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Refining square root safety staffing by expanding Erlang C

A.J.E.M. Janssen 1 J.S.H. van Leeuwaarden 2 Bert Zwart 3

Abstract

We apply a new corrected diffusion approximation for the Erlang C formula to determine
staffing levels in cost minimization and constraint satisfaction problems. These problems
are motivated by large customer contact centers that are modeled as an M/M/s queue
with s the number of servers or agents. The proposed staffing levels are refinements of
the celebrated square root safety staffing rule, and have the appealing property that they
are as simple as the conventional square root safety staffing rule. In addition, we provide
theoretical support for the empirical fact that square root safety staffing works well for
moderate-sized systems.

1 Introduction

Customer contact centers, in particular call centers, play a dominant role in society. Customer
contact centers can be of any size and appear in a variety of places. Many call centers are
being managed by economic principles. In such a setting, it is desirable that agents are
highly utilized, answering calls almost 100 percent of the time; on the other hand, a large
fraction of customers should receive no or just a small amount of waiting. In their pioneering
paper, Halfin & Whitt (1981) showed that when the offered load R is high, and an appropriate
number of agents are employed, a system can achieve a high agent utilization and yet deliver a
good service level by choosing the number of servers as R+β

√
R+o(

√
R). If we omit the small

order term, we call this square-root safety staffing. Since, under square-root safety staffing
and large R, the system operates both in heavy traffic and can serve a significant fraction of
the customers immediately, the system is said to operate in the Quality-and-Efficiency-Driven
(QED) regime. See for example Borst et al. (2004), and the survey paper Gans et al. (2003).

The emergence of large systems like customer contact centers makes the QED regime
practically relevant. This has generated an extensive research effort. Some studies focus-
ing on obtaining limiting approximations for the steady-state distribution or for the time-
dependent process are Gamarnik & Momčilovic (2007), Jelenkovic et al. (2004), Mandel-
baum & Momčilovic (2007), Mandelbaum & Zeltyn (2005), Puhalskii & Reiman (2000), Reed

1Philips Research. Digital Signal Processing Group, HTC-36, 5656 AE Eindhoven, The Netherlands. Email:

a.j.e.m.janssen@philips.com.
2Eindhoven University of Technology and EURANDOM, P.O. Box 513 - 5600 MB Eindhoven, The Nether-

lands. Email: j.s.h.v.leeuwaarden@tue.nl.
3Georgia Institute of Technology. H. Milton Stewart School of Industrial and Systems Engineering, 765

Ferst Drive, 30332 Atlanta, USA. Email: bertzwart@gatech.edu.



(2007a,b) and Whitt (2005). Another body of work is concerned with optimization issues and
developing asymptotically control policies, see for example Atar (2005), Borst et al. (2004),
Dai & Tezcan (2007) and Mandelbaum & Zeltyn (2007).

The general idea behind square-root safety staffing is as follows: a finite server system is
modeled as a system in heavy-traffic, where the number of servers is large, while at the same
time, the system is critically loaded. This can be achieved by setting s = R + β

√
R, and

letting R → ∞, while keeping β = (s − R)/
√
R fixed. In this way the system reaches the

QED regime.
For the M/M/s queue, it is shown in Borst et al. (2004) that this procedure has certain

asymptotic optimality properties. To illustrate the type of results they obtain, we consider
the case of linear costs: waiting costs are w per customer per time unit, and staffing costs
are q per time unit per server. Let µ be the service rate, and let the total number of costs be
K(s,R). It can be shown that

K(s,R) = qs+
w

µ

λ

s− λ
C(s,R) = qr +

√
r

(
qβ +

w

µβ
C(s,R)

)
,

with C(s,R) representing the probability that a customer is delayed, which is known as
the Erlang C formula. The main difficulty in optimizing K(s,R) over s is the complexity
of C(s,R). Halfin & Whitt (1981) showed that, under square-root safety staffing, C(s,R)
converges to a nondegenerate limit C∗(β) as R→∞.

Borst et al. (2004) replace C(s,R) by the simpler function C∗(β), with β = (s−R)/
√
R,

reducing the problem to finding an optimal value of β, which we denote by β∗. This leads
to an approximation s∗ = R + β∗

√
R for the optimal staffing level. Borst et al. (2004) show

that this procedure yields costs which are optimal up to a level o(
√
R).

Based on the Halfin-Whitt limiting regime, one expects the approximation s∗ to be accu-
rate for large values of R, and in particular relevant for large scale service systems such as
customer contact centers. Errors or inaccuracies are expected to arise from the fact that the
actual system is finite-sized.

Despite these potential inaccuracies, Borst et al. (2004) show by numerical experiments
that the approximation s∗ performs exceptionally well in almost all regimes. That is, s∗ usu-
ally differs not more than one agent from the true optimum, even for systems with moderate
values of R. The results in Borst et al. (2004) suggest that any staffing rule of the form
R+ β∗

√
R+ o(

√
R) is asymptotically optimal. It would therefore be useful to examine what

o(
√
R) really means.
In this paper we explore refinements of the square-root safety staffing principle by utilizing

a new asymptotic expansion for the Erlang C formula. In particular, we characterize the
above-mentioned o(

√
R) small order term for two staffing problems: we develop staffing rules

of the form
s• = R+ β∗

√
R+ β•, (1.1)

with β• a (non-negative) constant. An intriguing finding is that, for the staffing problems we
consider, the constant β• is as easy to compute as β∗. It is possible to evaluate the behavior of
β• in cases where the bulk of the costs is due to waiting costs (i.e., the quality driven regime),
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and in the efficiency driven regime, where most costs are related to staffing costs. We refer
Sections 1,7 and 8 of Borst et al. (2004) for a detailed description of the quality driven regime
and the efficiency driven regime.

These refinements also provide theoretical support for the above-mentioned experiments
in Borst et al. (2004): the precise value of the constant β• turns out to be smaller than one in
a large number of cases. In Section 3, we examine staffing under the constraint that the delay
probability should be smaller than ε. The correction term β• turns out to be smaller than
one for values of ε > 0.1. Only for very small values of ε, in the range of 10−3 and smaller,
it makes sense to include a correction term. We find that square-root safety staffing is off by
about two servers if ε = 10−3 and by three to four servers if ε = 10−5. The corrected staffing
level s• is accurate well within one server in all cases.

