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TAIL PROBABILITIES OF SUBADDITIVE FUNCTIONALS ACTING ON

L�EVY PROCESSES

MICHAEL BRAVERMAN� THOMAS MIKOSCH� AND GENNADY SAMORODNITSKY

Abstract� We study the tail behavior of the distribution of certain subadditive functionals

acting on the sample paths of L�evy processes� The functionals we consider have� roughly speaking�

the following property� only the points of the process that lie above a certain curve contribute to

the value of the functional� Our assumptions will make sure that the process ends up eventually

below the curve� Our results apply to ruin probabilities� distributions of sojourn times over

curves� last hitting times and other functionals�

�� Introduction

Both in the theory and in applications of stochastic processes one is often interested in two types
of questions� When does the process X � fX�t�� t � �g lie above a certain deterministic function
�curve� � � f��t�� t � �g� and given the process exceeds this curve� what are its values� For
example� what can be said about the distribution of the biggest excess of the process over the
curve and� if both the process and the function are measurable� what is the distribution of the
time the process spends above the curve	
In this paper� we outline a general approach to the asymptotic tail behavior of the distributions

of these and other subadditive functionals acting on an in
nitely divisible process with �not too
light� tails� �The latter notion will be made precise soon�� We focus on a particular class of
in
nitely divisible processes� the well known L
evy processes� and we consider the distributional
tails of various subadditive functionals of their paths� These examples will show in detail how
successfully this method works and how general it is�
Let X be an in
nitely divisible process without Gaussian component and L
evy measure ��

Following Maruyama ������� the distribution of X is characterized as follows�

Eeih��Xi � exp

�Z
R�����

�
eih���i � �� ih�� � ���i

�
��d��

�
� � � R

������� �

Here � is the projective limit of the L
evy measures corresponding to the 
nite dimensional dis�
tributions of X� The symbol R������� denotes the space of real functions � de
ned on �����
such that ��t� � � for all but 
nitely many t� and h���i � �t��������t���t�� Finally� �����t� �
��t���j��t�j � ���

���� Mathematics Subject Classi�cation� Primary �	E	
� �	G�	� Secondary �	K�	�
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Some examples of the measurable functionals 	 � R����� � ������ on X we consider are

	sup��� � sup
t��
���t��	 � 	��� � supft 
 � � ��t� 
 �g � 	��� �

Z �

�
���s��p	 ds ������

where y	 � max��� y� and p � ��� ��� The supremum functional 	sup has gained particular
importance in the context of queuing and insurance� where one is interested in quantitative
measures for the excesses of X over high level thresholds which event is interpreted as bu�er
over�ow or ruin in the di�erent contexts� The above functionals have in common that they are
subadditive� i�e�� for any ��� �� � R

����� �

	��� ���� � 	���� � 	���� �

If� with probability �� 	�X� �� �� is 
nite� it makes sense to measure the thickness of the
distributional tail P �	�X � �� 
 u� for large u� Suppose this tail does not decay �too fast� as
u�� and de
ne

��u� � ��f� � 	��� �� 
 ug� ������

The subadditivity of the functional 	� the presence of heavy tails and the logic of large devia�
tions saying that unlikely events happen in the most likely way� lead one to the conjecture that
��u� and P �	�X ��� 
 u� are equivalent in the following sense�

lim
u��

P �	�X ��� 
 u�

��u�
� � ������

Indeed� relations of type ����� were proved in the theory of laws with so�called subexponential
tails� For example� Embrechts et al� ������ considered the overall supremum of L
evy processes�
and Rosi
nski and Samorodnitsky ������ studied very general subadditive functionals�
The setup in the latter paper is� in fact� close to the present one� However� there is one crucial

di�erence� the functionals in Rosi
nski and Samorodnitsky ������ were assumed to be bounded
by an almost surely 
nite pseudonorm of the process� Hence these processes are� in a certain
sense� bounded �from above and below�� This assumption is far away from the situation in the
present paper� Our functionals are akin to the supremum of a negative drift random walk over
the entire in
nite horizon� In this sense� they are bounded �only from one side��
The validity of relation ����� has been established for the overall supremum functional 	sup and

some particular classes of processes with subexponential tails� Those include L
evy processes with
a negative linear drift �see Embrechts and Veraverbeke ������� and symmetric ��stable processes�
� � ��� ��� with stationary ergodic increments and negative linear drift� In general� the precise
circumstances under which ����� is valid for subadditive functionals are not known� even in the
particular case of L
evy processes� The results of the present paper provide a further step in the
process of understanding the tail equivalence relation ����� for heavy tailed processes� Once again�
we will focus on L
evy processes and a large family of subadditive functionals 	 and deterministic
functions ��
The proof of our main result �Theorem ���� shows that we use the �heavy tail large deviations

heuristics�� This means that large values of the functional 	�X � �� are essentially due to one
very large jump of the L
evy process that occurs early enough� before the negative drift took it
�too far down�� Since L
evy processes are well described by Poisson processes� we extensively
make use of the latter tool� In particular� we show that the large deviation idea can be made
precise by considering the �large and occurring early enough� jumps and the �small or occurring
too late� jumps of the underlying Poisson process separately� This leads one to a decomposition of
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the L
evy process into two independent processes� We show that the process which represents the
small jumps is asymptotically negligible� i�e�� this process will not contribute to the asymptotic
tail behavior of 	�X���� The crucial part in this decomposition is the process which represents
the large jumps of the L
evy process� It has representation as a compound Poisson sum of paths�
We show that the tail behavior of 	�X � �� is essentially determined by a single term in that
sum�
In related work H�usler and Piterbarg ������ considered the tail behavior of the supremum

functional 	sup of certain Gaussian processes� including fractional Brownian motion� with negative
�not necessarily linear� drift� The Gaussian nature of the underlying process causes exponential
decay of the tails P �	sup�X� �� 
 u��
This paper is organized as follows� In Section � we give the assumptions we impose on the

family of the subadditive functionals 	� the function �curve� � and the distribution of the L
evy
processes X� We conclude Section � with a discussion on the nature of the assumptions� including
some immediate consequences� and we consider situations when they are satis
ed� We made these
assumptions as general as possible in order to include as large a variety of subadditive functionals
as possible� Although some of the conditions may look quite abstract they are easily checked for
various well known subadditive functionals� see Section �� In Section � the main theorem on the
asymptotic behavior of the tails P �	�X��� 
 u� is formulated� It describes one situation when
relation ����� is valid� The main steps of the proof are also given in Section �� However� the proof
is quite technical and therefore we postpone various calculations until Section �� In Section � we
provide several examples of explicit calculations of the tail asymptotics for a number of important
subadditive functionals of L
evy processes� Among those are the functionals in ������ but also� for
example� the sojourn time of a L
evy process above a curve�

