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Abstract 

 
Since the upturn of intravascular ultrasound (IVUS) 

as an imaging technique for the coronary artery 

system, much research has been done to simplify the 

complicated analysis of the resulting images. In this 

study, an attempt to develop an automatic tissue 

characterization algorithm for IVUS images was 

done. We concentrated on the segmentation of 

calcium and soft plaque, because these structures 

predict the extension and the vulnerability of the 

atherosclerotic disease, respectively. The first step in 

the procedure was the extraction of texture features 

like local binary patterns, co-occurrence matrices 

and Gabor filter banks. After dimensionality 

reduction, the resulting feature space was used for 

classification, constructing a likelihood map to 

represent different coronary plaques. The 

information in this map was organized using a 

recently developed [1] geodesic snake formulation, 

the so-called Stop & Go snake. The novelty of our 

study lies in this last step, as it was the first time to 

apply the Stop & Go snake to segment IVUS 

images. 

 

1. Introduction 

 
During the last decade, intravascular ultrasound has 

overtaken angiography as state-of-the-art 

visualization technique of atherosclerotic disease in 

coronary arteries. The most important property that 

determines the occurrence and outcome of acute 

coronary syndrome is the vulnerability, as opposed 

to the occlusion. Therefore coronary angiography 

was not the best method for risk determination, as it 

displays a shadow of the lumen, without actually 

imaging the vessel wall and its structures. 

Conversely, IVUS images show the morphological 

and histological properties of a cross-section of the 

artery. Different plaque tissue types, such as soft or 

lipid plaque, hard or fibrous plaque, and calcium, 

can be distinguished. Most significant in a 

vulnerable plaque is the presence of a large soft core  
with a thin fibrous cap. Although heavily calcified 

plaques seem to be more stable than non-calcified 

plaques, the amount of calcium is an indicator of the 

overall plaque burden, and as such, the degree of 

calcification will correlate with the overall risk of 

plaque rupture in the coronary arterial tree. 

Despite the good vulnerability determination, IVUS 

has the disadvantage that manual analysis of the 

huge amount of images is difficult, subjective, and 

time-consuming. Therefore, there is an increasing 

interest in the development of automatic tissue 

characterization algorithms for IVUS images. 

However, this is a challenging problem, as the image 

quality is poor due to noise, imaging artifacts and 

shadowing by calcifications. 

A lot of research on this question has been done 

using extraction of texture features to characterize 

plaque tissues or determine plaque borders 

[2,3,4,5,6], recently in combination with 

classification techniques like AdaBoost [7,8]. 

Deformable models are another extensively used 

technique to retrieve the intima and adventitia 

boundaries [9,10,11,12]. Nevertheless, they are not 

commonly applied to segment different tissue types. 

In this study, a new geodesic snake formulation, the 

so-called Stop & Go snake [1], is employed to find 

the soft plaque and calcification regions in 

atherosclerotic plaques. The Stop & Go snake uses 

likelihood maps to decouple regularity and 

convergence, thus controlling the role of the 

curvature in a better way. To ensure convergence, 

the external force definition is split into an attractive 

and a repulsive vector field. 

We used this new snake in a traditional pattern 

recognition pipeline: first of all, the extraction of 

texture features, namely local binary patterns, co-



occurrence matrix, and Gabor filters, was performed 

on the images. The second stage consists of 

classification using AdaBoost with decision stumps, 

addressing soft and fibrous plaque and calcium. The 

confidence rate map obtained from this classification 

was used as a likelihood map for the Stop & Go 

snake. 

Those topics are discussed in the following order: 

section 2 describes the feature extraction and 

classification. Section 3 discusses the fundamentals 

of the Stop and Go snake formulation and the use of 

likelihood maps. Section 4 gives the experimental 

results and section 5 concludes this paper. 

