
 

A class of degenerate pseudo-parabolic equations : existence,
uniqueness of weak solutions, and error estimates for the
Euler-implicit discretization
Citation for published version (APA):
Fan, Y., & Pop, I. S. (2010). A class of degenerate pseudo-parabolic equations : existence, uniqueness of weak
solutions, and error estimates for the Euler-implicit discretization. (CASA-report; Vol. 1044). Technische
Universiteit Eindhoven.

Document status and date:
Published: 01/01/2010

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://research.tue.nl/en/publications/5442ec12-015a-483d-9629-1ae61a035e4c


                                        
 
 

EINDHOVEN UNIVERSITY OF TECHNOLOGY 
Department of Mathematics and Computer Science 

 
 
 
 
 
 
 
 
 
 
 

CASA-Report 10-44 
July 2010 

 
 
 

A class of degenerate pseudo-parabolic equations: existence,  
uniqueness of weak solutions, and error estimates  

for the Euler-implicit discretization 
 

by 
 

Y. Fan, I.S. Pop 
 

 
 
 

 

 
 
 
 

Centre for Analysis, Scientific computing and Applications 
Department of Mathematics and Computer Science 
Eindhoven University of Technology 
P.O. Box 513 
5600 MB Eindhoven, The Netherlands 
ISSN: 0926-4507 
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Euler-implicit discretization

Y. Fan, I.S. Pop
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Abstract

In this paper, we investigate a class of degenerate pseudo-parabolic equations. Such
equations model two-phase flow in porous media where dynamic effects are included
in the capillary pressure. The existence and uniqueness of a weak solution are proved,
and error estimates for an Euler implicit time discretization are obtained.

1 Introduction

In this paper, we focus on the following pseudo-parabolic equation:

(1.1) ut +∇ · F⃗ (u) = ∇ · (H(u)∇u) + τ∆ut,

where H : R −→ [0,+∞) is smooth and bounded. Note that in particular H may become
0 for some value of u, we call this situation degenerate. A two-phase porous media flow
taking into account dynamic effects in the phase pressure difference is proposed in [12],

(1.2) ut +∇ · F⃗ (u) = ∇ · (H(u)∇p) ,

with p = pc(u) + τ∂tu. Clearly, (1.1) is a simpler version of (1.2), as the degeneracy is
encountered only in the second order term. Here we study the existence and uniqueness
of weak solutions to (1.1), complemented with initial and boundary conditions. We do so
by applying a discretization in time, for which we also give error estimates.

Pseudo-parabolic equations arise in many real life applications such as radiation with
time delay [17], degenerate double-diffusion models [3], heat conduction models [23] and
models for lightning propagation [2], etc. Existence and uniqueness of weak solutions to
nonlinear pseudo-parabolic equations are proved in [20], while existence of weak solutions
for some degenerate cases is studied in [18], [19]. A nonlinear parabolic-Sobolev equation
is studied in [25]. In [21], homogenization of a pseudoparabolic system is considered.
Travelling wave solutions and their relation to non-standard shock solutions to hyperbolic
conservation laws are investigated in [4], [7] for linear higher order terms. This analysis is
pursued in [6] for degenerate situations. Numerical schemes for dynamic capillary effects
in heterogeneous porous media are given in [13] and a numerical scheme for the pore-
scale simulation of crystal dissolution and precipitation in porous media is studied in
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[8]. The case of discontinuous initial data is analyzed in [5]. Superconvergence of a finite
element approximation to similar equation is investigated in [1] and time-stepping Galerkin
methods are analyzed in [10] and [11], where two difference-approximation schemes are
considered. In [22], Fourier spectral methods for pesudo-parabolic equations are analyzed.

The analysis below is carried out under the following assumptions:

• (A1) Ω is an open, bounded and connected domain in Rd, with Lipschitz continuous
boundary. With T > 0 given we denote Q = Ω× (0, T ].

• (A2) τ is a given strictly positive number.