�� Assumptions and notation

Throughout this paper� C stands for a generic positive constant C� Its value will be allowed to
change from appearance to appearance� even if we do not mention it explicitly�
Let X � fX�t�� t � �g be a L
evy process� i�e�� a real�valued process with stationary and

independent increments� and L
evy measure 
 on R� We refer the reader to Bertoin ������ and
Sato ������ for encyclopedic treatments of L
evy processes� In particular� one can 
nd detailed
proofs of the properties we mention and use below�
Speci
cally� the marginal distributions of a L
evy process are determined by the characteristic

function

Eei�X��� � exp

�Z �

��

�
ei�x � �� i�x��jxj � ��

�

�dx�

�
� � � R ������

We always take a version of X with all sample paths in the Skorokhod space D ������ i�e�� with
paths which are right�continuous at every t � � and have left limits at every t 
 �� This version of
X is automatically measurable� this feature will become useful as we will have many opportunities
to integrate the sample paths of X�
The L
evy measure � of the process X has the form

��A� �

Z �

�

Z �

��
�
�
x��s��� � A

�

�dx� ds ������
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for any measurable set A � R
����� � Therefore the function � in ����� turns into

��u� �

Z �

�

Z �

��
�
�
	
�
x��s��� � �

�

 u

�

�dx� ds� u 
 � ������

We denote the right tail of the one dimensional L
evy measure 
 by

H�u� � 

�
�u���

�
� u 
 � �

A few comments on the conditions below� The reader should realize that the number of
conditions we had to assume is due to our desire to cover the largest possible number of functionals
and processes� The conditions simplify drastically in the special cases of Section ��

Assumptions on the L�evy measure 


Dominance of the right tail of the L�evy measure

We assume that the right tail of the one dimensional L
evy measure 
 dominates its left tail in
the sense that there is a constant A� 
 � such that


���� ��t�� � A� 
��t���� for all t � � ������

�� condition

There is a� 
 � such that

H��u� � a�H�u� for all u � � ������

Notice that the �� condition on H yield a bound from below� it excludes exponential decay of
H�u��

Bound from above

There is �� 
 � such that

H�u� � o�u���� � u�� ������

Assumptions on the drift �

Let � � f��t�� t � �g be a nonnegative function satisfying the following assumptions�

Power law bound from below

There are a� 
 � and �� 
 max��
��
� � ���� such that

��t� � a� t
�� � t 
 � ������

�� condition

There is an A� 
 � and t� � � such that

���t� � A� ��t� for all t � t�������

The �� condition on � excludes too fast �in particular exponential� growth of ��

Quasi�monotonicity of �

There is an a� � ��� �� and t� � � such that

inf
s�t

��s� � a� ��t� for all t � t�������
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Assumptions on the subadditive functional 	

Let 	 � R����� � ����� be a measurable subadditive functional satisfying the following conditions�

The functional �lives o� only positive values of its argument�

This means that

	��� � �� and if ��t� � � for all t 
 t�� some t�� then 	��� � 	
�
�����t��

�
�������

Here �����t�� � f��t�����t���t�� t � �g�

The functional is 	nite on locally bounded functions that are eventually non
positive

This means that

	��� � 	
�
�����t��

�
�� if ��t� � � for all t 
 t�� some t�� and supt�t� ��t� �� �������

Monotonicity

This means that

if ��t� � ��t� for all t then 	��� � 	���������

and

	 �c�� � 	��� for all c � ��� �� and � � R
����� �������

Notice that ������ is implied by ������ if ��t� � � for all t � ��

Assumptions involving the triple �
� 	���

One can easily give separate su cient conditions for the assumptions below� i�e�� conditions
which involve 
� 	 and � separately� However� when doing so one gets into more restrictive
situations� The assumptions we impose are easy to check in applications� Therefore we have
chosen to formulate them in the present form�
For s � � and u 
 � de
ne

T �s� u� � inffx 
 � � 	
�
x��s��� � �

�

 ug �������

and denote

T �u� � T ��� u� �

Relation between T �s� u� and T �u�

There is A� 
 � such that

T �s� u� � A� ���s� � T �u�� for all s� u 
 � �������

A scaling property

There are positive functions g��� and h���� � � � � �� satisfying

h���� � as � 	 �� j log�g����j � O����� as � 
 �������

and such that for every u 
 u��� and � � � � �Z �

�
H ��T �s� �u�� ds � h���

Z �

�
H �T �s� u�� ds �������
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and for every u � u� and � � � � �Z �

�
H ��T �s� �u�� ds � g���

Z �

�
H �T �s� u�� ds �������

The latter conditions are easily checked if one assumes appropriate regular variation conditions�

Some implications of the assumptions

We collect some particular consequences of the above assumptions�

Lemma ���� The following statements hold�

�� With probability �� for every � 
 �� 	�jXj � ��� �� and therefore 	�X� ��� ���
�� For every � 
 � and u 
 �� � 
 �Z �

�
H

�
� � �

�
T �s� u�

�
ds �

Z �

�

Z �

�
�
�
	
�
�x��s��� � �

�

 u

�

�dx�ds

� ��u� �

Z �

�
H

�
�

�
T �s� u�

�
ds �������

�� There is a u� � � such that for every � 
 � and u 
 u�Z �

�
H��T �s� u�� ds �� �������

�� For every � 
 ��

	
�
�x��s��� � �

�
�� outside a set of measure zero with respect to 
� Leb �������

�� There exists �� 
 � such that� for every u � ��

H�u� � u��� and ��u� � u�� �������

�� There is a constant A� 
 � such that for all s� t � ��

��s� t� � A� ���s� � ��t�� �������

Proof� �� Observe 
rst that X does not have a drift term� by virtue of condition ������ Thus�
if �� 
 max����� ����� we conclude from ������ ������ and standard a�s� limit results �law of
the iterated logarithm when E�X����� � �� generalized strong laws of large numbers when
E�X����� ��� see Stout ������� that X�t��t�� � � a�s� as t��� Therefore

jX�t�j � ���t� � jX�t�j � Ct�� � �� �

So we may conclude from ������ that 	�jXj � ��� �� a�s� �with the usual convention of taking
pointwise absolute values of a function��

�� This statement follows from the de
nition ������ of the function T �

�� It follows from ������� ������ and ������ that T �s� u� � max�a���s�� T �u�� for all s � t� and
that T �u� 
 � for every su ciently large u �say� u 
 u��� HenceZ �

�
H��T �s� u�� ds � �t� � ��H��T �u�� �

Z �

t�	�
H�a����s�� ds �

The right hand integral is 
nite by virtue of ����� and ������

�� Relation ������ follows from �������
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�� The inequalities ������ follow from the ���conditions on H and �� cf� Bingham et al� �������
�� Relation ������ is an immediate consequence of ����� and ������

How to verify condition ������	

Here is an easily veri
able su cient condition for �������

Proposition ���� Assume that the following conditions hold�

�� The subadditive functional 	 satis�es ������ � �������
�� There exists � 
 � such that for all � � c � �

	
�
cx������ � �

�
� c�	

�
x������ � �

�
�������

�� There exists a 
 � such that for every s� x 
 �

	
�
x��s��� ��s

�
� 	

�
ax������ � �

�
�������

where �s�t� � � ��t� s�	��
�� � is nondecreasing�

Then ������ holds�

In fact� condition

	�c�� � c�	��� for every � � c � � �������

implies� and is more restrictive� than ������ and ������� Indeed� if ������ holds� monotonicity of
	 implies

	
�
cx������ � �

�
� 	

�
c
�
x������ � c���

��
� c�	

�
x������ � c���

�
� c�	

�
x������ � �

�
�

Moreover� many of the functionals of interest have the property

	
�
x��s��� � �s

�
� 	

�
x������ � �

�
�������

which implies �������
The proof of the proposition is based on the following property of the function T �u��

Lemma ��
� There is a constant B 
 � such that for all u� v 
 ��

T �u� v� � B �T �u� � T �v�� �������

Proof� By monotonicity of 	� for every � 
 ��

	
�
�T �u� � T �v� � �������� � �

�
� max �u� v� �

u� v

�
�

which implies that

T

�
u� v

�

�
� T �u� � T �v��������

Let u 
 � and suppose that T ��u� 
 �� By the scaling property ������ we have for every � 
 �

u 

�

�
	
�
��� ��T ��u������� � �

�
� 	

�
�������� ��T ��u������� � �

�
�

which means that
����� T ��u� � T �u� �

On the other hand� if T ��u� � � then this relation is trivial� The above relation� together with
������� yields the desired relation �������
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Proof of Proposition 	�	� It follows from ������ �in which we assume� without loss of generality�
that A� � ��� ��t� � A� ���t� s� � ��s�� for s � t� and so

���s��� � A� ��s � ��s���s���� �

implying by monotonicity of 	 that

r�x� s� �� 	
�
x��s��� � ���s���

�
� 	

�
A� ��x�A� � ��s�� ��s��� � �s�

�
�

Now ������ and ������ yield�

r�x� s� � 	
�
�x�A� � ��s�� ��s��� � �s

�
� 	

�
a �x�A� � ��s�� ������ ��

�
�������

Now it follows from the subadditivity that

	
�
x��s��� � �

�
� 	

�
a �x�A� � ��s�� ������ � �

�
� 	

�
�����s�

�
�

Let � 
 � and choose x �� �� � ��A����s� � a��T �u��� Then by �������

	
�
�� � ��A�

	
��s� � a��T �u�



��s��� � �

�
� u� 	

�
�����s�

�
�

which implies that

T
�
s� u� 	

�
�����s�

��
� A�

	
��s� � a��T �u�



�

and� after a change of variable and with �������

T �s� u� � A� ���s� � a�� T
�
u� 	

�
�����s�

��
�

� A� ���s� � a�� B T �u� � a�� B T
�
	
�
�����s�

��
�

�� A� ���s� � a�� B T �u�� � a��A� B T �g�s�� �������

It remains to estimate the last term in ������� If it is nonzero� according to ������ we have

	

�
�

�
T �g�s�������� � �

�
� g�s��������

Assume that

T �g�s�� 
 ���s� �

Using ������� ������ and monotonicity of 	 we obtain

	

�
�

�
T �g�s�������� � �

�
� 	

�
���s������� � �

�
� 	

�
���s�����s� � �����s�

�
�������

But ���s�� ��t� � ��s� � ��t� for � � t � s� and so ������ is at least

	
�
�����s�

�
� g�s� �

However� this contradicts �������
Hence T �g�s�� � ���s� for all s � �� which together with ������ gives us �������
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�� The main theorem

Here we give our main result which was announced in Section � and the main steps of its proof�
The latter is quite technical� and therefore we collect some auxiliary results in Section ��
First recall the de
nition of the quantity ��u� from ������

Theorem 
��� Let X be a L
evy process� � a deterministic function and 	 a subadditive measur�
able functional satisfying the Assumptions of Section 	� If ��u� is regularly varying �at in�nity�
with exponent �� � �� then ��u� and P �	�X� �� 
 u� are equivalent�

lim
u��

P �	�X ��� 
 u�

��u�
� � ������

At this point� the large variety of assumptions on X� 	� � and � may look quite restrictive
and di cult to verify� We will� however� see in Section � that these assumptions hold under very
natural conditions for various important subadditive functionals�

Proof of Theorem 
��

The basic decomposition� For 
xed � � � � � and some �� 
 � we introduce the set

B� �

�
x��s��� � 	

�
jxj��s��� � ��

�

 �� � s � � � x � R

�
� R

����� ������

Lemma 
��� If �� 
 max�u�� �� �see Lemma 	��� then the set B� has �nite L
evy measure�
��B� � ���

Proof� By de
nition of the L
evy measure � �see ������ and since ������ ������ and ������ hold�
we have

��B� � �

Z �

�

Z �

��
�
�
x��s��� � B�

�

�dx� ds

� C

Z �

�

Z �

�
�
�
x��s��� � B�

�

�dx� ds

� C

Z �

�
H
��
�
T �s� ���

�
ds �

The right hand expression is 
nite by the choice of ���

From now on �� is chosen to satisfy the assumptions of Lemma ���� Since B� and B
c
� are disjoint

there exist two independent in
nitely divisible processes X
���
� and X

���
� such that

X
d
� X

���
� �X

���
�

with L
evy measures �� and ��� respectively� given by

���A� � ��A �B� � and ���A� � ��A �Bc
� �

for any measurable A � R
����� � By virtue of Lemma ���� ��B� � ��� and therefore the process

X
���
� has a representation as compound Poisson sum

X
���
�

d
�

NX
j��

Yj � � �� X� � � ������
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where Y��Y�� � � � are iid stochastic processes on ����� with common law �����B� �� independent
of a Poisson random variable N with mean ��B� �� Because of ������ the drift term � has form