 

2. Feature extraction and classification 

 
The complexity of IVUS images can be reduced 

using feature extraction. Because pixel-based gray 

level-only methods are not sufficient to differentiate 

between the complicated structures, texture features 

are used. Examples of the latter discussed in 

previous studies are co-occurrence matrices and 

fractal analysis [2], run-length measures and radial 

profile [4], derivatives of Gaussian, wavelets, Gabor 

filters, cumulative moments [5], and local binary 

patterns [6]. Because Pujol et al. achieved best 

results on IVUS tissue characterization using local 

binary patterns, co-occurrence matrices, and Gabor 

filters [5,6], our study was performed using these 

three features.  

After feature extraction, the high-dimensional 

feature space is used as input for an AdaBoost 

classifier. The idea behind boosting methods, 

introduced in 1995 by Freund and Schapire [13], is 

that many simple, weak classifiers together can form 

a strong classification algorithm with many practical 

advantages. AdaBoost is fast, simple, and easy to 

implement. However, before both feature extraction 

and classification can be performed, the images have 

to be preprocessed. 

2.1 Preprocessing 

 
The objective of the preprocessing step is twofold: 

first, some of the images’ marks and artifacts, like 

the legend, calibration marks and the echo of the 

catheter shaft are removed to avoid their influence 

on feature extraction and classification. Furthermore, 

the planar image in Cartesian coordinates is 

converted into polar coordinates. This is done to 

prevent biases due to rotation-invariant feature 

extractors and to simplify processing of the more or 

less circular vessel structures. 

 

2.2 Feature extractors 

 
With the preprocessed image as input, feature 

extractors usually give a high-dimensional feature 

vector as response. The threesome used here, namely 

local binary patterns, co-occurrence matrices and 

Gabor filters, all provide a good representation of 

the texture space for our problem. 

The Local Binary Pattern (LBP) operator, introduced 

by Ojala et al. [14], detects uniform local binary 

patterns within circularly symmetric neighborhoods 

of P members with radius R. The basis of this 

texture operator is the subtraction of the gray value 

of the center pixel gc from the gray values of the 

pixels gp in the neighborhood. To achieve gray-scale 

invariance, a value of 1 is assigned if the difference 

is positive and 0 if negative: 

 

( )
1 if 0

0 otherwise

x
s x

≥
= 


. 

 

The values for the whole neighborhood are 

transformed into one by assigning a binomial factor 

2
p
 to each value and summing the results. From the 

different output values of this operator, only the 

rotation-invariant patterns are taken for further 

Figure 1: The 36 unique rotation-invariant binary patterns for a neighborhood of 8 pixels. 



processing, and among them, there is a minority of 

local binary patterns that represents the majority of 

all possible textures. These are called the uniform 

patterns, because they have only 0 or 2 transitions 

between 0 and 1 values. They can be found on the 

first row of figure 1 and are formally defined by a 

transition counter U, resulting in the following LBP 

operator: 

( ) ( )
1

2

0

if 2

1 otherwise

P

p c P Rriu
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The second feature operator, the gray-level co-

occurrence matrix (COOC), provides a statistical 

tool for extraction of second-order texture 

information from images [14]. The relative 

frequencies of gray level pairs of pixels at a certain 

relative displacement, given by pixel distance D and 

angle θ, are calculated, stored in the co-occurrence 

matrix P and then normalized. To achieve a good 

texture description, four matrices are needed, using 

the same distance D and four angles, θ = {0º, 45º, 

90º, 135º}. After computation of those matrices, the 

actual feature space is generated by the extraction of 

six measures from them, namely 
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where ( )P i j,  is the ( )i j, th element of a 

normalized co-occurrence matrix, and 

( )x

i j

i P i, jµ =∑ ∑  and ( )y

j i

j P i, jµ =∑ ∑ . 

