiple iterations of the SDFG execution can be scheduled in parallel,
which may lead to a higher throughput [41, Sec. 3.4]. However, this might have
a negative effect on latency. In fact, we have the following proposition.

Proposition 6.3. Given an arbitrary SDFG G; assume sufficiently many re-
sources are available, i.e., the feasibility of executions is only determined by the
data dependencies between actors. G does not necessarily have an execution that
simultaneously minimizes latency and maximizes throughput.

Figure 6.5 shows an example SDFG G for which it is not possible to simul-
taneously optimize latency and throughput. The minimal latency that can be
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Figure 6.7: Maximal throughput execution of G.

obtained for G is 2. The minimal latency execution obtained via Definition 6.5 is
shown in Figure 6.6.

Figure 6.7 shows the self-timed execution of this example (split into two parts,
as explained later), with the exception that actor src fires only when actor a needs
tokens for firing. The firings of src in Figure 6.7 are scheduled in such a way that
they do not constrain throughput, so the execution in Figure 6.7 achieves maximal
throughput. For example, the throughput of actor b is 4/3 firings per time unit.
We see that the latency of the execution is 5 (due to the src and dst firings in
part (1) of the execution).

The self-timed execution of G can be divided into two parts. Suppose we
color the first token on channel c-a and the token on b-c blue and the second
and third token on channel c-a red. This coloring implies that firings of actor
c always consume and produce tokens of one color. In Figure 6.7, (1) and (2)
correspond to actor firings involving blue and red tokens on channels a-b, b-c, and
c-a respectively.

The minimal latency execution of Figure 6.6 follows the schedule of part (2) in
Figure 6.7, i.e., all tokens are processed according to the red scheme. Throughput
of b in the execution of Figure 6.6 is 2/3 firings per time unit. This is the maximum
that can be achieved without executing multiple iterations of G concurrently.
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Figure 6.8: Modeling a throughput constraint.

(Note that an iteration of G consists of one firing of src, dst , and c, and two
firings of a and b.) However, executing multiple iterations concurrently implies
that tokens are necessarily processed according to the blue scheme, part (1), of
Figure 6.7 (or an even slower scheme). This implies that increasing throughput
necessarily leads to a higher latency, proving Proposition 6.3.

A consequence of Proposition 6.3 is that it is interesting to explore the through-
put and latency trade-off under the maximal parallelism assumption. In the re-
mainder of this section, we propose a heuristic execution scheme that attempts to
minimize latency under a given throughput constraint. That is, the algorithm tries
to schedule the SDFG in such a way that the throughput constraint is met, while
latency is minimized. If the SDFG is inherently too slow to meet the throughput
constraint, the algorithm returns a schedule with maximum throughput and a
minimized latency.

An important observation is that a throughput constraint can be modeled in
an SDFG (See Figure 6.8). Assume we want to impose a throughput constraint
of τ firings per time unit on a designated actor b. This can be achieved by
adding a fresh actor tc to the SDFG with a self-loop containing one token to
avoid simultaneous firings of tc and with an execution time of τ−1. By adding
two channels between b and tc as shown in the figure, tc on the long run prohibits
b to fire more often than τ times per time unit. We can calculate the number of
initial tokens on the channel from tc to b, denoted by k in the figure, such that
the graph achieves the maximum throughput that can be obtained by the graph
without k-b channel, i.e., such that the cycle through b and tc does not restrict
the throughput. In fact, k is the buffer size for the channel connecting b to tc,
and the minimum k can be calculated by the method proposed in [64, 66]. Even
by choosing the right k the rest of the SDFG might slow down b more than tc,
so the realized throughput for b could be lower than τ . The number of tokens in
the tc-b channel determines how much short-term deviation in b-s throughput is
allowed. This jitter may influence the minimal achievable latency from any source
actor to b.

A throughput constraint can be added to the sink actor of a pair of actors for
which latency needs to be minimized. This results in the throughput-constrained
latency graph.