Similar insights are obtained for the scenario with linear waiting and staffing costs, as
investigated in Section 4. In that section we establish that a suitable refinement of the form
s• is strongly optimal. In particular, we show that the associated costs are optimal up to
a factor O(1/

√
R) with respect to the optimal value of the continuous relaxation. This is

stronger than the result in Borst et al. (2004), who obtained optimality up to a factor o(
√
R).

The results in this paper are related to our recent work on bounds and corrected diffusion
approximations in the Halfin-Whitt regime for the delay probability in the M/D/s queue
and the Erlang B queue, see Janssen et al. (2007, 2008). These papers do not consider
optimal staffing problems; we state some preliminary results from these papers in Section
2.1. In that section we present bounds for the Erlang delay formula that are valid for all
parameter combinations, and are particularly sharp in the Halfin-Whitt regime. We derive a
new corrected diffusion approximation in Section 2.2, which can be used to determine staffing
levels.

The rest of this paper is organized as follows. Several performance results are developed
in Section 2. The staffing problem with a delay constraint is analyzed in Section 3. Section
4 considers the staffing problem with linear waiting and staffing costs. We make several
concluding remarks in Section 5 and present additional proofs in Section 6.

2 Bounds and expansions for Erlang C

The objective of this section is to present several performance results that are necessary in
this paper. Consider the Erlang C (M/M/s) queueing model with Poisson arrival rate λ,
exponential service times with mean 1, and s servers. Let ρ = λ/s < 1 be the system load.
The probability that an arriving customer experiences delay is denoted by C(s, λ). The Erlang
delay formula C(s, λ) in its basic form is only defined for integer values of s. An extension of
this formula that is well defined for all real s > λ is given by (see for example Jagers & Van
Doorn (1986))

C(s, λ) =
[
λ

∫ ∞
0

te−λt(1 + t)s−1dt

]−1

. (2.1)

Throughout the paper, we treat this expression as a definition of C(s, λ). As explained in
Borst et al. (2004), determining the optimal number of agents can be done by first solving
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a continuous optimization problem involving the right-hand side of (2.1). Throughout this
paper, sopt is the optimizing value of this continuous relaxation. Jagers & Van Doorn (1986)
have shown that C(s, λ) is convex in s. By convexity, the optimal number of agents is then
determined by a round-up, or round-down of sopt, whichever leads to the most beneficial
feasible solution. Therefore, we can (and will) always focus on the continuous relaxation of a
staffing problem.

Although (2.1) is fairly explicit, and other explicit expressions for C(s, λ) exist (see for
example Gross & Harris (1998)), these are not very insightful and tractable if λ or s is large.
This motivates us to consider approximations that are sharp for large systems.

To describe these approximations, we introduce the following key parameters:

α =
√
−2s(1− ρ+ ln ρ), (2.2)

β = (s− λ)/
√
λ, (2.3)

γ = (s− λ)/
√
s = (1− ρ)

√
s = β

√
ρ. (2.4)

It has been shown in Lemma 7 of Janssen et al. (2008) that α < β. By expanding 1
2α

2 in
powers of (1− ρ), it easily follows that γ < α, so we have γ < α < β.

Let Φ(u) be the distribution function of the standard normal random variable, and let
φ(u) = 1√

2π
e−

1
2
u2

be its density. The Halfin-Whitt approximation of the delay probability
C(s, λ), which is asymptotically exact if λ→∞ and β fixed, reads

C∗(β) =
[
1 +

βΦ(β)
φ(β)

]−1

. (2.5)

Sometimes the approximation C∗(γ) is used, see for example Whitt (1992). In Janssen et al.
(2008) it is shown that the usage of α in the Halfin-Whitt type approximation for the Erlang
B formula leads to a better approximation than the usage of β or γ.

In Section 2.1 we present upper and lower bounds for the Erlang C formula which have
similar structure as the Halfin-Whitt approximation. These bounds are based on our results
in Janssen et al. (2008) and are shown to hold for the continuous extension (2.1) of the Erlang
C formula. Section 2.2 presents a new corrected diffusion approximation for the Erlang C
formula (2.1). Proofs of the results in this section are presented in Section 6.

2.1 Bounds for the Erlang C formula

The next result provides bounds for the probability C(s, λ) that a customer has to wait in an
M/M/s queue as described above.

Theorem 1. For s > λ,

C(s, λ) ≤
[
ρ+ γ

(
Φ(α)
φ(α)

+
2
3

1√
s

)]−1

, (2.6)

and

C(s, λ) ≥
[
ρ+ γ

(
Φ(α)
φ(α)

+
2
3

1√
s

+
1

φ(α)
1

12s− 1

)]−1

. (2.7)
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The proof of this theorem is deferred to Section 6.1. As mentioned in the introduction,
the structure of the bounds (2.6), (2.7) is quite similar to the Halfin-Whitt approximation,
which is obtained by taking λ→∞ while keeping β fixed. In this asymptotic regime s→∞,
one can see that α and γ both converge to β. With the above theorem at hand, convergence
of C(s, λ) towards the Halfin-Whitt function C∗(β) is obvious. In particular, our bounds are
sharp in the Halfin-Whitt regime. The difference between the lower and upper bound is only
O(1/s) (in fact, it is approximately 1/(12s − 1)). We take the opportunity to illustrate the
quality of these bounds in Table 1. In Table 1, we keep β = 1 fixed, and vary s. The load
λ is chosen such that s = λ + β

√
λ. The quality of the bounds is apparent, even for small

systems.

s λ α (2.7) C(s, λ) (2.6) (2.6)−(2.7)
C(s,λ)