 

The last feature operators used for this study are the 

Gabor filters, originating from the multi-channel 

filtering theory that describes how the human visual 

system decomposes the retinal image into a number 

of filtered images, each with contours on a different 

scale and in a different direction. A Gabor filter 

consists of a sinusoidal, modulated in amplitude by a 

Gaussian envelope. The impulse-response of an 

even-symmetric Gabor filter is given by 

 

( ) ( )
2 2

02 2

1
, exp cos 2

2
x y

x y
h x y u xπ ϕ

σ σ

   
 = − + + 
    

, 

where u0 and φ are the frequency and phase of the 

sinusoidal along the x-axis and σx and σy are the 

scales of the Gaussian along the respective axes. By 

rotation of the x-y system, filters at different 

orientations can be obtained. For practical purposes, 

the angles θ = {0º, 45º, 90º, 135º} suffice again. 

To make sure that every feature has an equal 

influence on the classification result, the extracted 

feature spaces are normalized. 

 

2.3 AdaBoost classification 

 
The normalized data were classified using our 

AdaBoost algorithm, with decision stumps or one-

level decision trees as weak classifiers. Let the 

training set contain N samples, consisting of a d-

dimensional feature vector xi (i = 1,…,N) and a class 

label yi. Decision stumps threshold these training 

data using only one out of the d features, assigning a 

class label based on majority voting [15]. 

During boosting, such a weak classifier is called 

repeatedly in a series of rounds t = 1,…,T. The 

principle of this algorithm is to maintain a 

distribution of weights assigned to the training 

samples, denoted by Dt(i). Initially, the samples are 

classified using equally set weights. In the next 

round, the weights for incorrectly classified samples 

are increased, while those for correct observations 

are reduced. This has the effect that the algorithm 

focuses on samples misclassified in the previous 

round, i.e. the difficult samples in the data set [13]. 

 

3. Stop & Go snake 

 
In a traditional pattern recognition pipeline, 

classifiers like AdaBoost are used to find regions of 

interest after feature extraction. Subsequently, a 

deformable model can organize the obtained image 

information. 

The deformation of the curve is typically constrained 

by internal and external conditions, until it adapts to 

the object of interest. The internal forces influence 

the continuity and smoothness of the model, while 

the external conditions are responsible for a good 

adjustment to the image features. 

 

3.1 Traditional deformable models 

 
The first of the two different kinds of deformable 

models that can be distinguished are the parametric 

deformable models that use Newton’s mechanics 

laws to define the internal constraints of the snake, 

given in terms of snake elasticity and stretch [16]. 



g∇

Because an explicit curve parameterization is used, 

the model is restricted to single objects.  

On the other hand, geodesic active contours have a 

formulation based on the theory of curve evolution 

and level sets. A big advantage of this is that it can 

deal with topological changes during snake 

evolution. This evolution should find the curve of 

minimum length in a Riemannian surface with a 

measure depending on the image gradient. It follows 

that the snake Γ evolves according to 

 

( )g g,n n
t

κ
∂Γ

= − ∇
∂

� �

i i , 

 

with ( )2
1 1g / I= + ∇  and κ the curvature of Γ, n

�

 

its inward unit normal and ,  the scalar product of 

two vectors. It can be seen that the curvature has a 

double role, defining the motion of the curve at zero 

gradient regions, but also serving as a curve 

regularizing term, ensuring continuity. This has the 

disadvantage that it slows down the numeric scheme 

because it is a second-order term. Furthermore, it 

complicates snake convergence into concave areas. 

To overcome the latter, usually a constant motion 

term or balloon force V0 is added: 

 

( )0g V g,n n
t

κ
∂Γ

= + − ∇
∂

� �

i i . 

 

In order to guarantee convergence, its magnitude 

should be larger than the absolute value of the 

curvature. However, this requirement makes 

stopping of the snake on the desired contour 

difficult, because there, an equilibrium between the 

velocity V0 and the vector field  must be 

achieved [17, 1]. 