Definition 6.6. (Throughput-constrained Latency Graph) Let GL(a,b) =
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(AL, CL, EL) be the latency graph of some SDFG G = (A, C, E) with actors a, b ∈
A and with repetition vector q. Let τ be a throughput constraint on actor b, and let
tc /∈ A be a new actor. We define the τ-constrained latency graph for actors a and
b as GL(a,b,τ) = (Aτ , Cτ , Eτ ), where Aτ = AL ∪ {tc}, Cτ = CL ∪ {c0, c1, c2}. c0

connects b to tc, c1 connects tc to b and c2 is a self-loop of tc. All production and
consumption rates of these channels are also equal to one. Eτ = EL∪{(tc, τ−1)}.
The initial channel state γ0 for the new channels c0, c1, c2 is defined as follows:
γ0(c0) = 0, γ0(c2) = 1, and γ0(c2) = k with k the minimal buffer size of channel
c0 needed to achieve maximal throughput of the graph without channel c1, as
computed by the technique of [64, 66].

Given a throughput-constrained latency graph, the goal of minimizing latency
under the throughput constraint reduces to minimizing latency while maintain-
ing maximal throughput of the throughput-constrained SDFG. As mentioned,
maximal throughput can be achieved via self-timed execution. The algorithm
presented below essentially performs a self-timed execution, except that the fir-
ings of the designated actor src are delayed. The idea is that latency is minimized
by scheduling the firing of src precisely the minimum achievable latency number
of time units before the dst firing times in self-timed execution. The algorithm
does not change the average number of firings over time of any actor in the
graph, although it may delay some firings over time. In other words, the maximal
throughput of entirely self-timed execution is maintained, but dependencies in
the graph may cause the dst actor to fire at a different moment in time in the
schedule produced by the algorithm when compared to the self-timed execution.
Consequently, the latency need not be equal to the minimal achievable latency.

Algorithm optimizeThroughputLatency (GL(a,b,τ))
Input: A τ -constrained latency graph GL(a,b,τ) of a strongly connected SDFG G.
Output: “A schedule with maximal throughput (under constraint τ) and (close

to) minimal latency”
1. Calculate Lmin(a, b) from the execution defined in Definition 6.5.
2. Execute GL(a,b,τ) in self-timed manner, and store the time of all the firings

of actor dst .
3. Execute GL(a,b,τ) as follows

- Fire all actors but src as soon as they are enabled.

- Fire src (which is always enabled) if the time is Lmin(a, b) earlier than
the time stored in Line 2 for the corresponding dst firing.

return The schedule obtained from the execution of Line 3.

Theorem 6.2. The schedule returned by algorithm optimizeThroughputLatency
achieves maximal throughput under the given constraint τ .

Proof. Due to consistency and strong connectedness of G, the throughput of all
actors in G is in any execution proportionally related through their repetition vec-
tor entries as shown in Chapter 4. By construction of the throughput-constrained
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Figure 6.9: Self-timed execution.

Figure 6.10: The execution result of OptimizeThroughputLatency.

latency graph, also the throughput of the tc and dst actors is in any execution
of GL(a,b,τ) proportionally related to the other actor throughputs through their
repetition vector entries. (The throughput of src is unbounded because it has no
input channels.) In the output schedule of optimizeThroughputLatency , actor src
has by construction exactly the same throughput as actor dst has in the self-timed
schedule, which is maximal for dst . Given the above observations and the fact
that both src and dst have repetition vector entry one, this implies that src and
dst have the same throughput in the output schedule that is maximal for dst .
Hence also b has maximal throughput in the output schedule.