1 3.8197·10−1 8.2993·10−1 3.6571·10−1 3.8197·10−1 3.9437·10−1 7.5040·10−2

2 1.0000·100 8.7897·10−1 3.2678·10−1 3.3333·10−1 3.3936·10−1 3.7727·10−2

5 3.2087·100 9.2364·10−1 2.8886·10−1 2.9097·10−1 2.9328·10−1 1.5181·10−2

10 7.2984·100 9.4624·10−1 2.6937·10−1 2.7030·10−1 2.7142·10−1 7.6160·10−3

20 1.6000·101 9.6215·10−1 2.5565·10−1 2.5608·10−1 2.5663·10−1 3.8180·10−3

50 4.3411·101 9.7618·10−1 2.4361·10−1 2.4377·10−1 2.4398·10−1 1.5310·10−3

100 9.0488·101 9.8320·10−1 2.3761·10−1 2.3769·10−1 2.3779·10−1 7.6654·10−4

200 1.8635·102 9.8815·10−1 2.3340·10−1 2.3344·10−1 2.3349·10−1 3.8365·10−4

500 4.7813·102 9.9252·10−1 2.2969·10−1 2.2970·10−1 2.2972·10−1 1.5360·10−4

1000 9.6887·102 9.9472·10−1 2.2783·10−1 2.2783·10−1 2.2784·10−1 7.6836·10−5

Table 1: Results for the bounds on C(s, λ) for β = 1.

2.2 A corrected diffusion approximation

The goal of this section is to obtain a two-term corrected diffusion approximation of the delay
probability in the case that λ → ∞ and β is bounded. In this case set s = λ + β

√
λ and

define
Cλ(β) := C(s, λ). (2.8)

The results of Halfin & Whitt (1981) imply that Cλ(β)→ C∗(β). The theorem in this section
is a refinement of this result and appears to be new. For corrected diffusion approximations
for single-server queues, we refer to Blanchet & Glynn (2006) and Siegmund (1979).

We need the following notation. A function f(β, λ) is said to be of UO(1/λ) if for any
0 < βg < βd <∞,

sup
λ>0,β∈[βg ,βd]

λ|f(β, λ)| <∞. (2.9)

This is a useful notion, since it allows one to vary β with λ, which we will do in the next
section, where we will optimize over β. All functions we will consider that are of O(1/λ) will
be UO(1/λ) as well (recall that a function f is said to be O(x) if sup f(x)/x <∞).
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Theorem 2. As λ→∞,

Cλ(β) = C∗(β) + C•(β)
β√
λ

+ UO(1/λ), (2.10)

with

C•(β) = C∗(β)2

[
1
3

+
β2

6
+

Φ(β)
φ(β)

(
β

2
+
β3

6

)]
. (2.11)

Note that C•(·) is a smooth function. Although it is possible to derive Theorem 2 from
Theorem 1, we follow the suggestion of a referee and give a direct proof of Theorem 2 in
Section 6.2 which is based on (2.1). Although Theorem 2 may be interesting in itself, its
main purpose in this paper is to serve as departure point for determining refined staffing
levels of the form (1.1). To evaluate the performance, we recommend using the bounds in
Theorem 1, or the series expansion given in Theorem 8 of Janssen et al. (2008). Refining the
square-root safety staffing levels will be the topic of the next two sections.

3 Corrected staffing under a delay constraint

A classical problem is to determine the number of servers necessary to ensure that the fraction
of customers that are delayed before entering service is below a certain threshold, say ε.

Borst et al. (2004) propose to determine the number of servers as a round-up of s∗ =
λ + β∗(ε)

√
λ, with β = β∗ the solution of C∗(β(ε)) = ε. A natural question is how well

this approximation performs. To obtain more insight, we propose to replace β∗(ε) with
β∗(ε) + β•(ε)/

√
λ, giving rise to the corrected staffing level s• = λ+ β∗(ε)

√
λ+ β•(ε), where

β•(ε) needs to be determined. Surprisingly, as will be shown below, β•(ε) can be written
explicitly in terms of β∗(ε) so that the additional computational requirement for this staffing
level is negligible.

The goal is to determine β̃ such that

Cλ(β̃) = C∗(β̃) + C•(β̃)
β̃√
λ

+ UO(1/λ) = ε. (3.1)

It therefore makes sense to consider the equation

C∗(β̃) + C•(β̃)
β̃√
λ

= ε. (3.2)

We fix ε and write β∗ = β∗(ε). Replace β̃ by β∗+g(λ) in (3.2). Apply a Taylor approximation
for C∗(β̃) to obtain

C∗(β∗) + g(λ)C ′∗(β∗) +O(g(λ)2) + C•(β∗)
β∗√
λ

+O(g(λ)/
√
λ) = ε. (3.3)

By definition, the first term equals ε, which yields

g(λ) = −C•(β∗)
C ′∗(β∗)

β∗√
λ

+O(1/λ). (3.4)
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We thus define
β•(ε) = −C•(β∗(ε))

C ′∗(β∗(ε))
β∗(ε). (3.5)

This expression can be simplified by using the identity C∗(β∗(ε)) = ε, which implies

β∗(ε)Φ(β∗(ε))
φ(β∗(ε))

=
1
ε
− 1. (3.6)

In addition, observe that for any β > 0,

C ′∗(β) = −C∗(β)2

(
Φ(β)
φ(β)

+
β

C∗(β)

)
. (3.7)

Applying these results several times we obtain the following theorem.

Theorem 3.

β•(ε) = β∗(ε)
(1− ε)

(
1
2β∗(ε) + 1

6β∗(ε)
3
)

+ ε
(

1
3β∗(ε) + 1

6β∗(ε)
3
)

1− ε+ β∗(ε)2
. (3.8)

If ε ↓ 0, it can be shown by taking logarithms in (3.6) that β∗(ε) ∼
√
−2 ln ε. We therefore

see that
β•(ε) ∼

1
6
β∗(ε)2 ∼ 1

3
ln(1/ε). (3.9)

Based on this expansion, one could conclude that standard square-root safety staffing may
produce rather optimistic estimates of the required number of servers when ε is small. Since
ln 10 ≈ 2.3 < 3, a safe choice is to add n more servers to s∗ if the delay requirement is 10−n.
If ε→ 1, then β∗(ε) ∼ (1− ε)

√
2/π, implying that

β•(ε) ∼
2

3π
(1− ε). (3.10)

This suggests that the conventional square-root safety staffing algorithm is sharp when the
delay constraint is not too severe. This is further illustrated by Figure 1, which plots β•(ε).