 

3.2 Stop & Go formulation 

 
To overcome the problems regarding convergence 

and regularity, a new definition where these terms 

are decoupled was introduced by Pujol et al. [1]. In 

this so-called Stop & Go snake, the curvature term 

does not interfere in the convergence process. The 

desired decoupling can be achieved using 

characteristic functions of the region of interest R:  

 

( )
( )1 if

0 otherwise   

x, y R
I x, y

 ∈
= 


 . 

 
By removing the influence of the curvature, any 

global vector field properly defining the target 

contour as its equilibrium ensures convergence. 

Such a vector field can be split into an exterior 

attractive field (the Go term) and an inner repulsive 

one (the Stop term), of which the sum cancels on the 

curve of interest. The separately defined Go and 

Stop terms are glued together by means of the 

characteristic function mentioned above. 
If the evolving curve is outside the region of interest 

R, the Go term corresponds to an area minimization 

process restricted to the outside of R. The following 

equation ensures an inward motion to R, comparable 

to a balloon force:  

 

( ) 01GoV I V n= −
�

i i . 

 

Because there is only need for a Stop field in the 

neighborhood of the desired contour, this term can 

be defined by the outward gradient g locally 

defining the contours of R:  

 

StopV I g ,n n= ∇
� �

i . 

 

The Stop and Go snake evolution is then given by:  

 

( )0 1I g ,n n V I n
t

∂Γ
= ∇ + −

∂

� � �

i i i . 

 

Although this formulation leads the curve to the 

desired boundary of R, there is no smoothness and 

continuity yet. Because these conditions are only 

required in the final steps of the snake evolution, a 

restrictive mask I
⌣

 can be used to define their scope, 

here I G Iσ= ∗
⌣

, with Gσ  a Gaussian filter with 

standard deviation σ. The equation then becomes: 

 

( )( )0 1I g ,n V I n In
t

ακ
∂Γ

= ∇ + − +
∂

⌣� � �

 . 

 

In spite of the resemblance of this formula to that of 

‘traditional’ geodesic snakes, the role of the 

curvature is different here. It is now only a 

regularizing term of which the influence can be 

controlled by means of α. Furthermore, it does not 

trouble the convergence anymore because it only 

influences the last steps of the evolution. 

 

3.3 Likelihood maps 

 
Unfortunately, for practical applications, there are 

no characteristic functions defining the regions of 

interest available, so an alternative function to 

generate the decoupling is needed.  

A likelihood map represents the probability of each 

pixel to belong to the object of interest. In general, a 

likelihood map only needs to fulfill the requirement  

that the object of interest is given as a local 

extremum. Examples of results that can be used as 

likelihood maps are the image’s direct response to 

feature extractors or the outcome of the classifier. 



 Figure 2: Classification and snake results for two IVUS images with presence of soft plaque. Column A: Original 

images. B: Images segmented by cardiologist. C: AdaBoost classification map. D: Stop & Go snake result. Legend 

for columns B and C: Dark gray represents soft plaque, light gray fibrous plaque and white calcification. 

 

The latter is not very suitable, because it has very 

strong edges that cause the snake to follow simply 

the contours of this classification map. This is often 

not the optimal result and besides, there are easier 

and faster ways to find those edges. In this study,  

we propose to use the classifier’s confidence rates as 

likelihood maps. These confidence rates can easily 

be extracted from the AdaBoost classification.  

The normalized (between 0 and 1) version of the 

likelihood map L
⌣

 will be used in the Stop & Go 

snake, leading to:  

 

( )0 1L n L g,n n V L n
t

ακ
∂Γ

= + ∇ + −
∂

⌣ ⌣ ⌣� � � �

i i i . 

 

Then, the only question remaining is the definition 

of the Stop term, L g∇
⌣

i . Pujol et al. [1] proposed to 

base this term on the likelihood map, defining it as 

( )1 L∇ −
⌣

. The formula then becomes: 

 

( ) ( )01 1L n L ,n n V L n
t

ακ β
∂Γ

= + ∇ − + −
∂

⌣ ⌣ ⌣� � � �

i i i ,  

 

with α weighting the role of the curvature and β 

influencing the smoothness of the curve. 