Figure 6.10 illustrates algorithm optimizeThroughputLatency for the running
example. The aim is to achieve maximal throughput. In this case, it is not
necessary to explicitly model a throughput constraint in the graph. Figure 6.9
shows the self-timed execution of the latency graph, ignoring actor src (which in
principle can fire infinitely often at time 0). This execution is known to provide
the maximal throughput for b, which is 1/6. Actor dst fires at times 2 + 6n
for every n ∈ IN0. The first of these firings does not need a firing of src and
can therefore be ignored for latency purposes. Figure 6.10 shows the output of
optimizeThroughputLatency. Actor src is scheduled at times 1 + 6n, i.e., 7 time
units (the minimum latency) before every dst firing in the self-timed execution
except the first one. The result is a schedule that follows self-timed execution,
with the src actor appropriately inserted. It achieves the minimal achievable
latency of 7 and the maximal throughput of 1/6. For each src firing, the latency
spans the duration till the second subsequent dst firing, i.e., the latency exceeds
the length of one period.
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Table 6.1: Results: synthetic, single-processor.
Min Lat Arbitrary Order

Strongly Conn. Graphs 4.40 9.65
Min Buffer for non-zero Throughput 1.36 1.83
Min Buffer for Max Throughput 1.31 2.10

6.6 Experimental Results

In this section, we evaluate our scheduling schemes. In case of the single pro-
cessor scheme, static order schedules with an arbitrary order of the concurrently
enabled actors are used as a reference point. In the maximal parallelism scenario,
the latency and throughput of the schemes of Definition 6.5 and of algorithm
optimizeThroughputLatency are compared with those of the self-timed execution.
Arbitrary single processor static order schedules can have a very poor latency, and
we were not aware of any scheduling scheme resulting in an execution with opti-
mum latency. Therefore, for each SDFG in the experiment, the generated static
order schedules were constrained allowing only a single iteration of the SDFG
in the periodic part of the schedule, and 100 different static orders were tested,
choosing the best result.

We created a benchmark containing six real DSP and multimedia models and
three sets of 300 synthetic SDFGs, generated using the SDF3 tool [65]. We re-
stricted ourselves to strongly connected graphs. These graphs are either strongly
connected by construction or they have become strongly connected in the process
of modeling the buffer sizes. The first set is composed of random strongly con-
nected SDFGs. The second set contains graphs in which the dedicated storage
capacity for channels is set to the minimum allowing non-zero throughput (com-
puted via techniques from [64]). The third set contains SDFGs in which the buffer
sizes for channels are set to the minimum which is enough to obtain the maximal
achievable throughput [64]. All experiments were performed on a P4 PC running
at 3.4Ghz.

Table 6.1 shows results for optimal latency single-processor schedules and the
best of 100 randomly generated static order schedules. The latency entries are
averaged over the entire set of models and normalized with respect to minimal
achievable latency (without the single-processor constraint). Minimum latency
execution improves latency between 26% and 54%. Recall that throughput is the
same for both techniques.

Table 6.2 shows, for the synthetic graphs and for the maximal parallelism
scheme, the latency, throughput of minimum latency execution (Definition 6.5),
self-timed execution and latency optimized maximal throughput execution (Algo-
rithm optimizeThroughputLatency). All entries show the average numbers taken
over all 300 graphs of each set. The entries for latency are normalized with respect
to the results of the minimum latency schedule and the throughput entries are
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Table 6.2: Results: synthetic, maximal parallelism.
Latency Throughput

Strongly Connected Graphs
Min latency 1 0.68
Self-timed 1.43 1
optimizeLatencyThroughput 1.12 1

Minimum Buffers and Throughput
Min latency 1 0.90
Self-timed 1.54 1
optimizeLatencyThroughput 1.10 1

Maximal Throughput
Min latency 1 0.78
Self-timed 1.31 1
optimizeLatencyThroughput 1.01 1
optimizeLatencyThroughput min latency-max throughput: 858/900 (95.3%)

normalized with respect to the throughput achieved in the self-timed execution
(i.e., the maximal achievable throughput). The self-timed schedule has a 31-54%
on average higher latency than the minimum latency execution depending on the
benchmark. In other words, minimum latency execution gives a significant latency
reduction (24-35%) compared to self-timed execution. The price to be paid is a
decrease in throughput of 10-32%. The latency optimized maximal throughput
execution reduces the latency with 22-29% with respect to self-timed execution,
while guaranteeing maximal throughput. The achieved latency is close to the
minimally achievable latency (within 10% on average). In over 95% of the graphs
the result combines minimal achievable latency with maximal achievable through-
put. The average execution time of the SDF3 tool to compute the schedule for a
single SDFG for any of the scheduling algorithms is a few milliseconds.

