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Part I

Design and application of
social robots
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Chapter 1

Introduction

Digital technologies have become a prerequisite to participate in our digital
society [68]. In addition to offering entertainment, digital technology fa-
cilitates relations between people, defines communication, provides access
to private and public services and offers to participate in on-line commu-
nities and political discussions. While these ongoing developments offer
substantial opportunities, they also pose increasing demands on users and
application designers. The European commission estimates that between
30% - 40% of the population do not receive benefits of the information
society also due to increased demands on ‘digital literacy’ of the users [68].

In particular, the increase in complexity and autonomy of systems and
services steepens the learning curve. The increase in complexity can be at-
tributed to devices that are increasingly 1) multi-purpose, 2) involve multi-
user and 3) incorporate multiple devices. For example, contemporary mo-
bile phones incorporate far more features besides the original functionality
of phoning. In consequence, it becomes difficult for a user to assess which
functions are supported by a device and how to access them. If multiple
users are involved, such as in on-line communities or multi-user games this
difficulty increases. In multi-user environments, it is often difficult to de-
termine how to interact with other users and to identify which rules apply
or how private information are treated. In the same manner, usage be-
comes more challenging if device functionality is distributed across device
boundaries such as in ambient intelligent environments [249]. In the best
case, interactions between devices are transparent to the user. However,
practical experiences have shown that users often fail to understand the
consequences of their actions.

3



4 CHAPTER 1. INTRODUCTION

Similarly to an increase in complexity, an increase in device autonomy
elevates the demand on the user to instruct a device. In consequence, the
application designer has to make a trade-off between the level of control
offered to a user and ease-of-use. The more possibilities a user has to
influence the device’s behavior the more difficult it becomes to operate the
device.

One of the fundamental problems of traditional technology driven design is
that it demands users to develop an understanding of the underlying tech-
nology, instead of offering the user concepts that he is already familiar with
[18, 218]. To this end, social interfaces have been proposed as a promising
interface paradigm to achieve easy and natural interaction as they utilize
people’s natural abilities to interact with other social communication part-
ners [72, 47, 59, 28]. People already possess social interaction capabilities,
while technical interaction capabilities have to be learned explicitly. So-
cial interaction techniques provide an adequate solution to optimally reuse
existing capabilities [213, 148].

Additionally, it has been argued that people can not not interact socially
and that therefore devices have to be socially designed to avoid misunder-
standings and conflicting signals [244, 248]. Reeves and Nass have shown
that people are naturally biased to treat and respond to media in the same
way as they react to other humans [198]. Furthermore, people apply so-
cial rules even if they are consciously aware of dealing with a machine. A
common explanation of this phenomenon is that anthropomorphism and
social reasoning helps us to explain observations from our environment
[59, 114, 152].

However, social interaction techniques might also raises wrong expectations
which can leads to frustration, if these expectations can not be met [59].
Additionally, social expressions might simply be distracting from the real
task. Picard has identified several challenges that have to be overcome
before social and emotional computing techniques can be applied to user
interfaces, including perception, selection of modalities, expression of emo-
tions and ethical and social concerns [191].

In fact, social interactive interfaces only give the impression of being so-
cial and having emotions. However, as impressively demonstrated by the
movie industry, convincing fabricated emotional expressions can evoke in-
tense emotional experiences [231]. The basic idea underlying social user in-
terfaces is to augment technical functionality in terms of human-like modal-
ities. For example, a confirmation can be implemented in technical terms
using a light signal or sound, or by using human-like modalities such as
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speech or the indication of a nod. In order to realize such functionality, de-
vices need to be able to express themselves and react to stimuli according
to rules of human-human interaction.

Research on social interaction technology has mainly focused on virtual
anthropomorphic characters, either screen based or with a robotic embod-
iment [72, 89, 193, 242, 9, 117, 120]. However, the application of social
interaction is not limited to anthropomorphic interfaces. Also very ab-
stract interfaces such as abstract movement patterns of light can be used
for social interaction [172]. With modern robot technology also hardware
implementations of expressive interfaces become possible.

A major challenge for the application of social interactive interfaces is how
the available modalities are used within an application. In comparison to
traditional robotic applications, the performance of an application depends
on the richness of the behaviors, rather than on execution speed or pre-
cision. Furthermore, the concrete interaction depends to a large extend
on the employed hardware and the application context, which poses ad-
ditional challenges on the design process and the capabilities of designers.
The topic of this thesis is to develop a design framework that supports the
design process of social interactive interfaces.

1.1 Robot application design process

This technological design concerns the design process of social interactive
robotic interfaces. The focus is set on the application design task in terms
of software not on hardware, in particular on designing an application for a
social robotic interface. An abstract design scenario is depicted in Fig. 1.1.
In this example an application developer creates an application that utilizes
a social interactive robotic interface. The user interacts with the interface
using his natural interaction capabilities. In this context, natural inter-
action refers to interaction that the user is naturally capable of, without
additional learning effort. The interface is a robotic platform for which the
application designer creates an application. The goal of the design process
is to use the robot’s interaction capabilities to present a coherent interface
to the user.

The major obstacle to realize this scenario is that currently no unified design
framework exists that can bring the various roles together that are involved
in the design process. Design challenges that are posed to the designer
include developing the application theme, interfacing with the hardware,
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Figure 1.1: Design scenario: An application designer creates an application
for a robotic user interface.

deciding on the interaction modalities and designing appropriate device be-
haviors. During this process, the designer has to keep several constraints
in mind such as the expectations of the user, social interaction rules, ex-
pression and perception of emotion as well as reacting appropriately to the
user’s input.

The basic concept of a supporting design framework can be illustrated
by analogy to available media design tools. Design suites like the Adobe
Master R© Collection1 define a set of tools that support a designer to develop
content for digital applications. For example, Adobe Photoshop R© provides
a specialized set of tools for drawing and editing images. The basic concept
is a two dimensional canvas that can be filled with colored pixels. On top
of this basic structure, plenty of pixel processing methods are defined, that
alter the image in one way or the other. The resulting images can in return
be the basic building blocks for a web application. For example, they can
be used for customizing the appearance of a button. Adobe Fireworks R©

provides basic editing features and concepts for creating websites. All of
these tools define a specific set operators that are relevant for a specific
problem at a given level of abstraction. Additionally, they provide different
views on the same design problem.

1http://www.adobe.com/products/creativesuite/mastercollection
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Figure 1.2: Levels of abstraction in the design of a social robotic interface.

The problem is that no such consistent set of tools is existing for the de-
velopment of social interactive applications for robotic embodiments. An
illustrative hierarchy of levels of abstraction for robotic behavior design is
depicted in Fig. 1.2. The different levels of the hierarchy are discussed in
the following.

On the lowest level, the designer has direct control over the hardware,
including access to the motor control. Working on this level requires ex-
tensive technical skills from the designer. In analogy to the media design,
it compares to controlling the display driver of the monitor.

On the next level of abstraction, the designer has a higher level of control
over the actuators by defining trajectories over time. For example, the
designer can define the trajectory of a robotic arm over time. This equates
to drawing tool that allows the designer to color individual pixels.

On trajectory editing level, the designer modifies or combines trajectories
using higher level operators such as blending or filtering[30, 130]. This level
already provides tools to generate very expressive behaviors as commonly
applied in designing traditional animations for movies [253, 231, 200, 131].
In media design, this is realized by specialized brushes or filters that allow
to modify an existing image. With editing methods, the designer can create
very expressive pieces of behavior. However, these behaviors are very spe-
cific to a particular situation. For example, an expressive grasping action
fails, if the object is placed slightly different than at the time when the
behavior was defined. High level control is necessary to direct and modify
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expressive behaviors. In comparison, automatic layout mechanisms allow
that screen widgets change layout and behavior.
Ultimately, on the topmost level, the designer reaches the level of a movie
script that describes roles and interactions on the levels of personality and
general interaction rules.
These different levels of abstraction illustrate the complexity of creating
interactive applications. However, currently most of the applications for
robot applications are created on a hardware control or trajectory design
level.
In order to increase this level of abstraction, this technological design aims
to create a supporting framework and required tools that enable high level
application development and therefore enable social interaction.

1.2 Research questions

This technological design proposes a design suite for interactive robot ap-
plications. In particular, a general design architecture is developed that
identifies the basic concepts for a software architecture, which integrates
different design tools. In summary, this thesis poses the following four
research questions:

1© Design challenges: What are the design challenges in the process to
develop an application for a social robotic interface?

2© Tools: How can the design process be supported by design tools?

3© Requirements: What are the requirements for a software architecture
that unifies the design process?

4© Architecture: What architecture fulfills the requirements for a robot
application design framework?

1.3 Guide through the thesis

This thesis consists of three major parts. In the first part the design chal-
lenges of the application design task are investigated. The second part
derives requirements and develops a unified software architecture and tools
to support the design task which is evaluated and validated in case studies
in the third part.
To this end, this thesis first discusses in Chapter 2 current social interac-
tive interfaces and their application domains. In Chapter 3 various design
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challenges of the development process are analyzed. Chapter 4 introduces
animation technology as an enabling technology for expressive interfaces.
Chapter 5 analyzes the software design domain and identifies the major
requirements for a software architecture. Based on this analysis, an over-
all high level architecture is developed that introduces two separate envi-
ronments: a ‘Development-Environment’ and an ‘Execution-Environment’.
The architecture of the Development-Environment is developed in Chapter
6 and the architecture of the Execution-Environment is developed in Chap-
ter 7. The following chapters evaluate and apply the architecture. First of
all, Chapter 8 evaluates the functional and non-functional attributes of the
architecture. A particular challenge for the evaluation of a design frame-
work is to assess the quality of the designed artifacts, because these depend
on the capabilities of a designer as well as on the quality of the provided
tools. Therefore, the architecture is evaluated in case studies in which the
framework has been used to develop applications using social interaction
artifacts. One of which applies the framework for a research project to in-
vestigate how robot motion is perceived in terms of affective content. The
results are reported in Chapter 9. Finally, this documentation concludes
with a general discussion on the architecture in Chapter 10.
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Chapter 2

Expressive robotic interfaces

Social interfaces aim to utilize peoples’ natural interaction capabilities [72,
89]. In this context, this technological design focuses on social robotic
interfaces, in which the robot serves as the interface for an application.
Bartneck and Forlizzi define a social robot as:

A social robot is an autonomous or semi-autonomous robot that
interacts and communicates with humans by following the be-
havioral norms expected by the people with whom the robot is
intended to interact. (Bartneck and Forlizzi [10] p. 592)

In the literature, social robotic interfaces have been analyzed from a variety
of disciplines, including computer science, robotics, psychology and social
sciences. These disciplines define different terminology for the analyzed
constructs. In the following the key terminology that is used throughout
this thesis is introduced.

2.1 Terminology

Natural interaction Throughout this work the term ‘natural interaction’
refers to interaction that uses modalities that are understandable for a user
without prior training. Natural interaction depends on the ‘perceived affor-
dance’ of an object [176]. Therefore, the definition for natural interaction
depends on the target group. Cultural background, educational level, age
group or gender can have an influence on what types of interactions are
‘natural’ for a particular audience.

Application An application describes a set of services that are offered
by a device to a user. This definition is most closely related to the usage

11
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of the word in the field of computer science, in which the term refers to
a computer program that enables users to use a computer for a specific
task. A concrete application defines the interaction context in which the
user interacts with the device.

Social robotic interface The term ‘social robotic interface’ refers to a
robot that serves as an interface in a given application. For communicating
with a user, the robot uses human-like interaction modalities including
speech, gestures and emotional expressions [213, 9].

Believability ‘Believability’ denotes a degree of convincingness and con-
sistency in the device behavior [178]. The term believability was first intro-
duced by Bates in 1994 in the context of designing intelligent, engaging and
life-like characters [17]. In his definition, the ability to express emotions
takes a central role for being life-like. Mateas added to this definition the
concept of ‘drama’ and ‘story’ of a character [158]. Dautenhahn stresses
that for being believable, a character does not necessarily have to exhibit
intelligent or realistic behavior [45]. Instead, following principles of anima-
tion, the audience must be convinced of dealing with a life-like character
with own drives and needs [231, 113, 112].

Animacy The term ‘animacy’ describes the perception of life-like char-
acteristics. It has been shown, that people develop very early a capability
to distinguish animate from inanimate objects [194]. One explanation sug-
gests that people are able to detect energy violations of self propelled ob-
jects [215]. Whenever people perceive a change of the current motion that is
not caused by external events following the Newtonian laws, these objects
are perceived as animated. Another model for interpretation of life-like
characteristics is that social reasoning helps to make sense of an observa-
tion [59, 45]. The perception of animacy appears to be a prerequisite for
successful social interaction.

Animation The term ‘animation’ denotes a sequence of actions of a char-
acter [231]. An animation is fixed in a sense that it cannot be dynamically
modified during execution of the actions. Most commonly, animations are
implemented using look-up tables, which contain the states of actuators
over the duration of an animation.

Behavior A behavior is like an animation a timed set of actions, but
with the difference that a behavior may define reactions to sensor inputs.
Behaviors are defined by sets of equations that relate the state of actuators
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to input parameters for the behavior [237]. Most commonly, behaviors are
implemented using scripting technology.

Designer This technological design targets at designers of applications for
social robotic interfaces. The tools and architectures that are presented
aim to support the designer.

User The term ‘user’ refers to the users of the applications that have been
created by designers with the tools developed throughout this thesis. The
term is not to be confused with the role of designers, who in fact are users
of these software tools. As depicted in Fig. 1.1 on page 6, the user interacts
with a robotic interface, while the designer interacts with the design tools
that are presented in this thesis.

2.2 Social interaction with robots

When users start to attribute human-like characteristics to a device, they
naturally start to interact with it in a social way [198, 46]. In consequence,
they use natural communication channels like speech, gestures or emotions
[169]. The example of how people interact with pets demonstrate that users
are using speech even if they know that the communication partner can not
understand the semantics of the utterances. A particular strong bond is
created if the user gets the impression that the communication partner feels
emotions [50, 76, 190].

From a design perspective, social interaction provides design guidelines for
designing interaction sequences between user and device [129]. In the lit-
erature, several high level interaction patterns have been identified that
reoccur in human-human interaction [124]. For example, during first en-
counter, a mutual frame of reference between two communication partners
is established. During an interaction, subtle cues are used for guiding an in-
teraction in terms of turn taking or to give feedback to the communication
partner. The design challenge is that social interaction defines a mutual
relationship. The appropriateness of the device’s behavior is crucial for
establishing satisfactory social interactions [191, 87]. This does not mean,
however, that the robot needs full human-like social interaction capabili-
ties. Reeves and Nass have shown that people are naturally biased towards
social interaction and even apply social rules when consciously aware of
dealing with a machine [198]. Using social reasoning, people place them-
selves in the role of the interaction partner [45, 103]. For example, a mobile
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robot can express its battery level in terms of driving speed. If the robot
becomes slow, the user might reason that the robot is tired and needs to
rest. During resting at the home base, the robot can recharge.

Nevertheless, most research on robotics is focused on algorithms (such as
path planning or face recognition) and is hardly concerned with the effects
that these algorithms have on how the robot is perceived [219]. Applying
complex algorithms does not necessarily result in the perception of intelli-
gent behavior or in producing a pleasant interaction [113]. People are very
sensitive to unnatural behavior [231]. In this sense, the development of
social robotic interfaces poses a greater risk, because a subtle design flaw
might not only destroy the impression of a life-like character, but will leave
a negative impression of the device in general [170]. Positive examples of
long term engaging robots can be found in the movie business. The robots
R2D2 and C3PO from Star WarsTM are engaging for hours, even though
there is no a direct interaction between the audience and the film charac-
ters. These robots express emotions only based on movement and sound.
Another example is the usage of remote controlled robots in attraction
parks such as Disney’s R© Lucky the Dinosaur [57].

Social interaction technology can increase engagement of the user. The
user as well as the device take active roles in the interaction. This has for
example been captured by Nakatsu et al., who have presented a framework
which explicitly introduces robots as potential interface for interactive me-
dia [173]. Even more importantly, it serves as a crucial enabler for a variety
of application areas, including interfaces to control ambient intelligence en-
vironments [9], robots in health and elderly care [102], or in teaching and
learning environments [146]. It offers possibilities to introduce technologi-
cal devices to areas where it was formerly difficult to find acceptance due
to technical shortcomings or imposed learning effort on the user [133, 102].
For example, social robotic interfaces could provide high level control over
common digital devices also for people without technical skills [68]. They
allow people to use their natural interaction capabilities instead of demand-
ing technical skills. Additionally, people tend to be more forgiving if they
have an emotional bond with the device [214]. In the above mentioned
Star WarsTM movie, the users of the translation device C3PO were not
frustrated about how often the system was broken. Instead, the audience
felt sorry for the device and many wanted to help him through difficult
situations.

One of the major challenges for social interaction technology is to maintain
the illusion of dealing with a real character also over a longer period of time
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[87]. On first encounter, it depends to a great extend on the embodiment
and first movements if a device appears life-like. It is rather easy to estab-
lish the impression of a life-like character at the beginning of an interaction
[235]. Later on during the interaction, it also depends on functionality, ex-
pressiveness and how the character reacts to stimuli from the environment.
For example, repetitive behaviors are attributed to machines rather than
life-like characters. Therefore, it is not sufficient to simply repeat expressive
animations.

The above discussion shows that social interaction technology introduces a
new set of social requirements for the application design task. Currently,
the designer is left without a conclusive framework for designing interactive
behavior of social interactive interfaces. The next section discusses several
potential hardware platforms that have been conceived for direct interaction
with the user and would benefit from social interaction technology.

2.3 Personal robots

Multiple expressive robots have been developed. In this section a few of
these robots are selected to demonstrate generic concepts. The most defin-
ing and constraining factor for a robot is obviously its physical embodiment.
In the literature, screen based simulations of physical robots have been pro-
posed as one possible replacement of physical hardware that enable similar
types of interactions, but remove hardware maintenance throughout the
development [162, 72]. However, it is still not clear how the embodiment
influences the interaction, for example in terms of acceptance as a social in-
teraction partner or the perception of emotional expressions [13, 91, 52, 88].
For example Kiesler et al. investigated the effect of embodiment by com-
paring the reaction to a screen based character, a video transmission of a
real robot and a collocated physical robot. They found that the embodi-
ment had an influence on how much private information participants shared
[193].

Nevertheless, from an interface perspective, virtual representations of phys-
ical robots have the same number of degrees of freedom and are able to
perform similar actions. They can therefore be treated similar in terms of
software design. A general overview and classification scheme of common
robot hardware in terms of available actuator types and control models is
presented in [219]. The most common actuator for controlling motion are
servo motors, as employed by many of the following hardware platforms.
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Figure 2.1: The Philips iCat robotic research platform is able to express
basic facial expressions

Philips iCat The ‘interactive Cat’ (iCat) robot is a stationary robotic
research platform to be placed on a desk. It is developed by Philips Re-
search to research human-machine interaction modalities [242, 238]. The
robot is depicted in Fig. 2.1. The iCat robot has the physical shape of a cat
with a mechanical rendered face and is approximately 40 cm high. With 13
degrees of freedom to animate parts of the head it is able to express basic
facial expression and emotions (see Fig. 2.1). Additionally, iCat has RGB
LEDs located in the ears and paws and a speaker in the base. Therefore,
iCat is able to express itself in the modalities light, sound and motion,
which allows for a rich user interaction. Light can be a very expressive
medium that appears natural for interaction, even though it is not one of
peoples’ natural modalities. For example, iCat is able to show a red light
in the ears in case an error has occurred. This message can be enhanced
if at the same time iCat displays a sad face, looks down, shakes the head
and plays a sad audio fragment. For sensing the environment, iCat has a
camera located in the nose, two microphones located in the paws and four
touch sensors at the ears and paws. Furthermore, it contains an infrared
distance sensor in the left paw to sense an interaction partner.

The main purpose of iCat is to serve as a research vehicle for social inter-
action technology. Through its human-like expressions it is able to trigger
peoples’ social interaction capabilities with the goal to bridge between the
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Figure 2.2: iRobot robotic vacuum cleaner Roomba (Version SE 5210)

digital world of devices and the user. A variety of applications has been
developed with iCat, including a game-buddy [143], TV assistant [161] and
waiter application [208].

Roomba Roomba is a domestic vacuum cleaning robot developed by
iRobot. It has a circular geometric shape with a radius of approximately
15cm and is about 7cm high (see Fig. 2.2). Roomba has a velocity con-
trolled differential drive system consisting out of two motors. A detailed
overview of the drive system of Roomba can be found in Chapter 7.4.

In its basic form, Roomba is designed as a random walker that offers
three modes of application: 1) Normal cleaning mode, 2) Spot cleaning
and 3) Large area cleaning. The differential drive system allows for great
driving flexibility, including turning on the spot. Roomba does not have
special degrees of freedom to express emotions. However, Forlizzi found
that users perceive rich emotions and personalities in the robot [74].

Its architecture is based on Brook’s subsumption architecture [29]. There-
fore, Roomba does not possess global path planning, but seemingly orga-
nized behaviors emerge from a set of simple behaviors.

PARO PARO is a personal robot, with the physical shape of a seal, which
is developed for therapeutic applications [217]. The robot is depicted in
Fig. 2.3. Due to its zoomorphic features, PARO has calming and relaxing
influence on patients. Its life-like embodiment, including the fur, supports
the perception of dealing with a life-like character [245]. Participants build
up an emotional relationship to the robot, treating it like an animal. PARO
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Figure 2.3: PARO robotic seal for therapeutic applications (Source:
http://www.aist.go.jp)

does not use speech, but interacts by means of sound and movement pat-
terns. People can engage with the robot by physical interaction such as
caressing it.

Care-O-Bot 3 Care-O-Bot R© 3 is the third version of the domestic service
robot developed by Fraunhofer institute [100]. The robot is depicted in
Fig. 2.4.

Care-O-Bot 3 is intended to support independent living at home by pro-
viding physical services such as fetch-and-carry tasks as well as walking
assistant. Furthermore, it serves as central control over devices in the
home and provides connectivity to reach relatives and health-care services.
It has an omni directional drive system that allows the robot to navigate in
space constraint personal homes. The main sensors are a 3D depth-image
stereo camera and a laser scanner.

Care-O-Bot 3 engages in rich interactions and collaborations with the user.
It is equipped with a mechanical arm with seven degrees of freedom that
allows to hand objects over to the user. Furthermore, it contains a touch
screen display for menu based interaction. Care-O-Bot 3 is also able to react
to simple gestures and movement sequences. However, it does not have
special degrees of freedom to display emotions. Nevertheless, it resembles
basic human features with a head and arm.

Geminoid Geminoid is a realistic copy of a human [175]. Its main pur-
pose it to serve as a general human-machine interface. It was argued that
due to its human-like shape, humans can interact with the robot the same
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Figure 2.4: Fraunhofer Care-O-Bot R© 3 (Source: [92])

Figure 2.5: Geminoid robot. (Source: [13])
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Figure 2.6: Lego R©Minstroms v.2 (Source: http://www.lego.com)

way they interact with other humans [114]. To this end, the robot has sim-
ilar degrees of freedom as a human. However, it does not have the ability
to walk and is therefore bound to a chair. The robot is depicted in Fig. 2.5.
Geminoid is mainly remote controlled for interaction in Wizard-of-Oz type
of experiments. It does not possess autonomy like Roomba or Care-O-
Bot 3, but it aims to offer an interface that is entirely familiar to a human
user. A user may use the exact same interaction techniques as when dealing
with other people.

Lego R© Mindstorms The Lego R© Mindstorms kit1 is an educational ro-
botic development kit that consists of multiple sensors and actuators that
can be connected to a central unit. Robots can be built in the typical Lego
way, by assembling Lego blocks. An example for the types of robots that
can be created with the kit is depicted in Fig. 2.6.
The final robot can be programmed using a specialized Lego Mindstorms
software that is derived from LabView. LabView offers a graphical editor
that allows to connect multiple predefined building blocks following a pro-
gram flow metaphor. That is, the building blocks are arranged along lines
of execution. A line of execution defines a sequence of actions. Multiple
lines can be executed in parallel, which makes it especially easy also to
define parallel paths of execution. The Mindsotrms kit is positioned as an
educational kit that helps to learn about robots, develop creativity, or just
to play and have fun.

1http://mindstorms.lego.com



Chapter 3

Design challenges

The development of social robotic interfaces poses new design challenges to
the developer. In this chapter several of these challenges are analyzed in
detail and presented at three different levels of abstraction. The topmost
level concerns the overall application design. The next lower level is con-
cerned with the interface options for interaction design. The lowest level
discusses the concrete behavior design of socially interactive interfaces.

The design challenges that deal with the design of appearance for the robot
are not taken into consideration. Appearance has received plenty of atten-
tion in literature [14, 13, 91, 52, 125, 129, 243, 21, 151, 88].

For the development process, a designer may choose from different design
approaches. Usually, an iterative and user-centered design approach is cho-
sen [18, 127]. A particular design approach for the development of a social
robotic interface is to design along a personality. For example, the designer
might adopt an iterative design approach as described by Meerbeek et al.
[162]. A strength of this approach is that it combines best practices from
technology driven, artistic and user-centered design.

3.1 Application design challenge

This section analyzes the design process for an application using a robotic
user interface and argues that a balanced design is a crucial factor for
the success of a particular application. It is shown that an application
can fail, because of an unbalanced design, which consequently nullifies the
efforts made to apply an expressive character in the interface. The study
was presented at the International Conference of Social Robotics (ICSR09)
[209].

21
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Abstract – People are striving for easy, natural interfaces.
Robotic user interfaces aim at providing this kind of interface by
using human like interaction modalities. However, many appli-
cations fail, not because of fundamental problems of addressing
social interaction but due to an unbalanced design. In this pa-
per we derive a balancing framework for designing robotic user
interfaces that balances four key dimensions: user, application,
interface and technology. We investigate applicability of the
framework by means of two experiments. The first experiment
demonstrates that violations to the balancing framework can
negate the efforts to improve an interface with natural inter-
action modalities. In the second experiment we present a real
world application that adheres to the balancing concepts. Our
results show that a balanced design is a key factor for the suc-
cess or failure of a given robotic interface.

3.1.1 Introduction

The observation by Ben Shneiderman [218] that computer users waste an
average of 5.1 hours per week trying to use computers has a serious impli-
cation for the design of user interfaces. Low prices for hard- and software
will make technology available to a larger number of people, while at the
same time new technological achievements introduce new functionality that
make the devices more and more complex. In order to enable people to use
all the functionality there are two main approaches: educate the users in
operating the devices or make the devices easier to handle. Shneiderman
calls it “bridging the gap between what users know and what they need
to know”. Most of the time the first approach is taken, resulting in big
booklets accompanying the various devices, but people are striving for eas-
ier, more natural interfaces. Robotic User Interfaces (RUI) are aiming in
providing exactly that kind of interface [72].

In this study we analyze the design process of such RUIs and argue that a
balanced design is a crucial factor for the success of a particular application.
We translate a design framework originating from the theory of interactive
systems to the design of RUIs. The goal is to investigate the applicability
of a such a framework and to use it as a success predictor of a certain ap-
plication during the design process. Besides the fact that we are designing
an interactive interface that meets functional, physiognomic and cultural
requirements we strive to create a believable, social accepted communica-
tion partner. Therefore, we need a research environment that allows us to
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test interaction paradigms in a real world setting. Designers of RUIs deal
with very complex evolutionary evolved social interaction abilities that are
not yet fully understood. Subtle flaws in the design might negate all the
efforts to make the interface more usable. Incorporating social interaction
modalities in an interface requires a high amount of balancing intuition of
the designer. We demonstrate the importance of a balanced design with an
experimental setup that violates these principles.

3.1.2 Balancing framework

The field of interactive systems suggests that the key dimensions to balance
a RUI design are: user, technology, interface and application [18]. In the
following these four dimensions are explained in detail:

User The purpose of using a robotic user interfaces is to allow everyone
to use it without additional learning effort. This does not mean that
there is one universal RUI but that the elements for an RUI have to
be carefully chosen to accomplish its service. The design has to take
into account cultural differences, social constraints as well as short
term moods of the user.

Application Application areas for robotic user interfaces are manifold.
Ultimately, robots could serve as interface between a user and any
electronic device, bridging the gap between the physical and the digi-
tal world. For example, application areas also includes entertainment,
in which the user is interacting with the device just for the fun of in-
teracting with it.

Interface Designing a robotic user interface means to choose the modali-
ties and define interaction methods. The most common input modal-
ities are vision, speech, keyboard, touch sensors and switches. For
giving feedback to the user the robot can communicate by means of
light, sound and motion. With facial expressions and body postures
the robot is able to convey emotional messages. In order to define
the interface, the modality as well as the protocol of messages have
to be specified.

Technology Most of the constraints for the design of a RUI are technolog-
ical. Processing power and memory become less of a factor because
of technological achievements, while at the same time dropping in
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price. Additionally, wireless communication enables remote process-
ing and access to worldwide knowledge. The same trend as for pro-
cessing power can be observed in the price for sensors and actuators.
Currently, the more limiting factors are available techniques for data
interpretation and generating appropriate behavior. Artificial Intelli-
gence algorithms for interpreting speech and vision data are still not
able to extract a sufficient percentage of information encoded in the
signals to ensure a seamless interaction. Also new techniques have to
be developed to enable robotic characters to become a fully accepted
social communication partner.

All four dimensions have to be in balance to create an effective RUI. Very
often their constraints compete with each other. In the following section
we explain the balancing process.

3.1.3 Balance the dimensions for an RUI

In our analysis of balancing the RUI we start with the user. The user has
to be interested in the task proposed by the robot. This is a prerequisite
that always has to be met and already puts the first constraint on the
application. The designer has to find a match between the application and
the user. This relation seems very obvious, but the designer has to keep it
in mind and account for it during the design and implementation process.
Adapting the application to the user might not always be possible, because
it is constrained by technological limitations. Very often additional research
is needed to find new solutions that enable the desired applications and
functions. In consequence, it is only to a certain extent possible to adapt
the application to the user.

As soon as the initial application is defined we incorporate the interface.
As concluded by Dautenhahn [46] there is no use of anthropomorphizing
an interface if the aim of the application is to perform repetitive actions,
which do not need a deep emotional content such as, for example, operating
a washing machine. In this case efficiency and swiftness are more impor-
tant features. That means the application requirements need to reflect the
degree of emotional expressivity that is needed to involve the user.

By incorporating anthropomorphic artifacts in the user interface, the de-
signer has to define needed functionality of the RUI and match them with
shape and behavior of the robotic embodiment. The results of Goets [88]
shows that people judge the capabilities of a robot by shape and behavior
and are willing to interact if they match each other. If shape and behavior
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Figure 3.1: Antagonism between rich input and computer understanding

raise expectations that cannot be met it will lead to frustration of the users,
who might get the impression that it is not able to perform the task.

For designing the interface the designer has to assess how much effort is
imposed on the user. For example, spoken language (speech) is a streaming
medium and poses a higher load on people’s short-term and working mem-
ory than non-streaming media like images. Shneiderman explains that spo-
ken language and problem solving share the same “resources” in the brain,
and therefore the short-term and working memory load is much higher
when a speech interface is chosen [218]. The interface should not put an
additional burden on the user. Considering these facts, the interface might
give new constraints to the application that have to be taken into account
for application design.

At last we balance the system with the available technology. Because we
have already specified demands of the application and the interface we can
specify the requirements for the technology very precise. Of course it can
happen that the requirements cannot be met. For example, if the user
demands a natural input for easily expressing his emotions that is beyond
the capabilities of the current technology. The richer the input, the less
reliable are current technologies to interpret the data. This antagonism is
qualitatively illustrated in Fig. 3.1 for a chitchat application. The X-axis
represents a scale of input from technical to human-like modalities. On
the Y-axis 2 different data are displayed, related to ease of use. Both are
theoretical ratios: the first one represents the ease of expressing complex
commands while the second one represents the ease of computationally
processing the commands. A switch is a very simple input device but is
also limited in its expressiveness.



26 CHAPTER 3. DESIGN CHALLENGES

In the balancing process we propagate constraints backwards and reiterate
the last step if we encounter a constraint mismatch. If in the end it turns out
that with the given constraints the user is not interested in the application
any more, we have to revise it.

In the following we present two application design scenarios: The first
violates the balancing framework and the second adheres to it. We argue
that the balancing framework can be used as a predictor for the success of
an application.

3.1.4 Case studies

In our study we focus on the iCat research platform, developed by Philips
research [189] and made available to universities as a common research plat-
form. Several studies have shown that iCat is able to express recognizable
emotional expressions (e.g., [95]), while avoiding the uncanny valley [170]
by its intentionally comic style appearance. We fix the shape of the inter-
face, but vary the technology, the application and the type of interaction.

The first design scenario is a simple conversation bot application. We used
straightforward design decisions to create the application and observed the
effects of adding facial emotional expressions as feedback to the user in the
interface. We expected the emotional feedback to increase the believability
of the chatter bot as a character and hence improve the overall appreciation
of the interface. As a second experiment we developed an application adher-
ing to the balancing concepts. With the second experiment we demonstrate
a successful balanced application incorporating a RUI. This is not trivial,
because as soon as we address natural and social interaction capabilities of
the user we have to satisfy user expectation for social interaction.

Conversation bot

With the conversation bot experiment we explore the design of an ap-
plication for an RUI. The application provides us with an easy example
scenario, which is already biased towards human-like interaction, hence for
using an RUI. The hypothesis is that people will prefer an interface that
incorporates more human-like artifacts in the interaction over machine-like
artifacts. We test this hypothesis by comparing two different interface de-
signs for the application. The in the following presented studies are mainly
designed to test the balancing framework. Therefore, the number of par-
ticipants have been limited to be sufficient to assess the application design
rather than providing data for a full statistic analysis.
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Scenario & technology In the chatter bot scenario iCat takes the role
of a chat friend entertaining and serving the user. iCat listens to the com-
ments of the user and shows emotional involvement with facial expressions.
iCat has two fields of expertise, music and robots, which define the domain
for the application. The user may ask for information such as newest pub-
lications from his favorite band and talks about his music taste. Therefore,
one potential application domain of the chatter bot is to provide a natu-
ral interface for specifying preferences. Even if the main initiative resides
on the side of the user, an active listener alone can already improve the
efficiency of the application [134]. In the experiment iCat also shows its
own musical taste that supports the impression of dealing with a believable
character. The user would also be able to switch between topics, which is
currently one of the major challenges for conversation bot technologies, but
common in human style conversations.

Given the available technology, the best input medium for our test is a
keyboard for the user. People are used to chatting systems, especially young
people who grew up with computers and used chat systems in Internet cafes,
on websites or with separate messaging tools. Therefore, one criterion
for the selection of our subjects is that they are familiar with chatting
technology.

Study design For the experiment of testing the design of the conver-
sation bot application we chose for a wizard of Oz setup. The parameter
that we manipulated during the experiment is the emotional feedback of
iCat and the wizard of Oz design insured rational answers and appropriate
emotional feedback while still presenting the original input interface to the
user. We created two designs for the application: an experimental design
in which iCat showed facial expressions and a control condition in which
iCat had a neutral face. More emotional feedback should give the user the
feeling that the conversation bot understands and cares about him. Every
subject was shown both conditions in a randomly assigned order. Due to
the exploratory nature of our study the sample size was limited to sixteen,
all highly educated people, interns of Philips Research, in their twenties.
They were selected for their frequent use of instant messaging systems, so
that they fulfilled our requirement of being familiar with chatting technol-
ogy using keyboard and computer screen. For the final test setup we chose
for practical reasons a virtual embodiment of iCat. We are aware that
there is a difference in the perception of a physical and a virtual embodi-
ment [193], but we considered the differences not to influence our results if
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Table 3.1: User satisfaction on conversation bot (regardless of the session)

Usefulness
Not at all Slightly Moderately Quite Extremely Average

Useful 0 5 5 5 1 3.125
Practical 1 3 6 4 2 3.5625
Functional 2 5 4 4 1 2.8125
Helpful 3 2 7 2 2 2.875
Efficient 1 6 4 4 1 2.875

Pleasure
Not at all Slightly Moderately Quite Extremely Average

Exciting 0 3 3 5 5 3.75
Fun 0 0 2 6 8 4.375
Amusing 0 0 3 7 6 4.1875
Thrilling 1 5 7 2 1 2.8125
Cheerful 1 2 1 11 1 3.5625

The average value is based on a 1 (not at all) to 5 (extremely) notation

we use the same embodiment in both conditions. Additionally, Bartneck et
al. found that in terms of capabilities to express emotions, physical robots
and virtual robots appear to be similar [15] that

User test results

We measured the perceived usefulness and pleasure the participants expe-
rienced while interacting with iCat. The results of the questions relating
to those measures are shown in table 3.1.

The given positive feedback has to be taken with care. Due to the short
interaction time no statement on the long term satisfaction can be made.
Positive reactions motivated by surprise stem from novelty, which is lost in
long term interactions. The usefulness was rated less high. During the semi
structured interview participants expressed their doubts on the usefulness
of the application. We have to keep in mind that all participants were tech-
nically skilled and interested in technology with proper background knowl-
edge on current conversation bot technology. Despite their doubts people
liked the idea of having a chat buddy to talk about music. In summary it
can be stated that the additional emotional feedback did not improve the
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Figure 3.2: Robotic waiter scenario in a restaurant environment

interaction. Less attention was given to iCat’s facial expressions, because
the user was using a keyboard. While using speech as input could improve
this situation, the technology is not mature enough for realizing the con-
versation bot application. We can thus conclude that the conversation bot
application is not well balanced due to mismatches between combination
of modalities and available technologies. For example, there is a mismatch
between the choice for using natural language and offering human-like emo-
tions, but restricting the input to a keyboard.

Waiter application

With a second experiment we addressed the question whether it is possible
at all to design a well balanced RUI given the current state of technology.
Therefore, we designed another application as a use case to study the bal-
ancing framework. A video prototype of this application was first presented
at the HRI conference 2007 [208].

Scenario To find a balance between the four dimensions - user, applica-
tion, technology and interface - one needs to find a scenario that satisfies
all of them. We chose to elaborate a waiter application because of three
application conditions: limited interaction time, controllable environment,
and narrow domain.
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The scenario for the waiter application takes place in a restaurant environ-
ment. iCat is located on a table in the restaurant as illustrated in Fig. 3.2.
When customers enter the restaurant iCat will greet them and offer them
a free seat at her table. iCat will take their orders and submit them to an
interface in the kitchen. The touch sensors in iCat’s paws were used for
simple yes and no answers. This input method proved to be very robust
and also kept the user from anthropomorphizing too much. In our setting
iCat would perform the following tasks: invite customers to the table, offer
and explain dishes from the menu card, take orders, entertain customers
while waiting, serve as an interface for controlling the environment such as
lighting or music.

Balancing the application design We considered a RUI to be an ap-
propriate interface, because welcoming and accommodating the customer
with individual care is an emotional task rather than a functional, neutral
one. A robotic user interface is in position to provide such emotional feed-
back. The application scenario further supports the use of social interaction
technology. First, it is very difficult to maintain the impression of dealing
with a social intelligent character over a longer period of time. Existing
methods fail after a certain period, due to inefficiencies of the technology
to create believable non-repetitive behavior. After that the user starts to
recognize machinelike behavior. The chosen scenario lasts only for the time
needed to complete dinner. Therefore, it has much less requirements to the
interaction consistency than in applications in which the conversation bot
that is continuously observed by the user over long periods of time. Second,
the environment of a restaurant is much more controllable then a personal
home. The position of iCat is fixed and customers usually sit around the
table. Also the lighting conditions are predictable to a certain extent. Ad-
ditionally, various sensors can be placed in the environment that enhances
the perception of iCat. One might think of additional microphones, cam-
eras or sensors to detect if a person is sitting on a chair. Third, the domain
for the conversation is narrow. Explanations of particular dishes can be
predefined as well as some typical sentences common in this type of sce-
nario such as “I hope you liked the soup!”. Of course, we have to keep in
mind not to raise too many expectations by the behavior.

One of the main tasks for the system is to take orders from the customers.
As stated above, just relying on a speech recognition system is currently
not sufficient, especially in a noisy environment such as a restaurant. Our
conversation bot experiment showed that offering a keyboard for natural
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language input would be also the wrong choice. Instead, the restaurant can
offer an “electronic menu card”, so that the user just needs to point at a
dish he wants to order or get additional information. In a situation like
this it is realistic to assume that customers want to get an explanation of a
specific dish. In this case, they point at the menu card and ask the waiter
for his explanation.