Figure 1 clearly shows why square-root safety staffing works so well: the next term in
the expansion indicates that square-root safety staffing is off by less than one server if the
delay requirement is not too stringent. If the delay requirement becomes very strict, it seems
worthwhile to add a correction term.

We now compare the staffing levels s∗ and s• with the optimal staffing level sopt by the
equation C(sopt, λ) = ε; recall that sopt is the solution of the continuous relaxation of the
server staffing problem. For values of ε around 0.5 we find that the difference between the
optimal staffing level and s∗ (or s•) is well within one server. It is therefore more interesting
to show the results for smaller values of ε. Tables 2, 3 and 4 report results for ε = 10−1, 10−3

and 10−5. In all of these cases, the corrected staffing level produces very accurate results; in
all cases s• is within one server of sopt. If the desired probability of delay is 10 percent, s∗ is
not off by more than one server. As the desired delay probability gets smaller, the square-root
safety staffing level s∗ underestimates the correct staffing level - up to 3 servers for ε = 10−5.
In all cases β• accurately predicts the deviation of s∗ from the optimal staffing level.
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Figure 1: The correction term β• as function of the delay probability ε

4 Corrected staffing under a linear cost structure

The second staffing problem we consider determines the number of servers s in such a way
that a certain cost function is minimized. As in the previous section, this is equivalent to
choosing β. It is obvious that optimizing total costs using C∗(β) is more tractable than using
Cλ(β). Extensive numerical experiments conducted in Borst et al. (2004) show that optimal
agent staffing based on C∗(β) rather than Cλ(β) lead to staffing levels which are usually not
more off than a single agent. The cost structure we consider is a special case of that in Borst
et al. (2004), and is as follows. Waiting costs are assumed to be w per customer per time
unit, and service costs are assumed to equal q per agent per time unit. The expected waiting
time is equal to C(s, λ)/(s(1−ρ)). The expected total costs K(s, λ) per unit of time becomes

K(s, λ) = w
λ

(1− ρ)s
Cλ(β) + qs (4.1)

= w
√
λ
Cλ(β)
β

+ qλ+ qβ
√
λ (4.2)

=: qλ+
√
λKλ(β), (4.3)

with Kλ(β) = wCλ(β)
β + qβ. The structure of this cost function is illuminating, since it can

be decomposed into two terms. The first term, qλ, is the amount of costs necessary to keep
the system stable, and it is independent of β. To optimize (that is, minimize) the second
term over β, the idea is to replace Kλ(β) by a simpler cost function. To explain the general
procedure outlined in Borst et al. (2004) in the present case, let β∗ correspond to the optimal
staffing level found by optimizing the function

K∗(β) =
w

β
C∗(β) + qβ. (4.4)
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λ sopt s∗ s∗ − sopt s• s• − sopt

1 2.9315·100 2.4202·100 -5.1134·10−1 2.9868·100 5.5299·10−2

2 4.5328·100 4.0084·100 -5.2435·10−1 4.5751·100 4.2293·10−2

5 8.7134·100 8.1756·100 -5.3775·10−1 8.7423·100 2.8892·10−2

10 1.5036·101 1.4491·101 -5.4534·10−1 1.5058·101 2.1304·10−2

20 2.6902·101 2.6351·101 -5.5110·10−1 2.6918·101 1.5537·10−2

50 6.0599·101 6.0042·101 -5.5653·10−1 6.0609·101 1.0109·10−2

100 1.1476·102 1.1420·102 -5.5939·10−1 1.1477·102 7.2537·10−3

200 2.2065·102 2.2008·102 -5.6146·10−1 2.2065·102 5.1831·10−3

500 5.3232·102 5.3176·102 -5.6333·10−1 5.3232·102 3.3089·10−3

1000 1.0455·103 1.0449·103 -5.6429·10−1 1.0455·103 2.3509·10−3

Table 2: Results for ε = 10−1; β∗ = 1.4202 and β• = 0.5666.

λ sopt s∗ s∗ − sopt s• s• − sopt

1 5.7408·100 4.1153·100 -1.6256·100 6.0350·100 2.9412·10−1

2 8.0910·100 6.4056·100 -1.6854·100 8.3253·100 2.3433·10−1

5 1.3718·101 1.1966·101 -1.7516·100 1.3886·101 1.6811·10−1

10 2.1643·101 1.9851·101 -1.7917·100 2.1771·101 1.2796·10−1

20 3.5756·101 3.3932·101 -1.8239·100 3.5852·101 9.5831·10−2

50 7.3884·101 7.2028·101 -1.8556·100 7.3948·101 6.4077·10−2

100 1.3303·102 1.3115·102 -1.8730·100 1.3307·102 4.6688·10−2

200 2.4594·102 2.4406·102 -1.8859·100 2.4598·102 3.3751·10−2

500 5.7156·102 5.6966·102 -1.8979·100 5.7158·102 2.1783·10−2

1000 1.1004·103 1.0985·103 -1.9041·100 1.1004·103 1.5565·10−2

Table 3: Results for ε = 10−3; β∗ = 3.1153 and β• = 1.9197.