��t� � t

Z �

�

Z �

��
x�
�
jxj � �� x��s��� � B�

�

�dx� ds� t � � �

Writing X� � X
���
� � �� we have

X
d
� X

���
� �X

���
� � X� �X� ������

The following fact will be useful in what follows�

Lemma 
�
� For every � 
 �� with probability ��

	�jXij � ��� �� � i � �� � �

Proof� Since P �X� � �� 
 � and X�� X� are independent� it follows from part � of Lemma ���
that 	�jX�j � ��� � � a�s� for every � 
 �� In turn� exploiting the subadditivity of 	� we
conclude that 	�jX�j � ��� �� a�s� for every � 
 ��

The upper bound� By ����� and subadditivity of 	� for every � � ��� ���

P
�
	�X� �� 
 u

�
� P

�
	�X� �X� � �� 
 u

�
� P

�
	�X� � ��� ���� 
 ��� ��u

�
� P

�
	�X� � ��� 
 �u

�
�� I��u� � I��u� ������

Lemma 
��� Under the assumptions of the theorem for every � small enough�

lim
���
lim sup
u��

I��u����u� � � ������

lim
���
lim sup
u��

I��u����u� � � ������

From Lemma ��� and ����� we conclude that

lim sup
u��

P
�
	�X� �� 
 u

�
��u�

� � �

This concludes the proof of the upper bound in ������
We proceed with the proof of Lemma ����

Proof of ������ The compound Poisson representation ������ subadditivity of 	 and the same
argument as in Lemma ��� in Mikosch and Samorodnitsky ������ yield that

I��u� � EN P
�
	�Y� � ��� ����� 
 ��� ���u

�
�

�X
k��

k�P �N � k�

�
P

�
	

�
Y� �

���� ��

k
�

�



���� ��

k
u

���
�� I���u� � I���u� �
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Recalling that EN � ��B� � and using the monotonicity properties ������� ������ of 	� we see that

I���u� �

Z �

�

Z �

�
�
�
	
�
x��s��� � ��� ����

�

 ��� ���u

�

�dx� ds

�

Z �

�

Z �

�
�
�
	
�
��� ����x��s��� � �

�

 ��� ���u

�

�dx� ds �

Write for � � ��� ��� eh��� � h��� � ������ � ��� �

The function H is decreasing� while T �s� u� is increasing in both arguments� Therefore and in
view of ������ we can further bound I���u� as follows for su ciently large u

I���u� �

Z �

�
H
�
��� ���T �s� ��� ���u�

�
ds � eh���Z �

�
H ��� � ��T �s� �� � ��u�� ds

� eh���Z �

�
H ��� � ��T �s� u�� ds � eg��� ��u� �

In the last step we used ������� Similar arguments and the assumptions on the function g in
������ yield for su ciently large u and su ciently small � that

I���u� � �EN �
��

�X
k��

k� P �N � k�

�
g

�
���� ��

�� � ��k

���
���u��� � C ���u��� �

Since� by ������� eh���� � as �� �� we 
nally conclude that

lim
���
lim sup
u��

I��u����u� � lim
���

eh��� � � �
Proof of ������ Let eX���

� be an independent copy of X
���
� and eX� � eX���

� � �� Consider the

symmetrization of X�� respectively X
���
� � given by

Z � X� � eX� � X
���
� � eX���

� ������

By independence of X� and eX� and subadditivity of 	� we have

P �	 �Z� ����� 
 �u��� � P �	�X� � ��� 
 �u�P
�
	
�eX� � ����

�
� �u��

�
�

By Lemma ���� the second factor on the right hand side goes to � as u��� Hence ����� follows
once we proved that for every � 
 � and � small enough

lim
u��

P �	�Z� ��� 
 �u�

��u�
� � ������

Observe that Z is a symmetric in
nitely divisible process whose L
evy measure �Z is given by

�Z�A� �

Z �

�

Z �

��

	
�
�
x��s��� � A �B�

�
� �

�
x��s��� � ��A� �B�

�


�dx� ds������

�

Z �

�

Z �

��
�
�
x��s��� � A �B�

�

��dx� ds
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for any measurable A � R
����� � Here


� ��t���� � 
 ��t���� � 
 ������t�� � t 
 � �

is the symmetrized one dimensional L
evy measure of X� De
ne two symmetric one dimensional
L
evy measures 
� and 
� by


��
� � 
� �
 � fx � jxj � �g� and 
��
� � 
� �
 � fx � jxj � �g� �������

Let Z�� Z� be independent in
nitely divisible processes with L
evy measures that are obtained by
replacing 
 in ������ by 
�� 
�� respectively� Then

Z
d
� Z� � Z�������

and therefore subadditivity of 	 implies

P �	�Z� ��� 
 �u� � P �	�Z� � ����� 
 �u��� � P �	�Z� � ����� 
 �u��� �� I��u� � I��u� �

It follows from Lemmas ��� and ��� below that for any � 
 � and � 
 �

lim
u��

I��u����u� � � �������

and so we proceed to estimate I��u��
Let �!j� be the points of a time homogeneous Poisson process on ����� with rate � � 
��R��

and let �Vj� be iid symmetric random variables with common distribution 
��
��R� and indepen�
dent of the Poisson process� De
ne for j � �

Yj � Vj�
�
	
�
jVj j���j ��� � ��

�
� ��

�
�������

Observe that we can represent the process Z� in the form

Z��t� �

�X
j��

Yj ���j ����t�� t � � �

�Simply compute the mean measures of the Poisson randommeasures on both sides of the equation
above�� Notice that

�!���Y��!���Y�� � � � �
d
� �!�� Y��!�� Y�� � � � �������

for any choice of signs above�
For u 
 � and T �u� � T ��� u� let

m � m�u� � inf fj � �� �� �� � � � � ���j� � T �u�g������

and

Z���m� �

mX
j��

Yj ���j ��� and Z
�m�
� �

�X
j�m	�

Yj ���j ��� �������

Then� again by subadditivity�

I��u� � P
�
	�Z���m� � ����� 
 �u��

�
� P

�
	�Z

�m�
� � ����� 
 �u��

�
�������

However� the right hand expressions are of the order o���u�� as u�� for every � 
 � and � 
 �
small enough �relatively to ��� as follows from Lemmas ��� and ���� This and ������ imply �����
and complete the proof of ������
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The lower bound� We again start with the identity