Still we need a technique for choosing iCat’s actions. Our requirements are
that the system should be able to select discrete action depending on the
state in a continuous domain. Therefore, we chose for Extended Behavior
Networks ([155], [56]).

User test results To evaluate our design we performed an experts test
with two restaurant managers. Before starting the test we asked them what
they expect from the application. It turned out that their main concern
was the functionality of the system, whether it is able to take orders. Their
second concern was if it will bring added value to the restaurant.

After these initial questions we let them interact with our prototype from a
user’s point of view. They knew already the setup from the video prototype
that we took earlier in one of their restaurants. In this version, we also
included a first prototype of an electronic menu card from which they were
able to select dishes. For reasons of simplicity and available resources we
restricted the menu card to simple pointing gestures and used a bar-code
reader to point at a specifically prepared menu card. An order was finalized
and confirmed using the touch sensors in iCat’s paws.

We conducted a semi-structured interview, focusing on three points: (1)
Applicability of the application, (2) Interface design and (3) Personality of
the waiter. Overall, they were positive about the interaction and the effi-
ciency of the robot. At first we analyzed the application and its functional-
ity. They were surprised by the speed with which the customers are able to
get information and order a dish. They predicted it will be a great benefit
for the restaurant. The process of collecting and ordering dishes worked
seamlessly, though the bar-code reader seemed a little old-fashioned. They
would prefer to have a touch screen for their restaurants.

Next we talked about their impressions on the interface. At the beginning
the experts had some doubts interacting with a robot, but while testing,
they developed a strong drive towards iCat, which they expressed by appre-
ciating the actions of iCat like the accomplishments from a person. They
only would exchange the embodiment to fit to the concept of the restau-
rant. The only thing they rated negative was that iCat did not support
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their choice of dishes, a behavior that we did not include in our prototype.
Especially at the beginning iCat should be much more proactive, offering
help on how to use the service and propose dishes or drinks.

The last focus point was iCat’s personality. The most important thing
to mention is that they accepted iCat as a communication partner. They
expected iCat to provoke conversation between customers. Both managers
attributed iCat to have a social character, but they diverged in their opinion
which characteristic would fit better in their restaurants. The first wanted
iCat to provide additional services, e.g., to read out on-line news services
or weather information while the other preferred a more passive iCat not
too overwhelming or disturbing for the customer.

3.1.5 Discussion: Balancing framework

The results of our experiments emphasize the importance of employing a
balanced design for utilizing a social robotic interface. Some major vio-
lations to the balancing framework kept the conversation bot application
from succeeding. First, the choice for a keyboard input was purely tech-
nology driven, violating the demands of the interface and the user. It only
adhered to the demands of the application to provide the possibility of
unconstrained textual input. Second, the emotional feedback given to the
user was not perceived, because of the faulty configuration of the interface.
There is a mismatch in using natural language as means for communica-
tion but offering a keyboard for input. One might argue that adding a
method to make the user look more at iCat would increase the perception
if iCat’s emotion such as disabling the keyboard while iCat is answering,
but from the feedback we got we conclude that such coercive methods will
only lead to user frustration. Third, the emotional feedback given by fa-
cial expressions did not match the plain voice of the text-to-speech system.
The lessons learned from the experiment are that the demands of a natural
language user interface by means of speech recognitions are out of scope of
the current technology. A combination of natural language and emotional
feedback with keyboard input had a negative effect on the interaction. A
second design experiment of a waiter application was carried out to see
whether it is possible at all to design a balanced RUI application. We
were mainly interested in the value of the general application concept and
therefore validated the scenario with feedback from experts in the field.
The feedback that we got on the waiter application suggests that it is in
general possible to construct a balanced application with current available
technology.
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3.1.6 Conclusion: Balancing framework

In this paper we argued that human-like interaction modalities will increase
the acceptance of an interface if applied in a balanced design. We found that
a balanced design is a key factor for the success or failure of an RUI. The
four key dimensions to take into account are: user, application, interface
and technology. The difficulties in finding a balanced design stem from
the fact that RUIs address social interaction capabilities that are not yet
fully understood. In order to validate the framework, we developed two
scenarios: a conversation bot and a waiter application. We consider the
conversation bot example to have failed because of various violations to the
balancing framework and not due to principle problems of imitating social
interaction. With the waiter application we presented a balanced design
incorporating a RUI and validated the application with experts in the field.
The results of our experiments indicated that RUIs could provide means to
increase the acceptance of devices and allow them to be used by a broader
range of people.

3.2 Interaction design challenge

This section analyzes the interaction design challenge. This analysis has
been presented at the First International Conference on Adaptive and Self-
adaptive Systems and Applications (ADAPTIVE 2009) [210].

Abstract – A fundamental issue in designing a user interface
for an autonomous device is the level of end-user control. Typ-
ically, the designer of the user interface has to make a trade-off
between ease of use and full control over the device.

In this study we analyzed different approaches adopted in in-
terface design, and identified two basic categories of control:
configuration and programming. Currently, most approaches
adopt configuration, due to its simplicity, but we observe a shift
towards programming interfaces due to the limitations of config-
uration. We identify several essential differences between these
two approaches towards interface design, and suggest three cri-
teria that can guide a designer in choosing a particular category
of control: (1) modified versus added control, (2) unconditional
versus conditional control and (3) level of device autonomy. Our
criteria help to decide when configuration is not sufficient, but
programming should be used instead.
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Technology advances allow us to automate systems with less need for human
interaction. Typical applications of autonomous systems can be found in
home automation domain, e.g., in energy management, climate control, or
atmosphere creation. Home robotics, for example for autonomous vacuum
cleaning is another fast growing domain[74].

One of the core needs for the users of such systems is maintaining the feel-
ing of staying in control [225]. Designers of user interfaces for autonomous
systems face an increasing challenge to find the appropriate balance be-
tween ease of use and satisfying the user’s need to feel in control of the
system. Studies have been conducted to investigate to what extent certain
system functionality should be automated for various application scenarios
[181, 204, 42]. However, only little attention was paid to the question of
which interface concepts are appropriate to allow different levels of control
over the autonomy of devices. In this study we analyze different inter-
face concepts applied in user interface design and offer a classification of
interaction concepts suited for controlling the device’s autonomy.

Most of the design guidelines for designing interactive autonomous systems
originate from the field of human-computer interaction [18]. Typically,
a user-centered design approach is taken, in which the user is an integral
part of the design process. The most commonly cited principles are still the
three design principles conceived by Gould and Lewis in 1985 [90]. These
principles, originating for the development of computer human interfaces
have been evolved, critized and adapted along with the development of
new technologies and application domains [37]. Höök [107] argues for the
domain of embodied conversational agents that traditional user studies try
to generalize interaction patterns by considering a standard user, while
such an average user in fact does not exist. She proposes to focus on
individual interactions, including feedback from the user in very early stages
of development. Interestingly, she identifies two problems in the design
process that ”... concern the timing of events and the level of control handed
to the end-user” ([107], page 136). She points out that these problems need
close attention in the design process but does not offer any design decisions
related to the level of control.

This study is written for designers of interactive autonomous systems and
offers an analysis of the core differences between configuration and end-
user programming in interface design. A system designer may select from a
variety of interface artifacts to construct the interface, ranging from a single
button to fully open application programming interfaces, with graphical
interfaces in the middle. Given the diversity of possibilities, it is not trivial
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Figure 3.3: A user is interacting with an autonomous system S that contains
an execution engine E running a control algorithm C. The user influences
the behavior either by specifying parameters or adding new control to the
system.

to select the right interface artifact for the right level of control. There are
aesthetic aspects of the decision, e.g., using a button, value slider or turning
knob, as well as conceptual aspects, which interface artifact matches what
level of control.

The conceptual differences between configuration and programming will be
analyzed and the consequences for interface design decisions will be deduced
in the next section.

3.2.1 Configuration versus Programming

Design decisions for enabling optimal user interaction and control with
technological interfaces can be clustered in two basic classes: configuration
and programming. A system designer can therefore base his decision on
which interface artifacts to use on the class of control of the user interface.
The difference between those classes might seem obvious at first glance,
but the consequences of the choice between the classes are often neglected.
Furthermore, both concepts are confused with each other when using nat-
ural language. Therefore, the designer needs a clear understanding of both
classes in order to justify his design decisions.

Conceptual differences

For analyzing the differences between the classes the scenario depicted in
Fig. 3.3 is considered. A user is interacting with an autonomous system
S. The system contains an internal execution engine E running a control
algorithm C. The control algorithm determines the behavior and the level
of autonomy of the system.
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The user influences the behavior of the system through its interface. If the
interface only allows the user to modify parameters of the provided control
algorithm, the user is configuring the system. As soon as he adds or modifies
the control itself we talk about programming. Choosing a radio channel or
setting the volume of a TV set are examples of configuration, because such
actions only affect the parameters of current control. Also more complex
interactions such as setting a list of favorite channels or arranging a VCR to
record a movie change only parameters, and belong therefore to the class of
configuration, even though the latter is often referred to as “programming”
the VCR rather than configuring it. However, if the user owns a modern
media center for which he adds a new control flow for a specific action (for
example, by redefining an action such as recording), he is programming the
system. To be programmable the system must have an execution engine
that can be extended with additional control.

Perceptual differences

From a user perspective, there is a perceptual difference between the config-
uration and programming classes of control. People appear to use different
metaphors for dealing with configuration and programming interfaces. For
example, people easily understand the meaning of a light switch, or how
to select the volume of a TV set with a turning knob, by observing the
consequences of changing its state. The state holds a certain configuration
of the system. In terms of interface design that means that whenever a
state needs to be represented, methods of configuration are sufficient.

In contrast, programming an autonomous system requires to describe the
dynamic behavior of system, rather than its state. For example, a graphical
user interface representing blocks that control the flow of data [119] could
be used as a metaphor to represent dynamic behavior. In this metaphor,
the flow of data can be conceptualized with the flow of water. Another
metaphor for programming is the use of an animated character. Humans
are naturally biased to interpret autonomous behavior as actions of ani-
mate beings and to interpret those actions according to social rules [198].
Adding a new behavior could be described as teaching it a new behav-
ior. Researchers are only beginning to investigate the full potential of
dealing with interactive autonomous systems [232] and to investigate new
metaphors for end-user programming.

For creating an intuitive and easy to use interface, the designer has to find
an appropriate metaphor depending on which class of control he chooses.
We identified three major criteria that can help to choose the right class
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Figure 3.4: The user is interacting with the system S during execution
phase. The control algorithm C was modified during customization phase
and is executed by an execution engine E.

of control: (1) modifying versus adding control algorithms, (2) conditions,
(3) level of autonomy. We devote a separate section to each of these.

3.2.2 Modifying versus adding control algorithms

We can distinguish three phases in the lifetime cycle of an autonomous
system: design phase, customization phase and execution phase. A user in-
teracts with a system during the execution phase. The term execution phase
emphasizes the fact that the interaction is governed, from the system’s side,
by executing some control algorithm. Typically, the algorithm is pre-built
into a device by the device’s producer, in the design phase. If the algorithm
is parametric (like showing a video on a display, with particular brightness,
contrast, and audio volume) the user can influence the algorithm by setting
the parameters, in the customization phase. This kind of customization is
what we mean by configuration. The above scenario is shown schematically
in Fig. 3.4. S denotes the system, C denotes the control algorithm, and the
double arrow depicts the interaction.
Another way to customize the predefined control is to extend the existing
control with a new one as shown in Fig. 3.5. In this scenario, the control
algorithm that governs the interaction during the execution phase may
come from two sources. It can be either specified during the design phase
by the designer (as depicted by arrow A) or during the customization phase
(as depicted by arrow B). Of course, the ability to add new control demands
end-user programming.
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Figure 3.5: The user is interacting with the system S during execution
phase. The control algorithm C was added during customization phase
and is executed by execution engine E.

The distinction between the customization and execution phase is only a
conceptual one. In the actual device, execution of primary functions and
customization may be blended, so that the user perceives customization as
one of the primary functions of the device.

In summary, end-user programming gives a user the ability of adding new
control algorithms to a device while configuration offers only the ability
of modifying existing control algorithms pre-built into the device by its
producer.

3.2.3 Conditions

To instruct an autonomous systems the user has to specify what function to
perform, how to perform it and when to perform it. For example, a TV set
can show TV channels or DVD movies, or serve as a monitor to a home PC.
In this case, the content describes what function to perform. In addition, a
user can set various parameters (like brightness, contrast and volume) that
instruct on how various video contents should be shown.

The difficulty for the interface designer arises as soon as the user needs to
specify if or when a function should be executed. Taking the example of
a security system, suppose the user wants to instruct the system that the
image of a security camera should always be displayed on the screen that
is closest to his current position, e.g., PC, TV or a photo frame. In this
scenario the user introduces conditional execution, i.e., display the content
if the screen is close by and switched on.
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Figure 3.6: Basic constructs needed for configuration and programming.
Configuration can be reduced to assignments (possibly put in a sequence),
while all four are needed for programming.

While the what and how can be handled by configuration, e.g., by offer-
ing the user to choose from a finite set of parameters, conditions require
programming. This can conceptually be explained by analyzing the task
from a computer science perspective. In computer science, it is well known
that, on some level of abstraction, sequential programming can be reduced
to four basic constructs: assignment, sequence, choice and iteration (see
Fig. 3.6). In this context, configuration can be reduced to assignments and
their sequences, since a configuration action (say, setting the volume of a
TV set) corresponds to an assignment (of some value to a variable in a
control program), and several configuration actions can be performed by a
user in sequence. Full programming, on the other hand, involves conditions
that govern choice and iteration. From this, it is clear that configuration
is just a special case of programming, albeit a much simpler one.

The need to specify conditions is the main source of difficulties in making
end-user programming easy. While existing interaction techniques support
well the process of configuring a system, e.g., through buttons, sliders or
turning knobs, we simply do not have obvious metaphors for representing
complex conditions. The usual way of expressing conditions, as known in
computer science, by applying Boolean operators to atomic propositions is
too complex for an end-user with no prior experience in programming. With
every new condition the number of possible paths of execution increases
exponentially which easily becomes too difficult for a user to maintain.

3.2.4 Autonomy

The last criterion to decide on the class of control is the level of device
autonomy. As Kawamura observed [127], there is a relationship between
the level of autonomy and the way a device should be instructed by a user.
For example, in the extreme case of a fully autonomous robotic device
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equipped with a sophisticated control algorithm that enables the device
to automatically make decisions, there is no need for user instructions at
all, because the robot does everything by itself. On the other extreme, a
device equipped with a primitive control would demand almost constant
instructions from a user. Whether such instructions should be given in the
form of configuration or programming is not obvious. Even less obvious are
the levels of control that lie between the two extremes.

System autonomy has been defined and measured by a variety of constructs
such as the system’s intelligence, capabilities, level of interaction or degree
of self-government [171, 98]. Joslyn, for example, describes autonomy in
terms of isolation from the environment [121]. In this study we follow
Gunderson’s definition of autonomy as “...the ability of a system to make
choices and enforce its decisions.” [98].

We analyzed three different autonomy scales known from past studies: (1)
system automation [216], (2) user interaction [101] and (3) origin of control
[171].

The first autonomy scale, system automation, concentrates on functional
aspects of a device. It is based on the assumption that the main purpose of
an autonomous device is to free the user from tedious or repetitive tasks.
The level of autonomy is measured by the length of time intervals the sys-
tem can be neglected by the user, while performing its main functionality.
Several scales that capture this notion of autonomy have been developed.
The most commonly used one is a ten point scale listed in Fig. 3.7. The
first variant of this scale was already developed by Sheridan in 1974 [216].
On this scale, the levels of autonomy are classified according to the time
a user spends interacting with a device. The less time needed, the more
autonomous the device is. This classification scheme is useful, for example
for analyzing to what extent a complex system, such as air-traffic control or
unmanned systems, should be automated in order to measure the impact
on the user’s performance [204, 123].

However, this ten point scale is not useful for an interaction designer as
a criterion for deciding if a device should be instructed by configuration
or by programming. When analyzed from a user interface perspective, it
appears that on the levels 1 to 3 configuration is sufficient, because the
mentioned interaction scenarios can be narrowed down to choosing from a
finite list of options. For example, on the first level the user exerts direct
control over the device by triggering its basic behaviors. These choices are
on the following layers consecutively narrowed down by increasing the level
of abstraction and decreasing the number of options. On the levels 4 to 10,
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1 the robot offers no assistance; the human must take all decisions
and actions

2 the robot offers a complete set of decision/action alternatives

3 the robot narrows the selection down to a few options

4 the robot suggests one alternative

5 the robot executes that suggestion if the human approves

6 the robot allows the human a restricted time to veto before auto-
matic execution

7 the robot executes automatically, then necessarily informs the hu-
man

8 the robot informs the human only if asked

9 the robot informs the human only if it decides to

10 the robot decides everything, acts autonomously and ignores the
human

Figure 3.7: Ten point system automation autonomy scale of an autonomous
robot (Sheridan 1974 [216]).

there is no need for instructing the device at all, at least regarding its main
functionality, because the device does not offer the possibility to modify
the behavior. Hence, the conclusion would be that programming is not
necessary to instruct a device, no matter what its autonomy level is.

The second autonomy scale, user interaction, concentrates on the interac-
tion abilities of a device. It is based on the assumption that interaction with
the user is one of the core functionalities of the device. The user perceives
the device as an artificial agent with whom he is cooperating. The focus
on a team like collaboration leads to a different scale of autonomy which
emphasizes the interaction aspect [101]. The scale used for this mixed-
initiative approach contains 5 levels, with direct control at the lowest level
and peer-to-peer collaboration at the highest level of autonomy as listed
in Fig. 3.8. This kind of autonomy has little in common with the concept
of autonomy based on functionality, i.e., system automation. It should be
treated as orthogonal to the previous scale. For example, a robot that is
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1 direct control (also called teleoperation)

2 mediated control (also called mediated teleoperation)

3 supervised control

4 collaborative control

5 peer-to-peer collaboration

Figure 3.8: Interaction based five point scale of the level of autonomy of an
autonomous robot (Goodrich and Schultz 2007 [89]).

capable of navigating autonomously and that communicates its position to
collaborate with people, would score high on the five point scale. However,
it would score low on the first scale, because it would interact with other
team members, and thus requires time for interaction.

Analyzing the scale form a user interaction point of view, a relationship
between level of autonomy and the potential for programming as depicted
in Fig. 3.9 was identified. On the extremes of the scale, i.e., direct con-
trol and peer-to-peer collaboration, configuration can be applied to exhibit
control over the functionality of the device, while for supervised control
programming needs to be applied.

For robots that are on the first level of autonomy, the user only chooses from
the set of basic low-level functionality such as setting speeds to the motors.
While this kind of interaction clearly can be addressed with configuration,
the user also just configures the system behavior on the highest level of
autonomy. This becomes more obvious if considering the reasoning engine
of the robot that is necessary to interpret the commands of the user. The
user is not programming a control in the sense of specifying a sequence of
actions, but only configures the reasoning engine to create the sequence
of commands that is necessary to accomplish the given task for him. This
subtle difference has an important impact on the interface design. Instead of
requiring the user to think about control structures the designer can present
a list of high level commands such as “check the room” or “report your
status”. Towards the middle of the scale, the potential of incorporating
programming techniques increases. On level two, mainly the abstraction of
the set of commands increases (e.g., driving straight), but there is already
some potential for programming, for example by offering the user to define
new commands that consist out of a sequence of more basic functions.
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Figure 3.9: Class of control needed for different levels of autonomy on an
interaction based scale.

Another good example for such interfaces is programmable remote controls.
On level three the user is still in full control over the behavior, but does not
spend continuous attention to the robot as in the direct control situation.
Instead he specifies higher level plans to the system. On this intermediate
level of autonomy, the devices still lacks a sophisticated reasoning engine,
requiring the user to give a detailed specification. End-user programming
techniques offer exactly this class of control. On level four, the control
over the behavior is equally shared between the user and the robot. The
robot is capable of making decisions of its own, but still requires guidance
of the user. Finally on level five, the control resides solely on the side of
the device.

The autonomy scale, origin of control, is proposed by Musse et al. [171].
They measure the level of autonomy by the amount of control that needs
to be provided by the user. Their scale considers three levels of autonomy,
1)guided, 2)programmed and 3) autonomous as stated in Fig. 3.10. On
the guided level, the control resides fully on the side of the user who is
triggering the behaviors of the device. On the intermediate, programmed,
level the device offers means to describe behavior, rather than directly
executing it. Lastly, devices in the autonomous category are capable of
acting independently. All necessary control is implemented on the device
itself.

Among the three scales, we consider the three point scale the best criterion
to discriminate between configuration and programming, because it offers
the most concise description of end-user interaction. It explicitly measures
the level of autonomy in terms of origin of control. Important from a de-
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1 guided

2 programmed

3 autonomous

Figure 3.10: Origin of Control based three point scale of the level of auton-
omy of an autonomous robot.

sign perspective is that the relationship between the level of autonomy and
class of control for the interface follows the same qualitative shape as found
for the five point scale. Devices in the guided category do not have any
sophisticated decision making capabilities, but the user is fully in charge
over the behavior of the device. As outlined before, this type of interaction
can be addressed using configuration techniques. In the programmed cat-
egory, devices exhibit the potential of making autonomous decisions, but
need to be instructed to do so, implying the need for describing behavior.
On the highest level of autonomy all necessary control resides on the side
of the device. Hence, there is no need for the user to add new control to
the device implementation, but configuration is sufficient to give the user
control over the autonomous behavior of the device.

In summary, as soon as the designer has classified the requirements for a
device according to its level of autonomy, he can deduce a need for config-
uration or programming.

3.2.5 Execution versus description

An important difference between configuration and programming is the
time in which both activities take place. As mentioned in the previous
section, the purpose of programming is to describe the future execution of
control while the purpose of configuration is to modify the current execution
of control, by setting some parameters that influence the control on-the-fly.
In other words, configuration is performed when control is being executed
while programming is done before the control starts executing.

Of course, this difference is only important for a designer, and not for an
end-user. For the end-user, controlling a device, either by configuring or
programming it, is part of what she perceives as simply using it. However,
for the designer the difference is important since it strongly influences the
software architecture of an execution engine. An architecture that enables
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the ability to configure a system is much simpler. If arranged as a reac-
tive system (i.e., structured as a set of components with a master control
module and drivers for sensors and actuators) it typically consists of one
execution engine that handles both configuration and control. The config-
uration interface is handled as part of control, where some sensors are used
for triggering configuration actions (e.g., up and down buttons on a TV set
remote controller are used to change sound volume) and some actuators are
used to give feedback (e.g., the current volume level). The architecture that
enables programming, however, must contain two additional components:
one for specifying a program and the other for executing it.

3.2.6 Conclusions: Interaction design

Autonomous systems typically contain various control algorithms built into
a system by the system’s producer. We propose a simple conceptual frame-
work to support the design of user interfaces for controlling autonomous
systems. This framework, is based on the fundamental assumption that the
purpose of such an interface is to allow a user to either modify the pre-built
control algorithms or add some new ones (or combine both activities). We
term the first activity configuration and the second one programming.

Essential differences between configuration and programming were identi-
fied, and their impact on designing the interface for controlling autonomous
systems was studied. In essence, configuration only sets parameters of a
pre-built control algorithm, while end-user programming describes the pro-
cess of adding new system behavior and therefore offers a more general
class of control. Behavior then depends on run-time conditions.

Designing an interface for configuration is much easier than designing for
programming. Most interaction technologies, be it speech, gestures, tangi-
ble or graphical interfaces, can be used for configuration. For programming,
however, the choice is much more limited; i.e., usually to textual notations,
or some symbolic notations disguised in graphical representations. In ad-
dition, programming is usually perceived as difficult by casual users. For
these reasons, a designer should favor configuration over programming, and
revert to programming only if necessary.

To guide the designer in making this choice, we propose to use three criteria.
First, should a user be allowed to only modify the pre-built control algo-
rithms or also add some new ones? Second, is it enough to instruct a device
by simple unconditional actions performed by the user, or the actions must
be governed by user defined conditions? Third, does the device exhibit a
level of autonomy proper for configuration, or proper for programming?
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3.3 Behavior design challenge

Having discussed the design challenges at application and interaction design
level, a third study was conducted to investigate the design challenges at
behavior design level. This study has been presented at the Robot and
Human Interactive Communication conference (RO-MAN) [212]

Abstract – Robots use their movement to interact with the
user. These movements are a crucial part in designing the in-
terfaces of personal robots. They have a major impact on how a
robot is perceived by the user who is interacting with it. Subtle
flaws in the movement can elicit a repelling feeling and therefore
negatively affect the interaction. On the other hand, carefully
designed little quirks can give the robot a perceived person-
ality and make it more interesting for the user. A possible
relationship between appearance and motion on how a device
is perceived is described by the ‘Uncanny Valley’ conceived by
Mori in 1970. It is widely used as a design guideline for creating
humanoid interface robots. It does not, however, describe the
impact that the quality of movements has on the perception
and the believability of a character. Conclusive frameworks for
the animation of robots are rare and are often adapted from
cartoon or computer animation. This section analyzes the be-
havior design challenge and presents refined design guidelines
for the motion of robotic characters with respect to the design
requirements naturalness, adequateness and development over
time. Furthermore, we created a set of tools that eases the pro-
cess of designing the movement of the robot by improving on
common animation techniques such as key-framed or scripted
animations. The tools preserve the freedom of the animator to
define specific expressive motions while at the same time offer-
ing the full power of scripting technology.

3.3.1 Introduction

Currently, we observe a trend in which robots leave their socially isolated
industrial workplaces and enter our every-day lives. It is predicted that they
take the same development as personal computers and will be common in
every household [81]. Personal robots are a subset of these robots that di-
rectly interact with humans. They have the potential to become powerful
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tools for a variety of application areas, as they serve as an interface for
ambient environments, entertainment such as gaming and storytelling, and
healthcare applications. The latter one is of increasing importance since
our society faces an increasing number of elderly people that are in need
for care. In these application areas, users require natural and easy means
of interaction with such robots. The advantage that personal robots have
over other interfaces is that they can engage in a social and natural inter-
action with the human user. In [198] Reeves and Nass showed that people
apply social rules to media and especially computers. They even apply
these rules when they are consciously aware that they are dealing with a
machine. Social interactive interfaces exploit this phenomenon to maintain
a social relationship in order to add an additional source of information for
the communication. In [27] Breazeal studied whether comparable effects
can be achieved with robotic embodiments, since a physical robot gives
only a crude approximation of human attributes. She applied human-like
artifacts to the robot design and found that a robot can evoke the same
social responses. She also found that social expressions of a robot have a
positive influence on the interaction, as participants were more engaged in
the interaction. With their physical presence personal robots are well suited
to bridge the digital and the real world. Hence, for future interface devices
social interaction is an important design factor. How a robot is perceived
depends on multiple factors, such as its appearance, behavior, sound, smell
and what its materials feel like. In this section we will focus on the design
of one of these factors for a robotic character, i.e., motion. Motion takes
a crucial part in the design for a social interactive interface, but its com-
municative power is often neglected in favor for appearance. This neglect
of motion is problematic, because humans are naturally biased to perceive
biologic motion. People are able to attribute agency, drives and intentions
only based on motion cues [104]. The importance of motion has also been
demonstrated by Ishiguro, who exposed participants for two seconds to a
realistic android [114]. In one case the participants saw just the static an-
droid and in the second case the robot performed small movements. In
the second case significantly less people became aware of dealing with a
machine. These results showed that next to appearance motion has to be
addressed explicitly in the design of a personal robot. Some authors go even
further and attribute a greater importance to motion than to appearance.
Maddock et al. for example argues that a photorealistic appearance is of
less importance in his discussion of methods for realistic animation of an-
imated faces than the behavior [154]. Photo realistic appearance seems to
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be easier to reach for artificial characters than realistic motion. This holds
true also for virtual characters despite the fact that they have all the free-
dom to perform any movement without physical constraints. Their robotic
counterparts, on the other hand, are much more limited. The challenge
that designers of personal robots face is to create high quality movements
that convey familiar artifacts and support the interaction.

3.3.2 Designing personal robot behavior

Design space of behavior

Creating socially accepted personal robots is a design challenge not fully
understood yet. What is known is that the appearance and behavior of a
personal robot play a crucial role in how it is perceived. Because humans
are an example of a socially behaving actor, one approach to design a so-
cially accepted robot is to adopt human characteristics. Mori, however,
formulated a theory that there is no linear relationship between the simi-
larity to a human and the perception of familiarity of the robot, known as
the “Uncanny Valley” [170, 152] (see Fig. 3.11). This theory describes the
repelling feeling that an almost human-like robot evokes. The lesson is that
subtle flaws in the design of the personal robot can have a strong negative
effect on the interaction. Therefore, the application designer faces an ad-
ditional design challenge for carefully designing the motion. The Uncanny
Valley theory serves as a design guideline for creating robots and is mostly
applied to the appearance of a robot. However, in the original version of
the Uncanny Valley theory Mori also described the effect that motion has
on the perception of the character. He predicts that motion will exaggerate
the peaks. The importance of motion was later also addressed by Gee in his
review on the Uncanny Valley theory [83]. He concludes that the uncanny
valley theory needs some more refined redefinition that includes the influ-
ence of all factors and their interdependence. One extension to the original
graph is presented by Ishiguro [114]. He added ‘similarity of behavior’ as a
new axis orthogonal to ‘similarity of appearance’ to account for human-like
behavior. He argues that already the shape of the robot raises certain ex-
pectations. If the expectations are met, the robot appears more familiar to
the user. However, how the robot is perceived depends on multiple factors
including appearance, motion, speech, social and religious context. What
is not addressed so far is the effect that the quality of motion has on the
perception of the character. A sack of flour animated in a right way can
convey familiar attributes like emotional states and intentions [231]. Since
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Figure 3.11: Simplified version of uncanny valley graph conceived by Mori
1970 [83]

a sack of flour has not a human-like shape it would be placed very low on
the familiarity axis of the Uncanny Valley graph. On the other hand, a
photo realistic humanoid can give a repelling feeling if the motions are not
designed carefully.

Conceptual framework

To develop our motion design tools we present a conceptual framework
of the design case. In our framework we consider a designer who wants
to design the behavior of a personal robot. The design case consists of
a personal robot situated in some context and being observed by an ob-
server. The designer’s task is to make the robot act such that it conveys
a well-defined message to the observer. The personal robot communicates
a message to the observer through physical channels that can be sensed
by the observer. For instance, a robot communicates by moving, making
sound, speech, lights, odor, temperature, vibrations or any other physi-
cal channel. The interpreted meaning of the robot’s act depends on the
context and the observers’ profile. A particular gesture can have different
meanings in different contexts or in different cultures. Notice that even
when the designer does not intentionally put a message into the act of a
personal robot, an observer always interprets the act and thus receives a
particular meaningful message. Therefore it is always important to study
what messages a robot communicates when it is acting. We classify robot
behavior into two classes. First, a robot might show control behaviors. A
control behavior is generated to realize system goals, such as stabilization,
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localization, navigation etc. The second class of behavior is communica-
tive behaviors. A robot generates communicative behaviors when it wants
to communicate intentionally a message to some user, such as greeting a
user. As will be discussed further on, each of these two classes of behaviors
requires a different tool to design them efficiently. This paper focuses on
the development of tools for designing communicative motions. In the next
section we will discuss and motivate which requirements motions need to
fulfill in order to be qualified as good communicative motions.

3.3.3 Motion design requirements

In mobile robotics one design goal is to let the robot localize itself and nav-
igate through some environment. Different movement strategies, though
all labeled as ‘artificial intelligence’, cause a different perception of its in-
telligence [27, 113]. Therefore, a variety of methods have been developed
to make the motion of an embodiment explicit and convey an intended
message. These methods can be classified into three classes:

Trajectory Design Methods These design methods directly generate
the individual trajectories of the motion variables of a robot. Keyframed
animations [231], motion capture [221] and scripted animations [185] fall
into this category. Motion capture and scripted animations within this
context take a purely generative approach and do not perform further pro-
cessing to existing motion data.

Motion Editing Methods These methods are based on editing the
whole sequence of given motion data. Different editing techniques are de-
veloped, such as motion signal processing [30], retargeting of motion to new
embodiments [85] and constrained based motion editing [86]. Also blending
of existinganimations to create new ones belongs to this category [198].

High Level Behavior Design Methods These methods are based on
generating motions by specifying the robot act in terms of abstract param-
eters. For example emotional reasoning methods that calculate blending
parameters to existing animations [179] or behavioral control [236] that
triggers animations can be accounted to this class of methods. Indepen-
dent of the design method used by the designer the resulting motion should
adhere to certain quality requirements in order to create believable robot
motions. We have identified three of such quality variables, naturalness,
adequateness and development over time. These are discussed below.
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Naturalness

Naturalness of motion describes the movement models for the actuators. It
covers the design of detailed trajectories as well as the overall coherence of
motion for the character. In this context ‘natural’ does not mean as similar
to human motion as possible, but the motion should be perceived as nat-
ural for the character to be designed. A robotic looking character should
describe more robotic like trajectories, for example by choosing motion
trajectories with equal velocities [238]. Mostly, Trajectory Design Meth-
ods are used to conform to this design requirement. Keyframing methods
serve a good representation for creating expressive motions for all kinds
of embodiments, but make it difficult to model physical correct motions.
Physical modeling techniques, on the other hand, model a movement as
a force affecting a physical system. This creates natural motion trajecto-
ries, but it makes it difficult to create specific expressions. Motion capture
methods cover both but are restricted to embodiments that have a similar
dynamics as the human body. Later on we will present a method in which
keyframed and procedural animations can be combined to take advantage
of both methods. Carefully designing the animation according to this mo-
tion design requirement will enable the animator to play non interactive
pieces of realistic motion. He might combine them to a short theatrical
play.

Adequateness

The adequateness of motion describes the situated context and the reac-
tivity of the character. The animator has to make sure that the natural
looking motion sequences are displayed at the right moment. The ‘right
moment’ refers to timing and context of the action. The context is deter-
mined by the communication partners that observe the robot, their social
relationship and by the application scenario. Therefore this design require-
ment includes modeling a personality of the robotic character as well as
accounting for cultural, religious or other expectations that the user might
have. Describing the relationships between events and reactions or cultural
norms require a different representation than describing the position of the
actuators over time. For example rule based systems or scripting technol-
ogy are well suited for this purpose. We will describe a method how these
representations can interface with natural and expressive animations later
on.
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Development over time

Development over time addresses the behavior that the robot shows over
time and how it changes over time. For example, a character should avoid
to show the same animation twice within a short period of time. Humans
are very sensitive to biological motion. A repetitive behavior is attributed
to machines, but not to living creatures. No two movements of a biological
creature are exactly the same. Repetitive behavior should not be mistaken
with rhythmic motion. For humans it is natural to synchronize the motion
for example with music, but even if the overall pattern stays the same there
are always little variations. Development over time requires the designer
to create a coherent history of the character, including short term states
as well as long term memory. For example an expression of the character
depends on its emotional state and a longer term mood. Additionally,
the modeling of a history enables the character to evolve over time. The
best tools at hand for this design requirement seem to be again rule based
systems and scripting technology. A special database can be used to keep
track of the evolution of the character, e.g., improvement by learning new
skills or changing the relationship to a person. Future behavior can be
modeled with evolutionary algorithms.

3.3.4 Motion design tools

Many tools exist today that relate to the motion design problem described
in this paper. Designing adequate believable motion is more an art than
science. Therefore, no method is available to fully automatic generate be-
lievable motion for a specific type of robotic character or personality. For
this reason we focus on design tools to provide an editing framework that
helps the animator to abstract and generalize carefully designed animations.
Existing tools can be roughly divided into two groups. The first group con-
tains tools from the field of traditional computer animation. These tools
are developed to animate virtual gaming or cartoon characters. The second
group contains robot programming tools. After having discussed the strong
points and limitations of some of these tools we will present our improve-
ment for a motion design tool for believable embodied robotic characters.
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Existing tools

A rich set of computer animation tools exists, including Maya [4], Light-
wave 1 and the open source tool Blender2. These tools are used to create
animated characters and are used for productions such as the ‘Shrek’3 car-
toon. Besides being tools to create motions of virtual characters these tools
also support modeling character as well as rendering them. The advantage
of computer animation tools is that they embed strong character animation
techniques such as key framed animations, scripted animations, morphing
techniques and motion capturing. The major disadvantage of computer
animation tools for the design of believable motions for embodied robotic
characters is that they operate on the pixel level. This allows these tools
for instance to apply morphing techniques to create facial expressions, but
the results depend to a large degree on the skills of the animator. Such a
technique, however, cannot be applied to embodied robotic characters as
they only have a limited set of actuators that are controlling parts of the
robot. Furthermore, the editing techniques are limited to design time and
make it difficult to change an animation at runtime to create a more inter-
active behavior. Besides computer animation tools also a rich set of robot
programming tools exists. Matlab/Simulink4 is a well know scientific pro-
gramming tool used to developed control algorithms. By using a graphical
block diagram tool an algorithm can be designed. The advantage of this
tool is its graphical interface that is very intuitive and convenient to use.
Also the Matlab environment provides many useful mathematical libraries
such as neural networks and signal processing libraries. The disadvantage
of this tool is the lack of tools for specifying precise motor trajectories which
are needed to create believable motions. Lego R©Mindstorms NXT5 provides
a graphical programming tools based on National Instruments’ Labview.
While Simulink blocks represent continuous or discrete time signal process-
ing elements, Lego’s NXT blocks represent programming elements such as
performing a task or doing a ‘while’ loop. The advantage of this tool is its
ease of use for building programs. The disadvantage is the same as that
for Matlab/Simulink, namely the lack of tools for specifying precise motor
trajectories. Recently Microsoft Robotics Studio6 was introduced to the

1http://www.newtek.com/lightwave
2http://www.blender.org
3http://www.shrek.com/main.html
4http://www.mathworks.com
5http://mindstorms.lego.com
6http://msdn.microsoft.com/robotics/
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robotics community. This tool aims to unify different robotic architectures
by providing a general software framework based on services. In a recent
update also a graphical programming tool has been added to Robotics Stu-
dio. The advantage of Robotics Studio is its graphical tool for programming
control behaviors. A shortcoming is the lack of tool support for communica-
tive behaviors. The Open Platform for Personal Robotics (OPPR) [188] is
a set of tools for developing applications for believable user-interface robots
developed at Philips Research. It was developed for the iCat robot – a non-
mobile robot with a cat-like appearance and a cartoon face that can show
facial expressions. The advantage of OPPR is its graphical motion design
editor for embodied robotic characters. A designer can choose to design
motions graphically or he/she can choose to script a motion. Besides the
editor, OPPR also contains the ‘Animation-Engine’ software module, spe-
cialized module that allows users to simultaneously play and blend motions
smoothly. In this way, complex behaviors are created from a library of
basic behaviors. Several concepts of OPPR such as the Animation-Engine
have been reused in the development of a unified software architecture to
develop social robotic interfaces. A shortcoming of OPPR is its lack of high
level motion design and high level sensor integration. Therefore, OPPR ad-
dresses only the first of the three design dimensions, i.e. naturalness. In
the following sections we present our extensions to the OPPR framework
that allows addressing the identified motion design requirements.