• (A3) The vector valued F⃗ satisfies F⃗ = v⃗f(u), where v⃗ ∈ Rd is a fixed vector. The
functions f and H are C1,1 satisfying 0 ≤ f ≤ 1, 0 ≤ H ≤ M for some M > 0. We
denote L an upper bound for the Lipschitz constants of f,H, f ′, H ′.

Remark 1.1 We take v⃗ ∈ Rd for the ease of presentation. However, the results below
can be extended to more general cases, such as v⃗ is a divergence free vector field, or F⃗ is
a given C1,1 vector valued function.

In this paper, we use standard notations. In particular, L2(Ω) stands for the square
Lebesgue integrable functions on Ω , W 1,2(Ω) requests the same also for the derivatives
of first order. W 1,2

0 (Ω) is a subset of W 1,2(Ω) whose elements have zero boundary values.

Furthermore, W−1,2(Ω) is the dual space of W 1,2
0 (Ω).

The initial and boundary conditions of (1.1) are given as follows:

(1.3) u(·, 0) = u0, and u|∂Ω = 0,

where u0 ∈W 1,2
0 (Ω). We seek a weak solution to the following

Problem P Find u ∈W 1,2(0, T ;W 1,2
0 (Ω)) such that∫ T

0

∫
Ω
utϕdxdt−

∫ T

0

∫
Ω
F⃗ (u)∇ϕdxdt(1.4)

+

∫ T

0

∫
Ω
H(u)∇u∇ϕdxdt+ τ

∫ T

0

∫
Ω
∇ut∇ϕdxdt = 0,

for any ϕ ∈ L2(0, T ;W 1,2
0 (Ω)).

This paper is organized as follows: Section 2 provides the existence of weak solutions
to Problem P. The uniqueness of the weak solution is proved in Section 3. In Section 4,
some error estimates for an Euler implicit time discretization scheme are obtained, and in
Section 5, an iterative approach for solving the time discretization nonlinear problems is
discussed and some numerical computations are given to verify the theoretical results. In
the last section, some conclusions are given.
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2 Existence

We show the existence of a weak solution to Problem P by the method of Rothe (see
[14]), based on the Euler implicit time stepping. Before defining the time discretization
we mention the following elementary inequality, which will be used several times later:

(2.1) ab ≤ 1

2δ
a2 +

δ

2
b2, for any a, b ∈ R and δ > 0.

2.1 Time discretization

With N ∈ N, let ∆t = T/N and consider the following:
Problem Pn+1 Given un ∈ W 1,2

0 (Ω), n ∈ {0, 1, 2, ..., N − 1}, find un+1 ∈ W 1,2
0 (Ω) such

that

(un+1 − un, ϕ) + ∆t(∇ · F⃗ (un+1), ϕ) + ∆t(H(un+1)∇un+1,∇ϕ) +(2.2)

τ(∇(un+1 − un),∇ϕ) = 0,

for any ϕ ∈ W 1,2
0 (Ω), here (·, ·) means L2 inner product. Note that this is the weak

formulation of

(2.3)
un+1 − un

∆t
+∇ · F⃗ (un+1) = ∇(H(un+1)∇un+1) + τ∆

(un+1 − un)

∆t
.

We have the following:

Lemma 2.1 Problem Pn+1 has a solution.

Proof . Note that un+1 can be identified formally with the solution of the following
equation:

(2.4) −∇ · ((∆tH(X) + τ)∇X) + ∆t∇ · F⃗ (X) +X − un + τ∆un = 0.

If un ∈ C2,1
0 (Ω), Theorem 8.2 from Chapter 4 in [16] provides the existence of un+1 = X ∈

C2,1
0 (Ω) solving (2.4).

If un ∈ W 1,2
0 (Ω), there exists a sequence {unk}k∈N ⊆ C2,1

0 (Ω) converging to un in

W 1,2(Ω). Solving (2.4) gives the sequence {Xk}k∈N ⊆ C2,1
0 (Ω) with unk instead of un.

Consider the weak form of (2.4):

∆t(H(Xk)∇Xk,∇ϕ) + τ(∇Xk,∇ϕ)−∆t(F⃗ (Xk),∇ϕ)(2.5)

+(Xk, ϕ) = (unk , ϕ) + τ(∇unk ,∇ϕ),

for any ϕ ∈W 1,2
0 (Ω).