P
�
	�X� �� 
 u

�
� P

�
	�X� �X� ��� 
 u

�
�

Recalling that X� and X� are independent and 	 is subadditive� for every K 
 �

P
�
	�X� �� 
 u

�
� P

�
	�X� � �� � ���� 
 u�K

�
P
�
	��X� � ��� � K

�
� I
�u�K�I��K� �������

Lemma 
��� Under the assumptions of the theorem�

lim
K��

lim inf
u��

I
�u�K����u� � � �������

It is immediate from Lemma ��� that limK�� I��K� � �� Therefore� from this lemma and
������ we conclude that

lim inf
u��

P
�
	�X��� 
 u

�
��u�

� � �

This 
nishes the proof of the lower bound in ������

Proof of Lemma 
��� First recall the compound Poisson structure of X� from ������ For k �
�� �� � � � and j � k� consider the disjoint events

Bkj �
n
N � k� 	

�
Yj � �� � ����

�

 u� �K �

	
�
Yi � �� � ����

�
� u� �K � i � �� � � � � k � i �� j �

	
�
�
P

��i	�j�kYi � ��� � ���
�
� K

o
�

Subadditivity of 	 implies

I
�u�K� �

�X
k��

kX
j��

P �Bkj�

� P
�
	
�
Y� � �� � ����

�

 u� �K

�
p��K�� p��u� �

where

p��K� ��
�X
k��

kX
j��

P
�
N � k � 	

�
�
P

��i	�j�kYi � ��� � ���
�
� K

�
�

p��u� ��

�X
k��

P
�
N � k � 	

�
Yj � �� � ����

�

 u� �K for at least � di�erent j � f�� � � � � kg

�
�

Using the independence of Yj and
P

��i	�j�kYi and again the subadditivity of 	� we have

p��K� � EN P �	 �Y� � ��� � ������ � K��� P �	 ��X� � ��� � ������ � K��� �

By Lemma ���� 	�jX�j � ��� �� a�s� for every � 
 �� Using this fact� ������ and ������ �recall
that the law of Y� is �����B� �� see ������ we see that

lim inf
K��

p��K��EN � � �
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The argument leading to ����� also shows that for every K 
 ��

lim inf
u��

EN P
�
	
�
Y� � �� � ����

�

 u� �K

�
��u�

�
�

h ��� � �����
�

implying that

lim
���

lim
K��

lim inf
u��

p��K� P
�
	
�
Y� � �� � ����

�

 u� �K

�
��u�

� lim
���

�

h ��� � �����
� � �

Since� as u���

p��u� � E�N��
	
P
�
	
�
Y� � �� � ����

�

 u� �K

�
�
�

������ follows�

�� Auxiliary facts and lemmas

In this section we provide some auxiliary results for the proof of Theorem ���� In what follows�
we always assume that the assumptions of this theorem are satis
ed�
We start with a simple lemma connecting the rates of decay of the function ��u� in ����� and

of ��T �u� in �������

Lemma ���� There are constants q 
 � and C 
 � such that for all u � �

��u� � C �T �u���q ������

Proof� Recalling the de
nition of ��u� from ������ observing that H is decreasing and using �������
we obtain

��u� �

Z �

�
H��T �s� u�� ds �

Z �

�
H
�
�A� ���s� � T �u��

�
ds �

Now use that both ��s� and H�u� can be bounded by power laws� see ������� and change the
variable of integration to get the desired result�

Next we discuss certain properties of the processes occurring in ����� and subsequent decomposi�

tions� The processes Xi� X
���
i have independent �though not necessarily stationary� increments�

This property is inherited by the symmetric processes Z in ����� and� subsequently� Zi in �������
LetWi be L
evy processes on ����� with one dimensional L
evy measure 
i� i � �� �� as de
ned

in ������� Then the following identities in law hold�

Wi
d
� Zi �Vi � i � �� � ������

where� for 
xed i� Zi and Vi are independent symmetric in
nitely divisible processes with inde�
pendent increments�
Our next lemma shows that the functional 	 applied to the process Z�� representing the �small

jumps� of the process Z� has a �light� tailed distribution�

Lemma ���� For every � 
 � and r 
 �� we have

J�u� �� P �	 �Z� � ��� 
 u� � o
�
�T �u�����r

�
as u�� ������
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Proof� Without loss of generality we may assume that r � � and � � �� By subadditivity of 	�

J�u� � P
�
	�Z�����T �u���� � ����� 
 u��

�
� P

�
	�Z���T �u������ � ����� 
 u��

�
�� J��u� � J��u� �

The monotonicity properties ������� ������ of 	 yield

J��u� � P
�
	
�
sup��t�T �u��� Z��t�����T �u���� � ����

�

 u��

�
� P

�
sup��t�T �u��� Z��t� � �T �u�����

�
� � P �Z��T �u���� � �T �u������ �

In the last step we used L
evy"s maximal inequality� Another appeal to this inequality and to the
de
nition ofW� in ����� gives

J��u� � � P �W��T �u���� � �T �u������ �

However� the L
evy process W� has a symmetric L
evy measure supported by a compact set�
Therefore� it has 
nite exponential moments� By the Burkholder#Gundy inequality� for every
p � � there is a positive constant C such that EjW��t�j � Ctp�� for all t 
 �� Applying Markov"s
inequality� we 
nally obtain the following bound�

J��u� � o
�
�T �u�����r

�
� u�� ������

Now we turn to the estimation of J��u�� We proceed in a similar fashion� First� monotonicity
of 	 together with ������ gives

J��u� � P
�
	��Z� � �������T �u������� 
 u��

�
� P �Z��t� 
 ���t��� for some t � T �u����

�

�X
j��

P �Z��t� 
 ���t��� for some T �u��� � �j � �� � t � T �u��� � j� ��

�X
j��

bj �

Now use again L
evy"s maximal inequality� the fact that � is quasi�monotone and converges to
in
nity to obtain the following chain of inequalities�

bj � � P �Z��T �u��� � j� 
 a� � ��T �u��� � �j � ������

� � P �W��T �u��� � j� 
 a� � ��T �u��� � �j � ������ �

Finally� applying the Burkholder�Gundy and Markov inequalities and choosing p 
 ���� � r����
�see ������� we obtain for any r � ��

J��u� � C

�X
j��

�T �u��� � j�p��

�� �T �u��� � �j � ����p
� o

�
�T �u�����r

�
�

The latter estimate together with ����� for J��u� establishes the desired bound ����� for J�u��
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Now we turn to the processes Z���m� and Z
�m�
� de
ned in ������� In this context� recall that �Yj�

is a sequence of independent symmetric random variables given the points �!k� of a homogeneous
Poisson process with rate � � 
��R�� Write