Functional animations

As a first extension to the OPPR framework we focus on the naturalness of
motion. The animator on the one hand wants to have full control over the
expressiveness of the character while on the other hand preserving a high
level control over the behavior. Therefore we developed ‘functional anima-
tions’ that combines the expressiveness of keyframed animations with the
power of parameterized control of procedural animation. Existing keyfram-
ing animations focus on an expression at a specific moment in time. Using
this approach they have full control over the posture at this moment, but
neglect the importance of the in-between frames [253]. Procedural anima-
tions on the other hand define a trajectory over time that generates the
postures of the character for all times with equal importance. We base
our system on keyframing an animation, but instead of focusing on an ex-
pression at a certain moment in time we make a keypoint responsible for
a whole interval. In the following discussion the term keyframe describes
the overall posture of the character at a given amount of time. Following
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Figure 3.12: Keypoint interval definition for functional animations

the notation given in [241] the complete posture of a robot is defined by a
keyframe vector ~s holding the positions xi of all actuators:

~s(t) =







x1
...

xn






(3.1)

The term keypoint refers to a control point that is defined in the scope of one
actuator. It specifies the position x of this actuator at a specific moment
in time t by its coordinate (t, x). In our system we annotate it with a
function f , which defines the trajectory of the actuator after the keypoint.
We refer to it as an interpolation function. A keypoint therefore does not
only hold a single position, but explicitly defines the motion trajectory over
a whole interval. The responsibility of the keypoint ends at the time where
the next keypoint is placed (see Fig. 3.12). The figure shows the definition
interval of keypoint k, which is positioned at a time tk. The definition
interval ends before the next keypoint at time tk+1, so that tk ≤ t < tk+1.
The first keypoint defines t = 0 for the animation and the position of
the last keypoint defines the length of the animation. The trajectory of
an actuator is a partially defined function, containing K intervals. For
every actuator a different number of keypoints may be defined. In every
interval 1 ≤ k ≤ K the trajectory is given by an interpolation function fk

that is parameterized by time t and a set of parameters ~θk. The end of
the animation for an actuator is defined by its last keypoint. That means
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that from the last keypoint only the keypoint position is used, but not its
interpolation function. The position of the actuator is given by:

x(t) =











































f1(t, ~θ1); t ∈ [t1, t2)

...

fk(t, ~θk); t ∈ [tk, tk+1)

...

fK(t, ~θK); t = tK

(3.2)

The whole animation is therefore defined by:

~s(t) =







x1(t)
...

xn(t)






(3.3)

A single keyframe is generated by passing the time argument to every actu-
ator and evaluating its interpolation function at time t. Using this approach
the animation designer places keypoints for the actuators as in standard
animation systems. Additionally, he chooses from an adjustable set of in-
terpolation functions and specifies its parameters. We demonstrate this
concept with a graphical editor for editing functional animations (see Fig.
3). Physical systems can be modeled by adding new interpolation types.
The resulting trajectory can directly be observed in the editor which gives
the animator visual feedback. He can adjust the curve by positioning the
keypoints or modifying the parameters of the interpolation function. The
second advantage of functional animations is that the same mechanism can
be used to generate more dynamic behavior. By adjusting the control pa-
rameters at runtime a huge set of different behaviors can be generated based
on a small set of predefined animations. For example while in traditional
keyframe animation systems a nod to the left and a nod to the right would
require two different animations, functional animations only require one.
At runtime the parameter for the head angle can be set dynamically. We
address this issue of setting the variables at runtime with ‘global variables’.

Global variables

Global variables are defined in a global namespace and are accessible by all
modules inside the OPPR architecture. Local parameters can be linked to
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a global variable so that it always keeps the same value. With this mecha-
nism a control algorithm can adopt an animation to the current situation
by setting the global variable. The major advantage of this concept is that
it allows the animator to attach meaning to changes of the interpolation
function. While blending methods interpolate between two expressive an-
imations they run the risk of destroying little quirks that give life to the
character. The animator of those two basic animations has no control over
changes made by blending. Global variables, on the other hand, give him
the possibility to define variations of the animation in a controlled man-
ner. However, by using a direct mapping it might be difficult to model
high level control parameters such as interpolation function parameters.
Furthermore, control parameters cannot be expressed. Therefore, we intro-
duced the concept of parameter models.

Parameter models

A parameter model is an abstraction layer to control the parameters of an
animation in a meaningful way. It formalizes the dependency between func-
tional animation parameters and high level control parameters to constrain
changes of the animation to a meaningful dimension. Mathematically, a
parameter model performs a coordinate transformation between motion
model space and motion control space:

~Θ = m(~p) (3.4)

The parameter p describe the position of the animation in a high level
control space and are mapped to interpolation function parameters. Con-
trol parameters allow to decouple animation design from application de-
sign. This matches exactly the decoupling that we made while describing
the motion design requirements. The animator focuses on the naturalness
of the motion while an application designer is more concerned about the
robots application and interactivity. Parameter models give the animator
the full power of scripting technology to adjust the parameters of a key-
point. Constraints to changes can be implemented by carefully designing
the parameter models. Sometimes it is more useful to have a different rep-
resentation for constraints. The situation that we encountered most often
was that we wanted to preserve the relative positions of keypoints within
one actuator but also between multiple actuators. Without constraining the
relative positions a movement in multiple actuators could desynchronize.
We implemented a grouping mechanism to represent such relationships.



58 CHAPTER 3. DESIGN CHALLENGES

Grouping

A group is a set of keypoints that are constrained to keep a specific rela-
tive position to each other. Groups may contain single keypoints and other
groups that are treated as a single entity within a group. A translation to
one keypoint of the group affects the whole group. Second, a group can
be annotated with a label. A label contains a symbolic description of the
action for the character. This increases the readability of the animation.
The animator can deduce the intended meaning without having to play the
animation. This is especially helpful if multiple animators work on one an-
imation. Another advantage of groups is that they define a clear hierarchy
of local scopes. This hierarchy can also be applied to parameter models.
For example two distinct groups (e.g., eye blinks for left and right eye) can
be combined in one top level group. With a change of the emotional state
of the character the parameters of both groups have to change simultane-
ously. Therefore we allowed to attach parameter models to groups. They
are evaluated in the local scope of the associated group. Groups define
an internal structure of the animation. Only the global variables and the
parameter models from the outermost groups are accessible for outside con-
trol mechanisms. This preserves a well structured interface to control the
shape of the animation.

3.3.5 Discussion: Behavior design

We motivated the importance of motion in the design of a personal robot.
Designing the motion takes a crucial part for facilitating a natural interac-
tion between humans and robots. We presented a conceptual framework for
the motion design for a personal robot. In a first step we extracted three
design qualities that can be addressed independently from each other and
developed a toolset that addresses these design qualities. In our research
we focused on a framework that supports the designer with editing anima-
tions. We proposed a framework that combines keyframed animation with
procedural scripted animation. This allows the animator to create physical
correct movements while preserving the expressive freedom of keyframed
animations. Global variables and parameter models define an interface to
alter the animation along a specific control dimension. These concepts
decouple the animation design from the application design.

For the second and third design dimension ‘Adequateness of motion’ and
‘Development over time’ we rely on the existing scripting technology of
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the OPPR system. Rule-based-systems and scripting technology were suc-
cessfully used for representing the interactive behavior. For example the
emotional state can be kept in certain state variables and in order to avoid
that exactly the same animation is played twice, the parameter settings of
an animation can be changed.
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Chapter 4

Animation technology

In the previous chapter, the design challenges for creating social robotic
interfaces were analyzed at three different levels: application level, inter-
action design and at behavior design level. These levels form a hierarchy
of dependencies. Starting with the top layer, the success of the overall ap-
plication depends to a large degree on the quality of the interaction with
the device. The interaction consequently depends to a large degree on the
quality of the impression that the user perceives in the behavior of the
device.
For a successful social interaction, the device has to create a believable
impression of a life-like character [47]. The term ‘believability’ has been in-
troduced by Bates to describe the quality of an artificial character to appear
live-like [17]. For example, timely expressed emotions are crucial to create
a believable character. Fong et al. discriminate between two main design
approaches to achieve believable social interfaces, i.e., ‘biology inspired’ and
‘functionally designed’ social interfaces [72]. In the first category, designs
aim to mimic zoomorphic or anthropomorphic features by reproducing at-
tributes found in living creatures. In the second category, the technical
design is functional in a sense that it only appears from outside to be a so-
cial character. Dautenhahn supports the functional perspective to design
social robots. She argues that,

They need not necessarily have to act like biological agents,
but some aspect in their behavior has to be natural, appealing,
life-like. (Dautenhahn [46] p. 7)

Furthermore, Dautenhahn recognizes that research in believable agents ben-
efits greatly from the design knowledge from the field of movie and anima-
tion technology.
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4.1 Traditional animation principles

In the field of cartoon animation, animators have impressively demon-
strated that carefully designed behaviors can evoke rich emotional responses
[231, 253]. The basic phenomenon that people attribute desires, intentions
and emotions to very abstract stimuli has been demonstrated by Heider and
Simmel. They showed movement patterns of geometric objects to partici-
pants [104]. In their study, all but one participant interpreted the stimuli
in social terms and explained the observed behaviors by abstract story
lines, and social roles. Tremoulet has extended this findings by showing
that already the movement pattern of a single dot is sufficient to give the
impression of animacy [235].
However, many of the early animations lacked life-likeness [253]. There ap-
pears to be a fine line between animations that are perceived as believable
and convincing and animations that are perceived as dull and unnatural.
Thomas and Johnson, presented a list of 12 animation principles that guide
the design of animations to give Disney R© animations their uniqueness and
illusion of life. In the context of designing believable social interactive in-
terfaces, these guidelines capture important design knowledge and provide
valuable input for the design process. The properties of these twelve tra-
ditional animation principles and their applicability to the animation of
robotic platforms such as iCat are discussed in the following:

Squash and Stretch Cartoon characters have the ability to perform vir-
tually any motion, because they are not constrained by a physical
embodiment or physical laws. Squash and Stretch is used to keep a
character in dynamic motion and to show the impact of internal and
external events on the character. As a fundamental guideline, the
volume of the character should stay approximately constant during
a squash and stretch action in order to stay believable. An example
is depicted in Fig. 4.1. Even though the depicted sack has no spe-
cial attributes such as a face to express emotions, squash and stretch
techniques are sufficient to convey a rich set of emotions.

For robot animation, however, this principle is of less relevance as it
heavily relies on the robotic embodiment. An example embodiment
that makes use of this principle is Keepon [70]. The squash and
stretch principle allows Keepon with surprisingly simple movements
to evoke a rich set of emotional responses. Keepon can synchronize
its movements with music and perform a dance together with a user.
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Figure 4.1: Disney’s R© sack of flour animated to express various emotions
using the Squash and Stretch animation principle. (source: The Illusion of
Life [231] p. 49)
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Anticipation Anticipation is one of the most important and most often
used animation techniques. Anticipation describes an action in three
phases. First the audience is prepared that something is going to hap-
pen, then the action is performed and finally the action is terminated.
Anticipation is used to guide the attention of the audience to focus on
a particular element that might be missed otherwise. An example is
depicted in Fig. 4.2, where the audience is prepared that the character
will run away quickly. In the example, the character leans backwards
even though this is not a gesture of person that prepares for running.
Instead it resembles the preparation of shooting a bow. Anticipation
helps to explain the next scene. The next scene might contain just
a cloud of dust. If the audience had not been prepared, the running
action might be missed, leaving the audience without explanation for
the cloud.

One important point that can be derived for the design of social
interfaces is that anticipation not only helps to guide the attention of
the user, but also helps to build up trust. Using anticipation, the user
is enabled to predict what is going to happen next. If this expectancy
is met by the character, the user gets the impression to understand
the device and feels in control [32].

Staging Staging guides how an action is presented so that it is well un-
derstood by the audience. Staging has its origin in theater, where
actors are taught to only give one clear message at a time [228]. The
audience must be guided to focus exactly where the action happens.

Staging can also be applied for the animation of robotic characters.
For example, a robot might react to a certain event by displaying
happiness. This expression must be clearly staged, for example by
holding the expression for a certain time and making sure that the
expression is visible to the user.

Straight Ahead Action and Pose to Pose This design principle sup-
ports the designer in the process of designing a complete action. Fol-
lowing the ‘straight ahead’ advice, the designer animates a sequence
sequentially, starting from the first image until the last. This process
helps the designer not to lose the flow of motion in the scene and gives
him the freedom to decide at every frame what happens next. In the
‘pose to pose’ approach, the designer decides beforehand what will be
contained in the sequence and which poses the character has to run
through. In a first iteration, the designer might only draw the first
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Figure 4.2: The animation principle ‘anticipation’ prepares the audience
for a following action. In the example, the well-known Donald Duck by
Disney prepares the audience that he will start running. (The Illusion of
Life [231] p. 52)

and the last picture. In following iterations main poses are added an
the remaining gaps are filled by in-between poses.

These two approaches serve as an important input to understand the
work flow of a designer. If a designer is to be supported in the task to
create expressive behaviors for a robot, design tools have to support
this way of working.

Follow Through and Overlapping Action Characters need to stay in
motion. A complete stop of a character will counteract the impression
of a life-like character. The advantage of not being constrained by
physical laws can also become a disadvantage, because no inertia
rules need to be taken into account. This guideline also accounts for
overlapping actions that are caused by the main action. For example,
during a fast movement flexible body parts such as hair will perform
a slightly different motion trajectory due to inertia. If such subtle
cues are left out, the whole animation appears artificial.

In physical systems a moving mass cannot just be stopped in an
instance. A follow through action after a fast motion is naturally
required to decelerate the actuator. For concrete behavior design of
robots, the consequence is that the dynamics of the hardware may



66 CHAPTER 4. ANIMATION TECHNOLOGY

be exploited to create believable animation. Additionally, it can be
derived that a character should not halt completely, even though no
action is required from a functional perspective of an application.
The resulting motion is only performed for the expressiveness of the
device.

Slow In and Slow Out A traditional approach in animation is to start
with important key poses of a character and later fill the in-between
frames. However, it has been recognized that the in-between frames
influence to a large degree whether a movement appears natural or
machine like. A natural movement always consists of three parts, i.e.,
acceleration, constant movement and deceleration. This type of mo-
tion leads to an s-curve shaped trajectory if spatial progress is plotted
over time, rather than a simple linear curve. Additionally, this princi-
ple allows to hold a certain position for some time, which for example
supports the ‘staging’ or the ‘follow through’ design principles.

The important point that can be derived for robotic animation is that
the in-between frames contain important information on the natu-
ralness of an animation. Therefore, also the interpolations between
keyframes need to be carefully designed instead of using simple linear
approximation techniques.

Arcs If the spatial trajectory of a natural motion path is plotted, sharp
edges or perfect straight lines hardly ever appear. Instead, almost
every motion consists out of curve segments. Straight lines give a
very mechanical impression and are attributed to machine behavior
rather than to life-like characters. The Arcs design guideline supports
the designer to place in-between frames.

This principle serves as an important input for low level behavior de-
sign of robotic interfaces. In a sense it conflicts with traditional con-
trol strategies of robots as these aim for shortest paths for efficiency.
Additionally, uniform motion with as few actuations as possible in-
sures long lifetime of the hardware. Instead, robots have to explicitly
avoid straight line movements.

Secondary Action A secondary action can be used to accent a main ac-
tion. As a guideline, the secondary action may never be more in-
teresting than the main action. The main action carries the main
message, but a secondary action can give a certain personality to a
character. For example, for idle behavior the character mainly stands
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In-betweens Effect

0 Character is hit by tremendous force

1 Strong force (brick, frying pan)

2 Nervous tick

3 Dodging the brick/pan

4 Giving an order

5 More friendly order (come on, hurry)

6 Surprised/Happy (sees good looking girl)

7 Tries to get a better look at something

8 Searches for the peanut butter ...

9 Appraises, considering thoughtfully

10 Stretches a sore muscle

Table 4.1: Effects of animation timing in terms of number of in-betweens
([231] p. 65)

still, but on secondary action the character might still move due to
breezing motion or eye blinks. This principle is strongly correlated
to the principles of ‘staging’ and ‘timing’, because secondary action
poses the risk of confusing the audience with too much information
and is additionally tightly constrained by timing of the animation.

An example of how this principle can be applied to robot animation
has been given by van Breemen [238]. He uses overlapping actions to
turn a dull robotic movement into an expressive motion with person-
ality.

Timing The timing of an animation conveys various physical attributes
such as weight. The combination of timing, that it is the number of
frames and the spacing, i.e. where on the canvas the action occurs,
defines the dynamics of a motion. Timing can also contain informa-
tion about the emotional state of a character. Table 4.1 relates timing
by means of the number of in-between frames to possible effects that
can be achieved.

Correct timing is an important attribute for believable animations.
For example, if a robot gets hit, but the signal processing to compute
an appropriate response takes too long, a completely different message
might be conveyed as originally intended. If carefully used, different
timings can convey important information about the state of a device.
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For example, short time intervals can be used to convey that a security
robot is alert, while long time intervals can be used to calm a user.

Exaggeration Exaggeration is a widely applied principle to stress a cer-
tain message. The guideline for an animator is to let a sad character
appear even more sad and a happy character even more happy. For
example, this can be achieved by adding a secondary action. A happy
character raises head and arms next to showing a smile or addition-
ally performing a little jump. Exaggeration may be applied as long
as the resulting animation remains convincing.

For robot animation, exaggeration conflicts with the minimal move-
ment policies of robots. From a technical perspective, a vacuum
cleaning robot should perform its task as efficiently as possible and
not drive additional turns. From an animation perspective, however,
these extra turns can let the character appear happy and content with
its task.

Solid Drawing A particular difficulty for 2D animation is that the ani-
mator has to draw the character from a certain perspective. In this
process the animator has to imagine how a character appears in a
3D view. If these different views are not considered, then the differ-
ent parts of the character are likely to be drawn identically. Such
symmetrical postures appear very artificial and not life-like. The ad-
vice for an animator is therefore to avoid symmetrical postures. An
example of this principle is depicted in Fig. 4.3

Even though for robot animation the animator has an overview of
the 3D posture, he is even more in danger of creating symmetrical
postures if using standard programming techniques. Unification and
reuse of written code are common software design principles. Using
these mechanisms, it is very easy to apply a given function not only to
one, but also to a second actuator to save implementation time and
increase maintainability. As a result, both actuators will perform
exactly the same motion and do not give the impression of life-like
behavior.

Appeal The last of the twelve principles addresses the overall design of
the character. A heroic character with charisma has to convey these
attributes in every motion. Commonly, these attributes are also re-
flected in the appearance of the character. Especially good and evil
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Figure 4.3: Solid Drawing animation design principle ([231] p.67)

characters, or main and minor characters of a story line are distin-
guishable through their design. In some sense, also evil characters
have to be appealing to the audience.

For the design of applications of robotic characters, the appearance
is usually fixed. For this reason, it is even more important to convey
character traits and personality through motion patterns. However,
in order to be believable, these must be consistent throughout the
whole application. A continuously changing personality might evoke
distrust, rather than the perception of dealing with a life-like charac-
ter.

The presented animation principles originate from a time in which every
frame was drawn by hand. Nevertheless, they still apply for modern com-
puter tool supported animations. Many tools have been developed to sup-
port designers in their task (see Chapter 3.3.3), but automatic tools also
introduce new challenges as illustrated in Fig. 4.4. In pose-to-pose anima-
tion, keyframes are animated first and in-between frames are filled in later.
Computer tools can be used to automatically generate interpolations. The
problem is that a simple linear interpolation can produce frames that do
not necessarily make sense. The water drop splashes, even before touching
the ground.

Current animation techniques can be classified in three classes [237]: 1)
Prescripted animations, 2) Procedural animations and 3) Behavioral an-
imation. Prescripted animations define look-up tables that assign a con-
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Figure 4.4: Common interpolation mistakes that are made by using linear
interpolation without taking cause and effect relationships into account.
([253] p.88)



4.2. OPEN PLATFORM FOR PERSONAL ROBOTICS 71

crete posture at a given time. Keyframe animations fall in this category.
Procedural animations, in contrast, are evaluated by using equations. This
enables them to simulate physical systems. Lastly, behaviors are also stated
in equations, but the difference is that behaviors are reactive to the environ-
ment. For example during a walking behavior, the contact points between
the foot and the ground are evaluated during run-time.

As one of the first development platforms the Philips Open Platform for
Personal Robotics (OPPR) [239] offered the possibilities of keyframe ani-
mations as well as scripting behaviors. Equipped with this functionality,
OPPR is well suited to address traditional animation principles. The ex-
isting OPPR system is discussed in the following section.

4.2 Open Platform for Personal Robotics

The Open Platform for Personal Robotics (OPPR) is a collection of soft-
ware for programming personal robots [239]. In its first version it defined
five software packages, namely ‘Architecture’, ‘Workbench’, ‘Believability’,
‘Intelligence’ and ‘Connectivity’. However, in the latest version OPPR 2.0,
only four packages are described ‘Architecture’, ‘Animation’, ‘Intelligence’
and ‘Connectivity’. The two components ‘Workbench’ and ‘Believability’
have been combined in a single package that specifically addresses anima-
tion of robots.

The Architecture package contains a software library, ‘Dynamic Module
Library’ (DML), for developing distributed applications. The package is a
continuation of the middleware developed for the mobile robot Lino [135].
Additionally, it contains a ‘Console’ that serves as main entry point to
configure and control the execution of a distributed application. The An-
imation package consists of two modules, the ‘Animation-Editor’ and the
‘Animation-Module’.

The Animation-Editor is a graphical design tool for keyframe animations.
It additionally contains a scripting editor for designing behaviors using the
Lua scripting language. The Animation-Module provides and interface to
the underlying robotic hardware and allows to render animations and be-
haviors on the robot. The underlying ‘Animation-Engine’ is described in
[237]. At its core, it defines multiple animation channels in which anima-
tions can be loaded from an animation library. Every animation channel
can contain a different animation and can be started and stopped indepen-
dently from the other channels. The Animation-Engine has a global clock
that defines the framerate by which commands are sent to the hardware.
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Figure 4.5: Overview of the OPPR Animation-Engine. (Source: [237])

Furthermore, the Animation-Engine’ defines a merging logic that controls
how multiple channels are combined. An overview of the Animation-Engine
is depicted in Fig. 4.5

The Intelligence package offers a software module that allows to script
behavior for the robot using the Lua scripting language. The Lua lan-
guage has been extended with a set of functions that define an API to
accesses the functionality of the OPPR framework, for example DML and
the Animation-Module.

The Connectivity package, contains a predefined software module to access
the Internet e.g. a Mail-Module that allows sending and receiving of emails.
For other connectivity, the developer can rely on third party libraries or on
low level socket communication.

A major addition that was introduced by the OPPR framework is the
use of scripting technology to animate robots [240]. The role of scripting
technology is discussed in the following section.

4.3 Scripting technology

Scripting languages were introduced as an alternative to software technolo-
gies such as software components and middleware for the development of
applications. All of these concepts aim to support the development pro-
cess. For example, software components define reusable and independent
software modules. Modules such as image or speech recognition can typi-
cally be reused. Nowadays, multiple software packages exist that combine
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these modules with a middleware API. Middlewares allow for easy devel-
opment of distributed applications. In the field of robotics research, these
software packages have been coined ‘robot middlewares’. EPRS1, the Open
Robot Controller Architecture (ORCA) [156] and Microsoft’s Robotic Stu-
dio2 are examples of robotic middleware that provide special tools and
libraries that facilitate the application development for robots. However,
especially in the field of robotics, there are still plenty of unresolved is-
sues [168]. For example, current middleware systems provide only limited
support for general and frequently used services. Furthermore, there is a
lack of tools for providing high level abstraction interfaces. In consequence,
application developers always have to start from lower level primitives.

Scripting technology addresses the problem of abstraction and offers more
flexibility to the application development process. Scripting languages are
special purpose domain languages that are streamlined for rapid prototyp-
ing, iterative development and high flexibility. Therefore, scripting tech-
nology is one of the fundamental techniques that have been adopted in this
technological design. In particular, the scripting language Lua3 has been
used.

Lua Lua is an open source, very light-weight imperative scripting lan-
guage. It has a syntax similar to that of the programming language C
[110]. The interpreter and compiler have been ported to embedded plat-
forms such as mobile phones or the Lego R©Mindstorms. The full reference
interpreter with preloaded standard libraries is about 150kB in size. Lua
can directly run on any platform that supports the POSIX standard. Lua is
widely used in the gaming industry and for web applications, because it is
small, easily embeddable to host applications and easily to extend through
a simple C-API.

Lua is a dynamically typed language with proper lexical scoping. Lua func-
tions are first class values that can be assigned and passed as arguments
like any other type in Lua. The Lua compiler produces bytecode that is
interpreted by a Lua virtual machine. The compilation is transparent to
the language and available as a command in the language itself to evalu-
ate and run a chunk of code. Therefore, Lua can be used to generate and
execute scripts at run-time. Even though Lua is an imperative language,
it can also be used following an object oriented or functional programming

1http://www.evolution.com
2http://msdn.microsoft.com/robotics/
3http://www.lua.org
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paradigm. In particular, Lua supports object orientation with its table
mechanism, which supports information hiding and inheritance. The func-
tional programming paradigm is supported by proper tail calls for recursive
functions. Unlike in imperative languages, no stack overflow is produced.
In summary, scripting technology is a very powerful technique that can be
applied to efficiently create expressive behaviors for robots.



Part II

A software architecture for
social robots
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Chapter 5

Design framework
architecture

The previous chapters introduced the design domain for creating applica-
tions with a robotic interface and the related design challenges. Based on
this analysis a high level architectural overview for a unified Social Robot
Design (SRD) framework will be developed in this chapter. The goal of
this framework is to support application developers to create applications
that utilize the expressive interaction capabilities of a robotic embodiment.

First, the design approach and relevant concepts from computer science
and software engineering are introduced. In order to realize a unified de-
velopment framework, the concepts of the design domain are modeled in a
domain overview. Secondly, the main sources of requirements are identified
and elaborated. The chapter concludes with a high level overview of the
architecture of the SRD framework, which is further refined in Chapter 6
and Chapter 7.

5.1 Design approach

A unified design framework enables application designers with different
fields of expertise to develop applications for interactive robots on a high
level of abstraction. A similar interdisciplinary collaboration takes place in
the gaming and movie industry [113]. Nevertheless, the development envi-
ronments for robotic applications are still fragmented. One of the reasons
is that they have some unique requirements related to the problem domain,
which preclude simply using the same tools.
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In order to provide the envisioned functionality, an appropriate software
architecture needs to be developed and the main concepts and requirements
need to be identified. To this end, the software architecture serves two main
goals. First, it plays a crucial role in the software development process
and second, it helps in analyzing the requirements, the organization of
constructs and in understanding the design domain itself.

5.1.1 Design knowledge from software engineering

In the domain of software engineering it has been recognized that the design
of a proper architecture is a key element for every reasonably sized software
project [16]. The quality of the architecture often decides on the success or
failure of the project [16, 140]. Furthermore, a software architecture is not
only a plan to implement software, just like an architectural plan for the
building of a house, it also holds key information about the domain that is
modeled [16, 227]. The decomposition of a domain in relevant constructs
breaks the domain down into small implementable pieces and reveals the
structure of the domain.

5.1.2 Software architectures

The process of defining an appropriate software architecture has received
great attention, not at least because of the high business relevance and
economic consequences that are connected with the quality of software ar-
chitectures [16]. However, until now no universal architecture that ensures
the success of a software project could be found [140], even though great
advances have been achieved in identifying resurfacing design patterns and
domain specific template descriptions. This scattering across domains is
reflected by the multitude of definitions that have been proposed for soft-
ware architectures. Most commonly, software architectures have been used
as a notation for specifying functionality and organization. In this sense,
a software architecture gives an abstract overview of an analyzed system
and guides its implementation. Bass et al. provide a working definition for
software architecture:

The software architecture of a program or computing system
is the structure or structures of the system, which comprise
software elements, the externally visible properties of those el-
ements, and the relationships among them. (Bass et al. [16]
p. 3)
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This working definition captures already the structural knowledge that is
communicated with an architecture. However, it does not capture the rea-
sons for design decisions and the involved design process. A more detailed
definition for a software architecture is given by Booch, Rumbaugh and
Jacobson in 2005, who define software architecture by

The set of significant decisions about the organization of a
software system, the selection of the structural elements and
their interfaces by which the system is composed, together with
their behavior as specified in the collaborations among those
elements, the composition of these structural and behavioral
elements into progressively larger subsystems, and the architec-
tural style that guides this organization—these elements and
their interfaces, their collaborations, and their composition. Soft-
ware architecture is not only concerned with the structure and
behavior, but also with usage, functionality, performance, re-
silience, reuse, comprehensibility, economic and technology con-
straints and trade-offs, and aesthetic concerns. (Booch et al.
[23] p. 452)

This definition captures the various dependencies of an architecture by
which it mirrors its ecologic surrounding. It also highlights the value of a
software architecture in terms of its communicated design knowledge.
Furthermore, it provides multiple views on a system. For example, the sys-
tem can be analyzed at different levels of abstraction, including static and
dynamic aspects, or in terms of business relevance. These different views
provide different information on the design domain. A use case analysis, for
example, might reveal the stakeholders and basic building blocks, but does
not tell anything about how a specific feature is going to be realized. In
the same manner, a structural organization and hierarchy of elements also
need to be accompanied by a description of how these elements interact
with each other.

5.1.3 Architecture notations

In software engineering multiple notations are available to denote different
views of a system. These notations can be classified by the amount of
formalism they define. For example, a general drawing tool can be used
to draw basic shapes to represent the structure of a system, without a
formal definition of the building blocks. Another possibility is to use a
generic mind mapping tool to set basic concepts into context. A mind
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mapping tool defines a neighborhood relationship, but it is not formally
define of what kind this relationship this is. The main advantage of such
approaches for system architects is that they are not constrained by the
notation for his modeling of the architecture. However, this flexibility is at
the cost of ill defined semantics. In contrast, a specification language has
a very well defined syntax and semantics, but constraints the architect in
his modeling. Most commonly, a trade-off has to be made. The choice for
a certain notation is determined by the purpose for the modeling.

Multiple notation formalizations have been proposed for architecture design
[16]. For this study, the Unified Modeling Language (UML)[177] has been
selected as it combines a well defined semantic with the communicative
power and design freedom of a graphical language. UML is the most widely
used graphical modeling language for object oriented software modeling
[23, 205, 140]. A definition of UML is given by Larman as:

The Unified Modeling Language (UML) is a graphical language
for visualizing, specifying, constructing, and documenting the
artifacts of a software-intensive system. The UML offers a stan-
dard way to write a system’s blueprints, including conceptual
things such as business processes and system functions as well
as concrete things such as programming language statements,
database schema’s, and reusable software components. (Lar-
man [140] page. VIII)

UML has been defined by the Object Management Group (OMG)1, an
international non-profit computer industry consortium. For example, the
language defines standard elements for modeling static components, ap-
plications structures, data structures as well as dynamic entities such as
data flow, use cases and business processes. UML defines six types of
diagrams to capture structural relationships (class diagram, component di-
agram, composite structure diagram, object diagram, deployment diagram,
and artifact diagram) and five types of diagrams that capture dynamic as-
pects (use case diagram, sequence diagram, communication diagram, state
diagram, and activity diagram). The most recent version of the specifica-
tion is UML 2.2 [177], but a working document for version 2.3 is already
available for download. With the introduction of version 2.0 the OMG di-
vided the specification in two parts named ‘UML infrastructure’ and ‘UML
superstructure’. The UML infrastructure defines core language constructs
for UML while the UML superstructure defines user level constructs. More

1http://www.omg.org
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specifically, the infrastructure library defines a reusable meta-model and
meta-language that can be used to extend UML.

UML has been successfully applied in a multitude of software projects, rang-
ing from small scale projects with only one developer to complete enterprise
solutions [140]. UML defines high level constructs that are flexible enough
to not constrain the modeling process, while at the same time defining a
formal semantic that can be used for automatic code generation. However,
this generative power of UML and its complexity make it difficult to use
[75].

At present there are several of commercial and open source software tools
available that support software modeling using the UML notation. The
majority of these tools provide comparable functionality with respect to
basic modeling capabilities, but they differ greatly in additional features,
for example with respect to automatic code generation, supported program-
ming languages, automated documentation or support for large distributed
teams. In this thesis, the modeling software ‘Enterprise Architect 7.5’ de-
veloped by Sparx Systems2 was used. The software tool fully supports the
UML 2.0 standard and is listed as one of the official packages on the OMG
specification website 3.

5.1.4 Rational unified process

Throughout this thesis an iterative agile software engineering approach
following the Rational Unified Process was followed [136, 23, 140].

An iterative design approach considers dynamic refinement of requirements
during the development process instead of assuming that all requirements
are fully specified before the implementation starts. In the literature, com-
mon reasons for the failure of software project have been analyzed with the
conclusion that inflexibility is one of the main reasons for failure [140]. For
example Rauterberg and Strohm pointed out that it is faulty to assume
that the client of a software project is able to specify all requirements in
the beginning [197]. They proposed an iterative software development cy-
cle, arguing that it has the potential to significantly lower the costs of a
software project and simultaneously increase the software quality.

In the domain of research, an iterative development is even more relevant,
because new knowledge becomes available only throughout the process.
To cope with this situation an iterative agile software design approach

2http://www.sparxsystems.com.au
3http://www.omg.org/technology/documents/modeling-

spec catalog.htm#UML(Date: July 2009)
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Figure 5.1: Rational Unified Process – Phases and disciplines (Source: [23]
p. 34)

defines short development cycles in which only a few prioritized features are
implemented. This process is formalized by the Rational Unified Process
(RUP).

RUP combines best practices from multiple software design approaches in-
cluding a ‘waterfall process’, ‘evolutionary software development’ and ‘ex-
treme programming’. The RUP defines four discrete phases: ‘Inception’,
‘Elaboration’, ‘Construction’ and ‘Transition’ as depicted in Fig. 5.1. In
the Inception phase a common ground is established for all stakeholders
of the system to get agreement on the requirements. In the elaboration
phase, the problem space and key risks are analyzed and an architectural
framework to address these problems is established. It is very common
that the architectural description and use cases for the system are given
by UML diagrams. In the construction phase these artifacts are used as
input to implement and test essential parts of the system. At the end of
the construction phase stands a working system that can be delivered to
customers. The actual delivering process is carried out in the transition
phase. Every phase contains multiple iterations that encompass activities
from the following nine defined disciplines:
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Business modeling Understand and establish a relationship between busi-
ness goals and software engineering

Requirements Collect and analyze requirements from involved stakehold-
ers

Analysis and design Defines relevant views on the system and an agree-
ment on how it will be realized

Implementation Software engineering and code generation

Test Test all defined constructs, relationships and functionality

Deployment Release and installation

Configuration and management Handles requests for changes in the
process and maintains the current status

Project management Organizes project execution in terms of working
processes

Environment Maintain the required infrastructure

RUP is a highly customizable process and can be adapted to the specific
needs of a software project. The focus of this research project is on the
inception and elaboration phase, because in those two phases the relevant
knowledge on the design domain is gained.

5.1.5 Requirement engineering

Requirements define a contract between the stakeholders of a software sys-
tem on the functionality that the system has to provide. Next to the
functional requirements there are also more generic requirements such as
performance, reliability, security, compatibility or flexibility.

In the literature on software engineering, the definition of requirements has
been recognized as a crucial element that determines the success or failure
of a software project and consequently the product [16, 227]. However, no
single methodology or process has been found that guarantees complete
and correct specification of the software. Instead, various processes have
been defined that support the identification of requirements and multiple
notations have been developed to formally specify them. Notation methods
range from natural language use case scenarios that describe the behavior
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of the system in a particular situation to fully formalized requirement spec-
ification languages.

Next to the engineering problem to identify and specify the requirements
of a system, there is also a more fundamental problem. As Rittlel and
Webber pointed out, there exists a class of problems for which a problem
specification and appropriate solution can only be given parallel to the
software development process, rather than beforehand [199]. They coined
this class of problems ‘wicked problems’. In order to be able to fully specify
all requirements beforehand, the target domain has to be fully known. In
the case of a design framework for social interactive robots this knowledge
is unavailable, as the design of social interaction is itself a topic of research.

For this research an integrated approach has been chosen based on use case
scenarios and theoretical analysis. The input for this approach has been
taken from literature analysis, user stories from the OPPR community and
knowledge gained during the development process.

5.2 General use case scenario

As the first design step of the Social Robot development framework a gen-
eral use case scenario was developed. This overall use case of the system
is depicted in Fig. 5.2. In this scenario, an application developer uses the
Social Robot Development framework to create an application that encom-
passes a robotic user interface. The role of an application developer is a
generalization of developers that approach the development from different
fields of expertise. As an example, three specific roles are specified includ-
ing an animation designer, an interaction designer and an application logic
designer. These three domains have been derived from the background
descriptions that have been given in Chapter 3. These role descriptions
can be used to derive appropriate interface metaphors for the tools that
are provided to them by the SRD framework. Interestingly, a ‘metaphor
engineering’ as described by Rauterberg and Hof has not yet become a
standard step in the process of user interface engineering [195]. Instead,
the interfaces are evaluated with user studies.

An animation designer is skilled in designing animations. He has expertise
in conveying intended messages through carefully designing expressions by
means of light, sound and motion. Furthermore, he has a background in
cinematography and is skilled in realizing creative ideas with standard tools
from the field of animation. The animation designer has usually a visual
style of working.
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Figure 5.2: Use case of the Social Robot Development framework

An application logic developer usually takes a more formal approach. He is
skilled in concepts of computer science and is able to express the intended
behaviors of a robot in formal programming languages. He is familiar with
common tools such as editors, compilers and debuggers. For example, the
development of signal processing and artificial intelligence algorithms fall
in his domain.

Lastly, the interaction designer is skilled in creating the interface and in-
teractions for the user. He has experience in user centered design methods,
knows common interface concepts and is aware of users’ abilities and ex-
pectancies. He defines use case scenarios and is able to specify courses of
interaction.

These interdisciplinary roles cooperate to create an application. The three
corresponding high level tasks in the model are detailed extensions of the
overall task to create an application. A simple application might only
contain an animation, for example for entertainment in amusement parks.
For more complex and interactive applications, more intelligence needs to
be created, which requires different expertise.

Having described the overall use case scenario of the SRD, the following
section defines key requirements that have to be meet by the framework.
These requirements were derived from literature and design guidelines for
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creating robot interfaces as well as from feedback that was given by the
OPPR community.

5.3 Requirements

This section identifies the major requirements for development of the SRD
framework. First the classes of requirements that are most relevant for the
design process are selected from literature. Second, four major categories
of requirements for the SRD framework that are derived from the overall
use case scenario and are analyzed in greater detail.

5.3.1 Classes of requirements

In the field of software engineering, the overall set of requirements has
been categorized in two major classes, ‘functional requirements’ and ‘non-
functional requirements’ [227]. Functional requirements define character-
istics, i.e., features and functionality, which the system should provide.
In particular, they define a relationship between input and output of the
system. Non-functional requirements are more general constraints on the
system. While functional requirements usually specify only parts of the sys-
tem’s behavior and are very domain and application specific, non-functional
requirements are often applicable to the whole system [227].

For the development of the SRD framework, most of the depicted non-
functional software requirements play a subordinate role, because they are
mainly relevant for industrial applications and not for the requirement en-
gineering process. Furthermore, some of these non-functional requirements
cannot be attributed to a single software feature, but are emergent at-
tributes than can only be measured from the interaction of all software
components. Hence, the focus has mainly been on the identification of the
functional requirements that are relevant for robotic application designers.
Whenever requirements of the non-functional categories are essential for
the proper functioning of the software, this is made explicit. Examples of
these categories are usability, efficiency and interoperability.

For the design of the SRD framework the following four major classes of
requirements have been derived from the overall use case of the framework:

• Application designer requirements
• Development process requirements
• Domain requirements
• Framework requirements
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Application designer requirements capture all requirements originating on
the side of the application developer. Therefore, these requirements deal
with the different domains of expertise of application designers and their
different ways of working in terms of terminology and basic concepts. De-
velopment process requirements capture the demands on the software to
create aspects of the application that are common to a development pro-
cess. For example, rapid prototyping and debugging facilities fall in this
category. Domain requirements are derived from the specific application
domain of supporting developers of social robotic interfaces. From this
specific application domain requirements on the development environment,
for example with regards to the deployment of an application can be de-
rived. Finally, there are additional requirements from the perspective of
the framework itself. For example, the overall software architecture has
to be flexible so that the framework can be adapted easily as soon as new
knowledge on the design of social robots becomes available. In the following
these four classes of requirements are analyzed in detail.

Application designer requirements

An application designer has the goal to develop an application to be used
by a user. He creates a basic idea about the functionality and target group.
For example, the designer might use the balanced application design ap-
proach as described in Chapter 3.1 in order to verify a main interest in the
application. If the application idea is clear, the designer needs to specify
in greater detail what aspects need to be realized. For this he might adopt
an iterative design approach as described in [162].

As soon as the basic concepts are defined, the designer wants to realize the
ideas as easily and quickly as possible. Regardless of the process that is
used to specify the application, the designer needs means to test and realize
the ideas. Derived from this general goal to simplify the application devel-
opment process, a number of requirements on the side of the application
developer can be derived.