Let s∗ = λ+ β∗
√
λ and let Kopt be the optimal cost level of the continuous relaxation. It is

obvious that Kopt ≤ K(s∗, λ). In Borst et al. (2004) it is shown that the staffing level s∗ is
asymptotically optimal in the sense that

K(s∗, λ) = Kopt + o(
√
λ). (4.5)

This brings us to the goal of the present section. Our aim is to find a staffing level s• such
that the stronger result

K(s•, λ) = Kopt +O(1/
√
λ) (4.6)

holds. Again, this staffing level is of the form

s• = λ+ β∗
√
λ+ β• = s∗ + β•. (4.7)

As in the previous section, we shall give an explicit characterization of β•.
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λ sopt s∗ s∗ − sopt s• s• − sopt

1 8.0194·100 5.2758·100 -2.7436·100 8.6388·100 6.1943·10−1

2 1.0907·101 8.0468·100 -2.8602·100 1.1410·101 5.0281·10−1

5 1.7555·101 1.4561·101 -2.9937·100 1.7924·101 3.6935·10−1

10 2.6598·101 2.3521·101 -3.0773·100 2.6884·101 2.8571·10−1

20 4.2268·101 3.9122·101 -3.1460·100 4.2485·101 2.1703·10−1

50 8.3450·101 8.0234·101 -3.2157·100 8.3597·101 1.4735·10−1

100 1.4601·102 1.4276·102 -3.2547·100 1.4612·102 1.0833·10−1

200 2.6375·102 2.6047·102 -3.2842·100 2.6383·102 7.8861·10−2

500 5.9892·102 5.9561·102 -3.3118·100 5.9897·102 5.1241·10−2

1000 1.1385·103 1.1352·103 -3.3263·100 1.1386·103 3.6746·10−2

Table 4: Results for ε = 10−5; β∗ = 4.2758 and β• = 3.3631.

4.1 A corrected optimization problem

Theorem 2 provides an approximation for Cλ(β) that is correct up to UO(1/λ). It is clear
that we can write

Kλ(β) = K∗(β) +
w√
λ
C•(β) + UO(1/λ). (4.8)

This motivates us to consider the cost function

K•(β) = K∗(β) +
w√
λ
C•(β). (4.9)

Let β∗(λ) be the optimal point of this cost function. It is clear that β∗(λ) is the solution of
the equation

K ′∗(β) = − w√
λ
C ′•(β). (4.10)

Write β∗(λ) = β∗ + ε(λ). From the last equation, and since C ′• is continuous, it follows that
ε(λ) ↓ 0. Since K ′∗(β∗) = 0, and by invoking Taylor’s theorem, we observe that

K ′∗(β∗(λ)) = ε(λ)K ′′∗ (β∗) +O(ε(λ)2). (4.11)

In addition, we have

w√
λ
C ′•(β∗(λ)) +O(1/λ) =

w√
λ
C ′•(β∗) +O(

ε(λ)√
λ

) +O(1/λ). (4.12)

Combining the last three displays, we conclude that

ε(λ) = −wC
′
•(β∗)

K ′′∗ (β∗)
1√
λ

+O(1/λ), (4.13)

Define β• = −wC′•(β∗)
K′′∗ (β∗)

. This formula for β• can be simplified by noting that

K ′′∗ (β) =
w

β

[
C ′′∗ (β)− 2

β
C ′∗(β) +

2
β2
C ′′∗ (β)

]
. (4.14)
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This yields

β• = − β∗C
′
•(β∗)

C ′′∗ (β∗)− 2
β∗
C ′∗(β∗) + 2

β2
∗
C∗(β∗)

= − β∗C
′
•(β∗)

C ′′∗ (β∗) + 2q/w
. (4.15)

We are now ready to prove the main result of this section.

Theorem 4. Let s• = s∗ + β• with β• defined by (4.15). Then

K(s•, λ) = Kopt +O(1/
√
λ). (4.16)

Proof. Let β̄(λ) be the optimizing value of Kλ(β) and observe that

Kopt = λq +
√
λKλ(β̄(λ))

= λq +
√
λ
(
K•(β̄(λ)) + UO(1/λ)

)
.

≥ λq +
√
λK•(β∗(λ)) +O(1/

√
λ).

The third step follows from the property K•(β̄(λ)) ≥ K•(β∗(λ)) and the result β̄(λ) → β∗,
which is shown below. From the relation between β∗(λ) and β∗ + β•/

√
λ, it follows that

K•(β∗(λ)) = K•(β∗ + β•/
√
λ) +O(1/λ). (4.17)

This yields
K(s•, λ) ≤ Kopt +O(1/

√
λ). (4.18)

The proof is completed by noting that K(s•, λ) ≥ Kopt.

In the proof above we have used the following fact for the optimizing value β̄(λ) of Kλ(β).

Lemma 1. β̄(λ)→ β∗.

We could not find a proof of this result in the literature, therefore we include it for
completeness.

Proof. We first note that lim supλ→∞ β̄(λ) < ∞ as shown in Borst et al. (2004). Next we
show that lim infλ β̄(λ) > 0. For this, we derive a lower bound on the delay probability that
is explicit in β, using the lower bound in Theorem 1, and using that γ < β and also α < β,
cf. [12], Lemma 7. Combining these bounds yields

Cλ(β)−1 ≤ 1 +
12
11

√
2πβ exp{1

2
β2} =: Ĉλ(β)−1.

Replace Cλ(β) with Ĉλ(β) in the cost optimization problem, and call the corresponding cost
function K̂λ(β). If there would exist a subsequence (λn) such that β(λn)→ 0 as n→∞, this
would imply that the cost Kλ(β(λn)) would be lower bounded by K̂λ(β(λn)), which diverges
along the chosen subsequence. This violates the fact that Kλ(β(λn)) → K∗(β∗) which is
shown in Borst et al. (2004).

Now assume that λ → ∞ along a subsequence such that β(λ) → β̃ for some β̃. By the
above considerations, β̃ ∈ (0,∞). By Theorem 2, Cλ(β) converges to C∗(β) uniformly in a
neighborhood of β̃, which implies that Kλ(β(λ)) → K∗(β̃). Since also Kλ(β(λ)) → K∗(β∗),
we conclude that K∗(β̃) = K∗(β∗). Since C∗ is strictly convex and decreasing (Borst et al.
(2004), Lemma B.1), we conclude from (4.14) that K∗ is strictly convex. Thus, we arrive at
β∗ = β̃. This holds for any converging subsequence, from which the statement follows.
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Note that both β∗ and β• are a function of t = q/w, so we can write β∗ = β∗(t) and
β• = β•(t).

Like in the previous section, we can estimate the behavior of the correction term β•(t) as
the ratio t becomes small or large, although the analysis is more involved here. Remark 6.4
of Borst et al. (2004) implies that β∗(t) ∼

√
−2 ln t as t ↓ 0 and β∗(t) ∼ 1/

√
t as t → ∞.