Taking ϕ = Xk ∈W 1,2
0 (Ω) with F⃗(Xk) =

∫ Xk

0 F⃗ (v)dv gives

(2.6) (F⃗ (Xk),∇Xk) =

∫
Ω
F⃗ (Xk)∇Xkdx =

∫
∂Ω
ν⃗ · F⃗(0)dx = 0,
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where ν⃗ is the outer normal vector to ∂Ω. By (2.1),

(2.7) τ

∫
Ω
|∇Xk|2dx+

∫
Ω
|Xk|2dx ≤ τ

∫
Ω
|∇unk |2dx+

∫
Ω
|unk |2dx ≤ C,

where C is a positive constant.

By the construction of {unk}, we have

(unk , ϕ) → (un, ϕ),(2.8)

(∇unk ,∇ϕ) → (∇un,∇ϕ).(2.9)

for any ϕ ∈W 1,2
0 (Ω).

Further, since {Xk}k∈N and {∇Xk}k∈N are uniformly bounded in L2(Ω) , there exists a
subsequence (still denoted as Xk) weakly converging to some X in W 1,2

0 (Ω). Clearly,

(Xk, ϕ) → (X,ϕ),(2.10)

(∇Xk,∇ϕ) → (∇X,∇ϕ),(2.11)

(F⃗ (Xk),∇ϕ) → (F⃗ (X),∇ϕ),(2.12)

for any ϕ ∈W 1,2
0 (Ω).

Define

(2.13) H(y) :=

∫ y

0
H(v)dv.

Since Xk → X strongly in L2(Ω) and according to (A3), we know that H(Xk) → H(X)
strongly in L2(Ω). Further, H(Xk) is uniformly bounded in W 1,2

0 (Ω). Therefore

(2.14) (∇H(Xε),∇ϕ) → (∇H(X),∇ϕ).

Then from (2.8), (2.9), (2.10), (2.11), (2.12) and (2.14), X is a solution to Problem Pn+1.
�

Lemma 2.2 The solution of Problem Pn+1 is unique, at least if ∆t is small enough.

Proof . Assume we have two solutions X and Y . Define

(2.15) G(y) =
∫ y

0
(H(v) +

τ

∆t
)dv,

and subtract the equation for Y from the equation for X, taking ϕ = G(X)−G(Y ) in the
result gives
(2.16)
∆t||∇(G(X)−G(Y ))||2L2(Ω)−∆t(F⃗ (X)−F⃗ (Y ),∇(G(X)−G(Y )))+(X−Y,G(X)−G(Y )) = 0.
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Therefore,
(2.17)

∆t||∇(G(X)−G(Y ))||2L2(Ω)+
τ

∆t
||X−Y ||2L2(Ω) ≤

∆t

2
(L||X−Y ||2L2(Ω)+||∇(G(X)−G(Y ))||2L2(Ω)).

If ∆t2 < 2τ
L ,

(2.18) ||X − Y ||L2(Ω) = 0,

implying the uniqueness.

2.2 A priori estimates

Having established the existence for the time discretization problems, we proceed with
investigating Problem P. To this end, we obtain some a priori estimates.

Lemma 2.3 For any n ∈ {0, 1, 2, ..., N − 1}, we have:

||un+1||2L2(Ω) + τ ||∇un+1||2L2(Ω) ≤ C,(2.19)

||un+1 − un||2L2(Ω) + τ ||∇(un+1 − un)||2L2(Ω) ≤ C(∆t)2,(2.20)

here C denotes a positive constant.

Proof . 1. Taking ϕ = un+1 in (2.2) gives

(2.21)

||un+1||2L2(Ω)+τ ||∇u
n+1||2L2(Ω)+∆t

∫
Ω
H(un+1)|∇un+1|2dx = (un, un+1)+τ(∇un,∇un+1).