We also experimented with SDFG models of actual DSP and multimedia ap-
plications. DSP domain applications are a modem and a sample-rate converter
from [8], and a channel equalizer, and a satellite receiver from [58]. For the multi-
media domain, we used an MP3 and an H.263 decoder from [64]. Table 6.3 shows
the results, giving both average and worst-case values for latency and throughput.

The single-processor experiments show only a small latency improvement in
one case. Due to the limited parallelism in the graphs, 100 randomly generated
static order schedules was in five out of six cases sufficient to achieve optimal
results.

Under the maximum parallelism scheme, we considered the application models
both with minimal buffers for non-zero throughput and minimal buffers for maxi-
mal throughput. The average latency improvement of minimum latency execution
with respect to self-timed execution is 10%, at a throughput loss of 33-44% on
average. The satellite receiver, the modem, and the H.263 decoder do not show
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Table 6.3: Results: DSP and multimedia benchmark.
Lat (avg/worst) Thr (avg/worst)

Single-processor results
Min latency 1/1 1/1
Random-order 1/1.03 1/1

Minimum Buffers and Throughput
Min latency 1/1 0.67/0.34
Self-timed 1.11/1.36 1/1
optimizeLatencyThroughput 1/1 1/1

Maximal Throughput
Min latency 1/1 0.56/0.32
Self-timed 1.11/1.59 1/1
optimizeLatencyThroughput 1/1 1/1
optimizeLatencyThroughput min latency-max throughput: 6/6 (100%)

any improvement. The channel equalizer (26%, minimal buffers) and the MP3
decoder (37%, maximal throughput) show the largest latency improvements (but
also the largest throughput loss). However, applying algorithm optimizeThrough-
putLatency to achieve optimal latency for maximal throughput, achieves maximal
throughput and minimal latency simultaneously in all cases. Execution times are
all in the order of milliseconds and confirming the feasibility of the proposed
techniques.

To test the hypothesis expressed in the introduction that latency optimiza-
tion via a conversion to homogeneous SDFGs is often infeasible, we applied our
techniques also to the HSDFG equivalents of our DSP and multimedia models.
In two cases (satellite receiver, H.263 decoder), self-timed execution of Phase 2
of minimum latency execution (Definition 6.4), which in essence for HSDFGs is a
critical path analysis taking into account parallel and pipelined execution that any
potential HSDFG-based latency optimization technique has to perform (because
all rates are one, only the longest path between source and destination actors
determines the latency), takes several hours. This indeed renders HSDFG-based
techniques prohibitively expensive in these cases.

6.7 Related Work

Latency have been defined for HSDFGs in different works [39, 44, 60]. In these
references, latency is defined as the time difference between the first firing of a
source actor and the corresponding firing of a destination actor. This notion of
latency is mostly useful for a class of scheduling for HSDFGs, that are periodic
from the beginning of the execution. In this class of schedules, known as static pe-
riodic schedules [56], only the first time difference between source and destination
actors is important. However, the time distance between source and correspond-
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ing destination firings can vary a lot during an arbitrary execution of an SDFG
graph. Therefore, we have extended the definition proposed by above mentioned
references to the maximum of the time difference of the firings of a source and
destination over all source and destination firings, grouping together part of a
single graph iteration, as explained in Definition 6.3. This definition is more in
line with the requirements of streaming multimedia applications. A more recent
work [47] has defined latency as the time difference between any two firings of two
actors. This means that data dependencies are not explicitly taken into account
in this definition, and that the firings belonging to a single iteration of an SDFG
are not considered in combination.