Note that small values of t correspond to the quality driven regime, where most customers
enter service immediately after arrival. Similarly, large values of t correspond to the efficiency
driven regime, where most customer are delayed before entering service, cf. Borst et al. (2004).

Proposition 1. In the quality driven regime (i.e. as t ↓ 0):

β•(t) ∼
1
9

ln(1/t). (4.19)

In the efficiency driven regime (as t ↑ ∞):

β•(t) ∼
1

3
√

2π
t−3/2. (4.20)

The proof of this result is presented in Section 6.3.

The asymptotic estimates are illustrated by Figure 2, which plots β• as function of q/w.
Again, the moderate size of our correction term shows why square-root safety staffing works
so well for almost every value of q/w. Only for large values of w (with respect to q), it is
necessary to include a correction term.

0.5 1 1.5 2 2.5 3

q
����
w

0.2

0.4

0.6

0.8

1

correction

Figure 2: The correction term β• as function of q (for w = 1)

We close this section with a numerical illustration of our results. For values of q/w that
are moderate, the difference between the optimal staffing level, square-root safety staffing,
and corrected staffing is within a single agent. Here we restrict to presenting numerical results
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λ sopt s∗ s∗ − sopt s• s• − sopt

1 2.9239·100 2.6674·100 -2.5645·10−1 3.0059·100 8.2069·10−2

2 4.6328·100 4.3581·100 -2.7469·10−1 4.6966·100 6.3828·10−2

5 9.0226·100 8.7284·100 -2.9411·10−1 9.0670·100 4.4410·10−2

10 1.5578·101 1.5273·101 -3.0540·10−1 1.5611·101 3.3117·10−2

20 2.7771·101 2.7457·101 -3.1415·10−1 2.7795·101 2.4369·10−2

50 6.2113·101 6.1790·101 -3.2252·10−1 6.2129·101 1.5994·10−2

100 1.1700·102 1.1667·102 -3.2698·10−1 1.1701·102 1.1533·10−2

200 2.2391·102 2.2358·102 -3.3018·10−1 2.2392·102 8.3396·10−3

500 5.3762·102 5.3728·102 -3.3322·10−1 5.3762·102 5.2957·10−3

1000 1.0531·103 1.0527·103 -3.3476·10−1 1.0531·103 3.7525·10−3

Table 5: Results for q/w = 10−1; β∗ = 1.6674 and β• = 0.3385.

for q/w = 10−1, 10−3 and 10−5, see Tables 5–7. The conclusions are similar to those in the
previous section: while the corrected staffing algorithm is accurate for all cost structures,
conventional square-root safety staffing tends to underestimate the optimal number of agents
as waiting costs become higher.

λ sopt s∗ s∗ − sopt s• s• − sopt

1 5.3309·100 4.1678·100 -1.1631·100 5.6809·100 3.4999·10−1

2 7.7131·100 6.4800·100 -1.2331·100 7.9931·100 2.8000·10−1

5 1.3395·101 1.2083·101 -1.3111·100 1.3597·101 2.0196·10−1

10 2.1376·101 2.0018·101 -1.3588·100 2.1531·101 1.5430·10−1

20 3.5564·101 3.4167·101 -1.3967·100 3.5680·101 1.1638·10−1

50 7.3835·101 7.2400·101 -1.4351·100 7.3913·101 7.7988·10−2

100 1.3313·102 1.3168·102 -1.4560·100 1.3319·102 5.7085·10−2

200 2.4627·102 2.4480·102 -1.4715·100 2.4631·102 4.1617·10−2

500 5.7232·102 5.7083·102 -1.4855·100 5.7235·102 2.7606·10−2

1000 1.1017·103 1.1002·103 -1.4921·100 1.1017·103 2.1011·10−2

Table 6: Results for q/w = 10−3; β∗ = 3.1678 and β• = 1.5131.

5 Concluding remarks

This paper established a corrected diffusion approximation for the Erlang delay formula,
that yields refinements of square-root safety staffing levels as considered by Borst et al.
(2004). These refinements enable an analytical assessment of the accuracy of square-root
safety staffing. If the fraction of customers that have to wait is not too small (say 0.05 or
higher), then the correction term β• is well within one server. This indicates that the speed
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λ sopt s∗ s∗ − sopt s• s• − sopt

1 7.5224·100 5.2985·100 -2.2239·100 8.2139·100 6.9140·10−1

2 1.0432·101 8.0790·100 -2.3525·100 1.0994·101 5.6280·10−1

5 1.7112·101 1.4612·101 -2.4998·100 1.7527·101 4.1549·10−1

10 2.6186·101 2.3593·101 -2.5929·100 2.6508·101 3.2238·10−1

20 4.1894·101 3.9224·101 -2.6702·100 4.2139·101 2.4509·10−1

50 8.3146·101 8.0395·101 -2.7505·100 8.3311·101 1.6480·10−1

100 1.4578·102 1.4299·102 -2.7962·100 1.4590·102 1.1915·10−1

200 2.6358·102 2.6079·102 -2.7904·100 2.6371·102 1.2491·10−1

500 5.9897·102 5.9612·102 -2.8528·100 5.9903·102 6.2537·10−2

1000 1.1388·103 1.1359·103 -2.8635·100 1.1388·103 5.1818·10−2

Table 7: Results for q/w = 10−5; β∗ = 4.2985 and β• = 2.9153.

of convergence of the optimal safety staffing factor to its limiting value is fast, which explains
why square-root safety staffing works so well for moderate-sized systems. If the costs of delay
are more stringent, then including a correction term makes sense.

We are currently carrying out a similar program for the Erlang model with abandonments.
Mandelbaum & Zeltyn (2007) report less favorable numerical results on conventional square-
root safety staffing in this setting; it therefore makes sense to include a correction term in
this case.