Am � fjYj j � � T �!j� u�� j � �� � � � �mg � m � � �

Sk � Y� � 
 
 
� Yk � k � � �

Lemma ��
� Let m � m�u� be de�ned by ������� For every � 
 � and r 
 �� there are positive
constants � and C such that for all u 
 ��

G�u� �� P
�
	�Z���m� � ��� 
 u�Am

�
� C m�r �

Proof� Without loss of generality assume that � � �� By monotonicity of 	�

	


� mX
j��

Yj���j ��� � ��

�A � 	

�
max
��k�m

Sk ������� � ��

�
� 	

�
��� max

��k�m
Sk ������� � �

�
�

Therefore we have

G�u� � P

�
max
��k�m

Sk � �T �!�� u�� Am

�

� P

�
max
��k�m

Sk � �T �!�� u�� Am �!m � ��m

�
� P �!m 
 ��m� �� p���m � p���m �

Obviously� p
���
m decays to zero at an exponential rate� As to p

���
m � observe that

fAm �!m � ��mg �

�
max

j���			 �m
jYj j � � T ���m� u�

�
�� eAm �

Therefore and by virtue of L
evy"s maximal inequality� applied conditonally upon �!k� and �jYkj��

p���m � P

�
max
��k�m

Sk � �T �u� � eAm

�
� � P

�
Sm � �T �u� � eAm

�
� � P

�eSm � �T �u�
�
�

In the last step we applied the contraction principle for sums of independent symmetric random
variables� Here

eSm � mX
j��

eYj � eYj � eY �m�
j � Yj�jYj j��T ��
m�u� � j � �� � � � �m �

Notice that conditionally upon �!k�� eSm is a sum of independent symmetric random variables
which are uniformly bounded by T ���m� u�� An application of Prokhorov"s exponential inequality
�see Prokhorov ������� cf� Petrov ������� ����� on p� ���� conditionally on �!k�� yields

p���m � � E exp

�
�

�T �u�

�� T ���m� u�
arsinh

�
� T ���m� u� � T �u�

�var�eSm j �!k��

��
�

Let us consider the case �� � � in ������ the case �� � � is analogous� It follows from the
representation ������ of the random variables Yj that there is a constant C such that for any
realization �!i�

var�eSm j �!k�� � C m �T ���m� u������ �
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Then use the property ������ of T ���m� u� and the de
nition ������ of m � m�u� to obtain

T ���m� u� � A� �����m� � T �u�� � C �����m� � ���m�� � C ��m� �

Similarly�

T ���m� u�T �u� � �T �u��� � �����m� ����� � C ���m��� �

Combining the latter estimates and using the growth condition ����� on �� we arrive at the bound

� T ���m� u� � T �u�

�var�eSm j �!k��
� C

���m����

m
� C m������

Since �� 
 max����� �
��
� �� the power of m is positive� Similarly�

T �u�

T ���m� u�
� C

T �u�

����m� � T �u�
�

which is bounded away from � by ������� Using the fact that arsinh�t� � log�� � t�� t 
 �� we
conclude that

p���m � C exp

�
�
logm

C�

�
�

Collecting all bounds above for G�u�� p
���
m and p

���
m � we obtain our claim by choosing � small

enough�

Our next lemma shows that the 
rst probability on the right hand side of ������ is much smaller
than ��u��

Lemma ���� Let m � m�u� be de�ned by 
����� For every � 
 � and � 
 � small enough
�relatively to ���

lim
u��

P
�
	�Z���m� � ��� 
 �u

�
��u�

� � ������

Proof� Since ��t� does not grow faster than a power function� it follows from the de
nition of
m � m�u� that there exist positive constants C� q such that m � C�T �u��q for large u� By virtue
of Lemma ���� for every r 
 � and � 
 � there are positive � and C such that

P
�
	�Z���m� � ��� 
 �u �Am

�
� C m�r � C �T �u���rq �

Since r 
 � can be chosen arbitrarily large� the latter fact in combination with Lemma ��� implies
that

P
�
	�Z���m� � ��� 
 �u�Am

�
� o���u�� �

On the other hand� we have

P �Ac
m� �

mX
j��

P �jYj j 
 �T �!j� u�� � �

mX
j��

P �Yj 
 �T �!j� u�� ������

By representation ������ for the Yjs�

Yj � �T �!j � ��� � �T �!j � u������

for u large enough� Thus� for � small enough� the right hand expression in ����� vanishes� This
concludes the proof�
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The next lemmas are related to the behavior of the second term on the right hand side of �������
Write

Amn � fjYj j � �T �!j� u� �m � j � n� �g� n � m�m� �� � � � �� �

Lemma ���� For any � 
 � and r 
 �� there are positive constants � and C such that for all
u 
 � and n 
 m � m�u�

Hn �� P �Sn � Sm 
 ���!n� � Amn� � C n�r ������

Proof� For all j and u 
 �� we have T �!j� u� � A� ���!j� � T �u�� � C ���!n� � T �u��� Now� the
de
nition of m � m�u� and the �� condition give for n 
 m� T �u� � ���m� � C ���n� � C��n��
Therefore

T �!j � u� � C ���!n� � ��n�� � j � n �

Then for m � n�

Hn � P

�
Sn � Sm 
 � ��!n� � max

j�m	��			 �n
jYjj � � C ���!n� � ��n��

�
�

Recalling that the Poisson process �!j� has rate �� write

Dn � fj!n � �nj � ����ng �

and notice that P �Dc
n� decays to zero at an exponential rate� Therefore� for any r 
 ��

Hn � P

�
Sn � Sm 
 ��!n� � max

l�m	��			 �n
jYj j � � C ���!n� � ��n�� �Dn

�
� P �Dc

n�

� P

�
Sn � Sm 
 C�� ��n� � max

j�m	��			 �n
jYj j � � C ��n�

�
� Cn�r

� � P
�bSn � bSm � C�� ��n�

�
� C n�r

� � P
�bSn � C�� ��n�

�
� C n�r ������

In the last step we used the contraction principle and L
evy"s maximal inequality for the sum of
conditionally independent and symmetric random variables Yj � Here

bSn � nX
j��

bYj � bYj � Yj�jYj j��C��n� � j � �� � � � � n �

Using again Prokhorov"s inequality� conditionally on �!k� we can bound the tail probability in
����� by

E exp

�
�
C����n�

��C��n�
arsinh

�
����n���

� var�bSn j �!k��
��

�

Proceeding as in the proof of Lemma ��� and choosing � small enough� the last expression can
be bounded by Cn�r for any r 
 �� This concludes the proof�

The following statement is now a straightforward conclusion from the previous lemma�
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Lemma ���� For every � 
 � and r 
 �� there are positive constants � and C such that for all
u 
 � and m � m�u��

Rm � P
�
	�Z

�m�
� � ��� 
 � � Am�

�
� C m�r �������

Moreover�

lim
u��

P
�
	�Z

�m�
� � ��� 
 �u

�
��u�

� � �������

Proof� Using the properties ������� ����� of 	� we obtain the bounds

Rm � P

�
��

n�m	�

fSn � Sm 
 a� � ��!n�g � Amn

�

�

�X
n�m	�

P �Sn � Sm 
 a� � ��!n� � Amn� �

Now apply Lemma ��� to get ������� For u large enough� ����� holds for all j� Choosing � small
enough �relatively to ��� ������ follows from ������ and Lemma ����

�� Some examples of subadditive functionals

In this section we consider several important and common subadditive functionals 	 acting on
L
evy processes� We apply Theorem ��� to characterize the tail behavior of the distribution of
these functionals� The reader should note that only a few natural and transparent assumptions
are needed for the results below to hold�
Throughout this section we assume that the following assumptions hold�

H is regularly varying with exponent �� for some � 
 � ������

there is a constant C 
 � such that


���� ��t�� � C 
��t���� for all t � ������

and

� is regularly varying with exponent � for some � 
 max����� ���� ������

Of course� the assumption ����� is the same as ������ Since it is our goal to collect all the relevant
assumptions in this section together for easy reference� this assumption is repeated here� The
following lemma collects several well known facts on regular varying functions� The reader is
referred to Bingham et al� ������� for proofs and more information� Let

�
�u� � supft 
 � � ��t� � ug � u 
 ������

be the generalized inverse of ��

Lemma ���� �a� Let � be regularly varying at in�nity with positive exponent of regular varia�
tion� Then there are monotone functions �� and �

� such that

���t� � ��t� � ���t� for all t � � and lim
t��

���t�

���t�
� � ������
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�ii� Let � and � be regularly varying with positive exponent � of regular variation and such
that limt�� ��t����t� � � �i�e�� � and � are asymptotically equivalent�� Then their generalized
inverses are regularly varying with exponent ��� and asymptotically equivalent as well� Moreover�
let

���x� � inffy 
 � � �

�y� 
 xg � x 
 ��

Then

lim
x��

���x�

��x�
� � ������

�iii� �Potter�s bounds� Let � be regularly varying with a positive exponent � of regular
variation� For every C 
 � and � 
 � there is s� � s��C� �� such that for all s� t � s�

��t�

��s�
� C max

��
t

s

��	�

�

�
t

s

����
�
������

���� The overall supremum� One of the interesting subadditive functionals is the overall supre�
mum

	sup��� � supt�� ��t� �

It has numerous applications� among them in insurance mathematics for describing eventual ruin
�see Embrechts et al� ������� or in queuing for the bu�er over�ow �see Prabhu ��������

Remark ���� In this paper we deal with �power#like� tails and� hence� the following theorem
that describes the tail behavior of the distribution of the overall supremum of a L
evy process
is stated under the assumptions of regular variation� We conjecture� however� that the 
rst
asymptotic equivalence in ����� below holds in greater generality� perhaps under the assumption
of subexponentiality of the tail of H� In fact� if � 
 � and ��t� � �t for some � 
 �� is a linear
function� then the 
rst asymptotic equivalence in ����� is just the classical result for the ruin
probability as proved by Embrechts and Veraverbeke �������

P
�
supt�� �X�t�� ��t�� 
 u

�
�
�

�

Z �

u
H�s� ds �

and the latter result is known to hold when H has a subexponential right tail�
In fact� it is quite possible that the curve � may be allowed to belong to a wider class of

functions as well�

Theorem ��
� Assume ������������ Then

P �	sup�X� �� 
 u� � P
�
supt�� �X�t�� ��t�� 
 u

�
�����

�

Z �

�
H���s� � u�� ds � C��� ���
�u�H�u�

as u��� Here C��� �� � �
R�
� z����� � z����	�� dz�

Proof� The 
rst step is to note that it is enough to prove the theorem in the case when � is a
monotone function� Since all the terms in ����� are� obviously� monotone in �� parts �i� and �ii�
of Lemma ��� show that� knowing that the theorem holds for monotone functions� implies its
validity in general�
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Assume� therefore� that � is a monotone function� The only assumptions in Theorem ��� that
are not obviously satis
ed are ������ and ������� We will postpone veri
cation of these conditions
until the end of the proof� Note that in our case

T �s� u� � ��s� � u �

and so it follows from ������ and regular variation of H that

��u� �

Z �

�
H���s� � u�� ds

as u��� which together with Theorem ��� establishes the 
rst asymptotic equivalence in ������
Furthermore� by Potter"s bounds �part �iii� of Lemma ����� we see� further� that

��u� � u�H�u�

Z �

�
���s� � u���� ds � �u�H�u�

Z �

�
�
�u��y � u����	�� dy �

Since �
 is� according to part �ii� of Lemma ���� regularly varying� the second asymptotic equiv�
alence in ����� is a standard exercise in integration of regularly varying functions�
It remains to check ������ and ������� For every � � � � �Z �

�
H��T �s� �u�� ds �

Z �

�
H�����s� � �u�� ds �

Z �

�
H������s� � u�� ds �� I
�u� ������

Since we have already proved that I��u� is regularly varying� by Potter"s bounds� there is a � 
 �
such that I��u� � Cu�� for all u � �� while for any � � � � � and u � ����

I
�u� � C���I��u� �

In the case � � u � ��� we write

I
�u� �

Z
��s��
��

�

Z
��s��
��

�� I
���

 �u� � I

���

 �u� �

Using Potter"s bounds in the same way as before shows that

I
���

 �u� � C���I��u� �

Moreover� since H is the tail of a L
evy measure� we know that� for some C 
 �� H�y� � Cy��

for all � � y � �� Therefore� by the regular variation of �

I
���

 �u� � C���u��

Z �

�
����s� � ���� ds � C����

for some �� 
 �� Putting everything together establishes that for some C 
 � and �� 
 �Z �

�
H��T �s� �u�� ds � C����

Z �

�
H�T �s� u�� ds

for all u � � and � � � � �� This is� of course� more than enough to prove ������� Finally� the
assumption ������ is an immediate consequence of ����� and Potter"s bounds�
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���� The time the process spends above zero� In this section we consider the sojourn time

	sojourn��� �

Z �

�
� ���t� 
 �� dt �

which is easily seen to be a subadditive functional�

Theorem ���� Assume ������������ Then

P �	sojourn�X� �� 
 u� � P

�Z �

�
� �X�t� � ��t� 
 �� dt 
 u

�

�

Z �

u
H���s�� ds � C��� �� u H���u��������

as u��� Here C��� �� � ��� � �����

Proof� We may and will assume that � is monotone� Furthermore� we may assume that ���� � ��
Indeed� let

$��t� � max���t�� � � log�� � t�� � t � � �

Then $���� � �� $��t� � ��t� as t��� and it is easy to check that monotonicity and subadditivity
of the functional 	sojourn imply that

P �	sojourn�X� �� 
 u� � P �	sojourn�X� ��� 
 u�

as u���
Once again� the only assumptions in Theorem ��� that are not obviously satis
ed are ������

and ������ �see Proposition ��� for �������� and we postpone their veri
cation� Note that in this
case

T �s� u� � ���s� u�

�see part �ii� of Lemma ����� and so it follows from that part of the lemma� ������ and regular
variation of H that

��u� �

Z �

u
H���s�� ds

as u���
It remains to verify the conditions ������ and ������� We haveZ �

�
H��T �s� �u�� ds �

Z �


u
H�����s�� ds � �

Z �

u
H������s�� ds �� I
�u� �

Note that the assumption ���� � � implies that ����� � �� Therefore� if � � � � � and u � ���
we can use Potter"s bounds and the fact that H�y� � Cy�� for all � � y � � to see that for some
C 
 � and � 
 � we have

I
�u� � C���I��u� �

whereas if � � u � ���� then

I
�u� � C����� � I��u�� �

The already established regular variation at in
nity of I��u� implies now that

I
�u� � C���I��u�

for all � � � � � and u � �� which is� once again� more than enough to prove ������� The
assumption ������ is an immediate consequence of Potter"s bounds�



TAIL PROBABILITIES OF SUBADDITIVE FUNCTIONALS ACTING ON L
EVY PROCESSES ��

���� The last hitting time of zero� In this section we consider the functional

	last��� � supft 
 � � ��t� � �g �

It is not di cult to see that this functional is subadditive�

Theorem ���� Assume ������������ Then

P �	last�X� �� 
 u� � P �supft 
 � � X�t� � ��t�g 
 u�

� uH���u�� �

Z �

u
H���s�� ds � C��� �� u H���u��������

as u��� Here C��� �� � � � ��� � �����

Proof� The proof is similar to the one for Theorem ���� Without loss of generality we may and
will assume that � is monotone increasing and ����� ����� � �� The only conditions we have
to verify are ������ and ������ �once again� see Proposition ��� for �������� We postpone this
calculation until later�
Notice that

	last�x��s��� � �� �

�
� if x � ��s��

�
�x� if x 
 ��s��

Therefore

T �s� u� � inffx � x 
 ��s�� �
�x� 
 ug � max���s�� ���u�� �������

and so we may conclude that

��u� � uH����u�� �

Z �

u
H���s�� ds �������

which together with Karamata"s theorem concludes the proof of the theorem�
We now turn to the proof of ������ and ������� We have by ������Z �

�
H��T �s� �u�� ds � �uH������u� �

Z �


u
H�����s�� ds �� H���u� �H���u� �

It clearly su ces to show that each term H��u� and H��u� satis
es ������ and ������� For H��u�
this was proved in the proof of Theorem ���� Now turn to H��u�� Let � � ��� ��� Then it follows
from Potter"s bounds and regular variation of � and H that for u 
 ���� say�

H���u� � C ��H��u� �

where � is a real constant� For small u � ��� one can again proceed as in the proof of Theorem ����
Making use of the fact that H is the tail of a one�dimensional L
evy measure and that ���� � ��
we see that

H���u� � C ��u� H��� � C ��u� ��� � C ���uH����u�� � C H��u� �
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���� Integral of a nonnegative subadditive function� The functional 	sojourn of Theorem
��� is a particular case of a more general group of subadditive functionals obtained by appro�
priate space#dependent weighting of the positive values of a process� Consider a nondecreasing
nonnegative function f such that f�x� � � for x � � and

f�x� � x�� � f�x�� � f�x�� for x�� x� 
 ��

and let

	I�f���� �

Z �

�
f���t�� dt �������

It is clear that 	I�f� is a subadditive functional� We will not address here the question what
functionals 	I�f� 
t in the framework of the theory developed in the present paper� Instead� we
will brie�y consider the class of functionals corresponding to the power functions

f�x� � �x	�
p� � � p � � �������

We will denote the corresponding functional by 	p���� The case p � � corresponds to the
functional 	sojourn�
The tail behavior of the distribution of the functional 	p��� is described in the following

theorem� Its proof is very similar to that of Theorem ���� but quite a bit longer� We omit the
argument�

Theorem ���� Assume ������������ Then for every � � p � �

P �	p�X� �� 
 u� � P

�Z �

�
�X�t�� ��t��p	 dt 
 u

�
� C��� �� p� u �F
�u���pH �F
�u��������

as u��� Here

F �x� � xp�
�x�� x 
 � �

and C��� �� p� is a �nite positive constant given by

C��� �� p� �

Z �

�
y�t���t��� dt �

where y�t� � h���t���	p��� t 
 �� and h is a strictly increasing continuous function on �����
given by

h�y� � pyp
Z �

��y

�
�yz�� � �

�
�z � ��p�� dt �

���� The supremum of the integral of the process� Here we consider the subadditive func�
tional

	supint��� � sup
v��

Z v

�
��t� dt �

Unlike other functionals considered in this section� this functional is a�ected by the negative
values of the process� The tail behavior of this functional is described in the theorem below� Its
proof� once again� is very similar to that of the previous results� but longer� We will omit its
argument as well�
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Theorem ���� Assume ������������ Then

P �	supint�X� �� 
 u� � P

�
sup
v��

Z v

�
�X�t� � ��t�� dt 
 u

�

� C��� �� �
� �u� H

�
u

�
� �u�

�
������

as u��� Here

���x� �

Z x

�
��y dy� x 
 � �

and C��� �� is a �nite positive constant given by

C��� �� �

Z �

�
y�t���t�� dt �

where y�t� � h������� � ��t�	��� t 
 �� and h is a strictly increasing continuous function on
����� given by

h�y� �
y�	�

�� � y��
�
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