RQ-1.1: Increase the level of abstraction for developing applications of

robots

First of all, the framework needs to increase the level of abstraction. Low
level tools such as C++ or even Assembler on embedded hardware pro-
vide only a very low level support to program the robot. Especially for
developing applications which include complex interactions with the user,
it is impractical to operate on motor levels. This requirement ensures that
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the designer will be provided with tools that are more appropriate than
low level programming tools. From this demand also important design de-
cisions for the architecture can be derived, namely that the architecture
needs to be extensible with new higher levels of abstraction as soon as the
design knowledge for these levels becomes available.

RQ-1.2: Provide tools that offer familiar concepts according to a field of

expertise

In the overall use case scenario, it was indicated that application designers
may have different backgrounds and different fields of expertise. Therefore,
they are familiar with different basic concepts. For example, for an anima-
tion designer the concepts of a ‘keyframe’ or an ‘in-between’ are meaningful,
which is not necessarily the case for an application designer with a computer
science background. In turn, the animation designer might not be famil-
iar with the concept of classes, attributes or interface methods. For this
reason, application designers with different fields of expertise will approach
the task differently. To support these different views, the SRD framework
needs to provide different tools that reflect different backgrounds. It is an
interdisciplinary effort that requires expertise from various fields, including
animation, computer science, human-machine interaction and psychology.
The framework needs to be amenable to these different design backgrounds.

RQ-1.3: Provide multiple views on the design problem

In Chapter 3, it has been shown that multiple design challenges need to
be solved in the process of creating a robotic interface application. The
essence of different design challenges can best be captured when approached
from different points of view. For example, to capture the expressiveness
of the robotic character, the designer might think in terms of animations
and symbolic postures. If the functionality of a vacuum cleaner must be
described, it is more appropriate to use logic and behavioral rules. However,
these two views are not independent from each other. As soon as the robot
moves differently to accomplish a task, it will also convey a different message
to the user. Different views on the design problem will help the designer
to keep track of these dependencies. For example, the framework might
define a functional view in terms of floor coverage and an emotional view
in terms the user’s interpretation of the motion pattern.
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RQ-1.4: Different views need to be synchronized

Directly related to the requirement for different views is that these views
need to be synchronized. This requirement seems to be rather obvious,
but it has important consequences for the communication architecture of
the framework. If not explicitly demanded, in an agile design approach,
synchronization is omitted until it is explicitly demanded. The OPPR
tools have shown that automated synchronization is an essential feature
from which the development process greatly benefits. A particular example
is the posture editor which synchronizes the motor positions of a keyframe
editor with a virtual representation of the robot. Synchronization between
different views is also one of the essential features of computer animation
tools such as Maya4 or XSI5.

RQ-1.5: Provide easy switching between different views

In addition to providing different views on the design problem, it must also
be easy and seamless to switch between these views. The consequence of a
change in one view must be easily accessible also from another view to pre-
vent missing important dependencies. Additionally, as experience during
the development of application has shown, it is not uncommon that only
small changes need to be made in one view, before returning to another
view. In the existing OPPR framework for example, the designer needs to
switch between text editor to code the application logic and animation edi-
tor to create expressive behaviors. Especially in the situations when spoken
utterances of the robot needed to be synchronized with the animations this
required quick switching between text and animation editor. This prob-
lem will become even more evident, when more views become available, for
example an emotion editor or sound editor.

Development process requirements

Additionally to the requirements specific to the designer’s point of view,
experience showed that the framework needs to support a few general de-
velopment process related functionalities. These requirements have mainly
been gathered through the development of OPPR and interaction with the
iCat community, which served as important input for the development of
the SRD architecture.

4http://usa.autodesk.com
5http://www.softimage.com
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RQ-2.1: Allow for rapid prototyping

In [162] it has been shown that an iterative design approach based on a
personality profile is a valuable addition to the processes of robot applica-
tion design. A software framework for developing robot applications needs
to support these general insights.
From a designer perspective, this requirement is motivated by practical ex-
perience with the OPPR framework. A particular feature that supports
rapid prototyping is the virtual representation of the robot. An applica-
tion can therefore be implemented on the desktop computer, before it is
evaluated on the hardware. The virtual simulation of the robot has been
one of the most well received features and most useful features in the iCat
community as exemplified by the following quote:

I was looking at the slides from the OPPR presentation by
Philips in the BOON forum, and I noticed that there were
screenshots of what seems to be an animated iCat running in
a window. Is this something that’s included in the distributed
software? if I run without the cat plugged in, the animation
module says its using ”Virtual iCat”, but there isn’t any actual
window anywhere.

If this actually exists, it would be great if it were included; it
would help me stop annoying my office mate every time I start
experimenting with the cat, for example. (posted on Feb. 15
2006, User: mef)

RQ-2.2: Allow to easily adapt an application

Closely related to an iterative design approach is the possibility to easily
adapt and test an application. In an iterative development process, the
resulting application is continuously tested and redefined. Throughout the
development process, the complexity of each of these modules increased in
terms of more files that had to be loaded, more initialization that had to
be done and more functions that needed to be tested. It proved essential
to be able to quickly change an application and retest the new version.
Long-winded interruption in this process significantly slowed down the de-
velopment process. This led to the requirement that an application had to
be easily adapted.
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RQ-2.3: Support direct testing application artifacts

Naturally, during a development process errors are made. In its original
version, OPPR had only limited debugging support. This has been one of
the major shortcomings of the OPPR system. For simple applications, it
had been reasonably easy to maintain animations and behaviors manually.
However, as soon as applications were growing in complexity, several side
effects of interactions between different application modules and anima-
tions led to unplanned behaviors. For example, if a behavior unloaded an
animation channel, while another still relied on it, the system showed unan-
ticipated behaviors or the application stopped working altogether. These
errors were difficult to track down, because of the asynchronous and non-
deterministic nature of the system. Based on these experiences, debugging
facilities are added as an essential feature for the framework.

RQ-2.4: Development environment must be independent from the deploy-

ment environment

This requirement is motivated both from a technical and a designer point of
view. First of all, from a technical perspective, a robotic platform usually
has very unique specifications, which are not suited to support applica-
tion development. Secondly, from a designer’s perspective, a development
framework for creating applications should not be bound to a specific em-
bodiment. In analogy, high level programming language abstract from the
underlying hardware. It would result in an intractable overhead, if for ev-
ery new processor generation a new programming language would have to
be learned. In the field of robot programming environments this has been
recognized and an increasing number of environments have been published
that allows to program different types of robots with the same tools.

RQ-2.5: Create reusable application artifacts

In the course of this research, multiple applications for the same embod-
iment have been developed, for example a ‘waiter application’ (Chapter
3.1), a chat-buddy (Chapter 3.1) and a tutoring application [211]. Several
further applications have been contributed by the iCat research community
and have been published in literature [238, 96, 95, 102, 151]. During these
developments, several patterns surfaced. For example, in the majority of
iCat applications basic animations for greeting, saying goodbye, answer-
ing “yes”, answering “no” or pet like behavior, such as purring have been
created. Reusing these application artifacts significantly shortened the de-
velopment time. If software reuse for the development of social robots takes
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a similar trend as in general for software engineering, then it could increase
the software output exponentially [137]. This trend shows the importance
of being able to develop reusable artifacts.

Domain requirements

The goal of the SRD framework is to be a special purpose solution to
develop applications for social robot interfaces, rather than to be a general
programming environment. From the intended application domain, further
requirements can be derived.

RQ-3.1: Provide an interface to control robot embodiment

Most obviously, the framework has to support the control of robot hard-
ware. Given the variety and non-uniformity of available robots, this is
not a trivial task. This requirement insures that the architecture provides
general means not only to control and program physical robots, but also
virtual representations such as virtual screen characters.

RQ-3.2: Provide tools that support development along the design dimen-

sions of naturalness, adequateness and development over time

Once the developer has access to the robot, he faces the challenge to cre-
ate an application that is meaningful for the user. In Chapter 3 several
design challenges have been discussed. Equipped with basic control over
the hardware, the design space is only constrained by physical limitations
of the hardware. In Chapter 3.3 three major design dimensions have been
identified that constrain the design space and provide helpful guidelines in
the design process. To actively support the design process, the framework
should offer tools that allow to develop along these design dimensions.

RQ-3.3: Support the development of real-time systems that interact with

a user

According to Sommerville, a real-time system is:

A real-time system is a software system where the correct func-
tioning of the system depends on the results produced by the
system and the time at which these results are produced. (Som-
merville [227] p. 340)

The overall use case scenario depicted in Fig. 5.2 on page 85 illustrates that
the interaction between the application and the user constitutes a particular
focus for the framework. In most of the cases, the robot has to react to the
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user’s input. Even though the degree of interactivity between the user and
robot depends to a large degree on the application context, the possibility
to design for interactivity has impact on the design of the architecture.

RQ-3.4: Support research in the field of HRI with Wizard-of-Oz applica-

tions

This requirement resulted from the domain specification of human-robot
interaction and the need to acquire and validate knowledge through user
studies. This has been one of the major pillars at the foundation of the
iCat project from Philips Research and many of the universities that de-
velop interactive applications with robots. The major goal of these on-
going research efforts is to understand fundamental rules and exploit the
unique interaction capabilities of robots to provide easy to use interfaces.
A framework for developing application including a robotic interface should
be flexible and constructive. This requirement therefore has consequences
on the features such as offering the possibility to perform controlled user
studies.

Framework requirements

In this category major requirements that resulted from a technological point
of view from creating a supportive software architecture are captured.

RQ-4.1: The framework need to be extensible with new components

In the field of human-robot interaction, ongoing research effort is spent to
unveil basic interaction principles. As soon as new knowledge becomes
available it needs be integrated in the architecture. Furthermore, ex-
tendibility is a fundamental requirement for an agile software engineering
approach. Therefore, the architecture cannot be modeled as a closed sys-
tem, but needs to be open-ended and extensible. This requirement is in its
core a non-functional requirement that cannot be attributed to a specific
part of the software. However, it must be explicitly adhered throughout
the whole design process.

RQ-4.2: Allow third party developers to contribute new components to the

architecture

Next to the requirement of being extensible, it is also of particular impor-
tance that the framework is accessible for both component developers and
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component users. As outlined in Chapter 3, the development of applica-
tions for a robotic user interface is an interdisciplinary challenge. For this
reason, it is important to streamline the knowledge transfer between differ-
ent fields of expertise as far as possible. For example, one track of research
might focus on expression of emotions [95]. As soon as updated models
become available, it should be easy not only to provide the knowledge to a
broader community, but also to make it directly usable in terms of software.
This influences the design of interfaces that are publicly available.

RQ-4.3: Make integration of expertise easy

Component interfaces are not only important for component developers,
but also for the designer. The integration of different components in a robot
software architecture is not trivial [168]. Even though multiple reusable ar-
tifacts are available (e.g., speech recognition or text to speech generation)
it often takes considerable effort to utilize them in an application. Often
these modules require a very technical understanding on how these algo-
rithms work, which hampers the development process. In consequence, it
is not a matter of providing the functionality, but it also has to be made
easily usable by developers who are not experts of a particular domain.

RQ-4.4: Align with existing development platforms

Another technical requirement that concerns the integrability of the frame-
work is that it most likely will be applied by developers who already have
an infrastructure available. A disruptive solution that does not integrate
in existing environments would render existing software unusable. This re-
quirement makes this integration problem explicit and poses another chal-
lenge on the interface definitions and the libraries that are used for the
framework. For example, some research laboratories operate using Win-
dows operating system, while others work in a Unix environment. In con-
sequence, it prohibits the use of libraries or features that are only available
for one platform, at least as far as the central architecture is concerned.

RQ-4.5: Integrate with OPPR tools

In line with the requirement to integrate with existing platforms, a par-
ticular environment that the SRD framework has to integrate with is the
OPPR development framework that has been described in Chapter 4.2.
OPPR already includes several prototyping tools that are relevant for the
development of robot applications and is available to the iCat research
community. It therefore already defines interfaces that are not local to one
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development environment, but are available to a larger community. This
requirement denotes the relevance of OPPR for the SRD architecture as a
particular development environment the framework has to integrate with.
The integration with OPPR can be seen as an exemplary case to demon-
strate generality of defined interfaces, to which also other frameworks can
connect.

5.4 Global architecture

Defining requirements is only a first step in creating a software architecture.
Requirements do not determine an architecture. An architecture denotes
the result of technical design decisions. In the following basic design deci-
sions for the overall architecture are motivated.

In the field of software engineering several template architectures have been
developed to categorize the type of a system. Commonly used character-
istics to typify an architecture are overall system organization, component
model, execution type control organization and communication organiza-
tion. Examples for the overall system organization are layered architec-
ture, client-server models, and repository centered architectures [227]. The
used decomposition style is independent of the overall system organiza-
tion. Object-oriented decomposition and functional-decomposition are two
widely used component models. Another design dimension is the type of
execution, e.g., whether different components are executed in sequence or
whether they run in parallel and whether a synchronous or asynchronous
execution model is chosen. Furthermore, the designer may choose between
different control styles. In a centralized approach, a single main program is
responsible for overall execution in the architecture. However, also a decen-
tralized control structure might be chosen in which control is localized in a
component that collaborates with other components through messages.

The above architectural design decisions are very general models that can
be applied in a variety of application domains. For this reason, more spe-
cific reference architectures have been defined that are more suitable to the
needs of a particular application domain. A layered architecture for com-
munication protocols is an example of such a reference architecture [227].
Many other reference architectures have been established, for example dis-
tributed software systems, including client server architectures, software
bus systems, peer-to-peer networks and service-oriented architectures.
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Figure 5.3: Design domain overview with an application as the central
concept.

The different software architectures illustrate the variety and complexity of
conceivable architectures. In the following the major design decisions for
the general architecture of the SRD framework are motivated.

5.4.1 Architecture design

As a first step in the design process the overall design space has been de-
composed to identify central constructs. The main central construct to the
architecture is the concept of an application. This central role is visualized
in Fig. 5.3. The overview shows a symmetric structure of the design do-
main that is derived from the overall use case. On the one side, a designer
interacts with the SRD design tools in order to create an application. The
application, in turn, runs on an robotic embodiment that serves as interface
to a user. From this perspective, the SRD framework and the embodiment
are connected through the concept of an application. The same abstraction
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can be made for the roles of designer and user. Both relate to the appli-
cation at a similar level. The designer implements an application that is
going to be used by the user. The user, on the other hand, has demands
on the application that have to be met by the designer. Application re-
quirements and implementation are manifested in the general concept of
an application.
From this global view on the application, the most important fact that can
be derived is that development and execution are only loosely coupled and
are not directly linked. Consequently, in the design of the software archi-
tecture for the overall SRD framework a separation can be made between a
‘Development-Environment’ and an ‘Execution-Environment’. These two
environments are linked through the concept of an application and share
related components.
This separation has several advantages. For example, it allows that the de-
velopment environment can be formally deployed on a different hardware
than the execution environment. In the case of developing applications for
robotic user interfaces, the development usually takes place on a desktop
PC, while the application is rendered on an embedded hardware. Further-
more, it has an impact on the component decomposition, because different
communication protocols may be used during development and execution.
Notwithstanding this separation, both environments share important com-
monalities, that is they complement each other in a well defined area. For
example, both environments share similar concepts such as animations and
behaviors. This connection becomes important if the designer needs to de-
bug or evaluate an application. Additionally, shared concepts reduce the
effort to maintain two separate environments, because they need only to
be coded once.
The main conclusion from this discussion is that the overall architecture
can be separated in two major parts, a Development-Environment and an
Execution-Environment. The following chapters will discuss both environ-
ments in detail.
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Chapter 6

Development Environment

In the previous chapter a general separation between Development-Envi-
ronment and Execution-Environment has been introduced. In this chapter
the architecture of the Development-Environment is developed. The main
task for the Development-Environment is to support the designer with ap-
propriate tools.

The Development-Environment represents the system perspective from an
application designer point of view. The design space is analyzed and to-
gether with the requirements of the previous chapter an architecture for
the Execution-Environment is derived. The major challenge to overcome
is that crowd of currently available technologies to design applications for
robots is ‘fragmented’. Fragmented in this sense means that it is very dif-
ficult to bring different tools together. However, in the previous chapters
it has been shown that multiple roles participate in the design process of
a robotic application. For example, in the category of application designer
requirements, it was demanded that the designer is equipped with tools
that provide an appropriate level of abstraction. In consequence, the SRD
framework has to provide tools that allow editing an application for exam-
ple on the level of general interaction rules as well as on low-level behavior
design. These different tasks are addressed in the following. First, a gen-
eral reference architecture is developed, which is subsequently elaborated
to address specific editing tasks. The general architecture defines a uni-
fied component interface and communication model. In this framework,
concepts such as an editor, preview and logging facilities are integrated.

99
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6.1 Structural decomposition

For identifying an appropriate structural decomposition, the design domain
(visualized in Fig. 5.3 on page 96) has been modeled in greater detail by
taking the formulated requirements into account.

6.1.1 Reference architectures

For identifying basic components and relationships, overall reference archi-
tectures have been selected from literature [140, 227, 16]. Given the applica-
tion domain of creating social robotic interfaces, two template architectures
were considered to be relevant for the architecture: event processing sys-
tems and language processing systems [227]. These two architectures are
introduced in the following.

Event processing systems An event processing system consists of iden-
tifiable components between which messages are passed. Messages might
contain plain data as well as commands to be executed by a component. A
special case of event processing systems are editing systems. Editing sys-
tems are mostly single-user systems that are constrained by time to provide
immediate feedback to the user. This constraint must be satisfied also dur-
ing heavy loads of the system to keep the interface responsive. Another
characteristic of editing systems is that they usually have long sessions in
which the user produces data of some type. Many PC applications such
as word processors or games are event processing systems. A simplified
example of an architecture for an editing system is depicted in Fig. 6.1.
The rectangular boxes represent separate components and the arrows the
messages that are passed between them. For example, the user might trig-
ger through the interface an editing command. As a result, the interface
can trigger the corresponding command to modify the data. Subsequently,
the change is reflected on the screen that has to be updated with the new
content.

An important feature from an architectural point of view is that most of
the editing systems can be realized with a single main loop that does not
require multiple concurrent processes. Another important point that can
be derived from a known reference architecture are associated risks. Due
to long interaction sessions, an editing system is at risk of data loss in case
of a system failure. Knowing these characteristics helps to anticipate and
resolve known design issues.
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Figure 6.1: Simplified overview of an editing system

Language processing systems The second reference architecture is the
class of language-processing systems. Language processing systems inter-
pret input that has been specified in a formal language. The best known
examples of this class are compilers. Language processing systems are also
employed for Internet applications such as browsers that render the content
of an XML file. Common characteristics are streamed input and output
as well as specialized modules for data parsing and syntactical analysis. A
typical language processing system is shown in Fig. 6.2. As shown in the
overview, a core component is the interpreter that executes the commands.
In Chapter 3.2 it has been shown that availability of a command interpreter
makes the difference between configuration and programming in interface
design. The major challenge for designing a language processing system is
to define the language that is interpreted by the system.
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Figure 6.2: Simplified general setup of a language processing system

6.1.2 Component structure

Based on the two selected reference architectures, event processing and
language processing systems, the major components for the Development-
Environment can be modeled. A language processing system captures the
aspects of creating a behavior description that is interpreted and executed
during run-time. Throughout this definition task, the designer relies on
common editing techniques, including cut-copy-paste commands, which are
best modeled by an editing system reference architecture.

An overview of this model for the SRD architecture is visualized in Fig. 6.3.
The model is an extension to the overall domain model that has been shown
in Fig. 5.3 on page 96.

The central concept remains the concept of an application. The devel-
oper uses the tools provided by the Development-Environment to create
an application for the user. To model this relationship the concept of an
editor has been added to the global domain overview, derived from the
general structure of an editing system. The editor produces application
artifacts. The framework contains multiple editors, which provide different
views and editing concepts for different application artifacts. For example,
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Figure 6.3: Domain model for the Social Robotics Development framework

the framework includes a special editor for creating keyframe animations
and an editor for specifying the interactivity.

The current implementation indicates that a designer interacts with only
one instance of the SRD framework. Collaboration can be achieved by
working with multiple designers on multiple application artifacts with dif-
ferent editors.

The rendering process of the application has been modeled by a four-way
render relationship between application, application artifact, executor and
embodiment. The application determines when to render which artifact
and the executor encapsulates the knowledge how to render the artifact
on the embodiment. Application artifacts are only loosely coupled to an
animation and can be reused across applications, but are defined for a
particular embodiment definition. For example, a ‘purr’ animation might
rely on the specifics of the iCat robot embodiment, but it may be reused in
different applications. In the same manner, the embodiment can be used
for different applications. For example, the iCat embodiment can take
the role of a waiter in a restaurant, the role of a receptionist for a museum
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exhibition, or the role of a tutor. For the user, the implementation in terms
of application artifacts is transparent, because he only directly interacts
with the interface. The user does not know how many artifacts constitute
an application.

In this architecture, basic concepts of editing systems and language pro-
cessing systems have been combined. On the one hand, the concept of an
editor session and data artifacts are derived from a general editing system
architecture. On the other hand, the basic concept of an interpreter is de-
rived from language processing systems. In the presented architecture, the
interpreter is represented by the executor component. The language that
the interpreter understands is defined in terms of applications artifacts that
are produced by the different editors.

6.1.3 Development Engine

In the above discussion, a general reference architecture has been estab-
lished and several distinct components with different areas of responsibili-
ties have been identified. These serve as input to define a central component
model for the architecture. For this design decision, both structural and
dynamic aspects have to be taken in consideration. In the following, first
the structure of the decomposition is explained.

From the domain overview (see Fig. 5.2 on page 85) it can be seen that the
main task for an application designer is to create an application. During
the analysis of a reference architecture, this task has been addressed by
the general concept of an editor that provides specific editing tools to the
designer. However, the design framework has further responsibilities such
as providing different views on the design problem, e.g. in form of a virtual
representation of the posture of the robot, or a classification of the currently
expressed emotion. Furthermore, several supporting functions are required
which are not directly available to the designer, but are required from a
systems perspective for example regarding communication, library access
or for interfacing with the hardware.

Based on this observation, the concept of an editor can be generalized
to the concept of a component. The resulting architecture is depicted in
Fig. 6.4. This overview stresses two main design decisions. First, a highly
modularized approach has been taken by defining the central concept of a
component and second, the components are handled by a centralized com-
ponent engine, in the diagram named ‘Social Robot Development Engine’
(SRDevEngine). A component has a defined component interface that in-
cludes a representation of the components functionality and definition, in
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Figure 6.4: Structural decomposition for the Development-Environment.
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Figure 6.5: Factory design pattern

the diagram depicted by the ComponentDefinition class. This class pro-
vides meta information including which variables are defined by the module
or which events are triggered. A component is the central concept in the
architecture that encapsulates system functionality.

A certain type of component can have multiple instances during run-time.
For example, a designer might want to edit multiple animation files simul-
taneously. That is, two instances of the component type AnimationEditor
are needed. Therefore, the ‘abstract factory pattern’ has been used to
decouple instantiation from the concrete class representations [78]. The
abstract factory pattern is depicted in Fig. 6.5. The pattern defines five
central concepts, an abstract and concrete factory, an abstract and concrete
product and a client. The client is decoupled from the concrete represen-
tation of the product. It is only aware of its abstract interface. In the
SRD architecture, the client is the central development engine that han-
dles components of different types. However, the amount and types of the
components is not known in advance. In order to decouple concrete imple-
mentation from how the objects are created the development engine uses
an abstract factory (DevComponentFactory), which is implemented as a
singleton. The singleton pattern [78] models the concept of global access
variables for object oriented design. It is used whenever an object has only
a single instance in a program. The general pattern is depicted in Fig. 6.6.
The creation of the object is hidden in a private constructor and therefore
not accessible to any client. This setup provides flexibility to extend the
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Figure 6.6: Singleton design pattern

framework later on with further components, without having to change the
core engine.

Having defined the structural model of the SRD framework architecture,
the next critical decision concerns how these components interact with each
other. Therefore, the following section discusses the communication model
for the Development-Environment.

6.2 Communication architecture

Requirement 1.3 and requirement 1.4 demand that the framework provides
multiple views on the design problem and that these views must be synchro-
nized. In order to synchronize between different components, there needs
to be the possibility to transmit data from one component to another. In
this section a communication model is developed that allows editors to
communicate with each other.

6.2.1 Communication models

In computer science, multiple models have been developed to realize the
exchange of data between software components, including message passing,
remote procedure calls, shared data, channels and sockets. These concepts
have primarily been researched in the context of operating systems and
inter-process communication theory. Gray [93] and Tanenbaum [229] pro-
vide an extensive theoretical overview and practical implementations for
Unix environments. In theory, all of the above structures are equally pow-
erful, because every of these models can be implemented with the concepts
of the others. However, their performance and response time can be clas-
sified by the data access model in sequential and random data access. The
sequential model only allows to read a sequential stream of data, in anal-
ogy to magnetic tapes that were used for system backups. Random access
models, on the other hand, allow to read data in any order but require
addressing overhead.
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The architecture decision is ultimately also impacted by the application
designer, in particular concerning the ease of use. Skillicorn et al. [224]
surveys parallel computation models and defines six criteria to rate the
applicability of the models which are: 1) ease of programming, 2) support
for software development methodology, 3) architecture independence, 4)
ease to understand, 5) guaranteed performance, and 6) availability of cost
measures. These criteria demonstrate the importance for ease of use.

Blackboard system For the editor framework a shared data approach
in the form of a blackboard system was chosen [80]. Blackboard systems al-
low very flexible decoupled n-to-n communication which is especially useful
for prototyping systems. In an iterative design process, the focus usually
is on flexibility, i.e. minimizing the effort that is necessary to implement
a certain feature. Due to the flat communication structure and decoupling
of sender and receiver semantically as well as timely, a blackboard archi-
tecture is very flexible to changes in participating components. A common
use case for blackboard systems is to realize global variables. As a con-
sequence, this kind of architecture also provides less security, because in
principle every process is allowed to read and write any data that is on the
blackboard. In literature, several approaches have been proposed to add
security to blackboard systems by adding access restrictions to operations
such as read and write but also introducing separate sections on the black-
board that may only be accessed with specific rights. The disadvantage
is the administrative overhead that hinders the development process espe-
cially of rapid prototyping. For the development process it is more practical
to replace advanced security features with a few behavioral policies. For
example, one policy could regulate the ownership of the data object by
defining that always the process that created the data object also has to
release it again, unless the ownership is explicitly transferred to a different
process. Nevertheless, security becomes crucial for deployment. This issue
is solved in Chapter 7 when discussing the Execution-Environment.

Synchronization An additional problem concerns the synchronization
of access to the data [229]. In theory, the attempt of two asynchronous
processes to read and write a data element from the blackboard with non
atomic operations at the same time could result in an undefined system
state. While there is no conflict if two process read a data element at
the same time, write access has to be synchronized. In the asynchronous
model all requests to read data are blocked until the write operation has
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been finished. In turn, all attempts to write data are blocked until a read
operation is finished. If two processes issue a read and write request at
exactly the same time, a deadlock situation could be created, assuming
that read and write are not atomic functions.

In literature, synchronous and asynchronous execution models have been
mainly studied in the context of reactive systems. The term ‘reactive sys-
tems’ was chosen to distinguish reactive system from ‘interactive systems’.
Halbwachs defines reactive systems by:

Reactive systems are computer systems that continuously react
to their environment at speed determined by this environment.
(Halbwachs [99] p. 1)

He contrasts this definition with interactive systems in terms of scheduling.
Interactive system continuously interact with the environment, but based
on their own schedule. One example are operating systems. Furthermore,
interactive systems usually employ an asynchronous communication model.
Following Halbwachs, the main difference between synchronous reactive
systems and interactive systems is that the first ones are deterministic
while the latter ones are non-deterministic. For example, in the case of
an operating system, the result of a function depends implicitly on the
scheduler that at any time can interrupt the function.

For the theoretical foundation of synchronous reactive systems, two im-
portant assumptions are made: 1) stimuli and effect are simultaneous 2)
broadcast of information is instantaneous. Even though these assumptions
can never be met in real systems, they allow to mathematically model syn-
chronous reactive systems and to assign clear semantics, which eases the
process of programming significantly and solves common problems of pro-
gramming in asynchronous architectures [5]. Furthermore, the advantage
of a synchronous approach is that full process algebra can be developed
[19, 5, 20] and that programs can be formally verified [99].

For these reasons, an overall synchronous communication model model
was chosen for the SRD framework [99]. However, existing robot middle-
ware tends to promote the asynchronous approach. This is one of the key
points of making a distinction between Execution-Environment and Dev-
elopment-Environment, because it allows different communication models
for development and execution. During run-time, multiple requirements
of robot hard and software forbid to use the synchronous component ap-
proach for the execution (see Chapter 7). In the following, the modeling of
synchronous components for the SRD architecture is explained.
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6.2.2 Component collaboration

The overall component architecture is depicted in Fig. 6.7. At its core, the
general type of a component has been introduced. A component defines
a processing loop that is triggered by a central engine of the Develop-
ment-Environment, in Fig. 6.7 labeled as Social Robot Development Engine
(SRDevEngine). The central engine defines the clock for the processing
cycles of the system. Furthermore, the integration with the blackboard
system for communication is illustrated. Every component can access the
blackboard and post data. Therefore, modules can read messages from the
blackboard system during their processing time.

In order to avoid that the whole blackboard has to be searched for relevant
data, the common data structure of an event queue was defined. Com-
ponents that want to inform other components that a specific event has
occurred post the event in the event queue. Events have a type identifier
for classification and may be associated with any type of additional data.
After adding to the queue, events will become available to other modules
in the next main loop cycle. They remain in an internal buffer until posted
to the official data, which is done by the main loop. Components that need
to react to certain events, e.g. user input, only need to scan through the
event queue. All events will be automatically removed by the main loop.
An overview of the call sequence is illustrated in Fig. 6.8. In the main loop,
the engine loops over a list of all components and triggers their execution.
The components, in turn, may call further handlers to delegate the events
for processing. This system works in analogy to GUI libraries that also
define a central loop to process an event queue. In this sense, messages
passing between components of the Development-Environment mirrors the
‘chain of responsibility’ [78] design pattern. This design pattern models the
decoupling between sender and receiver of a request. In the architecture
of the Development-Environment one component can take the role of a
sender and another the role of a receiver. The general pattern is illustrated
in Fig. 6.9. A client issues a request to a general handler. In turn, this
handler delegates the execution of this request to derived modules through
the successor relationship. The successor relationship defines a chain of
execution from general modules to specialized modules.

Even though the modules of the SRD architecture are called in sequence,
they are called in the same abstract instance of time, meaning that they
are executed in parallel. Every component perceives the same state during
an execution cycle. For general access to the blackboard this means that
components that have a higher index in the execution list also have a higher
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Figure 6.7: Modeling of synchronized component architecture
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Figure 6.8: Main loop call sequence for passing events

Figure 6.9: Chain of responsibility design pattern
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priority with regards to data manipulation. If two components write the
same data on the blackboard, only the one with higher priority remains.
Priority is assigned by time of instantiation, resulting in a unique priority
number for every component. The main advantage of this approach is that
the overall system behavior is deterministic and dependencies are explicitly
specified.

Dependencies are encoded in a component definition by defining which
variables are written to the blackboard. For example, a basic module for
generating a behavior creates motion trajectories for the actuators of the
robot. These values might be overwritten by a specialized emotion genera-
tion module, which has more domain knowledge and operates on a higher
level of abstraction.

In summary, the important modeling decision is that time is quantized
to concrete execution cycles in which all components run in parallel. All
components are assigned a unique priority that depends on time of instan-
tiation. Components communicate using a shared blackboard. The crucial
component to enable this setup is the blackboard system. It needs to pro-
vide global access to data and maintain updates for every execution cycle.
The implementation of the blackboard system is covered in the following
section.

6.3 Blackboard system implementation

The blackboard system serves as central communication point to exchange
data between components of the Development-Environment. Therefore,
the blackboard system needs to be accessible by all components in the
Development-Environment, and exists only once. The blackboard system
was designed according to the singleton pattern [78] (see page 107).

In computer science, several models for storing and maintaining data have
been proposed, ranging from simple key-value pairs to complex relational
and active databases [220]. A multitude of ready to use database systems
exist, commercial and royalty free versions alike, including MySQL1, Oracle
2 and Microsoft SQL Server 3. Systems are available for desktop use as
well as for server side data management for large enterprise structures.
Furthermore, databases are a widely used technology for managing web
content [252]. An interesting point from this application domain is that

1http://www.mysql.com
2http://www.oracle.com
3http://www.microsoft.com/sql
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they are accessed using scripting technology, which offers great flexibility for
the development of web content, e.g. e-commerce systems, social networks
or private homepages.

6.3.1 Scripting engine

For the blackboard system the Lua scripting (see page 4.3) engine was cho-
sen instead of a dedicated database. Lua offers a powerful data description
syntax based on associative arrays. It can be integrated in a core applica-
tion and data can be accessed and modified through a general programming
interface. A particular advantage is that data can also directly be manip-
ulated using the Lua scripting language itself. For example, a data entry
might contain a string that contains Lua code. On access, this code can be
executed to return a desired result. Furthermore, elements can be linked
using Lua’s table reference mechanism and several hooks can be defined
for a meta level control over queries. However, the implementation is not
bound to Lua. In principle any scripting language with the concept of
variables and scoping could be chosen, e.g. Perl, Tcl or Python. Scripting
offers powerful possibilities for rapid prototyping and quick results.

The interface to the blackboard system is modeled in Fig. 6.10. For exam-
ple, it includes methods to post and read data. As explained in the previous
section, all writes to the blackboard are buffered until the vPostBuffered

method is called. All requests to read data, on the other hand, are executed
directly. In its core, all requests are delegated to a Lua scripting engine
that handles the underlying data. For example, Lua handles allocation and
freeing of memory and allows high level methods for fully scoped variable
access. An example snippet to illustrate the code syntax is given in code
example 6.10.1. Comments start with -- and finish at the end of the line.
For a full description of the Lua syntax see [110]. One of the most power-
ful elements is that functions are first class values and can be assigned to
variables. This enables to implement variables of which the value depends
on the value of other variables on the blackboard.

In the above described approach, the allowable data types are determined
by the Lua language. By default, Lua supports integers, floating point
numbers, strings, Boolean and a couple of Lua specific types such as tables
and threads. However, the data must not only be accessible to Lua, but
ultimately to all components that access the blackboard. Therefore, an
overall data type model has been defined for the SRD framework, which is
explained in the following section.
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Figure 6.10: Overview of the black board communication architecture
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Program 6.10.1 Example snippet illustrating Lua syntax for data access.
emotion = "happy" -- Assignment of a string to a variable

-- in global scope

obj.pos.x = 100 -- Assignment of structured variables

obj.pos.width = 50

actuator[30] = 20 -- Indexing with integers (e.g. over time)

leds["green"] = 255 -- Indexing with strings

center = function() -- Assignment of a function that computes

-- a value based on other entries

return obj.pos.x + obj.pos.width / 2

end

6.3.2 Data types

The black board system allows components in the Development-Environ-
ment to post and read data. The data interface is therefore common to all
components within the Development-Environment and needs to be spec-
ified. The general data abstraction hierarchy is shown in Fig. 6.10. A
general data class defines the interface to access data. Within the architec-
ture, any type of data is always associated with a label and type identifier.
The label uniquely identifies the data in a given scope. The fully qualified
label prefixes the label with a scope identifier and must be unique in the
system. The identification number identifies the type and can be used for
example for data conversion. This abstraction of a label and type identifier,
in combination with the data object, allows to access the data independent
from the programming language. For example, this allows to communicate
between dynamically typed programming languages such as Tcl or Lua and
typed programming languages such as Java or C++. Furthermore, it de-
couples the component interface from the underlying implementation of the
blackboard system and therefore increases flexibility.

As illustrated in Fig. 6.10 six different basic data types have been defined:
1) Number 2) Boolean 3) String 4) UserData, 5) Composite and 6) Nil. The
distinction between different types serves two purposes. First, it defines the
allowed operations and second, it increases the performance of the imple-
mentation. The Tcl scripting language has demonstrated that in principle
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all data types can be represented with strings. However, also Tcl converts
the data implicitly for internal computation for performance reasons.

Every of the six defined basic data types has clear semantics. For exam-
ple, a number is used for numerical calculation, irrespective of the precision.
That means that no distinction is made between integers and floating point
numbers. Therefore, the designer only has to remember one set of math-
ematical operations. The precision of the mathematical computations can
be globally configured. If a certain operation is not natively available on a
given platform, it can either simulate it or simply define that a platform is
not suited for this type of computation. Therefore, the designer will have a
clear overview on what precision is required for his application and which
hardware platforms are supporting it, but the semantic that a number is
used for numerical computation is unaffected.

Also the Boolean data type is a separate type and not simply coded as 0
or 1 number values. The Boolean data type represents a truth value that
in the current implementation can take the values true or false. Assigning
semantics to data types increases flexibility for later extensions. For exam-
ple, the concept of a truth value could be extended to a degree of certainty
about a specific entity. In this case, the two current values are only a subset
of the possible values. To apply this change in the architecture only the
coding of the truth values and logical operators such as test for equality
would have to be redefined, leaving the rest unaffected.

The String data type is used to represent text labels when data needs to
be presented in a human readable form. For example, in configuration files
parameter values are connected to a human readable label that informs
about the meaning of these values. The string data type is also used for
text in- and output, for example in form of debug messages or to define
speech in- and output of the application. Furthermore, the string data
can hold executable chunks of code, i.e. in the form of scripts that can
be dynamically generated and interpreted by a scripting engine. Scripts,
in contrast to binary code, provide a human readable representation of a
program.

The UserData type was introduced to efficiently capture artifacts such as
images or sound files. It therefore serves as a base class representing arbi-
trary chunks of binary data. The actual type is stored by the type identifier.
Every component may define new types. In order to avoid conflicts, the
interface of a component is defined by a component definition as illustrated
in Fig. 6.4 on page 105.
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The Nil data type represents all cases that are not regular data, i.e. if
data is not defined. Therefore, it is a valid replacement for all other types.
For example, if the calculation of a function fails, it can simply return nil,
which is also special type of number.

More complex data types can be constructed using the Composite type.
A composite type contains a type and a label, but its getValue function
accepts an optional parameter that identifies the label inside the composite
structure. If this label is omitted, or the specified label is not included
in the structure, by default the nil data type is returned. New elements
are added to the composite structure, using the addData function. The
only restriction is that inside one composite structure, a data label must
be unique. If the label is already present, the add-operation fails and the
structure remains unchanged. In order to replace an existing element with
a new one that has the same label, the removeData function has to be
called first. Analogously, if the remove operation specifies a label that does
not exist, the operation leaves the data structure unchanged.

Having introduced the general overview and constructs of the Development-
Environment, the focus of the following sections lies on a more detailed level
on the structure of specific components.

6.4 Editors

The concept of an editor is one of the central concepts within the Social
Robot Design framework. Requirement 1.2 demands that the Development-
Environment offers tools that satisfy the needs of different approaches to
the design task. The concept of a tool is captured by the general concept of
an editor. The overview of the editor concept is given in Fig. 6.11. An editor
is a component that allows to create and edit a specific application artifact.
Every editor provides its own set of editing functions and user interface.
For example, for writing scripting code, one valid option is to use a text
editor. The user interface of the editor provides the editing functionality as
well as visual feedback. This allows to improve the appearance by syntax
highlighting that eases the coding task for the programmer. As a specialized
editing functionality, it could offer auto-completion of known words, such
as function names. However, a completely different editor approach is also
conceivable to generate the script. The script could be generated with
graphical programming as used for the Lego R©Mindstorms. Instead of text
editing facilities, a graphical editor provides graphical building blocks and
connectors that can be arranged on a 2D canvas.
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Figure 6.11: Editor architecture overview
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Conversely, with the same editor different application artifacts could be
realized. The text editor concept could also be used to define a list of
numbers representing keypoint positions, and therefore to implement an
animation. These examples show that neither the type of editor deter-
mines the application artifact nor does the application artifact determine
the editor.

Despite the variety of editing methods, there are a few editing concepts that
are general for all editors. At its core, an editor is responsible for creating
application artifacts. Therefore, all editors have in common to be able to
create a new file, to load a file and to save the changes to disk. Furthermore,
every editor provides a set of operators that work on an application artifact.
Common operations for an editor are to mark, cut, copy and paste certain
content. Therefore, all editors provide an interface to unify these operations
and to allow cross-editor collaboration. In very special cases these common
editor functions might be left empty, e.g. if an editor is only able to modify
existing data, or if content cannot be copied for technical or legal reasons.