 

4. Results 

 
The IVUS images used in this study images were 

acquired by a last generation IVUS scanner (Galaxy, 

Boston Scientific). Compared to the previous ones, 

this scanner provides much better contrast and 

higher resolution, leading to a more expressed 

texture appearance of all intravascular structures. In 

this context, the analysis of these images is even 

more difficult compared to the previous generation 

images, justifying the texture analysis. 

To be able to evaluate the results of the classifier 

and the Stop & Go snake correctly, they should be 

compared with a ‘ground truth’. For this purpose, 

IVUS images segmented manually by cardiologists 

from the Hospital Universitari “Germans Trias i 

Pujol” in Badalona, Spain, were used. 

Furthermore, classifiers like AdaBoost, that perform 

supervised learning, need a set of training samples. 

In this study, a set of about 13000 training points, 

divided over the three tissue types soft plaque, 

fibrous plaque, and calcium, was selected manually 

from the cardiologists’ segmentation. 

 

4.1 Results of AdaBoost classification 

 
For 30 IVUS images, two classifications were 

performed using 10 rounds of boosting, one 

separating fibrous plaque and calcium from soft 

plaque, and one distinguishing fibrous plaque from 

calcium. In the classified images shown in column C 

of figures 2 and 3, it can be seen that calcium and 

fibrous plaque are classified reasonably well, but 

that soft plaque apparently is difficult to segment. 

These observations are confirmed when looking at 

the confusion matrix in table 1. The majority of soft 

plaque, fibrous plaque and calcium points are 

classified correctly, although soft plaque is still 

repeatedly classified as fibrous. The percentage of 

points that are assigned correctly  is 75.82%. 

 



 Figure 3: Classification and snake results for two IVUS images with presence of soft plaque and calcium.  Column A:      

Original images. B: Images segmented by cardiologist. C: AdaBoost classification map. D: Stop and Go snake result.  

Legend for column D: White lines represent soft plaque, black ones calcification. 

 
Table 1: Confusion matrix (in percents) for boosted decision stumps classification for all test images. 

 

4.2 Results of Stop & Go snake 

 
In addition to the classification map, the AdaBoost 

classification also gives confidence rates and 

thresholds as output. Every confidence rate above 

the threshold represents the probability that the point 

belongs to the searched class, while a confidence 

rate below the threshold indicates that the pixel does 

not belong to this class. In our case, the likelihood 

map for soft plaque can be derived from the 

confidence rate map of the first classification, while 

the map for calcium results from the separation of 

fibrous plaque and calcium. 

For the actual evolution of the snake over the 

likelihood map, the Level Sets formulation by Osher 

and Sethian [18] was implemented using an explicit 

Euler scheme:  

2 2

1 2

2xx y xy x y yy x

t t

u u u u u u u
L

u
ϕ ϕ α+

 + +
= +
 ∇

⌣

 

( ) ( ) )0 1 1 ,t tV L L tϕ ϕ+ − ∇ + ∇ − ∇ ∆
⌣ ⌣

, 

with φt the solution at time t, and the derivatives 

computes using centered finite differences. 

Pujol et al. [1] found that the fastest Stop & Go 

snake configuration uses {V0 = 1.3, ∆t = 1.3, and α = 

0.23}, while a snake fully concerned with accuracy 

and smoothness uses {V0 = 0.2, ∆t = 0.5, and α = 

0.6}. For this study, the trade-off configuration, to 

increase convergence speed, was used, being {V0 = 

1, ∆t = 0.5, and α = 0.6}. Furthermore, 300 iteration 

steps and a β of 150 were applied. 

Using those parameters, the Stop & Go snake was 

applied on all images with soft plaque and calcium. 