6.8 Summary

In this chapter, we have presented a technique to compute the minimum latency
that can be achieved between firings of a designated pair of actors of some SDFG.
The technique is based on an execution scheme that guarantees this minimum
latency. We presented static-order schedules for single-processor platforms, and
for a multi-processor context with sufficient resources to maximally exploit the
available parallelism in an SDFG. The latter can be used as a feasibility check
for application latency in any multi-processor design trajectory. The experimen-
tal evaluation shows that the latency computations and the underlying execution
schemes are efficient. Compared to traditional scheduling techniques and exe-
cution schemes, substantial reductions in latency can be obtained, sometimes at
the price of other performance metrics such as throughput. We showed that it is
not always possible to simultaneously optimize latency and throughput. There-
fore, we also presented a heuristic for optimizing latency under a throughput
constraint. The heuristic gives optimal results for both latency and throughput
simultaneously for all our real DSP and multimedia models, and for over 95%
of our synthetic models. Interesting options for future work are the exploration
of the entire latency-throughput trade-off space, analysis and optimization of la-
tency between multiple pairs of source and destination actors, scheduling schemes
for multiprocessor systems without assuming maximal parallelism, and extensions
taking into account other dimensions like buffer sizes and code size.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

Demands for more complex functionality from multimedia systems is increasing
constantly. At the same time, the price of these products should not increase
and the time-to-market is expected to decrease. This implies the design of more
complex multimedia applications, which, following technology and design trends,
need to run on multiprocessor systems. To achieve shorter time-to-market and re-
liable products, predictable design is proposed as a promising way to facilitate the
design and verification process by only focusing on the subset of design solutions
which are guaranteed to have desirable specifications.

Predictable design cannot be realized without the support of models which are
amenable to formal analysis. A very useful means to model streaming multimedia
applications are Synchronous Data Flow Graphs (SDFGs). SDFGs are interest-
ing because they provide a very good combination of expressivity and analysis
potential.

An SDFG is a graph with actors as vertices and channels as edges. Actors
represent basic parts of an application which need to be executed. Channels
represent data dependencies between actors. SDFGs have traditionally been used
for modeling Digital Signal Processing (DSP) applications which are structurally
very similar to streaming multimedia applications. Some analysis techniques have
been developed for analyzing different performance metrics of DSP applications
modeled in SDFGs. However, these techniques do not scale well for SDFGs with
larger actor execution times and data production and consumption rates, typically
required to model streaming multimedia applications.

Streaming multimedia applications inherently work on virtually infinitely long
streams of data which needs to be processed. Therefore, SDF models with com-
plete or partial deadlock are not of interest. At the same time, as these models
are to be implemented in practice, the memory needed for implementing these
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models should also be finite. Chapter 3 introduces necessary and sufficient condi-
tions for checking SDFGs for liveness and boundedness, i.e., for checking whether
an SDFG can be executed indefinitely using only a finite amount of memory.

Throughput is a prominent performance metric, which has already been stud-
ied in the literature of SDFGs. All of the studied approaches require a conversion
of the considered SDFG to a subclass of SDFGs, namely Homogeneous SDFGs
(HSDFGs). This conversion often results in a dramatic (exponential) increase in
the size of the graph, making throughput analysis prohibitively expensive in com-
putation time or even infeasible in some occasions. Chapter 4 proposes a method
based on state-space exploration, which works directly on SDFGs avoiding the
conversion to HSDFGs. Despite the theoretical worst-case complexity, which is
exponential in the size of the graph, the method proves to be very fast in our
experimental results, mainly because, typically, only a very limited number of
states need to be actually stored and kept in memory during the processing.

Even though throughput analysis proposed in Chapter 4 is fast, for applica-
tions such as run-time reconfiguration of a system, sufficient computation and
memory resources may not be available to perform the analysis on an embed-
ded system. For such applications, we propose parametric throughput analysis
techniques in Chapter 5, where actor execution times can be linear expressions of
some given parameters. In this way, throughput of an SDFG is expressed in the
form of a simple function of these parameters. Evaluation of this function is com-
putationally much cheaper than the recalculation of throughput from scratch.
Furthermore, the parametric throughput analysis can be used for optimization
purposes like performance bottle-neck analysis, where we are interested in anal-
ysis of throughput variations under varying actor execution times. Experimental
results show that parametric throughput analysis is feasible.