6 Additional proofs

6.1 Proof of Theorem 1

The bounds in Theorem 1 are based on similar bounds for the Erlang B blocking formula,
which in turn are based on a continuous extension of the Erlang B formula, derived in Janssen
et al. (2008), and the well-known identity

C(s, λ)−1 = ρ+ (1− ρ)B(s, λ)−1, (6.1)

with
B(s, λ)−1 = λ

∫ ∞
0

e−λt(1 + t)sdt (6.2)

(it is actually not hard to show this identity directly by combining (6.1) and (2.1)). The
continuous extension used in Janssen et al. (2008) reads

B(s, λ)−1 =
1

φ(α)
√

2π

∫ α

−∞
e−

x2

2 y′(x/
√
s)dx, (6.3)

where y is the function that solves the equation

y(x) + ln(1− y(x)) = −1
2
x2, y(0) = 0.
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To prove Theorem 1, it suffices to show that the continuous extensions (6.3) and (6.2) are
identical for all values of s. In Janssen et al. (2008), the following identity is shown:

1
φ(α)

√
2π

∫ α

−∞
e−

x2

2 y′(x/
√
s)dx =

ses

φ(α)
√

2π

∫ ∞
ρ

use−usdu. (6.4)

Note that, using the definition of φ and α in the first step and the change of variables v = u/ρ

in the second,

ses

φ(α)
√

2π

∫ ∞
ρ

use−usdu = seλρ−s
∫ ∞
u=ρ

e−ususdu

= λe−λ
∫ ∞
v=1

e−vλvsdv

= λ

∫ ∞
t=0

e−tλ(t+ 1)sdt.

We conclude that (6.3) and (6.2) are indeed identical. The proof of Theorem 1 now follows
by combining (6.1) with Theorem 1 of Janssen et al. (2008).

6.2 Proof of Theorem 2

As a point of departure, we use the expression (2.1) with s = λ+β
√
λ, and assume throughout

this section that β = (s− λ)/
√
λ is bounded. Consider the function

h(t) = λt− (λ+ β
√
λ) ln(1 + t), (6.5)

with derivative

h′(t) = λ
t− β/

√
λ

1 + t
, (6.6)

vanishing at t = β/
√
λ =: t0. Let α > 0 and v ∈ R be given by (see (2.2))

−1
2
α2 = h(t0),

1
2

(v2 − α2) = h(t), t ≥ 0. (6.7)

We take v such that the sign of v is equal to the sign of t0 − t. We write t = t(v) for the
inverse function, noting that this inverse function is well-defined on all of (−∞, α]. From the
definition of h and t0 we have that

α =
√
−2h(t0) = β − β2

6
√
λ

+O(1/λ). (6.8)

It then follows that

[Cλ(β)]−1 = −λ
∫ α

−∞

t(v)
1 + t(v)

e−
1
2

(v2−α2)t′(v)dv. (6.9)

Combining h′(t(v))t′(v) = v with (6.7) and (6.6) we see that

−λt′(v)
1 + t(v)

=
v

t0 − t(v)
, (6.10)
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and so
[Cλ(β)]−1 = e

1
2
α2

∫ α

−∞

vt(v)
t0 − t(v)

e−
1
2
v2dv. (6.11)

We aim to estimate [Cλ(β)]−1 with an accuracy of O(1/λ) while keeping β bounded, so it
is enough to consider integration ranges [v(λ), α] in (6.11) such that λ exp−1

2v
2(λ) → 0 as

λ→∞. For our purposes, it is sufficient to consider v’s such that v/
√
λ→ 0 as λ→∞. For

such v’s, we approximate t(v) by first writing

h(t) = h(t0) +
1
2
h′′(t0)(t0 − t)2 − 1

6
h′′′(t0)(t0 − t)3 + . . .

= −1
2
α2 +

λ

2(1 + t0)
(t0 − t)2 +

λ

3(1 + t0)2
(t0 − t)3 + . . . . (6.12)

Solving t (such that the sign of t0 − t equals the sign of v) from h(t) = 1
2v

2 − 1
2α

2, we then
find

t0 − t(v) =
v√
λ

+
βv

2λ
− v2

3λ
+O

(
v3

λ3/2

)
. (6.13)

For the v’s we are considering, we have

vt(v)
t0 − t(v)

=
β − v − βv

2
√
λ

+ v2

3
√
λ

+O
(
v3

λ

)
1 + β

2
√
λ
− v

3
√
λ

+O
(
v2

λ

)
= β − v +

βv

3
√
λ
− β2

2
√
λ

+O
(

1 + |v|5

λ

)
. (6.14)

Thus, we get, cf. (6.11),

[Cλ(β)]−1 = e
1
2
α2

∫ α

−∞

(
β − v +

β√
λ

(
v

3
− β

2

))
e−

1
2
v2dv +O(1/λ), (6.15)

where we have restored the lower integration limit from −v(
√
λ) to −∞ at the expense of

exponentially small error. Using the definition of Φ and φ, and∫ α

−∞
ve−

1
2
v2dv = −e−

1
2
α2
, (6.16)

it then follows that

[Cλ(β)]−1 = 1 +
βΦ(α)
φ(α)

− β√
λ

(
1
3

+
βΦ(β)
2φ(β)

)
+O(1/λ). (6.17)

Finally, noting that α = β − β2/(6
√
λ) +O(1/λ), we obtain

β
Φ(α)
φ(α)

= β
Φ(β)
φ(β)

+ β

(
Φ(β)
φ(β)

)′
(α− β) +O(1/λ)

= β
Φ(β)
φ(β)

+ β

(
1 + β

Φ(β)
φ(β)

)
−β2

6
√
λ

+O(1/λ). (6.18)

Theorem 2 now follows by noting that the above estimates are all valid when β is bounded,
and by inserting (6.18) into (6.17).
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Alternative proof of Theorem 2

As an alternative, Theorem 2 can be proven from Theorem 1, by expanding α, γ, ρ in powers
of β, by developing Taylor series expansions for quantities like Φ/(α)/φ(α): From Theorem
1 it can be seen that

Cλ(β)−1 = ρ+ γ

(
Φ(α)
φ(α)

+
2
3

1√
s

)
+ UO(1/λ). (6.19)