Cross editor collaboration can be realized in two ways. First, an editor may
use the component message passing system and write data to the black-
board and second, it may use general cut-copy-paste functionality. The
second option is realized with a central clipboard, that itself is a compo-
nent in the framework. It allows to store general data, similarly to the
blackboard. The general data type concept as described in section 6.3.2 is
ubiquitous throughout the architecture. However, the clipboard defines an
order in which the data was copied. A paste operation will return the most
recent copied or cut data.

Furthermore, the general editor concept defines an undo-manager. Espe-
cially in long editing sessions, which are at the core of the editing con-
cept, humans tend to make mistakes. A supportive framework needs to be
able to compensate these mistakes and offer an undo functionality. The
undo-manager is localized in an editor, so that every editor can track local
changes. For implementing the concept of an undo-manager, the concept
of an editing command has been introduced. An editing command encap-
sulates the specification of a command to the editor. Such a command
can either directly be generated through a user interface, or by automating
the task using a batch file script. In the case of the undo-manager, the
commands are stored in order to enable a trace of the commands. Ev-
ery command defines an execution function and an undo-function. For the
design of the editor command, the general command design pattern [78]
has been used. The command pattern decouples command invocation from
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Figure 6.12: Command design pattern

command implementation. The command is transformed in an object that
can be passed just like other objects as depicted in Fig 6.12. This com-
mand object defines an abstract interface that invokes a certain function.
A receiver of the command is stored in the command object, which has
the knowledge how to carry out the requested command. A typical use
case scenarios for the command pattern are graphical user interfaces and
cut-copy-paste commands. In the case of the SRD editor, the invoker of the
undo-command is the undo-manager, but only the target editor knows how
to execute the task. Therefore, the undo-manager is localized in the editor
to keep a local history of edit commands. As described in the central SRD
architecture a component may have multiple instances. Multiple instances
of every editor can be active, for example if two or more animations are
developed at the same time. For creating multiple editors of the same kind,
but with different parameters, the factory pattern was applied as described
in section 6.5 on page 106.

6.4.1 Functional animation editor

In Chapter 3.3 the concept of functional animations has been introduced.
This section describes the implementation for functional animations and
how it is integrated in the global animation framework.
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The functional animation extends the concept of keyframe animation with
the possibility to generate dynamic expressive behaviors. In traditional
animation, a keyframe describes a posture of a character at a given moment
in time. For example in comic animation, this posture is given by a drawing
that was created by a lead animator [253]. The missing frames between
these keyframes are filled by different animators. Once the animation is
finished, it is static in a sense that it cannot easily be updated. Changing
the posture of a keyframe entails to change all neighboring interpolation
frames. However, movie characters do not need to adapt their behavior
during the play of the movie, because for traditional movies the script is
fixed and there is no interactivity with the audience or the environment of
the theatre.

In order to create dynamic animations for social robots, the concrete be-
havior must be computed during run-time of an application. Therefore, the
movement needs to be numerically parameterized to be computable. For
this, the constraints of the robotic embodiment are an advantage. While a
comic character has virtually an unlimited amount of degrees of freedom,
robots are constrained the amount of available actuators and physical laws.
Therefore, the posture of a robot can be completely described by a rela-
tively small set of parameters, in comparison to the number of parameters
that are necessary to fully describe a comic character.

Functional animation architecture

For the architecture, the basic concepts of keypoint, interpolation and ac-
tuator have been modeled as distinct objects. An overview of the structural
decomposition is given in Fig. 6.13. A functional animation comprises a
set of actuators that perform a trajectory over time. The actuators that
are defined for the animation have to match the available actuators for a
concrete embodiment. Derived from the general framework, the abstract
factory design pattern [78] (described in Chapter 6.5 on page 106) is used
to parameterize the creation of a functional animation. The factory uses
the interface of an embodiment definition to create a functional animation
according to the degrees of freedom, i.e. the set of actuators.

The time dependent trajectory of an embodiment is partially defined by
keypoints for this actuator. If no keypoints are defined, then the position
of this actuator is undefined by the animation. A keypoint class has three
basic elements, namely a start time, a state and an interpolation. The start
time defines the lower bound of the definition interval of the keypoint, the
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Figure 6.13: Architecture of functional animations
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state defines the position of the actuator at the start time and the inter-
polation defines the function that the actuator performs in the definition
interval. The upper limit of the definition interval is not explicitly stored
but calculated on request. To this end, keypoints are organized in a linked
list, sorted by the start time parameter. If the keypoint is the last point, i.e.
if the next element is undefined, the definition interval is a single moment
in time as for the definition of keypoints in traditional animations.

Interpolations The interpolation class generalizes different types of in-
terpolation functions according to the command pattern as described on
page 121. Linear and spline interpolation are two types of interpolation
that are typically used in movie and game industry. Especially splines are
commonly used because of the possibility to fade movements in and out
for smooth and natural looking behavior. Several other classes have been
added to the list of interpolations for quick realization of animations. A
sinus interpolation is in particular suited to animate nodding or shaking
of a head, for example for the iCat embodiment. The exponential inter-
polation supported natural looking blinks for the eyelid actuators and the
dynamic-system interpolation allowed to simulate a physical mass-spring-
damper model in order to give the impression of weight of the head. Lastly,
for quick prototyping, also a general script interpolation has been imple-
mented. The interpolation function depends on a script in the Lua scripting
language. This script can furthermore be parameterized with parameters
that are stored on the global blackboard. A functional animation is also
a component in the general system and therefore has full access to the
blackboard communication system.

Parameterization All interpolation methods are parameterized by a set
of control parameters. By default, every interpolation stores the set of pa-
rameters locally. However, they can also be bound to a variable on the
blackboard. Whenever a variable is bound to the blackboard, the value
of the interpolation function is determined by the current parameter value
from the blackboard instead of the local value. When the binding is re-
leased, the local value is restored.

Groups Another important concept for a functional animation is the con-
cept of groups. Keypoints may be grouped to form a set that is treated
as an entity. Groups may contain keypoints or other groups. Hierarchical
grouping therefore forms a tree like structure of dependencies. Edit events
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Figure 6.14: Grouping concept for functional animations. Groups from
entities that can be attached a descriptive label.

such as cut-copy-paste are executed for the whole group, i.e. for all key-
points simultaneously. Keypoints within the group keep their relative time
distance to each other. Furthermore, a label can be assigned to a group to
annotate the group with a semantic meaning. For example, a blink with
an eyelid can be parameterized with three keypoints as shown in Fig. 6.14.
These keypoints can be grouped in order to avoid that the relative distance
of the keypoint changes or that accidentally a keypoint is deleted. This way,
the designer can create higher level abstractions for an animation library,
e.g. by creating a ‘left-eye blink’ and ‘right-eye blink’ that can be reused
to form a ‘both-eyes blink’.

Variable scoping In the above example of the ‘blink’ animation, an
exponential interpolation function has been used. The exponential function
has the basic form:

f(t) = c + aebx (6.1)

The three parameters (c,a,b) control the shape of the curve. They can
either be saved locally, or bound to a global blackboard variable. The
concept of groups adds variable scoping to this mechanism. For example,
the fully qualified name of the amplitude parameter from the left eye blink
is in Lua syntax given by: blackboard[‘blink animation’][‘both eye blink’][‘left

blink’].amplitude The animation itself defines a group, with a label equal
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to the name of the animation. Therefore, adding new keypoints to an
animation just adds new keypoints to this group.

Parameter models The final concept that is introduced by functional
animations is the concept of parameter models. Parameter models define a
function that performs a coordinate transformation on the control param-
eters of the interpolation function. In the architecture these models have
been implemented by scripts. Parameter models can be attached to every
group and are executed synchronously with the main loop of the compo-
nent architecture. The evaluation is executed according to the hierarchy of
the groups, starting with the top level. For example, an emotion might be
parameterized according to Russell’s ‘circumplex model of affect’ along the
two dimensions of valence and arousal [207]. These emotion parameters
define a position in an affective space. The coordinates can be mapped
from the emotion space to a motion space through parameter models. As
explained in Chapter 9, perceived arousal is positively correlated to ac-
celeration of an actuator in motion space. Therefore, a suitable mapping
function might be approximated with a linear relationship. For high levels
of arousal the parameter model will create parameters that produce high
values of acceleration. Accordingly, low values of arousal will be mapped
on low levels of acceleration. Parameter models form a hierarchy. High
level parameters influence the evaluation of low level parameters.

6.4.2 Animation Editor iCat

For demonstrating the applicability of functional animations a prototype
with the scripting language Lua was developed. The overall GUI of the
editor is depicted in Fig. 6.15. On start, the editor offers to create a new
animation for a given embodiment. The embodiment determines the ac-
tuators that are available for the animation. By default, all actuators are
disabled, that is they define no values. Every actuator can separately be
enabled through a context menu.

The designer may place keypoints along the timeline of the animation. The
length of the animation is thereby dynamically calculated, depending on the
keypoint positions. The definition area for the motion trajectory function f
may freely be shifted throughout an animation by moving the first keypoint
to a later time position t. The keypoint with the smallest start time value
defines the overall begin of the animation.
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Figure 6.15: Prototype of functional animation editor

By default, the editor chooses a linear interpolation between two keypoints,
but this default can be adjusted through a configuration file. Other pa-
rameters that may be configured include default embodiment and default
animation length. However, all of the values may also be changed during
run-time. In order to change the interpolation function of a keypoint, the
designer may select a different interpolation type through the context menu
of the keypoint. Every interpolation function is controlled by a different set
of parameters. Therefore, every interpolation function is represented by an
own GUI object that provides an interface to adjust the parameters. For
example as shown in Fig. 6.16 the parameters can be adjusted through a
special control window. Another possibility is to present handles directly
on the interpolation line as demonstrated in Fig. 6.17. A separate window
allows to define global bindings for the control parameters. In the current
implementation not only the interpolation parameters can be bound to a
global variable, but also the position of the keypoint itself. This gives full
freedom to adjust the animation according to the parameters of param-
eter models. For example, if a ‘reach action’ is to be programmed with
the editor, the keypoint position defines the end effector position of the
robot. However, how the robot reaches this point is defined by the interpo-
lation function. As a result, this approach allows to dynamically combine
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Figure 6.16: Configuration window for a second-order dynamic system in-
terpolation

Figure 6.17: Spline parameters can be adjusted by dragging the gray handle
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expressive and functional behaviors. Additionally, the dynamics of the sys-
tem can be compared to the hardware constraints of the embodiment and
impossible or dangerous hardware configurations can be visually marked.

The overall editing concept of the iCat editor follows the posture based
keyframe animation of traditional character animation. The time depen-
dent trajectories of the actuators directly represent the position of the ac-
tuators. In the following a different editing concept based on functional
animations is presented for an editor for the Roomba platform.

6.4.3 Roomba Path Editor

The Roomba platform is a mobile vacuum cleaning robot developed by
iRobot. An overview of the hardware is given in Chapter 2.3 and a detailed
discussion on the drive system is given in Chapter 7.4.

The major difference between a velocity controlled mobile robot such as
Roomba and a posture controlled embodiment such as iCat is that iCat is
a holonomic system, while Roomba robot is a non-holonomic system. In
particular, the two controllable degrees of freedom of Roomba are the wheel
speeds of the differential drive system, but the total degrees of freedom are
the x and y position plus an orientation degree of freedom. As a result, it
is difficult for an animation designer to create a desired path only based on
low level wheel speeds. An animation designer rather operates on a high
level path abstraction than on a low level control of wheel speeds. For these
reasons the Roomba animation editor takes the path of the robot as basic
editing concept.

A prototype of the resulting editor is shown in Fig. 6.18. It applies the same
functional animation principle as the iCat animation editor, but instead of
a position of an actuator, a keypoint denotes a position and orientation on
a two dimensional surface. The similarity is that both approaches describe
the overall state of the robot.

For editing an animation for the Roomba editor, the designer places con-
secutive keypoints in a two dimensional editing area. The resulting path
forms a two-dimensional trajectory. The robot faces always in the direction
of the trajectory.

Like for the iCat editor, keypoints are organized in a linked list. Time
progresses along the two dimensional path. However, the position progress
of the robot is not only determined by the trajectory, but also by the
velocity by which the robot moves along the designed path. Therefore,
the designer may edit the path and velocity independent of each other.
This independence is realized by assigning two interpolation functions to
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Figure 6.18: Roomba path editor

every keypoint. The first interpolation function determines the path and
the second determines the velocity along the path. In Fig. 6.18 the velocity
trajectory is adjusted in a separate windows, displayed in the lower left
corner.

Based on this principle, multiple editing approaches are conceivable. As
outlined above, the position and orientation of the robot are determined by
keypoint position and interpolation function. For editing, the animation
editor may take two approaches. First, the editor may regard the position
of keypoints as fixed and constrain the interpolation function accordingly,
or second, it may take the interpolation function as fixed and place the key-
points accordingly. This restrictions result from the physical constraints of
the robot. The path that is taken between two keypoints also determines
the orientation of the robot at the end of the path, and therefore also the
initial orientation for the next interval. For this reason, either the inter-
polation function may freely be chosen, but constraining the positioning
of keypoints along this path, or the position of keypoints may freely be
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chosen, but constraining the path between these keypoints, to also end up
at a defined orientation.

For the implementation of the path editor, the first approach was chosen.
The main reason for this design decision is that this approach offers easier
integration of functional and expressive behaviors. From a functional point
of view, a cleaning robot needs to cover a certain area and to move along a
path that avoids objects. For example, if a corner needs to be cleaned, the
target position and orientation of the robot are the constraining parameters
to assure proper floor coverage. The path that the robot the robot takes to
the corner is ultimately constrained by the setup of the environment and
the robot’s physical movement constraints, rather than the path defining
the end position.

The calculation of the path takes the drive constraints of the hardware plat-
form into account. In particular, the interface to the controller takes two
parameters to steer the robot, namely radius and orientation. A detailed
description of the drive system can be found in Chapter 9. In summary,
the drive system allows three different modes of operation. First, the robot
travels along a perfect circle with given radius and velocity, which is the
default drive behavior. Second, the robot drives a straight line, which is
realized by a special case value for the radius and third, the robot turns on
the spot. Theoretically, with these modes any path can be approximated
using sufficiently small path segments. However, the maximum velocity of
a wheel is limited by the servo hardware. Therefore, not every combina-
tion of radius and velocity are possible, because on a circular trajectory
the outer wheel needs to rotate faster than the inner wheel. If already the
inner wheel rotates with maximum velocity, the outer wheel cannot rotate
faster to stay on the desired circular path.

The designer needs to be aware of these hardware constraints, otherwise
the intended application requires a different hardware. For this reason, the
path editor provides visual feedback to the designer. First of all, the editor
indicates the position and orientation of the robot. The combination of both
cues is important, because both need to form a differentiable function. The
robot cannot jump from one orientation to another. Secondly, the editor
indicates if a trajectory is possible or not, given a particular embodiment.

For storing the animation, the resulting functional animation parameters
are coded in an XML file. Functional animation files are therefore also
editable with a standard text editor. Few constraints on the saving format
increase the flexibility of the system, so that the files may also be edited
by new editor concepts for the SRD framework.
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<state name="startUp">

<action>

<seq>

<par>

<say utterance="Hi! I’m iCat." />

<play anim="\Anims\Hello.raf" />

</par>

<par>

<say utterance="Have a seat please." />

<play anim="\Anims\OfferSeat.raf" />

</par>

<par>

...

</seq>

</action>

<transition> to="startLesson" />

</state>

Figure 6.19: Example snippet of the ‘Robot Interaction Markup Language’
(RIBML), taken from the interaction script of the tutoring application.
The three dots indicate the omission of some code for simplicity.

6.4.4 Interaction design editor

Most commonly, how to react on an event depends on the context of the
current situation. Within the OPPR framework, a special state based in-
teraction design language was developed named Robot Interaction and Be-
havior Markup Language(RIBML) by van Breemen and extended in the
context of this thesis. An example snippet is shown in Fig. 6.19. The lan-
guage includes constructs to describe an application in terms of sequential
and parallel statements. The XML statements are parsed and executed in
an internal virtual machine. Ultimately, the statements trigger events that
are communicated within the communication framework in order to trigger
actions of the robot.

One important extension that has been made introduces commands to
query states from the environment, using a situational awareness architec-
ture as described in Chapter 7.3. This allows the designer to control the be-
havior of the robot using high level commands such as “<look at user/>”
or “<wait for reply/>”.
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6.4.5 Application logic

The application logic defines the robot’s autonomous behavior as well as
how to react to events from the environment. As described in the general
use case scenario of the SRD framework, an application designer with a
computer science background may choose a programming paradigm of his
liking, including imperative, functional, object-oriented or rule based ap-
proaches. Within the SRD framework this is generalized by an executor
for application artifacts. An application artifact might be an animation
that controls the state of actuators over time, but also an executable script
using scripting technology. In general, a concrete ArtifactExecutor is
realized by sub-classing the general ArtifactExecutor class as depicted
in Fig. 6.20. For example, the depicted ScriptingModule executes a Lua
script.

6.5 Views

In an iterative design approach, the designer needs to be able to observe
the current state of an application artifact. This can be illustrated with
the scenario of creating an animation for a robot. For example, a keyframe
editor or a posture editor can be used to create a basic animation. The
keyframe editor might provide a visualization of the motion trajectory for
every actuator over time. From the basic shapes of the trajectories, the
animator already can get an idea on how the animation will look like, but
it cannot replace a detailed visualization. The problem is that a numerical
representation is not the appropriate view on the problem. For this reason,
the preview facilities have been introduced in the framework as depicted
in Fig. 6.20. The preview facilities are able to render certain application
artifacts on the embodiment. In particular, it is important to visualize the
dynamic aspects of the animation or behavior.

The preview facility was directly derived from the domain model as shown
in Fig. 6.3. In the domain model, a four way ‘render’ relationship was
established between application, application artifact, embodiment and an
executor. This model decoupled the rendering of application artifacts from
the underlying hardware. The role of the application in this relationship is
to control the executor to render application artifacts on the embodiment.
In this model, however, the overall application needs to be defined before
application artifacts can be tested. For this reason, the application has
been modeled, as a compound application artifact, which in itself has the
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Figure 6.20: Preview facility for the Development-Environment
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Figure 6.21: Observer pattern

same type as an application. This enables to wrap any application artifact
in an application object for the purpose of testing.

The preview facility reuses the Animation-Engine as defined in [241] for
the role of the executor. A detailed description of the Animation-Engine
is given in Chapter 4.2 on page 71. It has been integrated in the SRD
architecture following the observer design pattern [78]. The observer pat-
tern models a one-to-many dependency between objects in which a change
of the state of the one object is communicated to all other objects partic-
ipating in the collaboration. A typical application area for the observer
pattern is graphical user interfaces that provide multiple visualizations or
controls to the user. An overview of the general pattern is illustrated in
Fig. 6.21. In the context of a design framework for social robots, the com-
mon object is the application that is rendered on the robot. The design
of an application can be approached from multiple points of view. For
example, a designer may focus on the behavior of the robot in terms of
movement patterns, in terms of light feedback, or in terms of interactiv-
ity. The above introduced editor concept does not only provide tools to
create and edit animation artifacts, but they also provide different views
on the application. The preview facility extends this concept by a general
visualization method. The Animation-Engine is generalized by an artifact
executor which renders application artifacts. However, because the execu-
tor is also a general component in the architecture, the artifact does not
necessarily need to be rendered on the embodiment but also a graphical
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user interface object may be updated. In this sense, the GUI object takes
the role of an embodiment. The concepts of a view and embodiment have
deliberately been kept separate, because an application is always bound to
one robotic embodiment.

With the preview approach multiple views can be shown at the same time.
Through the observer pattern, they reflect the modifications of the appli-
cation artifact. This enables the designer for example to track the con-
sequences of an altered movement trajectory on the conveyed emotional
message that the user perceives when observing the embodiment.

6.6 Embodiment

In the above described architecture, the embodiment has been referenced
as the primary rendering device for an application. In this section, the
structural decomposition of the embodiment is explained.

For the SRD architecture an embodiment is a generalization of a concrete
set of sensors and actuators. The general concept of embodiment is depicted
in Fig. 6.22. In these terms, also a remote controller that only sends control
commands to the hardware, but does the main computation outside of the
robot embodiment, is considered as belonging to the embodiment. An
embodiment is the central concept for abstracting the underlying robotic
hardware on which an application is rendered, i.e. a robotic vacuum cleaner
or an interface robot such as iCat. However, the concept is not limited to
physical robots. It also includes virtual representations such as screen based
characters.

As shown in Fig. 6.3, an application is always bound to an embodiment.
This dependency has consequences on the development interface for the
developer, because a virtual representation is formally a different embod-
iment than the physical embodiment. Therefore, an application that is
created for the physical iCat embodiment cannot be tested with a virtual
character. In order to enable that an application can be used with multiple
embodiments, the architecture needs a possibility to compare the similarity
of two embodiments.

In the SRD architecture exist two basic possibilities to introduce a virtual
representation of a hardware embodiment. The first possibility is to define
a GUI object to present an additional view on the design problem. The
advantage of this approach is that the virtual representation is not bound
to the embodiment and may present an abstract view. However, the dis-
advantage is that virtual representation and physical hardware must be
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Figure 6.22: Embodiment implementation

manually kept consistent. Consequently, it cannot be generally guaranteed
that the application will run on the real embodiment as intended, because
the virtual representation and embodiment might be too different from each
other.

Furthermore, from an architectural point of view, an embodiment is con-
ceptually different from a view on the design problem. A design view is
usually more abstract and can be applied across different embodiments.
In this sense, an iCat view is not necessarily a useful view for a Roomba
embodiment. Also in terms of software architecture and software reuse,
embodiment dependencies should be modeled in a single place in order to
keep dependencies manageable.
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The second possibility, which is used in the architecture, is to define an
overall embodiment definition. The concept was reused from the OPPR
framework. The embodiment definition describes an abstract setup of the
hardware in terms of available sensors and actuators. Using this approach,
two embodiments that have the same embodiment definition can be treated
as being the same embodiment. Therefore, an application is only bound to a
particular embodiment definition instead of a concrete embodiment. Two
embodiments that differ in implementation may still have a comparable
physical setup. For example the virtual representation of a physical robot
has the same controls, but different hardware.

The advantage of this approach is that an application is developed for a
whole class of robots that exhibit a specific physical setup, rather than for
a particular robot. For example, iRobot offers different models of their
vacuum cleaner Roomba, which have a similar differential drive system
consisting out of two wheels. A similar result could have been achieved
by defining a new generalized class of Roomba-like robots, from which all
concrete Roomba models are derived. However, following a strict object
oriented design, for every new generalization a new class would have to
be introduced to represent that two embodiments have the same type. In
consequence, all existing embodiment classes would have to be changed to
be derived from this newly introduced generalized class. The concept of an
embodiment definition decouples the hardware setup from the implemen-
tation of the embodiment and avoids therefore an exponentially increasing
implementation effort for introducing new embodiment types.

6.7 Component developer interface

In the above described architecture, flexibility was achieved by defining
a general component model. Several components for the Development-
Environment have been introduced. One advantage of the modularized
approach is that the architecture can easily be extended by new compo-
nents. The SRD architecture provides two general possibilities to define
new components.

The first possibility is to provide a library containing executable binary
code that complies to the general component interface. The easiest way
to achieve this is by deriving a new subclass from the central component
class of the Development-Environment. The instantiation of the object is
decoupled using the factory pattern as described above. During run-time,
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the central handler iProcess() is invoked according to the synchronous
component model as described above.

The second possibility is to provide a loosely coupled component using a
socket interface. Requirement 4.2 demanded that it should be possible for
third-party developers to provide new components for the architecture. The
definition of a general component interface and the decoupling from instan-
tiation already fulfill this requirement. For convenience an abstract socket
component has been defined. The socket component is a host for remotely
connected components that routes messages over a TCP connection. The
socket component can be controlled using a simple command language and
is integrated in the synchronous execution cycle of the main-loop of the
architecture. The command language contains messages for starting of the
execution cycle and implements generic calls to access the blackboard com-
munication system in term of read and write access. For convenience, the
syntax has the form of Lua scripts in terms of functions that are executed.
The return values of the functions are casted to a string and sent over the
TCP connection. Using this remote interface, a component developer is
not restricted in his choice of programming language, operating system or
development tools, as long as his tools provide the generic possibility to
open a socket and send string data.

The new component may even run on a remote machine communicating
with the socket host over a network. For the Development-Environment
there is no semantic difference to the execution on the same machine, be-
cause of the synchronous execution environment. Therefore, the socket-host
provides the possibility to export computationally heavy modules to remote
machines. In turn, the computation delay of a processing cycle is reduced
to the communication delay of the socket interface.

A specific concern for the development of new components is the avail-
ability of logging facilities. Due to an increasing number of components it
becomes more cumbersome to trace logging output of a particular compo-
nent. For this reason, a general logging mechanism has been introduced,
similar to the logging mechanisms Log4j 4 or Log for C++5. An overview
of the logging mechanism is depicted in Fig. 6.23. Every component within
the architecture is equipped with its own logger. The logger class defines
5 different logging levels, which are 1) Debug, 2) Info, 3) Warn, 4) Error,
and 5) Critical. A module can therefore use prioritize messages according
to how serious a certain event is for continuing execution. For example,

4http://logging.apache.org/log4j/1.2/index.html
5http://log4cpp.sourceforge.net/
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Figure 6.23: Logging mechanism within the SRD architecture

internal messages can be flagged with Debug. Messages that are intended
to be seen by a user only for information purposes fall in the Info category.

A logger delegates the output to an internal LoggingOutput. This might
be a console output, a file or a graphical widget. Every logger defines a la-
bel that uniquely identifies the source of the message. With every message
the message source and a time stamp are recorded as well. The output of
the logger can be centrally configured by the LogAppenderManager. The
system can be configured to keep track only of a number loggers. Further-
more, for every logger the log level can be set, which means only messages
that have a priority above the log level are recorded. This system allows
for an easy trace of the progress of a particular component.



6.8. GRAPHICAL USER INTERFACE 141

All the different components may have a representation in the graphical
user interface for the application developer. An overview of the overall
layout is given in the following.

6.8 Graphical User Interface

In order to realize a flexible and customizable visualization, a layered ar-
chitecture has been chosen. The layered approach abstracts the graphical
representation of components from their functionality. A clear separation
of functionality and visual representation allows easy replacement, for ex-
ample with a different GUI library. An overview of the layered architecture
is shown in Fig. 6.24. The lower boundary box contains the core func-
tionality that is to be represented with the graphical user interface. The
functionality is decoupled, so that the visualization may change without
affecting the functionality.

The upper boundary box contains the classes that realize the visualization.
A central GUI object has been defined, from which all other objects for the
visualization have been derived. Every component of the Development-En-
vironment that needs a visual representation is represented by an object.
A graphical component is derived from the central GUI object class, which
contains a link to the object that is to be visualized. This way, the object
can map incoming events, including mouse or keyboard events, to trigger
the functionality of the underlying object. The overview in Fig. 6.24 indi-
cates that the central engine has a graphical representation in the main win-
dow of the application. Furthermore, common graphical functionality has
been decoupled using the decorator design pattern (depicted in Fig. 6.25)
[78]. The decorator pattern describes a method to extend the functionality
of a class dynamically, without having to generate new subclasses. Instead,
the new functionality is coded in a decorator that surrounds the original
component. The decorator pattern therefore avoids an exponential num-
ber of classes for the realization of the visualization. Another advantage is
that it facilitates to reuse graphical features. A scroll-bar decorator can be
applied to more than one class, so that all scroll-bars in the framework will
always have the same appearance and behavior.

An example layout of the graphical user interface of the Development-En-
vironment is depicted in Fig. 6.26. It allows customizable layouts so that
application designers with different preferences can adjust the Develop-
ment-Environment to their needs. For example, the designer might choose
a layout using a single main window, or free placement of dialogs on the
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Figure 6.24: Layered architecture to separate visualization from function-
ality
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Figure 6.25: Decorator design pattern

desktop. The standard mode for Windows R© environments is to arrange
interface elements inside one main window. Sub-windows are maintained
inside the boundaries of the main window. In Linux environments, how-
ever, multiple specialized dialogs are often provided as top level widgets,
which allow the window manager to control placement of the dialogs. These
differences become most obvious when comparing the image editing pro-
grams Adobe Photoshop R© 6 and the GNU Image Manipulation Program7

(GIMP).

In the current implementation, a component is visualized by its own docking
window. It has been developed using the Nokia interface library QT 8, which
is flexible enough to suite multiple desktop arrangements and furthermore
is available on multiple platforms, including WindowsR© Linux and Mac
OS R© X environments.

For placing the different windows inside a main window, four docking areas
around a central widget are supported as displayed in Fig. 6.27. Multiple
dock windows may be placed in the same docking area, where they are

6http://www.adobe.com/products/photoshop
7http://www.gimp.org/
8http://qt.nokia.com/
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Figure 6.26: Example layout of the graphical user interface
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Figure 6.27: Docking areas inside a QT main window. Source: Documen-
tation of QT library (http://doc.trolltech.com/4.4/qmainwindow.html)

either vertical or horizontally arranged, if all of them are visible at the
same time. Alternatively, they can be stacked on top of each other and are
accessible through a tab interface.

The screen shot of Fig.6.26 displays in its central widget a functional ani-
mation editor for the iCat embodiment. In comparison, Fig. 6.18 on page
130 showed a screen shot of a path animation using the path editor. Mul-
tiple animations can be edited at the same time and are accessible through
the tab interface displayed at the top of the central widget.

For example, the left dock contains a dialog to select a target embodiment
and a parameter editor to modify the shape of a trajectory, arranged verti-
cally. The displayed parameters control the behavior of a simulated second
order differential system and control the shape of a selected interpolation.
The right area of the screen displays a velocity view on the motion tra-
jectory of an actuator and a preview facility to simulate the behavior on
a virtual robot. The bottom dock area contains a central output widget.
Status and debug information are displayed in this area.

6.9 Summary

The above described architecture introduces a generic and flexible software
environment for the design of social robots.
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Starting with the identification of an appropriate reference architecture,
the structural decomposition of the software architecture has been pre-
sented. A combination of editing- and language processing system was
modeled to address the requirements of the design task. Furthermore, a
unified component interface has been developed, based on the commonali-
ties of the elements of the Development-Environment. For communication
between components, it has been motivated that a synchronous commu-
nication model best suits the demands for the Development-Environment.
A central blackboard system has been modeled using scripting technology,
which allows to define relations between variables and flexible sharing of
data.

The component structure has been elaborated to define central constructs
such as the concept of an editor, embodiment, and preview facility. Three
concrete instances of editors have been developed. For expressive behavior
design, the functional animation principle has been applied to animate the
iCat and Roomba robot. For the iCat robot, the editor provided direct
control over the position controlled actuators. The advantage of this ap-
proach is that it gives the designer direct control over the expressiveness
of the robot, but preserves high level control through the parameterization
of the functional animations. For the Roomba robot, on the other hand,
it was motivated that an abstraction on the level of path segments is more
appropriate to create expressive and functional behavior.

These graphical editing concepts provide an animation designer with fa-
miliar editing concepts. For describing the application logic and modelling
the interactivity a textual representation was chosen, because it allows to
capture abstract behavior rules and algorithms that define how the robot
reacts to a certain input.

In the process of defining the architecture, several software design patterns
have been applied in order to increase maintainability of the software and
to decouple close relationships. One design pattern that reemerged is the
usage of a component definition. This general relationship is depicted in
Fig. 6.28. The pattern decouples object specification from its type defi-
nition. For example, for the modeling of embodiments, an embodiment
definition was introduced that allows to represent different embodiments
with similar physical setups. Furthermore, the pattern was used to give
concrete information about components, e.g. which variables are written
on the blackboard so that a module hierarchy could be established. En-
capsulating the information about an object in a separate object allows the
comparison of objects decoupled from its type definition.
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Figure 6.28: Object definition pattern

Having described an architecture for a designer to create social robots,
the following chapter discusses an Execution-Environment that is used to
render the applications on the deployment hardware.
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Chapter 7

Execution Environment

In this chapter the architecture for the Execution-Environment of the So-
cial Robot Development Framework is described. This chapter extends the
general concepts that have been defined in the last chapter. In contrast
to the Development-Environment, which had the main focus to support
an application designer with design tools, the main goal for the Execu-
tion-Environment is to provide a deployment environment for applications
to be used by a user. The Execution-Environment has therefore to sat-
isfy a different set of constraints, including constraints from the hardware,
user-interaction and reliable application rendering. Reliable application
rendering means that the application is rendered as the designer intended,
that is minimizing the differences between design views and the resulting
behavior of the deployment embodiment.

First the design space of the Execution-Environment is analyzed and rel-
evant architectural differences between the requirements for the Develop-
ment-Environment and the Execution-Environment are identified. Based
on this analysis a general component architecture and communication model
is developed. Furthermore, this chapter discusses the challenges for reliable
rendering of applications in detail, before the overall architecture is evalu-
ated in the next chapters.

7.1 Design space

The overall goal of the Execution-Environment is to provide a deployment
environment for applications that have been developed with the tools from
the Development-Environment. The requirements of the two environments
differ in three main dimensions, i.e., in terms of key stakeholders, mode
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of operation and hardware constraints. First, the main stake holder of the
Execution-Environment is a user who uses the application. In consequence,
the Execution-Environment does not need to offer development tools such
as graphical editors to create animation artifacts. Instead, the Execution-
Environment needs to read these artifacts and render them in a timely
manner as defined by the particular application.

Secondly, the mode of operation differs from the Development-Environ-
ment, where the main control is residing on the side of the designer who
triggers actions in the design tools. In return the Development-Environ-
ment has to respond accordingly and to update various views in order to
give appropriate feedback to the designer. For the Execution-Environment
the main control is in the hand of an application script. The application
defines when to render application artifacts such as animations and how to
react to user input.

Thirdly, the Execution-Environment has to deal with different hardware re-
quirements than the Development-Environment. While the Development-
Environment could presume a desktop computer, the Execution-Environ-
ment is limited to the hardware of the robotic embodiment. Usually, the
hardware constraints for a robot are more restrictive than for a desktop
environment. Additionally, for robotic embodiments no standard set of
interaction devices is defined such as mouse and keyboard for desktop en-
vironments. This lack of unification across robotic embodiments makes
an application very dependent on the available hardware and hence poses
additional challenges on the Execution-Environment.

In the following, a general use case scenario for the Execution-Environment
is derived from the overall use case scenario of the SRD framework for the
application of the Execution-Environment (see Fig. 5.2 on page 85).

7.1.1 Use case scenario

The overall use case scenario for the SRD framework that was introduced
in Chapter 5.2 already identified the user as an actor who uses the ap-
plication. For the Execution-Environment, the important relation is the
interaction between application and a user of this application as depicted
in Fig. 7.1 This refined use case scenario introduces the robotic embodi-
ment as an autonomous actor who participates in the use case of executing
an application. The robot serves as an interface for the application and
is therefore part of the Execution-Environment as indicated by the system
boundary.
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Figure 7.1: Use case scenario and system boundary for the execution envi-
ronment

In the most generic form, the deployment environment of the robot contains
a set of sensors, a controller and a set of actuators, which in total is referred
to as the robot embodiment (see section 6.6). However, no further generic
assumptions can be made about a particular setup of the robot.

During an execution of an application, the user interacts with the robot by
means of its sensors and actuators. The internal control is not visible for
the user. The sensors and actuators of the robot constitute the interface. In
terms of information flow, the robot uses the actuators to perform actions
or to convey certain messages to the user. In return, the responses of the
user are perceived through a set of sensors. Based on the current state of
the application the next actions are selected and executed.

Despite their different hardware environments, Execution- and Develop-
ment-Environmentshare several concepts with each other. A major require-
ment for the overall Social Robot Design framework has been flexibility and
maintainability of the software. The amount of changes that are necessary
to realize a certain feature have to be reduced.
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7.1.2 Software reuse

The need for software reuse has long been recognized in software engineer-
ing [160]. However, even though there are plenty of benefits to software
reuse such as accelerated development, reduction of costs, increased reli-
ability and exploitation of expertise, software reuse remains difficult. A
major obstacle for software reuse is that software components are usually
specialized for one particular use case. Generalizing components to enable
them to serve for multiple contexts requires additional specification work,
which for most software projects is out of the scope of its initial specifica-
tion. In literature, several methods for effective software reuse have been
proposed. Sommerville lists several approaches that support software reuse:

· Design patterns
· Component-based development
· Application frameworks
· Legacy system wrapping
· Service-oriented systems
· Application product lines
· Commercial of-the shelf (COTS) integration
· Configurable vertical applications
· Program libraries
· Program generators
· Aspect-oriented software development

(Sommerville [227], p. 420)

In order to guarantee maintainability and flexibility of the overall SRD
framework, one design requirement is to develop one consistent set of com-
ponents for both, the Development-Environment and the Execution-Envi-
ronment. As has been shown in Fig. 5.3 on page 96, the Development-En-
vironment and the Execution-Environment intersect with all components
that are related to an application. Increasing the number of components
for this intersection therefore reduces the number of software change that
is required for implementing a new feature for both components. Software
reuse across both environment has been an important factor for increasing
maintainability and flexibility of the overall architecture

7.2 Component model

In this section the overall component model of the Execution-Environment
is introduced. First an overall reference architecture is selected. The refer-
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ence architecture is then further refined to meet the particular requirements
of the Execution-Environment.

7.2.1 Service oriented architecture

For the Execution-Environment a service oriented architecture (SOA) has
been selected as a reference architecture. Service oriented architectures
have been developed to facilitate software integration across organizational
boundaries. In particular, SOA provide means for developing distributed
systems of which every component is a stand-alone service.

SOA is a generalization of a client-server architecture as it is widely used
for the Internet. The major difference between servers and clients is that
servers may not ask clients for services. This restriction has been removed
for SOA. Objects may be distributed across a network or running locally on
the same machine. The service oriented architectures received increasing
attention in recent years because it promised several key qualities that are
relevant for business [227]. However, as Sommerville stated in 2007:

Because service-oriented software development is so new, we do
not yet have well-established software engineering methods for
this type of systems. (Sommerville [227] p. 747)

The main driving forces have been to reduce the development time, re-
duction of software costs and increase of software quality. Especially for
business applications the loosely coupled integration is an essential feature,
because it allows outsourcing of the development of certain software com-
ponents to specialized companies. Furthermore, parts of the overall system
can be easily replaced by a new service from a different vendor. Also for
vendors of services the service oriented architecture model is beneficial be-
cause it allows then to offer services to multiple customers.

In Fig. 7.2 a generic architecture overview of a service orienteted architec-
tures is given ([227] p. 286). The central concept of the model is a Service

that is provided by a ServiceProvider and used by a ServiceRequestor.
The ServiceRegistry is a central point that manages the establishing of
a connection between the two.

The service oriented architecture model was chosen for several reasons.
First of all, it allows for great flexibility in the overall Execution-Envi-
ronment by integrating stand-alone services from different vendors. This
enables a modular setup of the robotic system, e.g., by integrating sensors
and actuators as independent services. For example, a camera offers a
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Figure 7.2: Service oriented architecture

service to provide an image, and an image recognition service provides the
service to process the image. This setup is later explained in detail.

Secondly, distributed components as defined by a service oriented architec-
ture are highly configurable also during execution. It allows to dynamically
allocate system resources to computational tasks for the application. For
example, it allows to temporarily halt not required components or to dy-
namically restart parts of the system after a component failure. In the
OPPR system, these tasks were enabled by the DML middleware, which
belonged to the architectural package of the OPPR framework.

Thirdly, every component may run on its own terms and is therefore in-
dependent from the rest of the architecture. This affects the design of the
communication architecture. In contrast to desktop systems that are usu-
ally modeled as one processing entity, robotic hardware often consists of
multiple independent micro-controllers. This setup is best represented by
loosely coupled components which cooperate over a network. The difference
for the communication architecture are outlined in the next chapter.