Since un+1 vanishes on ∂Ω, with F(un+1) =
∫ un+1

0 F⃗ (v)dv we have

(∇ · F⃗ (un+1), un+1) = −
∫
Ω
F⃗ (un+1)∇un+1dx =

∫
∂Ω
ν⃗ · F⃗(0)dx = 0,

together with (2.1) yields

(2.22) ||un+1||2L2(Ω) + τ ||∇un+1||2L2(Ω) ≤ ||un||2L2(Ω) + τ ||∇un||2L2(Ω).

Since u0 ∈W 1,2
0 (Ω), this implies

(2.23) ||un||2L2(Ω) + τ ||∇un||2L2(Ω) ≤ C.

2. Taking ϕ = un+1 − un in (2.2) gives

||un+1 − un||2L2(Ω) −∆t(F⃗ (un+1),∇ · (un+1 − un))(2.24)

+∆t(H(un+1)∇un+1,∇(un+1 − un)) + τ ||∇(un+1 − un)||2L2(Ω) = 0,

Using (2.1) and the boundedness of F⃗ , we have

(2.25) ||un+1 − un||2L2(Ω) +
τ

2
||∇(un+1 − un)||2L2(Ω) ≤ C(∆t)2. �
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Remark 2.1 From the proof of (2.19), if we define ||un||2 = ||un||2L2(Ω) + τ ||∇un||2L2(Ω),

then ||un|| decreases as n increases. Further, from (2.20) one immediately obtains

N∑
k=1

||uk − uk−1||2L2(Ω) ≤ C∆t,(2.26)

N∑
k=1

||∇(uk − uk−1)||2L2(Ω) ≤ C∆t.(2.27)

2.3 Existence

To show the existence of a solution to Problem P, we start by defining

(2.28) UN (t) = uk−1 +
t− tk−1

∆t
(uk − uk−1), and UN (t) = uk,

for tk−1 = (k − 1)∆t ≤ t < tk = k∆t, k = 1, 2...N . We have the following result:

Theorem 2.1 Problem P has a solution.

Proof . According to the a priori estimates in Lemma 2.3,∫ T

0
||UN (t)||2L2(Ω)dt =

N∑
k=1

∫ tk

tk−1

||uk−1 +
t− tk−1

∆t
(uk − uk−1)||2L2(Ω)dt(2.29)

≤ 2

N∑
k=1

∫ tk

tk−1

(||uk−1||2L2(Ω) + ||uk − uk−1||2L2(Ω))dt

≤ C.

Similarly, ∫ T

0
||∇UN (t)||2L2(Ω)dt ≤ C,(2.30)

∫ T

0
||∂tUN ||2L2(Ω)dt =

1

∆t

N∑
k=1

||uk − uk−1||2L2(Ω) ≤ C,(2.31)

and ∫ T

0
||∂t∇UN ||2L2(Ω)dt =

N∑
k=1

∫ tk

tk−1

|| 1
∆t

∇(uk − uk−1)||2L2(Ω)dt(2.32)

=
1

∆t

N∑
k=1

||∇(uk − uk−1)||2L2(Ω) ≤ C.

Therefore {UN}N∈N is uniformly bounded in W 1,2(0, T ;W 1,2
0 (Ω)), so it has a subsequence

(still denoted as {UN}) that converges weakly to some U ∈W 1,2(0, T ;W 1,2
0 (Ω)). Therefore
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UN converges strongly to U in L2(Q).

We now exploit a general principle that relates the piecewise linear and the piecewise
constant interpolation (see e.g. [15] for a proof of the corresponding lemma): if one
interpolation converges strongly in L2(Q), then the other interpolation also converges
strongly in L2(Q). From the convergence of UN , we conclude that UN also converges
strongly in L2(Q). With H defined in (2.13), the boundedness of H implies that H(UN )
is uniformly bounded in L2(0, T ;W 1,2

0 (Ω)). As in the proof of Lemma 2.1, one gets

(2.33) ∇H(UN )⇀ ∇H(U).