Simple computations show that

ρ = 1− β√
λ

+ UO(1/λ), (6.20)

1/
√
s = 1/

√
λ+ UO(1/λ), (6.21)

α2 = β2 − 1
3
β3 1√

λ
+ UO(1/λ), (6.22)

α = β − 1
6
β2 1√

λ
+ UO(1/λ), (6.23)

γ = β − 1
2
β2 1√

λ
+ UO(1/λ). (6.24)

These relations will be used several times. The property in (2.9) for the remainder terms
follows from the estimate for the remainder term in the corresponding Taylor series expan-
sions, combined with the fact that all second derivatives are continuous (and therefore locally
bounded) functions. A similar argument holds for the computations below. Next, we write

Φ(α)
φ(α)

=
Φ(β)
φ(β)

+
Φ(α)− Φ(β)

φ(β)
+ Φ(α)

(
1

φ(α)
− 1
φ(β)

)
. (6.25)

Number the terms on the right hand side by I, II, III. We see that, using Φ(α) − Φ(β) =
(α− β)φ(β) + UO(1/λ),

II = φ(β)−1(α− β)φ(β) + UO(1/λ)

= α− β +O∗(1/λ) = −1
6
β2 1√

λ
+ UO(1/λ).

For the third term, observe that the derivative of 1/φ(x) equals x/φ(x). Therefore,

1
φ(α)

− 1
φ(β)

= (α− β)
β

φ(β)
+ UO((α− β)2)

= − 1
φ(β)

1
6
β3 1√

λ
+ UO(1/λ).

This yields

III = −Φ(α)
φ(β)

1
6
β3 1√

λ
+ UO(1/λ) = −Φ(β)

φ(β)
1
6
β3 1√

λ
+ UO(1/λ). (6.26)

Inserting these estimates for II and III in (6.19), we obtain
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Cλ(β)−1 = ρ+ γ
Φ(α)
φ(α)

+
2
3
γ

1√
λ

+ UO(1/λ)

= ρ+ γ
Φ(α)
φ(α)

+
2
3
β

1√
λ

+ UO(1/λ)

= 1− β

3
√
λ

+ γ
Φ(α)
φ(α)

+ UO(1/λ)

= 1− β

3
√
λ

+ γ
Φ(β)
φ(β)

− γβ2

6
√
λ
− γΦ(β)

φ(β)
β3

6
√
λ

+ UO(1/λ)

= C∗(β)−1 − β

3
√
λ
− Φ(β)
φ(β)

β2

2
√
λ
− β3

6
√
λ
− Φ(β)
φ(β)

β4

6
√
λ

+ UO(1/λ)

= C∗(β)−1 − 1√
λ

[
β

3
+
β3

6
+
βΦ(β)
φ(β)

(
β

2
+
β3

6

)]
+ UO(1/λ).

The expansion for Cλ(β) then easily follows.

6.3 Proof of Proposition 1

We first need to work out the expressions for C ′∗ and C ′′∗ . Since the derivative of Φ(β)/φ(β)
equals 1/C∗(β), it follows that

C ′∗(β) = −C∗(β)2 Φ(β)
φ(β)

− βC∗(β). (6.27)

To get a convenient form for the second derivative, note that

C ′′∗ (β) = −2C∗(β)
Φ(β)
φ(β)

C ′∗(β)− 2C∗(β)− βC ′∗(β)

= 2C∗(β)3

(
Φ(β)
φ(β)

)2

+ 2βC∗(β)2 Φ(β)
φ(β)

− 2C∗(β) + βC∗(β)2 Φ(β)
φ(β)

+ β2C∗(β)

= C∗(β)

[
2
(

Φ(β)
φ(β)

)2

+ 2βC∗(β)
Φ(β)
φ(β)

− 2 + C∗(β)
βΦ(β)
φ(β)

+ β2

]

= C∗(β)
[

2
β2

(1− C∗(β))2 + 1− 3C∗(β) + β2

]
.

In the last step we used the identity C∗(β)βΦ(β)
φ(β) = 1− C∗(β).

We now use these expressions to find the limiting behavior of these quantities at 0 and
∞. Using C(β) ∼ φ(β)/β as β →∞, it follows that

C ′∗(β) ∼ −φ(β),

C ′′∗ (β) ∼ βφ(β),

as β →∞. When β ↓ 0, observe that 1− C(β) ∼ 1, which implies

C ′∗(β) → −
√
π/2

C ′′∗ (β) → π − 2.
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Finally, rewrite C•(β) into

C•(β) = C∗(β)
(

1
2

+
β2

6

)
− 1

6
C∗(β)2, (6.28)

which implies that

C ′•(β) = C ′∗(β)
(

1
2

+
β2

6

)
+ C∗(β)

β

3
− 1

3
C∗(β)C ′∗(β). (6.29)

From this expression and the above results, it easily follows that

C ′•(β) ∼ −β
2

6
φ(β) (6.30)

as β →∞, and that

C ′•(β)→ −1
6

√
π/2 (6.31)

as β ↓ 0.
Replace now β with β∗(t) in the above expressions. Suppose first that t → 0, in which

case β∗(t)→∞. Combining all the above we see that

β•(t) ∼
1
6
β∗(t)

β∗(t)2φ(β∗(t))
β∗(t)φ(β∗(t)) + 2t

=
1
6
β2
∗(t)

1
1 + 2 t

β∗(t)φ(β∗(t))

.

Since β∗(t) satisfies the first order condition

t =
C∗(β)
β∗(t)2

+ C∗(β∗(t))2 Φ(β∗(t))
φ(β∗(t))

+ β∗(t)C∗(β∗(t)), (6.32)

we conclude that t
β∗(t)φ(β∗(t))

→ 1 as t ↓ 0. This implies

β•(t) ∼
1
18
β∗(t)2 ∼ 1

9
ln(1/t). (6.33)

Next, consider the case that t→∞, in which case β∗(t)→ 0. Combining the above results
once more we arrive at

β•(t) ∼ β∗(t)
1

6
√
π/2

1
π − 2 + 2t

∼ 1
3
√

2π
t−3/2. (6.34)
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