7.2. COMPONENT MODEL 155

7.2.2 Asynchronous communication model

For the Execution-Environment an asynchronous communication model
rather than a synchronous model as for the Development-Environment has
been chosen. A communication event is said to be asynchronous

. . . if no mutual interference is caused by action of communica-
tion. (Simpson [223], p. 35)

While the Development-Environment could benefit greatly from a syn-
chronous component model, this approach is not suitable for the Execu-
tion-Environment. The main reasons for this are timing constraints for a
robotic system. A robotic system is an interactive system with real-time
constraints. Sommerivlle defined real-time systems by:

A real-time system is a software system where the correct func-
tioning of the system depends on the results produced by the
system and the time at which these results are produced. A
soft real-time system is a system whose operation is degraded
if results are not produced according to the specified timing
requirements. A hard real-time system is a system whose op-
eration is incorrect if results are not produced according to the
timing specifications. (Sommerville [227], p. 340)

A robotic system needs to be able to respond on demand as soon as an
event occurs. There are two types of events that can occur, periodic and
non-periodic events. Periodic events originate from sensors that produce
a periodic stream of data such as a camera that produces images with a
certain framerate. Non-periodic stimuli, on the other hand, can occur at
any time. Examples for such signals are bumper events that are triggered
when the robot collides with an object in the environment. The timing for
the response can be critical to prevent the robot from causing damage to the
environment or to itself. However, in order to avoid response delays due
to computationally expensive signal processing, a reactive control might
directly connect ‘Data collection’ to ‘Actuator control’. The mere presence
of the bumper signal can be used to trigger a response in the motor control.

This type of direct linkage between stimuli and action is difficult to realize
with a synchronous system because of the time constraints for the handlers
in the main loop of the synchronous architecture. The frequency by which a
handler is processed depends on the sum of processing time of each individ-
ual handler that is registered in the main-loop. A delayed execution of event
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handlers could potentially have negative consequences for the operating se-
curity of the robot. For the Development-Environment the synchronous
approach helped to synchronize multiple design views, but the focus for
the Execution-Environment is to react to a particular event as quickly as
possible. Therefore, an asynchronous decentralized communication model
is better suited than a synchronous model.

Furthermore, the asynchronous architecture is enforced by the typical hard-
ware setup of robotic systems. Robotic systems are often controlled by a
set of individual micro-controllers with no central clock, which allows true
parallel processing of data. For example, Ananda and Tay stressed the im-
portance of asynchronous communication for fully exploiting parallelism in
a survey of multiple systems for asynchronous procedure calls [3]. They ar-
gued that in a synchronous approach mutual synchronization events cause
delays and thus fail to optimally utilize available system resources.

Asynchronous communication can be realized using different communica-
tion models, including message passing, remote procedure calls or shared
memory. The selection of a particular communication model has also con-
sequences on the rest of the architecture. For example, remote procedure
calls introduce a tight coupling between system components, because a
client has to know about the existence and location of a function before it
can be invoked. Event broadcasting, on the other hand, allows a loose cou-
pling, because the sender has no knowledge about recipients of a message.
However, in this setup it is difficult to guarantee a reliable message passing
because no feedback is given if a packet was lost due to network errors.

Eugster et al. analyzed the abstraction level of several communication mod-
els, including remote procedure calls, message passing, message queueing,
shared memory and publish-subscribe mechanisms [67]. For classification
they introduced as criteria time, space and synchronization decoupling.
Based on these criteria they argued that publish-subscribe mechanisms of-
fer the most flexible and scalable abstraction for communication in dis-
tributed systems. Therefore, the publish-subscribe mechanism has also
been adopted for the Execution-Environment. In order to avoid dependen-
cies on a particular middleware or programming language, a general com-
munication protocol has been defined on-top of a message passing system.
The details of the communication protocol are discussed in the following
section.



7.2. COMPONENT MODEL 157

7.2.3 Communication protocol

In the literature, several publish-subscribe mechanism have been proposed
[150]. In their survey Liu and Plale presented a taxonomy of published-
subscribe mechanism based on the criteria:1) Subject-based versus con-
tent-based 2) System architecture, 3) Matching algorithm, 4) Multicast
algorithm, 5) Reliability and 6) Security.

The first four criteria describe the technical realization and the last two
criteria judge qualities beyond the core functionality of transmitting data.
For the Execution-Environment, especially the performance and reliabil-
ity of the communication protocol is of importance. The performance is
of importance due to the strict hardware constraints of robotic hardware
and the reliability is of importance, because the system has to insure that
critical events such as a bumper event do not get lost. The performance
is mainly determined by the realization as categorized by the first four
criteria, i.e., which broadcast strategies are used or which architecture for
the components is chosen. For example, an event can be broadcasted to all
components in the architecture or sent to another component using a point-
to-point connection. Another possibility is to organize the components in
a hierarchy so that an event can be forwarded between components along
the position in the hierarchy.

Taking the requirements of performance and reliability into account, as
well as common hardware constraints and typical use case scenarios, the
following communication architecture has been designed. An overview of
the communication architecture is given in Fig. 7.3. In order to reduce
network load, a point-to-point connection model has been chosen. The
connection class is the central concept of the communication architecture.
In terms of the taxonomy by Liu and Plale, the selected architecture falls
in the peer-to-peer category in which all components may take the role of
either a subscriber or publisher. For exchanging data, components establish
a connection to each other. The reason for this is that not every component
needs to be informed of events in the system. For example, raw sensor data
such as a camera image or sound data do not need to be distributed to all
other components.

A publish-subscribe mechanism based on individual connections requires a
subscriber to register at a publisher and to establish a new connection. This
would introduce a tight coupling between sender and receiver. However,
this dependency can be avoided using the concept of the service registry
from the service oriented reference architecture. In Fig. 7.3 the dispatcher
takes the role of the service registry. Every component in the system regis-
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Figure 7.3: Overview of the asynchronous communication protocol
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ters itself at the dispatcher with a description of the component using the
component definition. The description also contains a list of the events that
are provided by the component. A component can query the dispatcher to
receive a list of all events that are available in the system. In order to
receive an event, the component has to register for a particular event. In
turn, the dispatcher establishes a new connection between the provider of
the event and the subscriber. This connection is used for directly com-
municating between the components, i.e., sending the inquired events from
the publisher to the subscriber. This peer-to-peer setup avoids a bottle-
neck that could emerge in a centralized communication model. Arguably,
the peer-to-peer setup puts more administrative overhead on the side of a
component, because a list of subscribers has to be maintained, but it also
shortens communication paths. In terms of reactivity, this setup allows low
communication delays because of direct connections.

The publish subscribe mechanism has been realized on-top of message pass-
ing using sockets. This design decision offers the flexibility of reliable com-
munication using TCP, but it is still generic so that the architecture is
not bound to a special communication library. In the component model
of the Execution-Environment, the administration of connections has been
encapsulated in a central component object of the Execution-Environment.
In Fig. 7.3 this base class is represented by the ExComponent (Execution-
Environment Component). The component internally keeps track of reg-
istered subscribers. The function sendEvent() internally posts events to
all subscribers that are registered at the moment the event occurs. If no
subscriber is registered, the message is simply discarded without producing
any network traffic.

The administration of the publish-subscribe system over message passing
is realized with special administration events. In the overview depicted in
Fig. 7.3, events are modeled as objects with a hierarchy. This allows to
assign a type to a message. On the first level of the hierarchy a distinction
is made between Control-events and Data-events. Control-events encapsu-
late all events that are used for controlling the communication mechanism.
For example, a component issues a RegisterEvent to the dispatcher if it
wants to receive events of a certain type. The dispatcher in turn issues
an EstablishConnection event to the publisher with the address of the
subscriber. The event QueryEvents is issued to inquire a list of all avail-
able event types from the dispatcher. All events are serializable to a string,
which is transmitted over the connection. This enables also non-object ori-
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ented programming languages to participate in the communication and to
filter and react to events.

Another advantage of the selection mechanism is that it can be used for an
efficient specification to define the class of events that a component wants
to register for. In order to keep the system as flexible as possible, while at
the same time reducing the amount of messages that need to be sent on
the network, a label based selection of messages was chosen, extended with
the possibility of regular expressions. The label specifies the type using a
fully qualified identifier. A label based selection mechanism allows a more
powerful specification than a purely type based comparison. For example,
Eugster et al. presented a comparison on several methods for identification
of messages [67]. In the easiest form an identifier characterizes the type
of the message that is sent by a publisher. Subscribers use this identifier
to express their interest in a certain type of message. The expressivity of
this identification method can be extended by hierarchical address spaces
and regular expressions such as wildcards for the identifiers. An even more
powerful method is to select the desired messages by directly addressing
the content of a message, e.g., by checking whether a certain attribute is
available in the message or, more specifically, whether an attribute value is
in a desired range. All of these methods can be encoded in a label based
selection mechanism. In the literature, several special purpose subscription
languages have been devised [67]. For convenience and consistency within
the SRD framework, XML has been used to serialize objects. Events can
be identified using XML XPath expressions [34] which provide a powerful
mechanism to identify nodes within a XML document tree.

However, a disadvantage of the label based mechanism in comparison to a
fully type based comparison is that it sacrifices type safety during compile
time. A trade-of had to be made between flexibility and formalism. In order
to allow as many different environments as possible, the label based mech-
anism was preferred. Requirement 4.4 in particular demanded to integrate
with existing environments. Limiting the architecture to only object ori-
ented programming paradigms would exclude all environments that build
on imperative or functional programming paradigms.

Having described the overall communication architecture, the following sec-
tion describes the overall component decomposition of the Execution-En-
vironment.
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7.2.4 Component architecture

In this section, the overall component architecture of the Execution-Envi-
ronment is developed. As has been shown in Fig. 5.3, the Development-
Environment and Execution-Environment share the central concept of an
application. For this reason, several constructs from the Development-En-
vironment reappear in the Execution-Environment.

First of all, the Execution-Environment is modularized with a central com-
ponent concept. The overall architecture of the Execution-Environment
is depicted in Fig. 7.4. In analogy to the Development-Environment, the
Execution-Environment defines a central component class. The component
class describes a general interface to which all components in the Execu-
tion-Environment adhere. The general component model gives flexibility to
dynamically extend and configure the architecture. The component model
is driven by the communication mechanism as described in the previous
section, but instead of defining a synchronous component execution, the
interface provides functions to handle asynchronous events. Instantiation
of components is decoupled from the class definition with the factory design
pattern.

One generalization that has been introduced to the overall SRD architecture
is the global concept of a component from which both, the development
component DevComponent as well as the execution component ExComponent
are derived. In both environments the components utilize the mechanism
of a component definition to provide meta information that is independent
from the type information.

The ExComponent furthermore specifies the interface to extend the ar-
chitecture with new components. As for the Development-Environment, a
component designer might choose to provide a library or a stand-alone mod-
ule that adheres to the communication protocol as described in section 7.3.
However, while in the Development-Environment a special host-component
was developed to allow network access to the component interface, this is
not required for the Execution-Environment. Components are already de-
coupled using an asynchronous message passing interface. TCP network
access is therefore implicitly available.

The administration of the communication is handled by a dispatcher simi-
lar to the one presented in [41]. The event dispatcher maintains a list of all
components in the system and thus a list of all events that are available.
In case a component registers for a specific event, the dispatcher notifies
the corresponding publisher to establish a connection to the subscriber. In
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Figure 7.4: Execution environment
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turn, the dispatcher only needs to be consulted for control events, for ex-
ample to register for a new event or to reestablish a connection after a con-
nection failure. Using this approach, the Execution-Environment provides
a dynamically configurable framework in which modules can be attached
and removed during run-time. Furthermore, it provides an easy debugging
mechanism, because it allows to monitor events without interrupting the
original data flow.

Using the generalization of an ExComponent, classes of the development
environment can be integrated by implementing the asynchronous com-
munication interface. This allows to keep certain functionality encapsu-
lated in one dedicated class. For example, the Artifact-Executor that
has been used to render application artifacts in the Development-Environ-
ment can provide the same functionality in the Execution-Environment.
The hardware abstraction layer remains therefore intact. A particular Ar-
tifact-Executor encompasses the knowledge to decode the application
artifact to the next lower level of abstraction. On the lowest level, the Ar-

tifact-Executor uses the embodiment interface to send commands to the
underlying hardware. The modules may even be reused unchanged, except
for the communication interface, if the deployment hardware has sufficient
specifications. For concrete environments, however, the modules have to
be adapted to the underlying hardware. This process is specific to every
concrete hardware setup, but it is supported by architecture due to the fact
that the specifications are defined by the type of applications that is to be
executed. A mismatch between required and available hardware resources
can therefore be detected early in the development cycle.

For robotic application developers, the more challenging task is to integrate
reactivity to the environment with expressivity of the robotic embodiment.
During concrete behavior development, this timely reaction to signals plays
only a subordinate role. For the correct execution of an application it is
essential. How an application developer can integrate a connection to the
sensor hardware within the SRD framework is discussed in the next chapter.

7.3 Integrating context

Interactivity is a key principle for all major robot applications. Interactivity
describes the ability to react to the environment. Access to sensor data is
not only crucial for interacting with communication partners, but also for
low level control algorithms such as a stabilizing routine. The ability of
pattern recognition has a major influence on how the user will interact with
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a device. Pattern recognition allows computer interfaces to extend beyond
current screen based interaction controlled by keyboard and mouse. For
example Rauterberg and Steiger integrate multiple interaction modalities
to achieve a more ‘natural interaction’ [196].

Several libraries have been developed that aim to provide high level inter-
faces, but no unified interface standard has emerged yet. Robotic sensor
and actuator components miss widely accepted specifications as are com-
mon for PC environments. In consequence, developers of robotic applica-
tions have to learn proprietary libraries to interface with a specific piece
of hardware. Especially for high level interaction design, this approach
becomes unpractical.

In Chapter 3.3 on page 46 three basic design dimensions for creating robotic
behavior have been identified. They have been: 1) Naturalness, 2) Ade-
quateness and 3) Development over time. It has been shown that the
‘Naturalness’ and ‘Development over time’ dimensions are covered by the
functional animation principle. The missing dimension is therefore the
‘Adequateness’ dimension. The ‘Adequateness’ dimension goes even be-
yond simple reactions to sensor data as it already encodes a description of
the context that influences the selection appropriate actions. The following
section describes the design of a situation awareness model for the SRD
framework.

7.3.1 Situation awareness

For successfully maintaining a social interaction with the user, devices have
to react appropriately to a given situation [47]. For example, Endsley
stresses the importance of situation awareness (SA) for human centered
design [66]. For an application designer, the challenge is therefore to con-
nect signals from the environment to the application logic, in order to
trigger appropriate responses. That is, the designer has to select signals
that are important for a given situation and define rules on how to react to
them. The context may include internal values, such as battery power and
position of the actuators as well as external attributes such as how many
users interact with the robot and the actions of the user. Furthermore,
situation awareness supports to establish a common ground to reference
objects of an environment during a communication. A common ground is
crucial for successful referencing and dereferencing certain objects. Ref-
erencing algorithms such as presented by Krahmer and Erk [132] require
feature extraction and symbol grounding, thus a reliable representation of
the environment.
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In the literature, no consensus about a definition for situation awareness
(SA) could be reached yet [202]. For example, it is still in debate if SA is
solely defined as a set of pieces of information about a state, irrespective
of the process that led to the description, or if SA is inherently defined
the processes that constructs a representation about a state. The most
cited definition of SA is the definition from Endsley, who defined situation
awareness as:

The perception of the elements in the environment within a
volume of time and space, the comprehension of their meaning,
and the projection of their status in the near future (Endsley
[63]).

Endsley distinguished between process and data description by referring to
the state with ‘situation awareness’ and referring to processes involved to
acquire an awareness of the situation as ‘situation assessment’ [65]. These
two aspects of situation awareness are often confused with each other.
In this research the definition of Endsley is adopted, because it includes the
processes that are necessary to acquire information by perception as well
as the resulting state that represent the current situation. However, from
a designer’s perspective, only the final representation of a state is relevant,
because this information is necessary to take decisions on the next actions.
The process of information gathering should be transparent to the designer.
In the literature, several computational models have been proposed [6].
For example, Dey presents a data driven modular model in which different
steps in the information processing chain are represented by widgets [51].
Crowley presents a conceptual framework and architecture for analyzing
situation models and for observing human activities [40]. He argues that a
representation of behaviors from people can in return be used to increase
a level of SA for an application and to trigger actions.
In her model of SA, Endsley describes three levels of SA, which are con-
nected in a linear hierarchical process [65]. The model is depicted in Fig.
7.5. In this model, decision making takes place outside of SA so that ac-
tion selection only receives the result from the SA process as an input. This
general architecture has been adopted for the SRD framework. Situation
awareness is described as the sum of all signals that are captured from the
environment at a given moment in time. Using this model, the applica-
tion designer can describe high level rules for action selection, decoupled
from the sensing mechanisms of the robot. The process of acquiring and
maintaining a representation of the state can be modeled on a lower level,
so that the state representation also forms the interface for the application
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Figure 7.5: Model of situation awareness conceived by Endsley (Source:
Endsley 1995 [64])

designer. A general data flow model distributed over layers of abstractions
within the SRD framework is depicted in Fig. 7.6. Data originates on a
hardware level from sensors. The application designer, in turn, can define
high level rules on how to react to a certain stimulus.

For realizing a decoupled situation awareness architecture, a control model,
a concept of time and an attention mechanism need to be defined. These
three concepts are discussed in the following:

Control The control model defines how data is acquired and delivered to
the application logic. A data driven hierarchical process model for SA, such
as Endsley’s ‘perceive-comprehend-project’ architecture, defines an one-
way flow of information that originates from low level sensors. Assuming
that the application logic has control over the execution of an application, it
seems straightforward to define an interface to trigger information gathering
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Figure 7.6: Information flow model

procedures form the SA and to query desired information. This model
would turn the situation awareness into a passive system that only reacts
to requests from the application logic. However, for reacting to sudden and
unanticipated events, the SA component needs to be in control and trigger
the application logic.

In both cases, the flow of information stays the same, only the initiative
changes. In fact, both the top-down and bottom up are eligible control
models. That is, SA is at least partly controlled either by a cognitive
process or action generation process [187]. For these reasons, both control
models have been adopted for the SRD framework. Using the asynchronous
publish subscribe mechanism as described above, the application logic may
register for events that can occur non-periodically. In the other direction,
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the situation awareness defines a control interface for triggering information
processing modules.

Time Next to the results of the sensor data processing, situation aware-
ness encompasses values that cannot be perceived at the very moment in
time, but are still relevant for describing a situation [159]. For example,
an object or person can be temporally occluded from the robot’s sensors,
but is still meaningful for choosing the next actions. The situation aware-
ness model has to handle these situations in order to provide a high level
of abstraction across robot applications and to reduce the implementation
effort for the designer.
The majority of models proposed for SA cover the notion of time, but
mostly in the direction of the future by projecting a current state to likely
future states [65]. Being able to predict future states enables a system to
take appropriate precautions and is therefore integral part of SA. While
prediction has been part of many models of SA [48, 65], history has often
been excluded and analyzed separately, for example in terms of working
memory [202].

Attention mechanism Being aware of a situation includes being able to
focus only on relevant information in a given situation. An attention mech-
anism facilitates to efficiently select environmental properties, for example
to compensate for hardware limitations in terms of computational power
or sensor range. Patrick and James pointed out that before perceiving or
examining certain aspects of a situation, a control mechanism has to decide
what to examine [184]. Humans use a sophisticated filtering mechanism in
order to reduce the complexity of processing information. Current sensor
technology faces a similar challenge. Sensors are able to record a multi-
tude of information from the environment, but processing this information
becomes a problem, especially in real-time applications in which the user
expects prompt feedback. Therefore, a SA component needs to be able to
focus available computational resources on relevant information.

7.3.2 Situational awareness architecture

A domain model of the situation awareness architecture is depicted in
Fig. 7.7. The central concept is an application that runs on an embod-
iment. The application defines the overall behavior of the robot in terms
of autonomous actions, as well as responses to events from the environ-
ment. Events that the robot has to react to include, for example, user
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Figure 7.7: Domain model of a situation awareness architecture in the
context of an application

events, e.g., by touching the robot or by giving a speech command, and
environment events, e.g., a mobile robot that bumps into an object. In
order to sense the environment, the robot is equipped with sensors such
as buttons, cameras or microphones. The sensors build the foundation
for a situation awareness as they are the sources for incoming informa-
tion. However, the raw signal is only for emergency situations directly
connected to a behavior, e.g., in case of cliff sensors. For sensors such as a
microphone and camera, a considerable computational effort is required in
order to extract a desired piece of information. Therefore, the raw signal
data has to be processed. A RecognitionModule encapsulates signal pro-
cessing algorithms that provide new, higher level information, extracted
from input signals. RecognitionModules are hierarchically ordered and
can query data from each other. The result of a computation is available to
the ApplicationLogic through a general SituationAwareness interface.
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Figure 7.8: Example use case of the situation awareness architecture

An example setup of a situation awareness, of how it might be used for a
particular application is depicted in Fig. 7.8. The main direction of data
flow in the model is from left to right, with increasing levels of abstraction.
It starts at the left with the low level raw signals from the sensors that
are passed to recognition modules. For example, the image data from the
camera are passed to an instance of a face recognizer and to a gesture
recognizer. Every of the recognition modules processes the incoming data
and provides new data on a higher level of abstraction. The communication
uses the publish-subscribe mechanism as described above. Therefore, all
data communication is encapsulated in typed events. For example if a new
image is available from the camera, the camera module publishes this image
within an event of a unique type. Other components may register to receive
these events.

Using this typed system for a situation awareness has several advantages.
First of all, the recognition modules can be specified as reactive compo-
nents with a typed input and typed output. They process the data asyn-
chronously as soon as it becomes available. A general model of recognition
module in terms of a reactive system component is depicted in Fig. 7.9.
The recognition module implements an input interface that specifies which
data it expects as an input. The description is given as an element-selection
string using regular expressions. For example, if a component requires an
image as input this string specifies the identification label of camera images.
Analogously, a recognition module provides a type description of the data
that it is able to compute. In the case of a face recognizer that might be an
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Figure 7.9: Recognition module as reactive system component

image region. In the case of a face identifier that might be a person name.
This mechanism provides a flexible interface for specifying new types of
recognition modules. For example, a module to find an interaction partner
might be interested in face regions above a certain size, so that the person
is close, and additionally require a transcript of speech commands in order
to asses if the user is addressing the robot.

Secondly, the typed system allows to specify a hierarchy of components. A
component has a set of required and provided interfaces [69]. A component
that only relies on raw sensor data has a lower position in the processing
hierarchy than a module that requires high level data abstractions. Fur-
thermore, this hierarchy can be constructed automatically by the situation
awareness component. To this end, the situation awareness component
maintains a list of all recognition modules that are available to the system.
If the application logic requires a certain data type, the situation awareness
searches through the list if any of the modules provides the requested data
as output. If one component is found, the situation awareness subsequently
tries to resolve the input requirements of this module down to sensor level.
If no configuration could be found, the missing data type is indicated to
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the developer. If, on the other hand, multiple configurations are possible,
a selection policy can be set, based on meta information of the concrete
recognition modules. Meta information might include computational per-
formance, recognition quality or even software vendor. A simple matching
procedure is applied analogously to the event selection mechanism. If still
multiple configurations are possible, a random configuration is chosen.

Thirdly, the typed interface abstraction allows different software vendors to
provide new recognition modules that can be seamlessly integrated in the
environment. In fact, as soon as the new module is registered to the situa-
tion awareness module, it may be integrated in the signal processing chain.
Registration is in the current version is realized by loading the available
modules from a directory. However, the interface also allows the modules to
be registered as web-services from a remote location. Configuration of the
modules can be handled using control events. The actual implementation
and location of the recognition modules is transparent to the application
designer. Analogously to the dispatcher, the situation awareness compo-
nent can be queried for all available data types. The application designer
may use this information for example to see if a face recognition module is
available and subsequently connect the input to a gaze behavior that keeps
eye contact with the user.

All calculated data from the recognition modules is available to the appli-
cation using direct connections of the publish-subscribe mechanism. These
connections are established by the situation awareness component as soon
as the application logic registers to receive a certain data type. From an
architecture point of view, the situation awareness component performs
similar functionality as the dispatcher and is therefore modeled as special-
ization of the dispatcher. It organizes data connections between sensory
and data processing units to subscribers of the data. As for the general
communication architecture, this avoids bottlenecks in the network by dis-
tributing connections locally between components.

Wizard interface

A particular instance of the above described general situation awareness
framework is used for realizing a wizard-of-oz interface. In requirement
3.4 it was demanded that a particular use case of the SRD framework is
to prepare controlled user studies in the field of HRI. The main challenge
for the design of an experiment is to vary only the parameters that are to
be researched and keep all other factors constant. One of the main points
of uncertainty is the variance of quality of recognition results of signal
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Figure 7.10: Architecture of the tutoring application

processing algorithms such as speech or face recognition [255, 72]. The
uncertainty increases for less understood fields such as emotion recognition
[38]. These factors have to be controlled in user studies.

The reference system for all social and emotional interaction is still the
human. Therefore, wizard-of-oz experiments are a common experimental
setup in the field of HRI, because it allows for quick prototyping and insures
controlled responses to input from participants. Within the SRD framework
there are two main entry points for inserting a wizard interface. The first
possibility is to externally control the application logic, for example by a
control GUI that lets the experimenter decide on which actions to perform
next. In the second possibility, these interfaces are modeled as recognition
modules within the situation awareness framework. An example of this
setup has been used for a user study with an educational robot [211]. A high
level overview of the architecture is given in Fig. 7.10. This architecture
made a controlled experiment possible, avoiding the confounding factors of
speech and card recognition failures.

However, while the perception of the robot can be controlled using the wiz-
ard interface, it cannot be controlled how particular behaviors are rendered
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by the hardware. For example, if a robot uses motion to express emotions in
the behavior it is essential that the hardware accurately performs specified
motion paths. Naturally, the accuracy by which an action can be performed
depends on the underlying hardware. For position controlled robots, such
as iCat, accuracy is less a constraining factor, because the current position
of an actuator can be measured absolutely and hence inaccuracies do not
add up over time. For velocity controlled mobile robots such as Roomba,
however, such an absolute reference system is not available. An additional
limiting factor is that consumer robots have strict price constraints which
usually conflict with high accuracy control requirements. The next section
presents a study on the accuracy of a Roomba vacuum cleaning consumer
robot as an example of a low cost mobile platform. It is investigated if such
platforms are generally suited to be controlled for expressive interactions.
Furthermore, a modular neural calibration method is developed that allows
to improve the drive accuracy without adapting either the Execution-Envi-
ronment or the robotic hardware. Instead, the calibration method can reuse
principles from functional animations to on-line update the calibration.

7.4 Robot calibration

The in the following presented study has separately been submitted for
publication in the International Journal of Social Robotics.

Abstract – Low-cost behavior based robots have entered our
every day homes. Despite their simple control algorithms and
low-cost hardware, they are able to perform tasks such as vac-
uum cleaning or lawn mowing autonomously. Traditional re-
search on mobile robots optimizes for accuracy, coverage and
speed, which usually conflicts with the strong cost constraints
of such platforms and neglects the social impact of a domestic
robot.

In this paper we present a simple on-line calibration method
for closed low-cost robotic controllers. We apply a neural net-
work in a model predictive control (MPC) approach to train a
relationship between control signals and resulting robot config-
uration. The system is based on a geometric model of the drive
system, removing the need to give a complete description of the
dynamics of the system. We demonstrate the effectiveness of
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our approach through experiments with Roomba, a commer-
cially available robotic platform for vacuum cleaning.

Low-cost consumer robots have entered our private homes and begin to take
over tasks such as vacuum cleaning or security related tasks. Furthermore,
researchers explore further application areas such as medical applications,
space exploration, health care or as general multi-purpose interface robots
[219]. It is foreseen that personal robots become ubiquitous available, not
only at our work places, but also as in our private environments.

One of the biggest technical challenges for mobile domestic robots is to op-
erate autonomously in unstructured, dynamic and unpredictable environ-
ments. Recent studies have shown that next to these functional require-
ments robots also need to integrate in the social environment of a personal
home. However, most of the current robotic platforms underestimate their
social impact and do not address how they are perceived by the user in
the development. For example, Forlizzi demonstrated that the domestic
robot Roomba had an effect on the social family life [74]. Bartneck argues
that researchers have only just begun to understand the social implications
of domestic robots [11]. In literature several studies are reported that in-
vestigate how humans perceive and respond to autonomous robots. It is
believed that the robot’s behaviors, especially its movement patterns have
an influence on the perception of the device. Already in 1944, Heider and
Simmel demonstrated that humans are naturally biased to attribute life-
like features such as animacy, intentions and emotions to moving abstract
geometrical shapes [104]. In this line of research, Tremoulet investigated
the motion features of a single moving dot and found that, among others,
the magnitude of direction or velocity change has an impact on the per-
ception of animacy [235]. Reeves and Nass have found that people apply
social rules when they interact with media (e.g., through a computer or
television) even if they are consciously aware of dealing with a machine
[198]. Especially the interaction with robots enhances this tendency, due
to their physical presence [193].

From these observations it follows that household robots have an addi-
tional requirement of behaving in a way that is interpretable by humans.
One track of research explicitly focuses on utilizing social interaction tech-
nology as an interface paradigm [28, 47, 114]. Instead of designing for func-
tionality, research investigates on how the robot is perceived. For example,
a certain perceived personality can impact the interaction and acceptance
of the device [58]. Meerbeek et al. investigated the influence of different
personalities of an interface robot with an animated face in a TV-assistant
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application [161]. Goetz et al. go one step further, by explicitly measuring
the mental model a person has of a robot [88].

New robot control requirements

In the above examples, a major factor in the perception of the personality
has been the behavior of the robot, in particular also its motion patterns.
While traditional research on robotic motion focuses on optimizing for ac-
curacy, efficiency and speed, research on social interaction technology also
investigates how movement patterns can be used to facilitate interaction
[238]. The emphasis here is on the user perspective in contrast to the
functional perspective. Taking the example of a mobile robot, one of the
crucial differences between a functional and user perspective is that from
a functional perspective it is only important that a robot reaches a certain
position, not how he reaches it. Therefore, a control algorithm may per-
form additional control movements to closely track a desired path. From
a user perception perspective, however, the relative motion patterns have
more impact on the perception than its absolute positions [235]. For ex-
ample, abrupt control movements might give the impression of an insecure
or nervous personality which the user may not appreciate.

Given the above observations it follows that also low-cost consumer robots,
such as the Roomba vacuum cleaning robot, may benefit from explicit de-
signed expressive behaviors. Usually those behaviors consist out of se-
quences of relative movements that the robot has to track. Therefore, the
robot has at least locally to be able to track a designed path, even if no
global positioning is available. Traditional approaches to accurate path
tracking often encompass more accurate sensors and actuators that conflict
with the hard cost constraints of consumer products.

In this paper we propose a simple calibration method for a mobile robot
that improves the path tracking accuracy without requiring any additional
hardware, but optimizing for perception of the robot by avoiding additional
control movements. Given the application domain of a low-cost consumer
robot, we set the following three constraints: (1) The method may not
violate the cost-constraints, for example by adding new hardware. (2) The
method has to work with closed systems to be generally applicable also
to platforms on which there is no access to the internal control algorithm,
which also supports a modular design and rapid prototyping of social robots
[12]. (3) The local path tracking performance should be improved with a
focus on the perception of the movement. The last constraint sets a frame
of reference for the application domain. It stresses that the optimization
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might not add additional correction movements that, for example, could
be interpreted as nervous behavior. In this study we focus on the technical
aspects of the problem rather than performing a cognitive experiment. In
order to investigate this research question, we developed a simple robot
animation software that enables us to create expressive motion paths and
render them on a differential drive robot. We demonstrate the effectiveness
of the calibration method through experiments with the Roomba vacuum
cleaner.

7.4.1 Related work

In literature, a vast body of studies on robotic control is available. A general
overview of the field of robotics is presented in [219]. In the following we
will focus on the difficulties of robot path tracking and name common
approaches to address them.

Sources of error

What makes accurate path tracking so difficult is the fact that the robot
controller has to deal with uncertain data. Uncertainty originates from
external as well as from internal sources of error [233]. External errors
result from the fact that sensors can measure properties of the environment
only with a certain degree of accuracy. Internal errors, describe the errors
that are being made due to simplifying assumptions, for example about
the device’s dynamics, geometrical setup or physical interactions with the
environment.

Internal errors can further be classified in three categories: (1) systematic,
(2) random, and (3) numerical errors [116]. Systematic errors are caused
by inaccurate knowledge of the drive system and its kinematic properties.
For example, a systematic error is introduced, if it is assumed that the
wheels are equal, but actually differ slightly in size or if mechanical inertia
are ignored. Random errors are caused by random physical processes such
as slip on the floor or inaccuracies in the actuators. The last source of
errors, numerical errors, are introduced by digital information processing.
Inevitably, numbers can only be represented up to a certain precision, but
many kinematic approaches require integration over time, which therefore
has to be quantized in a digital micro controller.

In this paper we address the systematic errors that are caused by inaccurate
models of the drive system, but in contrast of proposing to change the
already existing control algorithm we developed a calibration procedure
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that can be added on top of an existing embedded controller. However, the
goal is not to develop a high precision drive system so that the robot ends
exactly at a specified position, but to improve the drive behavior so that
the robot is able to render local expressive animations.

Path tracking

Naturally, the accuracy by which by a path is tracked, very much depends
on the available hardware and control software. In this paper we focus only
on the software, in particular on the control algorithms.

In general, the control algorithms can be classified in reactive and proac-
tive approaches. A common reactive approach to error correction in path
tracking, which is commonly used by commercial applications, are PD or
PID (proportional-integral-derivative) controllers [230]. PID controllers lin-
earize the dynamics of the robotic system and construct an error feedback
signal from a weighted sum of the current error (P), integration of past
errors (I) and the rate with which the error has been changing (D). The
controller can be tuned by adjusting the influence of these three measure-
ments. Due to the simplifying assumption of linearization, PID controllers
are very easy to implement, with few requirements to the micro controller,
and are therefore well suited for low-cost domestic robots. Another class
of reactive approaches are probability based algorithms such as particle fil-
tering [233] or Markov Models [222]. For example, Webers et al. propose
two motion control approaches to reach a noisy, shifting or stochastically
moving target [250]. However, due to the fact that reactive approaches can
only react once the error already has been made, such control approaches
tend to result in additional control movements. A typical example is the
overshooting behavior of PID controllers, by which they oscillate asymp-
totically around a target value. As outlined above, this kind of additional
movements can cause negative interpretations by the user.

While reactive approaches only react when an error already has been made,
proactive algorithms try to predict future states and minimize the error
by adjusting the control signal beforehand. In particular, model predic-
tive control approaches (MPC) construct an estimation of the result of a
certain control command and compare the prediction with the actual ex-
ecution result [251]. From this comparison an error signal is constructed
that is used to update the control command. The update of the model can
either be done on-line or off-line, for example by using machine learning
techniques, such as neural networks [256] or evolutionary algorithms [94].
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In [97] Dongbing et al. presents a path-tracking algorithm based on a multi-
layer back-propagation neural network to model the non-linear kinematics
of a mobile robot. The choice to employ a neural network is motivated by
the ability to learn any continuous function, which is needed to adequately
represent the non-linear drive kinematics of a mobile robot.

A common technique that can be applied in both, reactive and proactive
approaches, to more accurately track a path but at the same time focus
on smooth execution, is to explicitly take the physical properties of the
hardware into account, for example using Lyapunov functions [2]. The
problem of this approach is, however, that it requires more computational
power and digital accuracy than usually available on an embedded micro
controller. Nelson compares three further methods to achieve continuous
steering functions for a mobile robot [174], namely (1) changing the steering
mechanism, (2) changing the guided point and (3) changing the curves on
the path. For our research the major disadvantage of changing any of
these properties is that access to the internal micro controller is required
to change the existing control algorithm.

The question that we want to answer is, whether we can improve the path
tracking performance within the boundaries of the existing control algo-
rithm where we have only control over the command parameters. In litera-
ture, updating the parameters is also referred to as calibration. Calibration
techniques offer a simple solution to achieve an acceptable path tracking
performance without requiring to change either the hardware, or the control
software.

Calibration techniques

In general, calibration techniques can be classified in off-line or on-line
techniques. Hybrid solutions start with an initial off-line calibration and
adapt those initial parameters later on during execution as in [33].

Off-line calibration methods are characterized by special requirements for
the calibration procedure, such as that the robot needs to follow a well
defined, known path or a special measurement equipment to determine the
robot’s current location. For example, Borenstein and Feng present a prac-
tical calibration method to correct systematic odometry errors [25] called
UMBmark (University of Michigan Benchmark) in which they let the robot
drive on a known square path. They also showed that the shape of the path
cannot be chosen arbitrarily, because errors in wheelbase and difference in
diameter of the wheels can compensate each other. The method received
some critique, for example in [62], because UMBmark assumes a smooth
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surface for calibration and only takes the end-point locations of a test path
into account. Doh et al. proposed a more accurate calibration method,
called PC-method (POSTECH CMU-method), which uses the whole path
for calibration [55]. In their study, they analyzed six sources of systematic
error, namely (1) wheel misalignment (2) offset distance between center of
rotation and wheel (3) offset distance between the nominal center of wheels
and the center of mass induced by uneven mass distribution (4) different
wheel radius (5) different forces on each wheel because of uneven mass dis-
tribution (6) position shift during rotation. They found that misalignment
of the wheels is the major source of error, while the others are negligible.
In their experiments they used a low speed to minimize the influence of
non-systematic errors such as slip and they ignored numerical errors.

On-line calibration, on the other hand, allows to update the parameters
of the robot controller during execution. For example, one track of re-
search aims to improve the accuracy of odometry data by sensor fusion
techniques as extension to the sole measurement of the wheels. Martinelli
and al. propose a technique to simultaneously localize and calibrate the
motion model, using Kalman filters and sensor fusion with absolute posi-
tion estimation with a laser range finder [157]. Meng and Bischoff offer an
odometry calibration for a custom built robot platform with two steerable
drive wheels and a method for slippage detection which is used to trigger
an update by a global localization procedure [166]. Wei and Fan present a
model predictive control algorithm for an articulated robot in which they
apply a neural network as the predictive control model [251]. The train-
ing set is obtained by measuring joint variables and torques. The authors
criticize that the non-linear coupled and time varying dynamics are often
ignored, or have been treated as disturbances and train instead the non-
linear relationships with a neural network. In their experimental setup,
the systematic errors mainly result from unknown link properties, loads
or unknown torque constants and the random errors mainly result from
non-linear friction, high frequency modes and time delays. Their results
show that the neural neural network approach is an effective method for
holonomic constraints. Xu et al. confirm this result and calibrate a robotic
joint module with two degrees of rotary freedom for which they use a feed
forward neural network to predict errors in joint angle [254]. A second
network is trained with the residual errors of the first network to further
increase accuracy, but also increases computational complexity by a factor
of two.
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In general, the effectiveness of the calibration methods depends to a large
degree on the accurateness of the chosen motion model that is subject of
the calibration. The models that better represent the non-linear kinematics
of the mobile robot yield better results than those who ignore the influence
of non-linear relationships, but are usually mathematically more complex
and computationally more expensive. From our comparison we conclude
that neural network based approaches are especially promising, because
due to their implicit ability to learn also non-linear continuous functions
they require less modeling effort of the motion dynamics. Additionally,
neural networks have the ability to update the calibration on-line, which is
in particular useful for low-cost hardware that may change drive behavior
significantly during long term usage due to wearing out effects.

Even though the presented odometry calibration techniques cannot claim
to make absolute localization unnecessary [166], they are able to improve
local path tracking capabilities sufficiently to follow short designed paths
in a behavioral control approach. In the following, we will introduce our
approach to expressive path generation and present a simple neural net-
work based on-line calibration technique that we applied to a commercially
available differential drive robot.

7.4.2 Hardware setup

In our setup we took Roomba as an example of an available low-cost con-
sumer product. Roomba is a behavior based robot that also provides an
open interface (ROI) [111] to steer it with serial commands. This possibility
of external control makes it equally attractive for hobbyists and researchers.
On several websites and web forums, robot enthusiasts share and discuss
several projects for Roomba and developed several little applications, also
besides its original vacuum cleaning task [138]. Furthermore, it is an at-
tractive research platform for human-robot interaction research, not only
due to its low price in comparison to other research platforms, but also
due to its robustness as a consumer product and the fact the Roomba is
directly associated with a task, which allows research in real world settings
instead of laboratory conditions [74].