From (2.2), we know∫ T

0

∫
Ω
∂tUN (t)ϕdxdt−

∫ T

0

∫
Ω
F⃗ (UN (t))∇ϕdxdt(2.34)

+

∫ T

0

∫
Ω
∇H(UN (t))∇ϕdxdt+ τ

∫ T

0

∫
Ω
∂t∇UN (t)∇ϕdxdt = 0,

for any ϕ ∈ L2(0, T ;W 1,2
0 (Ω)),

Using the weak convergence of UN and H(UN ), we consider a sequence ∆t → 0 and
pass to the limit in (2.34). This shows that U is a solution to Problem P. �

Remark 2.2 As will be proved in the following section, the solution of Problem P is
unique. Therefore the convergence holds along any ∆t↘ 0.

3 Uniqueness

Here we show that the solution to Problem P is unique. To do so, we use the following
result (see e.g. Chapter 6 in [9]):

Proposition 3.1 Let g ∈ L2(Ω). The equation

(3.1) −∆G = g in Ω,

with boundary condition G|∂Ω = 0 has a unique weak solution G ∈W 1,2
0 (Ω), satisfying

(3.2) ||∇G||W 1,2(Ω) = ||g||W−1,2(Ω) ≤ C||g||L2(Ω).

We use this for proving the uniqueness result:

Theorem 3.1 The solution of Problem P is unique.

Proof . Assume u and v are two solutions, we have (u− v)(·, 0) = 0 and for any t̃ > 0,∫ t̃

0

∫
Ω
(u− v)tϕdxdt−

∫ t̃

0

∫
Ω
(F⃗ (u)− F⃗ (v))∇ϕdxdt(3.3)

+

∫ t̃

0

∫
Ω
∇(H(u)−H(v))∇ϕdxdt+ τ

∫ t̃

0

∫
Ω
∇(u− v)t∇ϕdxdt = 0,
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for any ϕ ∈ L2(0, T ;W 1,2
0 (Ω)).

Taking g = u− v in Proposition 3.1, there exists a Gu−v ∈W 1,2
0 (Ω) such that

(3.4) (∇Gu−v,∇ψ) = (u− v, ψ),

for any ψ ∈W 1,2
0 (Ω), satisfying

(3.5) ||Gu−v||W 1,2(Ω) ≤ C||u− v||L2(Ω).

Note that through u and v, Gu−v also depends on t. First, by (3.4) for any t̃ > 0∫ t̃

0

∫
Ω
(u− v)tGu−vdxdt(3.6)

=

∫
Ω
(u− v)Gu−v|t̃0dx−

∫
Ω

∫ t̃

0
(u− v)∂tGu−vdtdx

=

∫
Ω
|∇Gu−v|2|t̃0dx−

∫ t̃

0

∫
Ω
∇Gu−v∇∂tGu−vdtdx

=
1

2

∫
Ω
|∇Gu−v(·, t̃)|2dx,

as Gu−v(·, 0) = 0. Further, by (A3)
(3.7)∫ t̃

0

∫
Ω
(F⃗ (u)− F⃗ (v))∇Gu−vdxdt ≤ C

∫ t̃

0

∫
Ω
|u− v||∇Gu−v|dxdt ≤ C

∫ t̃

0

∫
Ω
|u− v|2dxdt.

Next the monotonicity of H implies

(3.8)

∫ t̃

0

∫
Ω
∇(H(u)−H(v))∇Gu−vdxdt =

∫ t̃

0

∫
Ω
(H(u)−H(v))(u− v)dxdt ≥ 0,

Finally,

τ

∫ t̃

0

∫
Ω
∂t∇(u− v)∇Gu−vdxdt(3.9)

= τ

∫ t̃

0

∫
Ω
∂t(u− v)(u− v)dxdt

=
τ

2

∫
Ω
(u− v)(·, t̃)2dx.

Therefore taking ϕ = Gu−v in (3.3) gives

(3.10)
1

2
||∇Gu−v(·, t̃)||2L2(Ω) +

τ

2
||(u− v)(·, t̃)||2L2(Ω) ≤ C

∫ t̃

0

∫
Ω
|u− v|2dxdt.