Although throughput is a salient performance metric, not all timing aspects of
applications can be analyzed using only throughput. For example, for interactive
applications like telephony, video conferencing and gaming, besides throughput,
latency plays an important role as well. In Chapter 6, we extend the existing def-
inition of latency for HSDFGs to SDFGs. Furthermore, we propose an algorithm
for determining schedules which result in executions with provably minimum la-
tency between any two given actors. We show that it is not in general possible
to simultaneously minimize latency and maximize throughput. We provide a
heuristic algorithm for minimizing latency under a throughput constraint.

7.2 Open Problems and Future Research

The analysis techniques presented in this thesis provide methods to calculate per-
formance metrics, throughput and latency in particular, as well as their optimiza-
tion. An interesting future research direction is the investigation of the simultane-
ous optimization of these performance metrics together with non-timing-related
metrics such as buffer sizes or code size. In general, such analyses will lead to
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trade-off spaces between the various metrics. Also, we did not consider architec-
ture properties in our performance analyses, which is an interesting direction to
look into for future research. Finally, parametric analysis has only been developed
for throughput with parametric actor execution times. Other aspects could be
parameterized, and other metrics could be considered in future work.

In the following, several concrete issues are mentioned which are interesting
to investigate.

• In Chapter 6, analysis techniques are proposed, assuming two platforms,
namely, single processor platforms and multiprocessors with sufficiently
many processors to exploit all the parallelism in a graph. Our techniques
can be extended for general multiprocessor platforms that do not necessarily
allow for the simultaneous execution of all enabled actors.

• In general, certain aspects of the target platform of SDFG applications can
be modeled in the graph structure of SDFGs. However, not all proper-
ties can be modeled only by using SDFGs. Resource sharing and various
types of schedulers are for example aspects that cannot always be captured
in SDFGs. Our analysis techniques can be extended to take such archi-
tecture properties into account, for example in line with the extension of
the throughput analysis for TDMA and static-order scheduling techniques
already proposed in [62, 61].

• Section 6.5 provides a heuristic algorithm for optimizing latency under a
given throughput constraint. The study of the whole throughput and la-
tency trade-off space is a very interesting open issue.

• The trade-off between throughput and channel buffer sizes is studied in
[64, 66]. Channel buffer sizes were not considered in this thesis. Since
the techniques of [64, 66] are based on the same state-space-based analysis
underlying the techniques in this thesis, adding the buffer-sizes dimension
to the latency and throughput trade-off space seems possible.

• In this thesis, we assumed unbounded buffers for channels. If needed, chan-
nel capacities were modeled using backward channels. This model implies
the use of separate storage space for each channel. Assuming shared storage
space for all the channels may be more memory efficient. Analysis of the
minimum required shared storage for deadlock-free execution of SDFGs has
already been explored in [24]. Finding a minimum amount of shared storage
for all channels while achieving maximum throughput or minimum latency
is an interesting direction to achieve efficiency of memory use.

• Chapter 5 provides parametric throughput analysis for SDFGs which is
an interesting starting point for analyzing the behavior of an application
under changes due to the inherent dynamism. However, we only assumed
parametric expressions for actor execution times, whereas different aspects
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of SDFGs, like rates and structure of the graphs can be parameterized.
Extensions in this direction would provide parametric analysis techniques
for computational models more general than SDFGs such as cyclo-static
dataflow graphs (CSDF, [9]), parameterized synchronous dataflow (PSDF,
[7]), variable-rate dataflow (VRDF, [72]), scenario-aware dataflow (SADF,
[69]) or reactive process networks (RPN, [23]).

The above list of research topics emphasizes the further development of analy-
sis techniques for dataflow models, for which this thesis provides a starting point.
Besides the further development of analysis techniques, also their application into
predictable design flows for embedded multimedia systems, such as proposed and
developed in [61], and in predictable run-time resource and quality management,
in line with the techniques proposed in [54], are of interest.
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