Roomba has a differential drive system, consisting out of two velocity con-
trolled wheels with a radius of rw = 33mm, which are mounted with a base
distance of b = 258mm (see Fig. 7.11). A configuration of a differential
drive robot is given by the triple (x, y, α) where x and y determine the
position of the robot, measured from the center between the coaxial wheels
and α is current orientation. From its geometry it follows that the forward
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Figure 7.11: Roomba differential drive geometry.

velocity v and angular velocity ω can be calculated from the left (vl) and
right (vr) wheel speeds:

v =
1

2
(vl + vr)

ω =
1

b
(vr − vl)

(7.1)

The according kinematic description of this drive setup is given by:

ẋ = v cos α

ẏ = v sinα

α̇ = ω

(7.2)

However, the open interface of Roomba does not allow to directly control
the wheel speeds. Instead, it provides a higher level interface consisting of
the two parameters radius r and velocity v, which are calculated according
to:

r = b
vl + vr

2(vr − vl)

v =
vl + vr

2

(7.3)

The two parameters are illustrated in Fig. 7.12. Using this setup, driving
straight would mean to have an infinite radius. Therefore, the controller
distinguishes between three different drive cases, depending on the value
for radius: (1) driving a curve, (2) driving a straight line (3) rotating on
the spot. For the first drive case, Roomba drives on a circle with radius r
and velocity v. A positive radius and a positive velocity will make Roomba
turn left. A combination of negative radius and positive velocity will make
Roomba turn right. If negative velocities are specified, Roomba will drive
backwards. According to the documentation of the command interface, the
value for the radius has to be in the range of [−2000mm, 2000mm] and the
velocity has to be in the range of [−500mm/s, 500mm/s]. The other two
drive cases are identified by special values for the parameter of the radius.
Roomba drives in a straight line, if a value of 32768 is specified and rotates
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Figure 7.12: Control space for navigating Roomba R©.

on the spot if either -1 (clockwise) or 1 (counter-clockwise) are passed to
the drive command.

On the one hand, the high level command interface makes it easier to control
the robot, because no dynamic equations need to be solved or integrated
over time, but, on the other hand, makes it impossible to influence how
these commands are executed by the controller. This is one of the draw-
backs of using a closed system. For example, the parameter values of the
drive command suggest an execution precision with an accuracy of 1 mm.
However, translating these natural numbers to wheel velocities, requires
some floating point operations. No specification about numerical quantiza-
tion is given in the documentation. However, these are minor drawbacks in
comparison to the effort to build or program a drive control from scratch.
The power of using a closed system like Roomba is that the researcher does
not have to spend time and effort on the hardware, but can directly start
to program Roomba.

7.4.3 Calibration procedure

When we started animating Roomba with our animation editor, we quickly
found that Roomba was considerably off the expected positions, which
makes it unusable for controlled and systematic research, for example on
the users’ perception of the robot movements. Therefore we developed a
calibration procedure that can be added on top of an existing drive system.
With our calibration procedure, we aim to correct systematic errors made
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Figure 7.13: Inaccurate drive system. Left: Measurement of resulting ve-
locity in relation to the given command. Right: Velocity error.

by the existing implementation of the micro controller. A typical example
of such an error for Roomba is depicted in Fig 7.13. The graph shows the
absolute velocity tracking performance (gray bullets) and the relative error
(black diamonds) that is made for a fixed radius value. In an ideal case, the
measurement of the actual velocity would be an identity function, but it
can be seen that the slope is actually lower than one and flattens close to a
velocity of 500. The error line depicts the difference between the command
that is sent and the velocity that is executed. From this example it can be
seen that the error could be corrected by using this knowledge and chang-
ing the execution algorithm accordingly. Usually, this kind of calibration
would require to change the existing control algorithm or to implement a
new one from scratch. However, in closed system such as Roomba, this
is not an option, because the internal algorithm is not accessible without
major modifications to the hardware. Even if it would be accessible, the
question remains how much effort would be required on low level hardware
implementations, instead of working on the research question of interest.
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Figure 7.14: Geometrical interpretation of the path of the robot from po-
sition A to position B.

Reference system

A fundamental requirement for all calibration procedures is a reference sys-
tem. This means we need to establish a relationship between the control
commands and resulting physical configuration changes of the robot. The
overall goal of the calibration procedure is to insure that the robot renders
the designed path as specified. Following the documentation of the com-
mand interface for Roomba, this relationship is given by the entities for
radius and velocity. In particular, the radius is given in millimeters and
the velocity is given in millimeters per second. With this information, we
are able to calculate geometrically the current position of the robot, relative
to the starting position by integration of the circular path over time. A
geometrical interpretation of the movement path is depicted in Fig. 7.14, in
which the robot travels from position A to position B. Using this notation
the deltas in the x-y plane can be found by using the travel distance d to
calculate the travel angle α and subsequently the x and y offsets:

d = vt = rα (7.4)

x = s cos β =r − r cos α (7.5)

y = s sin β =r sin α (7.6)

This model also serves as common unit to communicate between our an-
imation editor and the robot. As a result, the paths from the animation
editor can be directly translated to real world coordinates. The real world
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Figure 7.15: Odometry information of travel distance and turning angle are
calculated from the travel distances of both wheels.

mapping also helps the designer to develop an idea of how the animation
will look like (e.g., how much space is required). However, the only sensory
information available to measure the actual travel distance are Roomba’s
odometry sensors. For this reason, we run a series of initial experiments to
test the accuracy of current sensor readings.

Odometry validation

Roomba’s odometry sensors consist of two optical sensors attached to the
wheels that track the rotation angle of the wheel. The information can be
accessed through the command interface which contains a special command
to request the current sensor readings. The odometry sensors return the dis-
tance d Roomba has traveled and the angle α Roomba has turned between
two successive inquiries of the sensor values. From the documentation it
follows that the distance is calculated from the distances traveled by the
left (dl) and the right (dr) wheel according two d = (dl+dr)/2. The setup is
depicted if Fig. 7.15. However, instead of directly returning an angle in de-
grees or radians, the micro controller returns a difference drot = (dr−dl)/2.
Given the distance between both wheels to rwheels = 258[mm] the inner
radius is rl = r − 258

2 and the outer radius is rr = r + 258
2 . Given these two
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values the measurement drot can be converted to degrees αod from odometry
according to:

drot =
dr − dl

2

=

(

r + 258
2

)

αod

(

π
180

)

−
(

r − 258
2

)

αod

(

π
180

)

2

=
258παod

360

αod =
360drot

258π
(7.7)

In the following experiments, we tested the accuracy of Roomba using our
graphical animation tool (see Chapter 6.4). We validated empirically how
much the values of the odometry sensors differ from the real world position,
by physically measuring the distance the robot has traveled with a meter. In
first trial sessions we found that not the whole range for the velocity is used
but that the robot reaches its maximum velocity already at about velocity
value of 450 mm/s. It also only started to move above a threshold of about
15 mm/s. We took these initial boundaries into account and constructed
an experiment to sample the command parameter space and evaluate the
actual result of these control commands. We run this experiment on even
floor on which the rubber wheels of Roomba had good grip to minimize
random errors and measured the distance Roomba traveled with a meter.
We sampled the command space used to steer Roomba at [1800, 1500, 1000,
500, -500, -1000, -1500, -1800] for the radius and [400, 200, 100, 50, -100,
-200, -400] for the velocity, resulting in N = 56 samples, and measured its
real world position after the command execution. A sample pair therefore
contained the output of the odometry for travel distance and turning angle,
and the measured xy-position and turning angle of robot after the run. For
comparison, we converted the odometry values in xy-coordinates according
to the following formulas as presented in equations 7.5 and 7.6. After
that, we calculated an average error for both, position and turning angle
according to:

errpos =
1

N

∑√

(xod − xm)2 + (yod − ym)2

errangle =
1

N

∑

|αod − αm‖

(7.8)

As result, we got an average error for the position of 20 mm and an aver-
age error of 1 ◦ for the turning angle, which we considered as sufficiently
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accurate to use the odometry information as initial reference system for the
calibration. Of course, odometry sensor information can later be exchanged
by sensor readings from more accurate position sensors such as laser based
velocity sensors or external localization system, as soon as they become
cheaply available. Additionally, in literature several odometry calibration
methods have been proposed [25, 55, 246]. In the next step we evaluated
path tracking performance in relation to the given command.

Command validation

After validating the odometry readings, we compared how these values
relate to the commands that were sent to Roomba. The drive command
suggests a high accuracy by requiring the commands to be given in mm.
However, already in the more or less ideal scenario of the above experiment,
we found an average error of 40 mm for the position with respect to a
theoretically calculated position based on the velocity and radius given in
a command. The average error for the turning angle yielded a value of 3 ◦.
We want to point out that these errors occur after the execution of a single
command. Especially the error in the turning angle accumulates quickly
in consecutive drive commands, resulting in unpredictable configurations
after only a few commands. Admittedly, in Roomba’s original functionality
as a random walker, a higher precision for movements was not required.
However, it is interesting to note that Roomba already has sensors on board
that theoretically allow for more accurate navigation. The question that
immediately arises is how this information can be utilized to calibrate the
drive commands.

In order to answer this question, we had at first a closer look at how the
given commands relate to errors that are being made in comparison to
the expected configuration. Similar to the first experiment, we recorded a
sample table using values in the range of -1900 and 1900 in steps of 200
for the radius and values in the range of 60 to 460 in steps of 50 for the
velocity. We concentrated only on forward motion, because we considered
forward motion to be the average use case and because we experienced a
symmetric behavior between backward and forward motion. We recorded
the command values and the resulting odometry readings for the 200 sam-
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ples and calculated which command would have caused the readings in an
ideal controller according to:

rideal =
distideal od · 180

αideal od · π

videal =
distideal od

tideal od

(7.9)

The results suggest a non-linear relationship between the absolute values of
the commands and the accuracy with which they are executed by the micro
controller of Roomba. The averages of the absolute errors are depicted in
Fig. 7.16. The graphs A and B depict the average velocity error with respect
to the values of radius and velocity of the command. Similarly, the graphs C
and D depict the average radius error with respect to the issued command.
For the velocity the graphs suggest that the smaller the radius error is, the
higher the resulting velocity error will be and that the inaccuracy of the
velocity grows exponentially with the issued command. Accordingly, it can
be concluded that the radius error grows with an increasing radius, but
that the velocity has almost no impact on the radius inaccuracy. The last
spike in the graph D can be explained by the hardware limitations of the
wheel motors that reach their maximum speed, because in order to drive
a curve with a specific radius, one wheel has to turn faster than the other.
If, however, the wheels turn already with maximum velocity, the required
difference in velocity to turn with a specific radius cannot be achieved and
the robot will almost drive straight.

Calibration

Our approach to calibrate the drive command of Roomba is to feed back the
information from earlier runs in order to update a predictive control model
that calibrates the commands in a way that they match the expected drive
behavior. The setup is depicted in Fig. 7.17. A path generator translates
an input path to control commands. These are calibrated using a neural
calibration method before fed to an embedded controller. After each com-
mand execution the resulting error is fed back to update the calibration.
This calibration architecture can be added on top of existing embedded
hardware controllers. Garćıa-Córdova et al. motivate a similar approach
biologically from the observation that also animals have to learn the con-
sequences for their own actions in order to be able to deal with unknown
environments [79]. In [118], Jang et al. calibrate an industrial robot by
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Figure 7.16: Roomba robot command validation
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dividing the workspace in several regions and used a positioning sensor sys-
tem to measure the robot position. The error parameters for every region
were used to train a radial basis function neural network. They apply this
method to a six degree of freedom industrial welding robot. We follow
a similar approach by learning a predictive motion model based on past
experiences.
The approach can mathematically be modeled as finding the inverse func-
tion to the micro controller and the robot. We chose as reference system
the geometrical travel distance, so that the micro controller and physical
drive behavior corresponds to a two-dimensional function M that receives
a tuple of velocity and radius from the command (cmd) and returns a tu-
ple describing the drive behavior of the robot (measured by the odometry
(od)):

(vod, rod) = M(vcmd, rcmd) (7.10)

In an ideal situation, the micro controller resembles the identity function,
meaning that the command is executed as specified. In order to re-establish
an identity function, we are searching for an inverse M−1 of the function
M to accommodate for the transformation:

(videal, rideal) = M−1(M(vcmd, rcmd)) (7.11)

The first thing that we verified for pursuing this approach is that the re-
sponse of the controller is sufficiently deterministic to train a model. We
randomly picked 100 different control tuples consisting of values for radius
and velocity and repeated each command 10 times on the robot. We then
calculated an overall standard deviation of the resulting positioning and
received a value of SD = 2.68mm, which we considered to be sufficiently
small to meaningfully train a model. Of course there will be always a small
margin for example due to random or rounding errors.
Given the non-linear nature of the dependency between the issued com-
mand and the resulting driving behavior, we found a neural network ap-
proach to be the most flexible solution. It has been shown that any contin-
uous function can be approximated by superpositions of sigmoidal function
[43]. Applying this principle in a Multilayer Perceptron (MLP), it has been
proven that one hidden layer is sufficient to approximate a function, given
an appropriate number of nodes [77]. Furthermore, a MLP can easily be
updated using a backpropagation algorithm as soon as new data samples
become available. Ozaki et al. applied a similar approach to calibrate a
robotic manipulator [180]. Fierro and Lewis used a neural network based
torque controller for a car-like mobile robot and tested their method for
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Figure 7.17: Calibration setup: A path generator generates control com-
mand commands with radius r and velocity v. An embedded controller
translates these commands to wheel speeds ul and ur which result in new
x,y configurations of the robot.

trajectory tracking [71]. However, they focus on high precision control,
by also taking the kinematics into account, which is computationally more
costly than taking a geometrical approach that we pursuit with Roomba.

In an initial experiment, we implemented a MLP with an input layer con-
sisting out of two inputs, one hidden layer H with 16 neurons and one
output layer with two output neurons. At this point, the number of neu-
rons was chosen arbitrarily. We connected the input neurons directly to
the odometry readings for radius and velocity, both scaled to a range be-
tween -1 and 1. The activation of a hidden neuron yi was determined by
a weighed sum over the inputs and scaled by the sigmoidal Fermi-function
Θ with bias b to compute the output of neuron i in layer λ:

yi = Θ





dim λ−1
∑

j=1

wλ
i,jy

λ−1
j , b





Θ(x, b) =
1

1 + e−(x−b)

(7.12)

The output of the output layer was computed analogously, but using a
linear activation function Θ(x, b) = x − b. Additionally, both input and
hidden layer were extended with a bias neuron whose output is always 1.
This means in total nw = 5 dimH+2 weights and nb = dimH+2 activation
function bias had to be estimated. We used the backpropagation algorithm
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[206] using a square error measure between the output of the network y
and the given command sample s:

E =
1

2

∑

i

(~yi − ~si)
2 (7.13)

The functional animation approach directly supports this feedback mecha-
nism also on-line, because it naturally creates a training sample through its
interval based approach. A sample consists of the command values that are
sent at the beginning of an interval and the configuration that is measured
at the end of an interval.

We tested the qualitative learning capability of the neural network by try-
ing to approximate the sample that we took for the command validation.
The training set therefore contained 200 training samples from which we
chose for every training cycle one sample at random and updated the pa-
rameters according the the backpropagation algorithm. We found that the
network was able to approximate the qualitative shape of the function, but
we observed that especially the control values around zero and at the bor-
ders of the control intervals raised the output of the functions too high.
The reason for this is that, in the MLP approach, every neuron contributes
to the overall output of a specific value of the input space.

Therefore, before evaluating the performance of the neural network ap-
proach, we chose to implement a second neuronal network architecture
based on local influence of the neurons. For comparison, we found Radial
Basis Functions (RBF) a suitable candidate due to its similarity to the
MLP approach [182]. Comparable to MLP, RBF consist out of one hidden
layer of neurons that receive a weighted sum from the input layer. The
crucial difference is that RBF uses locally restricted activation functions
instead of sigmoid activation functions. This architecture has the advan-
tage that every neuron is responsible for only a specific interval of the input
space. This also makes it more fault tolerant, because the overall network
response is preserved, even if a single neuron produces erroneous outputs.
The disadvantage is that more neurons are needed to sufficiently sample the
input space. This becomes intractable for high dimensional input spaces,
but is well possible for our problem domain with well defined and limited
two dimensional input space.

The learning step of a RBF network is performed in two steps. In the first
step, appropriate centers and the radius of influence for the neurons are
calculated to approximate the input space. The output of a neuron nk is
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Figure 7.18: Uncalibrated error

calculated according to the following function, where ~wk is the center of
the neuron in input space and rk determines the radius of influence:

nk = e
−

1

2

(

‖~x− ~wk‖

2rk

)2

(7.14)

We used vector quantization (VQ) to calculate appropriate centers for a
given set of input samples and set the radius to be the distance to the
closest neighbor. The overall network response for an output dimension i
is then calculated as a weighted sum of all neurons with an output weight
aik

yi =
∑

k

aik · nk (7.15)

The parameters for the weights a are calculated using a gradient decent
method with square error measure analogous to the MLP architecture in
equation 7.13. In the following we took both implementations and evaluated
for both architectures their calibration performance.

7.4.4 Evaluation

For the evaluation of the calibration, we sampled the whole range of the
command space by steps of 50 for velocity and by steps of 150 for radius,
resulting in 480 samples. We used this training set to learn an initial
calibration for both networks.
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In the first step to evaluate the calibration performance of both networks,
we first searched for a suitable number of neurons. With too few neurons
the functions cannot be learned correctly, but with too many neurons the
computational complexity becomes impracticable for low cost platforms
and additionally poses the risk of over fitting. We therefore trained both
networks with the training set for an increasing number of neurons. For
each training we used a fixed number of 10.000 training cycles and cal-
culated the average approximation error of the network. The results for
approximating velocity are depicted in Fig. 7.18. It can be seen that the
error of the MLP quickly drops, indicating a linear component as a major
factor in the error. As expected, the RBF network only approaches the
performance of the MLP later, as soon as enough neurons are available to
sample the input space. From the results and for ease of implementation,
we used a number of 24 hidden neurons for both networks for the remainder
of our evaluation.

We trained both networks with the above training set until the approxi-
mation error saturated. For the MLP this resulted in 1000 training cycles
and for the RBF in 4000 cycles, respectively. We then used the networks
to transform the steering commands before they were sent to the controller
and collected the error for velocity and radius. Fig. 7.19 shows the per-
formance of the calibration procedures. The plot of the velocity error in
the uncalibrated condition unveils the linear component that we already
suspected earlier, when we determined the number of neurons for the net-
works. That means the higher the velocity, the greater the error the robot
makes. The plot for the radius error, however, has a more complex wave
like structure that increases at the extremes. It can also be seen that the
error around zero velocity is exceptionally high due to the fact that the
motors only start turning above a certain threshold.

From the results of the MLP calibration it can be seen that the MLP
was able to qualitatively train an inverse function to the micro controller
that restores the desired identity control function. However, the graph
shows a high error around zero for the radius. This can be explained with
the hardware limitations of the motors. The error increases with growing
velocity, indicating that the necessary difference for the wheel speeds cannot
be met any more. A small value for the radius means that the robot drives
on a very small circle with a high difference between the wheel speeds.
Another fact that can be observed is that the major plain is not located
at zero but shifted upwards. As indicated above, this can be explained by
the fact that the extreme values at the borders of the command space have
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(a) Uncalibrated error velocity (b) Uncalibrated error radius

(c) MLP error velocity (d) MLP error radius

(e) RBF error velocity (f) RBF error radius

Figure 7.19: Calibration performance
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an impact on all neurons, pulling the answer of the network too far in one
direction. Nevertheless, the network improves the overall path tracking
performance. While the qualitative structure of the velocity calibration
function can be learned reasonably well, the network has more difficulties in
approximating the function for the radius. Despite the calibration, the error
plain still shows the wave like structure that should be canceled out to zero.
This also can be explained by the structure of the network. In the training
phase, every sample pulls the response of the network in the direction to
minimize the error, with the result that opposite error corrections in the
structure cancel each other out.

The RBF calibration, in contrast to the MLP calibration, performs better
at the calibration of radius. It appears that the wave like structure can
efficiently be approximated by superpositions of the chosen basis functions.
The linear component of the velocity error, on the other hand, poses a
bigger challenge with the chosen number of neurons and values for the
radii. If the control space is not sampled sufficiently, the response of the
network is artificially dragged to zero in underrepresented areas, because no
neuron has a sufficiently large influence. Increasing the radius of influence
would help in this case, but pose a problem if more fine grained features
have to be learned. Another option is to increase the number of neurons.
Reconsidering the graph on the average training error with respect to the
number of neurons, it can be seen that graph still shows a downwards trend
for more than 40 neurons. The disadvantage is that the computational
complexity increases with a growing number of neurons.

At last we performed a statistical analysis on the collected data to verify
the significance of the results. Therefore, we performed an analysis of vari-
ance (ANOVA) in which the calibration was the independent factor and
the absolute errors in velocity and radius were the dependent variables.
The calibration factor consisted of three conditions: no calibration, RBF
calibration and MLP calibration. Table 7.1 shows the mean and standard
deviation for all three conditions. As expected from the graphs, we found
that the calibration method had a significant influence on both errors, ve-
locity (F(2,1405) = 22.05, p<0.01) and radius (F(2,1358) = 7.20, p < 0.01).
Post-hoc t-tests with Bonferroni corrected alpha showed that the error was
significantly (p < 0.03) lower in the MLP condition (M = 13.07 SD =
24.24) for velocity compared to the uncalibrated condition (M = 19.47,
SD = 29.70), but significantly higher (p < 0.01) for radius (M = 151.88,
SD = 173.12) compared to the uncalibrated condition (M = 116.01, SD =
229.60). The RBF calibration showed exactly the opposite behavior. The
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Condition
velocity radius

mean SD mean SD

uncalibrated 19.47 29.70 116.01 229.60
MLP 13.07 24.24 151.88 173.12
RBF 29.33 52.78 85.34 122.38

Table 7.1: Mean and standard deviation of the error for the uncalibrated,
MLP and RBF condition

post-hoc t-tests with Bonferroni corrected alpha showed that the velocity
was significantly (p < 0.01) higher in the RBF condition (M = 29.33, SD
= 52.78) but significantly lower (p < 0.03) for the radius (M = 85.34, SD
= 122.38). From this analysis it can be seen that the MLP calibration
improved the path tracking performance for velocity by 33% and that the
RBF calibration improved the path tracking performance for radius by 24%.
However, even though there seems to be more structure in the error plots,
the overall performance worsened with calibration for the radius with the
MLP calibration and the velocity in the RBF calibration. These behaviors
can be explained as outlined above with the characteristics of both network
architectures. Therefore, the network architectures have to be chosen with
care to achieve a desired improvement in the path tracking behavior.

The results show that we were able to achieve a significant improvement in
the path tracking behavior, if we apply an MLP to calibrate the velocity
and an RBF for the radius. The question remains, why our calibration pro-
cedure was not able to restore the desired identity function completely. One
of our constraints was to develop a calibration procedure, without modify-
ing the existing hard or software. Therefore, the achievable improvements
in the path tracking performance are naturally limited by the capabilities
of the existing hard and software. In our example with Roomba we found
that rounding errors can become a major obstacle, especially if they cause
that multiple input values are mapped to the same output values. This
behavior is visualized in Fig 7.20. We performed a complete sampling of
the command space in which we varied the radius parameter continuously
from 100 to 1800 and kept the velocity constant. The quantization to in-
teger values results in the typical stair shape of the graph. That means
that especially in the areas of a high radius, our calibration approach fails,
because sending a different input value will have no effect, or even worsens
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Figure 7.20: Full sampling of radius between 100 and 1800 with fixed ve-
locity of 400.

because an input command is calibrated to a value out of range for the
control command.

7.4.5 Discussion of calibration procedure

With our study we aimed to develop a calibration procedure to increase
local path tracking accuracy for low-cost consumer mobile robots. We
motivated the necessity for consumer robots to be able to show expressive
motion paths, and derived from the application domain three constraints
for our research (1) not to violate the cost-constraints (2) applicability to
closed systems and (3) improving local path tracking performance with
a focus on how the robot is perceived. Based on these constraints, we
followed a model predictive control approach and applied and compared two
different neural network architectures to calibrate the control commands of
the robotic vacuum cleaner Roomba. The chosen approach satisfies all three
constraints. First of all, it does not violate the cost-constraints, for example
by adding new hardware, or using numerical methods that are impracticable
for embedded systems. Secondly, we successfully demonstrated that we are
able to apply the calibration method to an existing, closed system domestic
robot and third, by applying a model predictive approach we avoided to
introduce additional correction movements that could have an undesired
effect on the perception of the robot.
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Furthermore, we have shown that the general approach of building on top
of a closed system by using a neural network calibration approach improves
the path tracking accuracy. Even though the expected results, that a neu-
ral network calibration will always improve the tracking performance could
not be confirmed, we have demonstrated that by carefully choosing the net-
work architecture an improvement can be achieved. From our comparison
of a MLP and a RBF architecture for calibrating Roomba, we concluded
that the best performance can be achieved by applying a MLP to calibrate
the velocity parameter and a RBF architecture to calibrate the radius pa-
rameter. Both networks perform with a sufficiently small amount of neu-
rons to be implementable on an embedded hardware. The obtained results
could theoretically be improved further, for example by adding more do-
main knowledge in terms of choosing basis functions that best represent the
qualitative structure of a calibration function, but naturally this approach
conflicts with a general applicability, also to other robotic platforms, of the
calibration algorithm. Another advantage of our approach is that we did
not assume any specific drive kinematics of the robot, but let the network
automatically learn the non-linear relationship between control signals and
resulting change in the robot configuration.

However, we also have shown that there are limitations to this approach,
especially due to the constraint of working with a closed system. The cali-
bration method cannot compensate for errors that are made due to internal
rounding errors. Nevertheless, we believe that a post-hoc calibration is use-
ful especially for the design of strictly modularized systems. Furthermore,
our calibration method is flexible to on-line update the calibration, for ex-
ample if the low-cost servos wear out over time, or to accommodate and
predict changing terrains.

7.5 Discussion of SRD architecture

The presented SRD framework identifies and addresses central tasks in the
process of creating an application for an expressive robotic interface. While
in the gaming industry a similar multidisciplinary approach has become a
standard [113], it is still new for creating robotic applications.

For the modeling of the SRD framework, several components of existing
programming environments for robots have been adapted to generate a
unified architecture. For example, a particular strength of the Microsoft
Robotic Studio R© is its flexibility due to its service orientated middleware.
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One of the advantages is that the robot hardware can for example be con-
trolled using high level web interfaces. However, an asynchronous com-
ponent model can also result in non-deterministic system behavior, which
complicates the design process. It has been motivated that during appli-
cation design a separate environment with a synchronous communication
model benefits the design process. Also the Lego R© NXT development en-
vironment makes a clear separation between development and run-time
environment. The designer has first to finalize a complete application that
in turn can be compiled and uploaded to the hardware. The advantage of
this setup is that development and execution are decoupled from each other,
but it makes it very difficult to debug certain aspects of the application.
The final behavior can only be assessed during execution of the applica-
tion. The SRD framework overcomes this shortcoming by generalizing over
software components that relate to an application artifact.

Furthermore, experiences with the OPPR framework served as an impor-
tant input for the design of the SRD architecture. For example, animation
technology is one of the key technologies for creating expressive robotic
interfaces. The OPRR framework applied keyframe animation to the de-
velopment of robotic behavior. Within the SRD framework, the principle
of keyframe animations has been extended by the functional animation
principle. Functional animations combine the control over the expressive
behavior with the high level control of scripted behaviors.

Another central component of OPPR is the animation module that controls
the robotic hardware. The concept of the animation module has been
generalized by an artifact executor, which is decoupled from a view of on
the application. Within the OPPR framework, visualization, development
and execution are coupled, which make it difficult to extend the framework
by new types of editors or views. For example, next to a 3D simulation
of the posture another conceivable view might display the emotion that is
currently expressed by the character.

The SRD architecture introduced a general component interface, which
allows third parties to extend the framework by new components. A syn-
chronous communication model has been proposed which uses a blackboard
system to exchange information. A scripting engine was used to allow com-
putational hierarchies, which are also used by the functional animations.
An event based communication protocol has been defined, which allows
third party component developers to provide new components for the SRD
framework. Based on this component model, several software components
such as the general editor interface and the view facilities have been devel-
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oped. The editor interface generalized the concept of an editor and defines
a general editor interface to insure coherent editing functionality (e.g., cut-
copy-paste).

Finally, the reemerging object definition design pattern has been reused on
several levels. For example, it has been used to provide meta information
about the individual components and to unify the interface to control and
compare different embodiments.

7.6 Summary

This chapter has introduced the Execution-Environment of the SRD archi-
tecture. It complements the Development-Environment and with compo-
nents that are required for the execution of the application on the deploy-
ment hardware.

The Execution-Environment shares with the Development-Environment
software components that are related to application artifacts, which en-
sures consistent rendering of the application between the two environments.
The presented architecture minimizes maintaining effort for the software
by efficiently reusing software components form the Development-Environ-
ment. Furthermore, the component structure of the Development-Environ-
ment has been generalized and extended by a component structure with an
asynchronous communication model. It has been motivated that an asyn-
chronous communication model is required to satisfy the demands of typical
robotic hardware. The components have been modeled based on a service
oriented reference architecture. A central dispatcher manages components,
but data communication has been decentralized to avoid bottlenecks. A
publish-subscribe mechanism has been developed with a type based selec-
tion mechanism to query and filter data.

With this setup, the Execution-Environment explicitly targets at the spe-
cific demands of the deployment environment. In particular, it addresses
the management of sensor input and proposes a calibration method to im-
prove the drive accuracy of rendering animations on low-cost platforms.
For handling of sensor data, a situation awareness component is introduced,
which generalizes sensor input of a robotic embodiment and provides a high
level interfaces to react to external stimuli. It hides the details of signal
processing from the designer by automatically constructing a network of
recognition modules and providing the recognition results to an applica-
tion. Also the proposed calibration procedure hides hardware details from
the designer. For example, it assumes that the designer has no access to
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the internal controller of the robot, but requires that the hardware plat-
form can reliably be controlled. The calibration procedure has been used
to improve drive accuracy of a Roomba robot for the case study presented
in Chapter 9.
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Part III

Evaluation and application
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Chapter 8

Evaluation of the
architecture

The main goal for the evaluation of a given software architecture is to pre-
dict quality attributes before a software is implemented [36]. Already in
1972, Parnas proposed modularization and high level design descriptions as
a method for improving software quality, in particular in terms of flexibility
and comprehensibility [183]. Starting from those initial observations, the
notion of a software architecture has emerged in the field of software engi-
neering to provide an appropriate balance between abstraction and concrete
design to be evaluated for quality attributes [16].

Software architectures can be evaluated in terms of functional and non-
functional attributes. In the next section first an overview of commonly
evaluated software architecture attributes is given before these are applied
for the SRD architecture.

8.1 Architecture quality attributes

Several software engineering communities have proposed their own software
design methods for the development of a specific type of system, includ-
ing reusable systems [126], real-time systems [149] and high-performance
systems [226]. However, these methods only focus on a single attribute of
the architecture for a particular application domain. The challenge is that
it is not possible to directly measure quality attributes based on an archi-
tecture, because this would imply that implementation is a deterministic
mapping of the architecture [36]. Instead, architecture evaluation methods

207
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focus on evaluating the potential of a particular architecture to meet soft-
ware quality attributes. This is of great importance, especially in business
environments, because the outcome of the evaluation methods can be used
to cost effectively refine a system before it is implemented.

A software architecture has a number of characteristics that determine the
quality of the software, but are not directly related to the functionality
of the software. A software quality attribute is therefore a non-functional
characteristic. Most commonly a non-functional quality attribute cannot
directly be linked to a single software component, but is an emerging feature
from the overall architecture and collaboration of components. A definition
for such a software quality metric is given by the IEEE standard 1061 [109],
which describes a methodology to establish and analyse software qualities.
In a different standard ISO/IEC9126 [115] a list of six concrete character-
istics, including sub-characteristics is given. These qualities are listed in
Table 8.1. Sommerville restricts the list to four essential categories, which
are described in table 8.2. However, the definitions of software qualities
are not independent dimensions. Several definitions of strongly related
constructs exist. For example Dobrica and Niemelä compare definitions
of ‘maintainability’, ‘modifiability’ and ‘flexibility’ and conclude that even
though the wording is different the semantics are similar [54].

8.1.1 Software architecture evaluation

In the literature several architecture evaluation methods have been pro-
posed. A survey of most commonly applied methods is given in the surveys
[54] and [203].

Dobrica and Niemelä defined a framework to compare software architecture
evaluation methods. They compared the goals of the evaluation method,
the employed techniques, which quality attributes are evaluated, stake-
holder involvement, performed activities, reuse of existing knowledge and
method validation. With this framework they evaluated the scenario-
based architecture analysis method (SAAM), and three of its derivatives
(SAAMCS, ESAAMI, SAAMER), the architecture trade-off analysis method
(ATAM), scenario-based architecture engineering (SBAR), architecture level
prediction of software maintenance (ALPSM) and the software architecture
evaluation model (SEAM). An in depth discussion of ATAM, ARID and
SAAM is given in [36].

Most notably, the various evaluation methods differ in terms of which
quality attributes are evaluated. While for example, SAAM and deriva-
tives mainly focus on a single quality attribute, ATAM and SBAR are able



8.1. ARCHITECTURE QUALITY ATTRIBUTES 209

Functionality

suitability
accuracy
interoperability
security
functional compliance

Reliability

maturity
fault tolerance
recoverability
reliability compliance

Usability

understandability
learnability
operability
attractiveness
usability compliance

Efficiency
time behavior
resource utilization
efficiency compliance

Maintainability

analysability
changeability
stability
testability
maintainability compliance

Portability

adaptability
installability
co-existence
replaceability
portability compliance

Table 8.1: Software quality characteristics according to standard ISO/IEC
9226-1
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Maintainability Software should be written in such a way that it
may evolve to meet the changing needs of cus-
tomers. This is a critical attribute, because soft-
ware change is an inevitable consequence of a
changing business environment.

Dependability Software dependability has a range of character-
istics, including reliability, security and safety.
Dependable software should not cause physical
or economic damage in the event of system fail-
ure.

Efficiency Software should not make wasteful use of system
resources such as memory and processor cycles.
Efficiency therefore includes responsiveness, pro-
cessing time, memory utilisation, etc.

Usability Software must be usable, without undue effort,
by the type of user for whom it is designed. This
means that it should have an appropriate user
interface and adequate documentation.

Table 8.2: Essential characteristics of well-designed software systems ac-
cording to Sommervile ([227] p. 13)

to evaluate multiple attributes. Almost all of the architecture evaluation
methods include the usage of scenarios as an appropriate method for ar-
chitecture evaluation. It is checked whether the scenarios are covered by
the architecture and a metric is defined to quantize the amount of changes
needed to adapt the architecture in case the scenario is not covered.

Based on these results, a combination of ATAM and SBAR was chosen to
evaluate the SRD architecture. These two methods are introduced in the
following.

8.1.2 Scenario-based architecture engineering (SBAR)

In its original presentation, Bengtsson and Bosch established SBAR as a
method for reengineering existing software architectures with the goal to
improve architecture quality attributes. Due to its applicability during the
development process, SBAR is in particular well suited for an iterative
software development process.
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Figure 8.1: Graphical overview of the SBAR architecture evaluation
method

The input for the SBAR method consists of the requirements specifica-
tion and existing software architecture. The output of the evaluation is
an analysis of the architecture and potential improvements on the archi-
tecture. SBAR includes four steps as depicted in Fig. 8.1. The four steps
are 1) Incorporate functional requirements, 2) Software quality assessment,
3) Architecture transformation and 4) Software quality assessment. SBAR
assumes that new requirements are added to an existing system design.
However, the SBAR method is sufficiently generic so that it does distin-
guish between old and new requirements. Quality requirements that have
not been stated explicitly during the initial functional requirement engi-
neering phase can be added during this first step. Along with the require-
ments, the existing architecture is assessed. SBAR offers four different
strategies for evaluation. The main part of the SBAR evaluation method
bases on the construction of scenarios. However, also most of the critique
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on the SBAR method targets the employed scenario approach, because of
assumptions that are made about the scenarios [54]. SBAR proposes two
strategies, a complete and statistical approach for the definition of scenar-
ios. In the complete approach a full set of scenarios for an architecture has
to be given. This is practically impossible. In the statistical approach a
representative set has to be found. However, it is not well defined which
requirements adequately represent the whole space of requirements. Next
to the scenarios, SBAR proposes evaluation of the architecture with sim-
ulation, mathematical modeling and experience based reasoning. Based
on the results of this evaluation the architecture is transformed by impos-
ing an architectural style (e.g. a layered architecture, client-server model
etc.), applying design patterns, converting quality attributes to functional
requirements and distributing a quality attribute of the overall architecture
to subsystems within the architecture.

The challenge for the overall procedure is to decide when a requirement has
been achieved. While functional requirements can be evaluated by tracing
requirements within the architecture, this is not possible for general quality
attributes, because of their emerging nature. Instead, the quality attributes
have to be embodied in a scenario that explicitly requires these attributes.

8.1.3 Architecture trade-off analysis method (ATAM)

One of the major advantages of the ATAM method over the SAAM and
SBAR is that ATAM explicitly considers interactions among quality at-
tributes and provides a method to prioritize among them [36]. The ATAM
method consists of 9 activities that can be categorized in the four ma-
jor groups of 1) Presentation, 2) Investigation and analysis, 3) Testing
and 4) Reporting. An overview of the process for the analysis is shown if
Fig. 8.2. One of the central tools within the ATAM method is the develop-
ment of a quality attribute utility tree. The utility tree prioritizes quality
attributes and maps them on concrete scenarios. For evaluating a particular
design decision, ATAM captures the quality attributes of a particular so-
lution with the attribute-based architectural style framework (ABAS) [36].
The ABAS has four parts: 1) Problem description, 2) Simuli/responses,
3) Architectural style, 4) Analysis. The first point addresses what par-
ticular problem is solved by a given architectural structure. The second
describes the stimuli in terms of which quality attributes have to met in
the response of the system. The third part contains a concrete descrip-
tion of the architecture in terms of components and interactions and the
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Figure 8.2: Analysis activities in the four phases of the ATAM (Source:
[54] p.645)

fourth part provides the reasoning about decomposition and interaction of
the components.

Based on a comparison of the different architecture evaluation methods, a
combination of the SBAR and the ATAM method was regarded as the most
appropriate method to evaluate the SRD architecture. Also Drobica and
Niemelä recommended that a combination of methods that is adjusted for
a concrete analysis case would improve the results [54]. The SBAR evalu-
ation method is best suited for an iterative software design cycle, such as
the one followed in this technological design. Following the SBAR method,
quality requirements are imposed on a functionality based architecture de-
sign as described above. However, one of the major shortcoming of the
SABR approach is the handling of scenarios, in particular for an open
ended development platform as the SRD framework. Using the ATAM
utility tree, scenarios can be grouped along quality attributes and there-
upon prioritized and analyzed. Quality attributes are reflected by applied
architectural styles in the architecture. Already during the design process,
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Figure 8.3: ]
Utility tree to with scenarios to test the SRD framework

several architectural patterns have been followed. These design decisions
can be analyzed using the methods as described above.

8.2 Utility tree

Following the SBAR analysis method, first the functional based architec-
tural design is investigated. Traces of the functional requirements are pro-
vided and discussed in concrete scenarios. However, in some cases, the func-
tional requirements are already linked to general qualities such as flexibility
or performance. Therefore, functional requirements and non-functional re-
quirements cannot strictly be separated for the SRD architecture. In fact,
part of the proposed analysis methods of the SBAR evaluation method is
to explicitly convert non-function requirements to functional requirements.
In order to cover these requirements, this section develops a utility tree
that creates concrete scenarios that represent particular quality attributes.

The utility tree according the ATAM for the SRD framework is shown in
Fig. 8.3. The most important quality for the SRD framework is a flexibility
quality. The architecture needs to be sufficiently flexible to incorporate new
domain knowledge as soon as it becomes available.
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Figure 8.4: Boundary of SRD architecture

Next to flexibility, important quality attributes for the architecture are se-
curity, usability and performance. In order to test these quality attributes,
in the following scenarios and examples are developed that explicitly require
these attributes.