An impression of the behavior during evolution on a 

calcium likelihood map can be seen in figure 4. The 

first row contains images taken at 0, 50, and 100 

iterations, while the second row displays behavior at 

150, 200, and 300 iterations. 

After snake deformation, the plaque boundaries 

found by the cardiologist were superimposed on the 

mask found for soft plaque or calcium, in order to 

exclude the catheter and other artifacts. Furthermore, 

very small regions were omitted. The final output is  

 Labeled as  

soft plaque 

Labeled as fibrous 

plaque 

Labeled as calcium Totals 

Classified as soft 

plaque 

5.03 19.11 0.09 24.23 

Classified as 

fibrous plaque 

2.43 67.67 0.44 70.54 

Classified as 

calcium 

0.00 2.11 3.12 5.23 

Totals 7.46 88.89 3.65 100.00 



Table 2: Area comparison for different segmentations and classifications. Remarks: from cardiologist 2, only 8 

images with soft plaque and 8 images with calcium were available, and from cardiologist 3, only 8 images with 

calcium were available, so only those were considered. 

‘True’ mask Mask to compare Mean error soft plaque (pixels) Mean error on calcium (pixels) 

Cardiologist 1 Cardiologist 2 4.28 ± 3.45 1.61 ± 0.68 

Cardiologist 1 Cardiologist 3 - 1.14 ± 0.65 

Cardiologist 1 AdaBoost 5.30 ± 5.08 0.71 ± 0.21 

Cardiologist 1 Snake 5.71 ± 5.40 1.86 ± 1.49 

AdaBoost Snake 0.78 ± 0.50 1.06 ± 0.94 

 

mapped on the original images in Cartesian 

coordinates and is shown in columns D of figures 2 

and 3. The white lines indicate the soft plaque found 

by the snake, while the black represent the calcium.  

It can be seen that the selection of soft plaque is 

weak. However, the calcium detection is reasonable. 

Unfortunately, it is not trivial to analyze the snake 

results statistically. In this study, we propose a 

comparison of the areas of interest found with the 

snake and the same areas in the cardiologist’s 

segmentation.  

We considered 20 images with soft plaque and 8 

images with calcium. The error was determined as 

the area of the regions in the different masks that did 

not overlap, normalized by the total area of the ‘true’ 

mask, for example the cardiologist’s map. To get 

more insight in intraobserver variability and 

AdaBoost performance as well, five different 

comparisons were made. The results are in table 2. 
As can be seen from the error rates in this table, it is 

quite difficult to detect soft plaque well, starting 

with the segmentation of the different cardiologists. 

The results for calcium are much better. The boosted 

decision stumps algorithm can be seen to perform 

better (more similar to the cardiologists ‘ground 

truth’) than the snake on finding the regions of 

interest for this tissue type. 

 

5. Conclusion 

 
In this study, various tools for pattern recognition 

were considered in an attempt to obtain automatic 

segmentation of plaque tissues, especially soft 

plaque and calcium. Different texture features were 

extracted and the AdaBoost classifier and the Stop & 

Go snake both performed reasonably well 

segmenting calcium. These explicit and implicit 

classification methods both have their advantages 

and drawbacks. AdaBoost is a little more precise, 

but considers each point just within its 

neighborhood. Conversely, the Stop & Go snake 

organizes points in groups. However, defining the 

boundary of the region of interest with a proper 

likelihood map is difficult.  

Especially for soft plaque, this step needs special 

attention in future research. It is important to have 

an excellent ‘ground truth’ to base the training set 

 Figure 4: Snake deformation at 0, 50, 100, 150, 200, and 300 iterations. 



and the assessment of classifiers’ performance on. 

The intima and adventitia boundaries should be 

found automatically, using deformable models, for 

this set of images. Furthermore, classification results 

should be corrected for shadowing caused by guide 

wires and calcifications. Finally, an extensive study 

for other texture feature combinations, different 

classifiers, and alternative Stop and Go snake 

parameters configurations could be made.  
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