By Gronwall’s inequality, ||(u−v)(·, t̃)||L2(Ω) = 0. Since t̃ is arbitrary, this gives uniqueness.
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4 Error estimates

From the above we see that the approximating sequence UN converges strongly to U in
L2(Q). In this section we will estimate the error UN − U . Recalling (3.3), we have∫ T

0

∫
Ω
∂tUN (t)ϕdxdt−

∫ T

0

∫
Ω
F⃗ (UN (t))∇ϕdxdt(4.1)

+

∫ T

0

∫
Ω
∇H(UN (t))∇ϕdxdt+ τ

∫ T

0

∫
Ω
∂t∇UN (t)∇ϕdxdt = 0.

Denote

(4.2) eu(t) = u(t)− UN (t), and eH(t) = H(u(t))−H(UN (t)).

Obviously, eu, eH ∈W 1,2
0 (Ω) and eu(·, 0) = eH(·, 0) = 0.

Theorem 4.1 The following estimate holds:

(4.3) ||eu||L∞(0,T ;L2(Ω)) ≤ C∆t.

Proof . Subtracting (4.1) from (1.4) gives∫ t̃

0

∫
Ω
∂teuϕdxdt−

∫ t̃

0

∫
Ω
(F⃗ (u(t))− F⃗ (UN (t)))∇ϕdxdt(4.4)

+

∫ t̃

0

∫
Ω
∇(H(u(t))−H(UN (t)))∇ϕdxdt+ τ

∫ t̃

0

∫
Ω
∂t∇eu∇ϕdxdt = 0.

Taking g = eu in Proposition 3.1 provides a Geu ∈W 1,2
0 (Ω) satisfying

(4.5) (∇Geu ,∇ψ) = (eu, ψ),

for any ψ ∈W 1,2
0 (Ω), and

(4.6) ||Geu ||W 1,2(Ω) ≤ C||eu||L2(Ω).

We will use Geu as test function in (4.4). As in Section 3 we have for any t̃ > 0

(4.7)

∫ t̃

0

∫
Ω
∂teuGeudxdt =

1

2

∫
Ω
(∇Geu(·, t̃))2dx =

1

2
||eu(t̃)||2W−1,2 .

Further, ∫ t̃

0

∫
Ω
(F⃗ (u(t))− F⃗ (UN (t)))∇Geudxdt(4.8)

≤ C1

∫ t̃

0
||eu||2L2(Ω)dxdt+

∫ t̃

0

∫
Ω
(F⃗ (UN (t))− F⃗ (UN (t)))∇Geudxdt

≤ C1

∫ t̃

0
||eu||2L2(Ω)dxdt+ C2

∫ t̃

0
||UN − UN ||L2(Ω)||∇Geu ||L2(Ω)dt

9



Since UN −UN = tk−t
∆t (uk−uk−1), for t ∈ (tk−1, tk). By (2.26), we get ||UN −UN ||L2(Ω) ≤

C∆t, therefore ∫ t̃

0

∫
Ω
(F⃗ (u(t))− F⃗ (UN (t)))∇Geudxdt(4.9)

≤ (C1 +
1

2
)

∫ t̃

0
||eu||2L2(Ω)dxdt+ C3(∆t)

2

Similarly, ∫ t̃

0

∫
Ω
∇(H(u(t))−H(UN (t)))∇Geudxdt(4.10)

=

∫ t̃

0

∫
Ω
∇eH∇Geudxdt+

∫ t̃

0

∫
Ω
∇(H(UN (t))−H(UN (t)))∇Geudxdt

=

∫ t̃

0

∫
Ω
eueHdxdt+

∫ t̃

0

∫
Ω
∇(H(UN (t))−H(UN (t)))∇Geudxdt

≥
∫ t̃

0

∫
Ω
∇(H(UN (t))−H(UN (t)))∇Geudxdt

=
N∑
k=1

∫ tk

tk−1

∫
Ω

(
H(UN (t))−H(UN (t))

)
eudtdx

≥ −C
∫
Ω

N∑
k=1

∫ tk

tk−1

(
1

4
|uk − uk−1|2 + |eu|2)dtdx

≥ −C(∆t)2 − 1

2

∫
Ω

∫ t̃

0
|eu|2dtdx,

and

(4.11) τ

∫ t̃

0

∫
Ω
∂t∇eu∇Geudxdt = τ

∫
Ω
∂teueudxdt =

τ

2

∫
Ω
eu(·, t̃)2dx.

Using above, taking ψ = Geu in (4.4) gives

1

2

∫
Ω
(∇Geu(·, t̃))2dx+

τ

2

∫
Ω
eu(·, t̃)2dx ≤ C1(∆t)

2 + C2

∫ t̃

0

∫
Ω
|eu|2dxdt.(4.12)

Using Gronwall’s inequality, we obtain the estimate

(4.13) ||eu||L∞(0,T ;L2(Ω)) ≤ C∆t.

�

Remark 4.1 From (4.13), since H is Lipschitz continuous, we immediately obtain

(4.14) ||eH(·, t)||L∞(0,T ;L2(Ω)) ≤ C∆t.
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5 Numerical example

In this section, we give a numerical example to verify the theoretical findings. We solve
the following equation in Q = (0, 1)× (0, 1]

(5.1)
∂u

∂t
=

1

6

∂

∂x
([u]+

∂u

∂x
) +

1

6

∂3u

∂2x∂t
− 1

2(1 + t)2
,

with initial and boundary conditions

(5.2) u(x, 0) = x(1− x), u(0, t) = u(1, t) = 0.

Here

(5.3) [u]+ =

{
u if u > 0,

0 if u ≤ 0.

therefore the equation becomes degenerate whenever u ≤ 0. For the equation (5.1), the
exact solution is

(5.4) u(x, t) =
x(1− x)

1 + t
.

In the following, we use this solution to test the numerical scheme.

5.1 Numerical scheme

Before giving the numerical results, we present an iterative scheme to solve the time
discretization problems. To do so, taking ∆t = 1/N(N ∈ N) and denoting f(t) = 1

2(1+t)2
,

formally we get

(5.5)
un − un−1

∆t
=

1

6
∂x([u

n]+∂xu
n) +

1

6
∂xx(

un − un−1

∆t
)− f(tn).

Define the Kirchhoff transform

(5.6) v = β(u) :=
1

6

∫ u

0
(∆t[s]+ + 1)ds =


∆t

12
u2 +

1

6
u, if u > 0

1

6
u, if u ≤ 0,

instead of solving (5.5), we seek vn = β(un) such that

(5.7) β−1(vn)− ∂xxv
n = un−1 − 1

6
∂xxu

n−1 −∆tf(tn).

with vn = 0 at x = 0 and x = 1. To solve (5.7), we use the following iteration method
inspired from [26], pp. 90-100 (also see e.g. [8], [24]):

(5.8) 6vn,i − ∂xxv
n,i = 6vn,i−1 − β−1(vn,i−1) + α(un−1, tn),

11



where i = 1, 2... and

(5.9) α(un−1, tn) = un−1 − 1

6
∂xxu

n−1 −∆tf(tn).

This iteration requires a starting point vn,0. As will be proved below, the iteration is con-
vergent for any vn,0. However, for the practical reasons, we choose vn,0 = vn−1 = β(un−1).

Lemma 5.1 The iteration method (5.8) is convergent in the W 1,2(0, 1) norm.

Proof . We write (5.9) in weak form, find vn,i ∈W 1,2
0 (0, 1) such that

(5.10) (6vn,i, ϕ) + (∂xv
n,i, ∂xϕ) = (6vn,i−1 − β−1(vn,i−1), ϕ) + (α(un−1, tn), ϕ).

for any ϕ ∈W 1,2
0 (0, 1). Similarly,

(5.11) (6vn,i−1, ϕ) + (∂xv
n,i−1, ∂xϕ) = (6vn,i−2 − β−1(vn,i−2), ϕ) + (α(un−1, tn), ϕ).

Subtracting (5.10) from (5.11),

6(vn,i − vn,i−1, ϕ) + (∂x(v
n,i − vn,i−1), ∂xϕ)(5.12)

= 6(vn,i−1 − vn,i−2, ϕ)− (β−1(vn,i−1)− β−1(vn,i−2), ϕ).

Taking ϕ = vn,i − vn,i−1 gives,

6||vn,i − vn,i−1||2L2(Ω) + ||∂x(vn,i − vn,i−1)||2L2(Ω) ≤(5.13)

||vn,i − vn,i−1||L2(Ω) · ||6(vn,i−1 − vn,i−2)− (β−1(vn,i−1)− β−1(vn,i−2))||L2(Ω).

From the definition of β, we have

(5.14) β′(u) =


1

6
(u∆t+ 1), if u ≥ 0

1

6
, otherwise.

Therefore

(5.15) (β−1)′(v) =
1

β′(u)
∈ (0, 6].

From (5.13), we obtain

6||vn,i−vn,i−1||2L2(Ω)+||∂x(vn,i−vn,i−1)||2L2(Ω) ≤ 6||vn,i−vn,i−1||2L2(Ω)·||v
n,i−1−vn,i−2||2L2(Ω).

Using Poincaré inequality, ||u||L2(0,1) ≤ ||∂xu||L2(0,1) for any u ∈W 1,2
0 (0, 1). Therefore

||vn,i − vn,i−1||2L2(Ω) +
1

6
||∂x(vn,i − vn,i−1)||2L2(Ω)(5.16)

≤ 1

2
(||vn,i − vn,i−1||2L2(Ω) + ||(vn,i−1 − vn,i−2)||2L2(Ω))

≤ 1

2
||vn,i − vn,i−1||2L2(Ω) +

3

8
||(vn,i−1 − vn,i−2)||2L2(Ω) +

1

8
||∂x(vn,i−1 − vn,i−2)||2L2(Ω)
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Define ||vn,i||2 = ||vn,i − vn,i−1||2L2(Ω) +
1
3 ||∂x(v

n,i − vn,i−1)||2L2(Ω) (equivalent to the W 1,2

norm), we obtain

(5.17) ||vn,i||2 ≤ 3

4
||vn,i−1||2,

using Banach fixed point theorem, we obtain the convergence of the iteration method
(5.9).

5.2 Numerical results

We compute the numerical solution uN of (5.1) and estimate the error eu = u− uN , with
u the exact solution of (5.1). For simplicity, we only compute eu at t = 1. To this aim,
finite difference scheme on uniform mesh with dx = 10−5 is coupled with different time
stepping dt = 10−1, 10−2, 10−3 and 10−4. To solve the nonlinear problem at any two steps,
we perform 3 to 4 iterations. This is sufficient to achieve ||vn,i− vn,i−1||L2(Ω) ≤ 10−5. The
numerical results are presented in Table 1. As follows from Theorem 4.1, the error satisfies

(5.18) ||eu(·, 1)||L2(Ω) ≤ C∆t.

This is confirmed by the Table 1. In particular, we estimate C to 0.066.

dt ||eu(·, 1)||L2(Ω)) ratio(||eu||/dt)
10−1 6.1997× 10−3 6.1997× 10−2

10−2 6.447× 10−4 6.447× 10−2

10−3 6.4632× 10−5 6.4632× 10−2

10−4 6.5842× 10−6 6.5842× 10−2

Table 1: Errors eu(·, 1) for different dt

Figure 1 also displays numerical solutions for u(·, 1) at t = 1, compared to the exact
solution for dt = 10−1 and dt = 10−2. For dt = 10−3 and dt = 10−4, one could not
distinguish between the numerical solution and the analytical one.

6 Conclusion

In this paper, a class of degenerate pseudo-parabolic equations is investigated. This in-
volves a vanishing nonlinear factor in the second order differential operator. We employ
the Rothe method for proving the existence of a solution, and use a Green function ap-
proach for the uniqueness. Further, we estimate the error between the exact and the time
discrete solution. Finally, these theoretical estimates are confirmed by a numerical exam-
ple.
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Figure 1: Numerical solution and exact solution for dx = 10−5, dt = 10−1(left) and dt =
10−2(right)
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