8.2.1 Flexibility

The flexibility quality is positioned at the top in the utility graph and
has been embodied by three anticipated scenarios 1) New component, 2)
Varying deployment architectures and 3) Configurability. Every of these
scenarios is illustrated with a concrete example. These three scenarios have
been derived by varying major building block within the SRD architecture
as depicted in Fig. 8.4.

The first scenario considers the efforts necessary to introduce a new compo-
nent. A new component becomes available for example when a new editor
concept can be defined. In Chapter 6.4 three basic editors have been pro-
vided to satisfy basic needs of different application design disciplines. For
realizing more complex scenarios also higher levels of abstractions might
be necessary in order to keep the development of interactive applications
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maintainable. For example, while for traditional animations it is afford-
able to hire a team of animators that optimize animations for a movie of
a predefined length. This approach is not possible for interactive robots.
The interaction is not limited by time or context, resulting in an unlimited
amount of animations to cover every concrete situation. Therefore, one
of the anticipated extensions is to automate emotional expressions with
a high level emotion editor (see also discussion on affective perception of
robot motion in Chapter 9).

Human-robot interaction is investigated on a variety of custom made ro-
botic platforms [72, 28, 238, 9]. This variety is likely to increase as more
application areas for interactive robots become feasible. However, the con-
crete hardware setup of future robots is impossible to predict. While in
the functional requirements it was demanded that the development tools
are independent from the deployment environment, no particular statement
was made about the effort to introduce a new embodiment. However, al-
ready during the design of the architecture, multiple platforms have been
considered, the iCat robot and the Roomba embodiment. In order to test
flexibility, this scenario considers to introduce a new robotic embodiment
to the architecture.

The third scenario considers configurability. Even though concrete robot
hardware platforms are often carved to serve a particular functionality, mul-
tiple applications are conceivable using the same hardware. For example,
the main functionality of the iCat robot is to serve as an interface. This
interface can be applied in a variety of scenarios, including a game-buddy
[143], TV assistant [161] and waiter application [208]. In order to facilitate
a variety of applications, the architecture must be sufficiently configurable.
For example, some applications might require image processing in order to
identify objects, while others need Internet connectivity in order to down-
load new content. Therefore, it must be possible to configure an application
to only suit the needs of the concrete application.

8.2.2 Security

The second general quality attribute of the SRD architecture considers
security. Most likely, security will become the most important software re-
quirement as soon as applications are brought to the market. However, the
main focus for the current architecture lies on research to develop the ar-
chitecture. Nevertheless, also during development, there are a few security
issues that have to be considered for the development of the SRD architec-
ture. The two categories are (1) Insuring of the user and (2) Damaging of
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the robot. Especially during a development process, several implementa-
tion mistakes can be made that lead to unpredictable behavior of the robot.
Therefore the architecture has to provide mechanism to reduce potential
damage.

In the first example, a mobile robot is considered that bumps into a user.
In order to avoid insuring the user, for example in the case the user tries to
pick up the robot while the wheels are still rotating, a security mechanism
has to stop the robot. This is an important general software quality that
has not been considered during the requirement engineering phase as this
scenario describes malfunction of the software and not the regular use case.

The second example considers a case in which the robot damages itself.
While for some cases the security of robot manipulators can already be
handled on driver level, e.g., to avoid that a robotic arm breaks by pushing
into its own embodiment, others cases need external control. The given
example therefore tests how security can be realized on top of the basic
driver hardware.

Most often a third scenario is considered, in which the robot damages the
environment, e.g., by bumping into an object. However, from a technical
perspective this last case can be handled by the first two and is therefore
not considered in the utility tree.

8.2.3 Usability

Usability is commonly analyzed in the context of a user interface that is
presented to a user. For a graphical user interface the graphical layout and
the design play an important role. In the usability context also available
documentation and learning effort for a user are evaluated [16, 227]. How-
ever, the concrete graphical layout is not considered to be architectural,
but belonging to visual design. Only the type of control that is presented
to the user is considered to be part of the architecture. [36, 227]. There-
fore, the utility tree tests only for usability that is directly connected to
the architecture.

In the first scenario learning effort has been considered to discuss usability
of the architecture. This is motivated by the general positioning of the
SRD architecture to offer tools for application developers with a variety
of different backgrounds. In order to avoid that this demand leads to an
increased learning effort, e.g., that the designer has to understand all tools
before being able to utilize a particular one, this is included in the utility
tree.
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In the second scenario, the selection of an appropriate type of tools is
considered, which are offered to the designer. In terms of developing appli-
cations for robots, the level of abstraction of the provided tools is essential.
In order to test for this quality, a scenario has been constructed to incor-
porate tools for a new discipline with a different level of abstraction. As
an example, the discipline of social science has been selected. From social
science several interaction patterns can be derived that are valid for the
design of robot applications [124]. How these can be incorporated in the
overall architecture is discussed in relation with this requirement.

8.2.4 Performance

The last general quality attribute on the utility graph is performance.
Performance has been considered, because of the special requirements of
robotic hardware platforms. In particular, two cases are considered.

The first case tests the architecture in terms of control possibilities of em-
bedded hardware. Embedded hardware has usually only very limited com-
putational resources. The scenario tests for performance of the architecture
in terms of how software components are deployed on concrete hardware
platforms.

The second performance related scenario discusses how the architecture
handles an anticipated growing need for computational resources for signal
processing. For example, speech and gestures are important modalities
for interaction for which considerable computational effort is necessary to
analyze the semantics. It is discussed, how the architecture can handle the
distribution of computationally heavy algorithms.

8.2.5 Functionality, reliability, efficiency, portability

Not considered in the utility tree have been the general qualities of func-
tionality, reliability, efficiency and portability (see Table 8.1 on page 209).
First of all, functionality is covered by the functional requirements, which
is analyzed using requirement traces. Reliability and efficiency are usu-
ally measured in terms of numeric metrics, rather than evaluated using
scenarios. For example efficiency can be evaluated for the communication
architecture in terms of how many bytes are sent. As described during the
design of the communication architecture of the Execution-Environment in
Chapter 7.2.3, data is only sent if it is requested by a component. Sim-
ilarly, for the Development-Environment the overhead of storing data on
the blackboard system versus keeping the data locally could be evaluated.
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In both cases, however, the major influencing factor is how a concrete ap-
plication makes use of these facilities. In terms of the ATAM evaluation
method this means that efficiency interacts with usability of which usability
was in this context prioritized. Likewise, reliability has not been explicitly
measured because of the research focus. Nevertheless, the provided proto-
types and tools have proven to be sufficiently stable to be applied for the
development in concrete applications as demonstrated in Chapter 9. Lastly,
portability was not included in the usability tree, because it already has
been captured by the functional requirements. Requirement 4.4 on page 94
demanded that different platforms must be supported. During the design
process, this has been adhered by selecting only libraries that are available
for multiple platforms.

8.3 Functional evaluation

In the following the list of requirements as developed in Chapter 5.3 is ana-
lyzed and concrete scenarios are discussed in combination with traces of the
requirements on the architecture. Four different requirement categories has
been defined: 1) Application designer requirements, 2) Development pro-
cess requirements, 3) Domain requirements, 4) Framework requirements.
From an overall architecture perspective, these requirements are grouped
in categories defined by the origin of the requirements and not in terms of
related constructs within the architecture. A single architectural feature
can therefore respond to requirements of different categories.

8.3.1 Environment decomposition

To begin with, the overall domain decomposition already allows to trace
multiple requirements as shown in Fig. 8.5. During the design process,
an overall separation between Development-Environment and Execution-
Environment was introduced. This general design decision adheres to a
layered architectural style that groups related components on a the same
layer. The connection between the layers is channeled by the concept of an
application.
This general setup responds to requirement 1.1, which demanded that the
level of abstraction is increased. A layered architecture suits this require-
ment as details of lower layers are only accessible through a specified inter-
face. The layered approach is consequently adhered also in the definition
of editors and operators to create applications. For example, using func-
tional animations the designer describes basic movement patterns. On the
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Figure 8.5: Trace of functional requirements along domain decomposition
of environments.
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next higher level these movement patterns are controlled through a set of
parameters. These parameters, in turn can be calculated using parame-
ter models. Ultimately, multiple application artifacts are combined to an
application by an application logic.

Furthermore, the layered architecture fulfills the demands of requirements
2.5 and 2.4. The former stressed the necessity of reusing application arti-
facts. The layered approach decouples the application from the hardware,
application artifacts can potentially run on different hardware platforms.
The latter explicitly required the Development-Environment to be inde-
pendent from the Execution-Environment. The architecture meets this
requirement by defining an interface between development and deployment
environment that decouples both environments from each other.

A particular concern is how a synchronized communication from the Dev-
elopment-Environment can be mapped on an asynchronous communication
as defined for the Execution-Environment. For example, if in the develop-
ment environment a relationship between a bumper sensor and actuator
is established, it can be shown that the signal will reach the actuator in
the next abstract instance of time. Therefore, it can be mathematically
modeled that the robot shows the correct behavior in the presence of a
particular stimulus. This is not possible for an asynchronous architecture,
because no assumption can be made about the delay of communication.
However, a delay metric can be computed that can be used to set bound-
aries for execution cycles.

Four basic communication scenarios between components are considered.
The scenarios are depicted in Fig. 8.6. Three independent components are
indicated by the letters A, B and C, respectively. A communication event
between these processes is indicated by an arrow, which is annotated with
a message that flows between them in the direction of the arrow.

First of all, all of these communication events are non-blocking, which
means that the producer of the signal can continue as soon as the signal is
sent. A message is buffered on the receiver side until the receiver discards
it. In the first scenario, a producer A creates a message x, but no receiver
is defined. In the Development-Environment this message is stored on the
blackboard, but no other component reads the value. This scenario maps in
the execution-environment to the case that no component has registered to
the event. Therefore, the message is simply dropped and no synchronization
delay is introduced.

In the second scenario, a component A sends a message x to component B.
For the Development-Environment that means that in cycle c1 the message
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Figure 8.6: Basic communication scenarios sending messages x, y between
processes A, B, C

is triggered and ready to be read by component B in the very next cycle
c2. In the Execution-Environment, both components may run with different
clocks, which means that starting from the cycle c1 in which the message is
triggered, component A may perform cA execution cycles and component
B may perform cB execution cycles until the message arrives. For example,
from the sending of a bumper event, a motor controller may have updated
the motor speeds 10 times and the bumper controller may have read the
sensor value 5 times. This means that the message has from the point of
view of the receiver component a delay of 10 cycles and from the sender
component a delay of 5 cycles. From these values a synchronization rating
s can be computed according to

s =
1

1 + cA + cB
(8.1)

which gives an indication of the communication delay between the compo-
nents. In the case the message is transported instantaneously, both com-
ponents complete zero execution cycles which results in a rating of 1. The
smaller the value s the more communication delay the message has.
In the second scenario a component A sends two messages x and y at cycle
c1. In this setup components A, B and C perform cA, cB and cC , execution
cycles, respectively. The synchronization rating is then computed by:

s =
1

1 + cA + cB + cC
(8.2)

Similarly in scenario 4, component C performs execution cycles until both
messages from components A and B are available. The synchronization
rating is therefore also computed as for case three.
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In the Development-Environment, communication is handled by the black-
board system and in the Execution-Environment it is handled by localized
point-to-point connections. These communication events can directly be
translated from the Development-Environment to the Execution-Environ-
ment. The above synchronization rating can be used for example for pro-
gram verification. A constraint could be defined that the synchronization
rating may never be below 0.3, which means a bumper event may never
arrive later than with three execution cycles delay.

Having evaluated the general architectural split between Execution- and
Development-Environment the following sections discuss the requirements
of every functional requirement category.

8.3.2 Trace application designer requirements

A trace of how the requirements from the application designer category map
on the architecture is shown in Fig. 8.7. From the requirements trace it
can be seen that all of the application designer requirements are met within
the Development-Environment. As discussed above, requirement 1.1 is an-
swered by a general layered model that is continued up to the operator and
the editor level. Furthermore, the general editor concept responds to re-
quirements 1.2 and 1.3. First of all requirement 1.2 denoted that the editor
framework has to provide editing tools that agree with background knowl-
edge and design approach from a particular field of expertise. Multiple
editors have been introduced to the architecture resulting in a generaliza-
tion of an editor interface that allows to extend the architecture with new
editors. Requirement 1.3 is related to two concepts. First of all it is related
to the editor concept, because editors naturally also present information to
the user. The more explicit representation of this requirement is realized
by the concept of a DesignView. In contrast to an editor, a design view is
a purely passive element with regards to application development.

The architecture allows to present multiple views that have to be synchro-
nized as stated in requirement 1.4. The problem of synchronization has
been solved by the synchronous communication architecture. The syn-
chronous architecture guarantees that all modifications are executed and
visualized in the same virtual instance of time. In contrast to an external
scheduling, this architecture insures a deterministic execution and therefore
reproducible results.

Lastly, requirement 1.5 addressed that the different views must be easily
accessible for the designer. This requirement has been realized within the
visualization of the central engine of the development environment. Design
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Figure 8.7: Trace of designer requirements on the architecture

views and editors are components within the architecture of which the
central engine keeps a reference. Within the visualization of the current
implementation, components may be freely organized.

8.3.3 Trace development process requirements

Requirements 2.4 and 2.5 have already been discussed in the context of
the separation of the architecture in Development-Environment and Ex-
ecution-Environment. A trace of the remaining requirements is depicted
in the requirement trace in Fig. 8.8. The main requirement is to allow
for rapid prototyping (RQ 2.1). This requirement has been realized by
the Editor and ApplicationArtifact concepts. An editor allows to cre-
ate new application artifacts. Therefore, an application can be created by
reusing existing artifacts and trying new behaviors in combination with
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Figure 8.8: Trace of the development process requirements
.

an according ArtifactExecutor. Therefore, the Editor concept simul-
taneously fulfills requirement 2.2 to allow for easy adaptation of existing
application artifacts.

Finally, requirement 2.3 asked for direct testing and debugging facilities.
This requirement has been realized on multiple levels. First of all, the
overall communication architectures of both the Development- and Ex-
ecution-Environment allow to trace communication messages. Secondly,
the synchronous communication protocol of the development environment
insures for deterministic execution, which eases tracing of errors that have
been logged with the logging mechanism. Lastly, the preview facilities
provide a direct testing possibility before an application artifact is employed
in the context of an application.
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Figure 8.9: Trace of domain requirements

8.3.4 Trace domain requirements

A trace of the domain requirements is depicted in Fig. 8.9. Domain re-
quirements originated from the general application domain of developing
interactive applications for robotic interfaces. The first requirement (RQ
3.1) denoted the inherent coupling with a robotic embodiment. Due to the
fact that there is only few standardization for robotic hardware available, a
generic interface can only be defined on an application layer. The general
embodiment class, in combination with the concept of an embodiment def-
inition, generalize an embodiment as a set of sensors and actuators. The
embodiment definition carries a type definition that is used to compare dif-
ferent embodiments. For example, the creation of a functional animation
requires the knowledge of available actuators for the embodiment.

Functional animations in turn fulfill the basic requirement to be able to
develop applications that adhere to the three design dimensions natural-
ness, adequateness and development over time as demanded by requirement
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3.2. First, functional animations offer the control over expressiveness of the
embodiment using the same principles as movie animation tools like Maya
[4]. Secondly, they combine the power of dynamic scripting with keyframe
animation technology using parameterized functional equations to adapt a
behavior to the current situation. Lastly, these parameters can be trans-
formed to different coordinate systems and manipulated during run-time,
resulting in changing behavior over time.

In order to be able to react on the environment during run-time the system
must be able to sense the environment (RQ 3.3). Furthermore, this interac-
tion is subject to real-time constraints. This requirement has been realized
by the asynchronous communication model of the Execution-Environment
in combination with the situation awareness component.

Lastly, requirement 3.4 to support Wizard-of-Oz applications can uniformly
be realized using the situation awareness concept. As described in Chapter
7.3.2, a recognition module can also be controlled using a control interface
from the wizard. In this model, the wizard input is treated just like other
sensor input. The component definitions carry the respective information
of which data is provided by a particular recognition module.

8.3.5 Trace framework requirements

The category of framework requirements is mainly realized by the cen-
tral component decomposition of the overall architecture. The requirement
trace is depicted in Fig. 8.10. A central component interface has been
generalized over the component classes of the Development-Environment
and Execution-Environment. Most notably, the general component class
includes a component definition that carries meta information about the
component. The derivatives add a communication protocol between the
components. This modularized specification is the major source of flex-
ibility within the architecture, which also allows to dynamically extend
the architecture (RQ 4.1). Furthermore, it allows third party vendors to
contribute new components with specialized functionality (RQ 4.2). It
therefore also facilitates the integration of different expertise as required
by requirement 4.3. For example, a software company or research group
with extensive knowledge on computer vision, can provide this expertize en-
capsulated in a recognition module. This allows an application designer to
make use of the functionality without knowing the details of the particular
component.

The last two requirements, to align with existing development platforms
(RQ 4.4) and to integrate existing OPPR tools, (4.5) address the integration
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Figure 8.10
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of legacy systems. In the most general case, the communication interface
of the communication architecture can be used. Both, the development-
and Execution-Environment define a general communication protocol using
human readable XML messages. More specifically, the animation engine of
the OPPR framework has directly been integrated using the interface of an
artifact executor.
Having mapped the functional requirements, the next evaluation section
targets at stressing the architecture for more general quality attributes
using scenarios and examples as defined in the utility tree.

8.4 Quality attribute evaluation

In this section it is discussed how the quality attributes are met by the
design of the architecture.

8.4.1 Flexibility

Flexibility addresses how flexible an architecture is to accommodate chan-
ges. Usually it is measured by the amount of steps necessary to adjust the
system. To a great extent, flexibility is defined by how the functionality of
the system is broken down into components. In the literature three typical
strategies are followed to achieve flexibility, which are indirection, encap-
sulation and separation [36]. Indirection decouples source and target of an
operation, usually by involving a mediator. An example of this approach
was followed in the design of the communication architectures. Encapsu-
lation bases on the principle of information hiding by defining a concrete
interface and leaving the implementation open. Therefore, interfaces be-
come fixed points within the architecture with the result that a change of
an implementation will not transcend the encapsulating interface. The last,
separation, isolates not related constructs from each other. An example of
this separation is how the graphical representation was decoupled from the
underlying components. The graphical representation should be able to
change independently from the implementation of underlying objects.
In the following, the three scenarios of the utility tree are discussed in terms
of how flexibility is achieved within the architecture.
The fist scenario has been realized by encapsulation. A concrete interface
has been defined for a component of the modular architecture, which hides
the internal implementation. Furthermore, interfaces have been defined
on different levels of abstraction. For this reason the architecture can be
extended on top level by adding a new component or more concretely by
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adhering to the interface of an editor. The concrete case has the advantage
that the new editor can reuse predefined functionality such as the undo-
manager and the cut-copy-paste facility.

Also the second scenario is met through encapsulation. The central inter-
face to encapsulate an embodiment consists of the embodiment class and
a corresponding embodiment definition. Furthermore, indirection has been
used through the factory design pattern that handles the instantiation of an
embodiment. Therefore, specific initialization parameters of the hardware
can be handled without affecting the implementation of the development
engine which keeps track of the components in the Development-Environ-
ment.

The last scenario of the utility tree targets the configurability of the ar-
chitecture. This requirement is met by strict separation of orthogonal
constructs. For example, the situation awareness component handles the
sensory perception of an application while an artifact executor handles the
control over the actuators. Modularization breaks the architecture down
to independent small components that can be assembled in any combina-
tion. Within the situation awareness every signal processing algorithm is
encapsulated within its own module. By defining input and output of the
modules, they can freely be arranged to form a recognition network. Con-
figuration is a matter of selecting and arranging predefined components.
Within the SRD architecture, all configuration files have been consistently
handled using a human readable XML syntax.

8.4.2 Security

The major difficulty for assessing system security is that security require-
ments describe what should not happen instead of what should happen
[227]. In the context of software, security mostly concerns the management
of rights, that is to assign limited access to users. In case these access rights
are violated, for example if a party gains access beyond these rights, system
security is compromised.

Sommerville [227] lists four different approaches for security checking that
are experience-based validation, tool-based validation, tiger teams and for-
mal verification. In the first approach the system is manually analyzed
against a checklist of known security problems. In the second approach
this analysis is supported by special tools, for example brute-force attacks
on passwords. The third approach assigns a dedicated team the task to
breach the security in order to solve discovered issues. The last approach
requires that a formal specification of the security can be given against
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which the security can be checked. Within the SRD architecture, currently
no rights management is performed. However, access rights can for exam-
ple be given on component level. A component is an identifiable entity that
participates in the architecture using the communication interfaces. As a
first step, these communications can be encrypted and only accepted from
trusted components. In both defined environments these management can
be placed in the central communication component that is either the black-
board or the dispatcher. Nevertheless, due to the research nature of the
architecture these features have not been implemented yet and still pose a
risk on the architecture.

Additionally to these traditional software security issues the application of
robots introduces new security issues, because robots are able to act in the
physical world. From an application development perspective, these secu-
rity issues pose a problem even if no intruder tries to circumvent system
security. Security in the context of human robot interaction has for example
be discussed in the context of search and rescue and system safety [32, 105].
System safety can for many cases be addressed on driver level by restrict-
ing torque commands to a robotic actuator. However, also on application
level security can be implemented. For this reason, two examples of this
security class have been added to the utility tree. The first addresses that a
robot injures a user and the second that the robot damages itself. In both
examples, from a system point of view, the security issue originates from
interaction with the environment. Therefore, security is at risk if certain
signals from the environment are lost, e.g., the signals from a bumper or
cliff sensor.

The SRD architecture defines an asynchronous execution model to meet
the real-time constraints of interactions with the environment. Addition-
ally, it defines point-to-point communication channels in which it can be
verified if a message has reached a receiver. In the current implementation,
the communication architecture uses the TCP protocol. However, based on
the variety of different hardware platforms, no further generalization can be
made. Therefore it is up to the application designer to configure a connec-
tion between bumper sensor and actuator. Additionally, the application
can be configured to react to control events, e.g., an event that informs
about a lost connection. In particular, a lost connection is also signaled
locally to the component, so that appropriate measures can be taken.
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8.4.3 Usability

In the literature, usability has received extensive attention, for example in
the context of user-centered design, human-factors and ergonomics [18, 218,
66]. One of the key challenges for usability is to find appropriate interface
metaphors that are easy to understand for a targeted user group. Bass et
al. define usability by how easy it is for a user to achieve a desired result
[16]. In this definition, they identify 5 areas: (1) learning effort for an
unfamiliar user, (2) efficiency of an operation, (3) minimizing the impact
of an error, (4) adapting to user needs and (5) increasing confidence and
satisfaction.

From an architecture perspective, usability is analyzed in terms of how the
chosen architectural style supports usability. For example, the first sce-
nario in the utility tree raises the issue of learning effort for a new user. To
some extent this usability quality is reflected in the functional requirement
1.2, which demanded to present familiar tools to the application designer.
However, this requirement does not quantify usability over the whole archi-
tecture. The question to answer is if a global knowledge of all components
is required before a particular function can be used.

Within the SRD architecture modularization keeps independent compo-
nents separate from each other. Therefore, the user needs only to learn
the interface of a particular component. In order to create a functional
animation, the user needs to be familiar with animation terminology such
as keypoint and interpolation. Therefore, this component is independent
from an application logic editor. Furthermore, the architecture builds on
common editor techniques such as cut-copy-paste, which on the one hand
require the user to be familiar with these constructs, but on the other hand
also insure consistency and minimize the effort of learning new constructs
and interface gestures.

The second scenario stresses the architecture to introduce a new application
designer with a social science background. In the SRD architecture such
an addition is realized by providing a new editor concept and application
artifact. For example, social rules might be given in terms of templates
[124]. A new editor can support the development process of such templates
and store them as a new application artifact. The important point in terms
of usability is that the architecture allows several disciplines to contribute
knowledge to the application development with specialized tools, which
minimizes the integration effort between the domains.
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8.4.4 Performance

Like usability, also performance includes architectural and non-architec-
tural aspects. For example, specification of communication between com-
ponents or allocation of components to hardware belongs to the architecture
description. However, the concrete implementation does not belong to an
architecture [16].

From an architecture perspective, performance describes the ability of a
system to allocate computational resources [36]. In this context, Abbott
and Garcia-Molina present a performance evaluation and ranking of con-
current control strategies [1]. The SRD architecture defines two different
environments with two different control strategies. For the Development-
Environment a desktop computer environment is assumed that is able to
meet the demands of visualization of the graphical interfaces. The complex-
ity of computation scales with the number of components that are loaded
with the main development engine. As described in Chapter 6.7 on page
138 the communication architecture allows to distribute components over
several processing nodes. However, the major bottleneck for the architec-
ture is the synchronized communication approach, because the execution
of components is sequential. Therefore, this design decision treats perfor-
mance for maintainability so that no additional synchronization code need
to be maintained for scheduling of the components.

The major performance requirements for SRD framework arise from the
hardware limitations of the robotic deployment environment. In order to
evaluate the architecture for these constraints, the utility tree defines two
scenarios that target at the execution of applications.

The first one relates to the control of embedded hardware platforms. In
order to execute an application two approaches can be followed. In the first
approach, the artifact executors and required recognition modules have to
be ported to the embedded platform. The advantage of this approach is
that every of these components can be highly optimized for the available
processing unit. Application artifacts may still be developed on a desktop
environment, because the hardware access is delegated to an embodiment
definition. The second approach treats the robotic hardware as a closed
system that is controlled through a defined interface. For example the iCat
robot and the Roomba robot have been controlled using this approach. An
embodiment definition encapsulates the hardware interface and makes it
available within the SRD architecture.

In both approaches, components may be distributed among processing
nodes using the asynchronous communication architecture. This is an im-
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portant quality in particular, because it facilitates to balance the working
load. Additionally, components can be controlled during run-time using
control events. For example within the situation awareness, components
may be temporarily disabled, if their output is not required. However, the
responsibility for allocation lies fully on the application configuration and
application logic. That means that in the current implementation no auto-
matic load balancing is performed. However, automatic load balancing also
introduces new overhead which increases the requirements on the hardware.
In summary, the above analysis has mapped the functional requirements on
the architecture and illustrated which constructs are responsible to realize a
certain function. Furthermore, quality attributes have been discussed in to
concrete scenarios, highlighting how certain architectural styles contribute
to achieve a quality requirement.
However, a fundamental problem of a design tool is to prove its basic ap-
plicability to given design domain based on the produced results. The
provided design framework merely serves as a facilitator. The final result
depends on the one hand on the skills of the designer and on the other
hand on the quality of the provided tools. For this reason, the SRD archi-
tecture has also been evaluated at hand of two case studies. The first study
develops a tutoring application for the iCat robot and the second study
investigates how robot motion is perceived by a user in terms of affective
content. The latter one is reported in the next chapter.



Chapter 9

Case study: Emotional
messages in motion

The SRD framework has been applied in two case studies. In the first,
it has been used to vary the degree of social supportive feedback in a tu-
toring scenario. The full study is reported in [211]. Education literature
suggests a relationship between the degree of social behavior of a robotic
interface in a tutoring application and its effectiveness in terms of learning
performance of the student [234]. The challenge for an application designer
is to control the degree of social behavior of the character. As interface
the expressive Philips iCat robot was chosen. The SRD framework has
been used to modify the behavior of the robot along five dimensions: 1)
role model 2) non-verbal feedback, 3) attention guiding, 4) empathy and 5)
communicativeness. Expressive behaviors and emotional expressions have
been created using the functional animation editor. These animations were
triggered by an application script that has been developed using the Robot
Interaction and Behavior Markup Language (RIBML). Furthermore, the
animations were parameterized and linked to the sensory input from the
situation awareness component.

The application has been tested with 16 children of the age of 10 to 11. An
example interaction of the tutoring application is depicted in Fig. 9.1. Even
though no qualitative judgment can be made about the effectiveness of the
design tools, the experiences from this case study have demonstrated that
the SRD framework can successfully be applied to create a social robotic
interface.

In total, four persons worked with the tools, of which two had no for-
mal training in software engineering. They reported that especially the
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Figure 9.1: Example interaction between participant and iCat robot in a
tutoring application.

graphical editing methods and the preview facilities helped to create de-
sired expressions for the robot. Furthermore, the graphical user interface
was sufficiently responsive to test various parameterizations without rec-
ognizable lag. Also when executing the final application on the robotic
embodiment, the animations were rendered smoothly. For this reason, and
because the focus of this design thesis is on architecture level rather than
on performance optimizing, no further performance analysis with regards
to execution time or memory usage was performed. Nevertheless, based on
the experiences it can be stated that the framework actively supported the
development of the social robotic interface.

One thing that the tools missed, however, was the possibility to control the
emotional expression of iCat on a high level of abstraction. The designers
had to rely on their intuitive interpretation of iCat’s behavior from the
preview facility and observing the actual robot. Just by varying the motion
patterns of iCat, without changing the facial expression, could give very
different emotional impressions.

People’s interpretation of robot motion has been investigated in a second
case study of the SRD framework, which is reported in the following. This
case study is of particular relevance, because the findings might impact
the development of the framework itself. That is, it gives an outlook on
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next generation design tools. The study presented in this chapter has been
submitted for publication at the 5th ACM/IEEE International Conference
on Human-Robot Interaction (HRI 2010).

Abstract – Nonverbal behaviors serve as a rich source of infor-
mation in inter human communication. In particular, motion
cues can reveal details on a person’s current physical and men-
tal state. Research has shown that people do not only interpret
motion cues of humans in these terms, but also the motion
of animals and inanimate devices such as robots. In order to
successfully integrate mobile robots in domestic environments,
designers have therefore to take into account how the device
will be perceived by the user.

In this study we analyzed the relationship between motion char-
acteristics of a robot and perceived affect. Based on a literature
study we selected two motion characteristics, namely accelera-
tion and curvature, which appear to be most influential for how
motion is perceived. We systematically varied these motion pa-
rameters and recorded participants interpretations in terms of
affective content. Our results suggest a strong relation between
motion parameters and attribution of affect, while the type of
embodiment had no effect. Furthermore, we found that the
level of acceleration can be used to predict perceived arousal
and that valence information is at least partly encoded in an
interaction between acceleration and curvature. These findings
are important for the design of behaviors for future autonomous
household robots.

Non-verbal communication such as symbolic gestures and motion patterns
play an important role in human communication as emotions are almost
exclusively conveyed non-verbally. For this reason it is investigated to
what extend robots are able to display similar expressions. Robots such as
Kismet [28] and iCat [238] are especially designed for social and emotional
interaction with humans. However, currently available household robots
such as Roomba are not equipped with special expressive degrees of free-
dom for communication, but nevertheless, people are ascribing emotions
and respond to Roomba’s behavior in social terms [74].
Designing expressive movements for robots aims at using motion as modal-
ity to convey information, for example about the status of a device. Fur-
thermore, expressive behaviors improve the overall perception of the device.
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The research of Takashi and Hiroshi showed that specific subtle motion cues
can have a measurable effect on how the robot is perceived [167]. They an-
alyzed motion diversity in the context of a reach gesture and found that
there is a dependency between the context and the retract motion of the
gesture. Furthermore, they showed that the overall impression of the robot
is improved when these subtle differences are modeled in the behavior.

The design challenge is to create motion patterns that give a desired im-
pression. For designing expressive and communicative behaviors it is im-
portant to know what features cause the interpretation of intentions and
emotions [82]. The interpretation of motion in terms of affect or emotions
is particularly relevant for our research.

9.1 Perception of animacy

Several psychological, social, biological and evolutionary models and theo-
ries for explaining the ability of people to interpret motion of objects have
been developed. For example, one theory for peoples’ ability to interpret
motion suggests that the visual system is sensitive to energy violation [215].
This means that whenever people perceive a change of the current motion
that is not caused by external events following the Newtonian laws, these
objects are perceived as animated. However, even though this rule seems
to explain most of the cases for perception of animacy, it has also been
shown that the orientation of an object with otherwise identical motion
trajectories is enough to influence the perception of animacy [215].

Blythe et al. give an evolutionary explanation for the perception and inter-
pretation of motion features [22]. They state that being able to categorize
the behavior of a predator, e.g., if it is searching for food or exhibits mating
behavior could make the difference for the survival of the prey. Also for
gregarious animals the ability to express a state or intentions to be recog-
nized by other members of the group might hold the key for the survival of
the group. Blythe argues that at least the benefits of such movements must
have exceeded the energy costs, otherwise they would not have evolved.

Another model for interpretation of motion patterns is that social reasoning
helps to make sense of an observation. If objects change direction without
an obvious reason, people tend to use their social reasoning to explain the
phenomenon, i.e., by internal drives and needs. That is, people use a “it is
like me” reasoning to explain the observations [59].

A multitude of studies in psychology have analyzed the phenomenon of
ascribing lifelike attributes based on motion patterns. One aim in this
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research is to isolate the underlying mechanisms and their development
throughout childhood. For example, Boon and Cunnigham give evidence
that emotion decoding based on expressive movement is acquired in an
early developmental stage at the age of 4–5 years [24]. The work of Leslie
gives evidence that infants of six month are already able to perceive causal-
ity in motion patterns [144]. Rakison and Poulin-Dubois report that with
six month infants already begin to attribute characteristics of animacy to
people [194]. However, the question if the perceptual processing of causal-
ity and animacy is innate and where perceptual processing and cognitive
processes link has not been resolved yet [215]. There has been no agreement
if the perception of animacy is solely based on stimulus or if higher level
cognitive processes are involved. For example, it has been argued that the
perception of animacy requires the knowledge of causal relationships [44].
In contrast there is also evidence that simple motion cues are sufficient to
judge animacy and intentions [22].

Overall, there seem to exist specific motion patterns that stimulate attri-
bution of animacy and are therefore important for the design of expressive
communicative behaviors. For example, Dittrich and Lea conducted an
experiment where participants had to detect a biological meaningful mo-
tion of a moving character within a group of distractors [53]. They found
that more direct motion is perceived as more intentional. The more in-
teresting result was that even if the target for the intentional motion was
removed, participants were able to detect the intention. Furthermore, the
difference in appearance, resembled by difference of brightness in the exper-
iment, did not lead to a difference in interpretation of the motion. Dasser
et al. explored the ability to attribute intentionality to motion patterns in
an experiment in which they showed movement patterns of two balls to
preschool children [44]. In their experiment physical causality was inter-
preted with psychological motivation such as A hit B, because B made A
angry. They argued that this type of interpretation requires a representa-
tion of the internal state of the object and showed that the children were
able to interpret the motion without making a distinction between animate
and inanimate motion, which was kept constant in the conditions.

The above results suggest that there exists a relationship between mo-
tion and perceived animate characteristics such as intentions and emotions.
While motion can be observed and parameterized directly this is not pos-
sible with affect. Therefore, we discuss in the following section models of
emotions that have been proposed in literature and introduce the affect
assessment methods used in this study.
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9.1.1 Emotional model

The ability of mechanical rendered faces to express facial emotions has
received plenty of attention in literature [9, 28]. In this study we are inter-
ested in the perception of how robotic movement patterns are interpreted
by a human observer in terms of emotions.

Until now, a number of different psychological models for the cognitive
structure of emotions have been proposed. An extensive discussion on
emotional models and the experience of emotions can be found in [147,
7, 35, 38]. In general, two models have found wide acceptance and are
supported by empirical evidence.

The first describes emotions as a combination of basic emotions. Ekman
found that facial expressions for the six emotions of anger, surprise, disgust,
happy, sad and fear are universally recognized [61]. Each of these basic
emotions describes an unipolar dimension containing the activation of a
particular basic emotion. However, it is not clear which emotions make the
basic set out of which all other emotions can be constructed [108].

The second model represents experiences of emotions as points in a con-
tinuous two dimensional space. Russell found that most of the variance of
emotional perception can be accounted for in a two dimensional space with
the axis of arousal and valance. This model is referred to as circumplex
model of affect [207]. The results of Russell have been repeated in several
other studies that found the same axis or rotational variants and resulted
in the development of multiple scales to measure different degrees of affect
in this two dimensional space [39, 164]. Some studies have extended the
model, for example by a third dimension representing dominance [139].

9.1.2 Assessing affect

For our research, we adopted a similar approach as Pollick et al. [192] and
Lee et al. [142] and measured emotion according to a two dimensional pa-
rameterized model of emotion. Pollick et al. found that emotions perceived
from arm motion can be clustered in a space with the two main axis of
valence and arousal similar to Russell’s circumplex model of affect [192].
We also followed Pollick’s argumentation that similar measurements can be
used both for measuring one’s own experiences of emotion as well as assess-
ing the emotional state of someone else. Literature gives evidence that the
same, or at least very similar processes are involved when assessing one’s
own experience of affect and recognizing affect in others. An overview of
assessment methods for affect can be found in [108].
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Figure 9.2: Simplified version of a two dimensional space of affect(derived
from Larsen and Diener [141])

We selected the PANAS [247] scale to fit best our needs. First of all, plenty
of studies have been reported using the PANAS and the results showed
high validity and reliability (Cronbach′sα = 0.89) for a general population
[39]. The scale and rating instructions are freely available and are quick
to administer. Furthermore, the PANAS has also been administered to
rate the affective state of other persons, not only to assess the emotional
experiences of oneself. For example, it has been successfully administered to
mothers to assess affect of their children [49]. The PANAS scale measures a
dimensional model of emotions, which allows to parameterize an emotional
state by a coordinate in a two dimensional space. It measures positive affect
(PA) and negative affect (NA) which consist of 10 items for every of the
two constructs.

Additionally to the PANAS scale, we administered a second scale based
on a slightly different model of affect, comprising the three independent
dimensions pleasure, arousal and dominance (PAD) [163]. In literature
these dimensions are also sometimes referred to as valence or pleasantness
for pleasure or as activity for arousal. Both the PANAS and the PAD
models are rotational variants in the same two dimensional space [164]. A
simplified version of the space can be found in Fig. 9.2.
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However, when comparing both models, Mehrabian found the PAD to be
superior to the PANAS model, because certain affective dimensions such as
‘dependent-disdainful’ (e.g., amazed, fascinated, impressed, loved versus in-
different, selfish-uninterested, uncaring) and ‘docile-hostile’ (e.g., consoled,
protected, reverent, sleepy, tranquilized versus angry catty, defiant, inso-
lent, nasty), had no counterparts in the PANAS(p. 350) [164]. Another
advantage for the PAD is that it can be administered using pictographic
representations of the three dimensions, in literature referred to as ‘Self-
Assessment Manikins’ (SAM) [139, 26]. Bradley and Young showed that
the SAM are highly correlated to the Semantic Differential Scale (devel-
oped by Mehrabian and Russell [165]), but are faster to administer and
are not subject to language misinterpretations [26]. We expected that an
iconic representation of emotions might be easier to understand and apply
to inanimate beings such as a robot. In this sense, rating the affective state
of the robot could be compared to rating the state of a cartoon charac-
ter. In both cases the participant is consciously aware that the character
is not alive and does not have ‘real’ emotions. Additionally, it has been
shown that anthropomorphic characteristics of the embodiment are not a
requirement for the attribution of an affective state. For example, Disney
has demonstrated that a sack of flour can be animated in a way so that it
expresses various types of emotion [231].

Nevertheless, we figured that the PANAS is still useful for our case, es-
pecially because its validity has also been demonstrated for assessing the
affective state of others. To the author’s knowledge, the SAM have not
generally been administered to assess affective states of others. For our
case this is essential, because we are interested in what affective state par-
ticipants perceive in the robot motion.

9.2 Selection of motion features

In literature, several studies have been published that analyze the percep-
tion of particular motion. In order to determine which motion features
are most influential for the perception of emotion we analyzed the main
effects of several studies that investigated the perception of motion. For
example, Tremoulet and Feldman have shown that already two cues are
enough to give an impression of animacy: 1) change in speed and 2) change
in direction [235]. In the following we give an overview of the field.

Camurri et al. aimed to automate the recognition of emotional content of
expressive gestures made by dance performances [31]. They asked actors
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to perform a dance with four different emotional expressions: anger, fear,
grief and joy and computed motion features derived from Laban Movement
Analyis: overall duration, contraction index, quantity of motion, and mo-
tion fluency. From these dimensions they composed a feature vector that
contained measurements of the full body motion trajectory as well as rela-
tive motion of body and limbs and used it as input for training a classifier.
They found main effects for example for duration and quantity of motion,
which are related to changes in speed and trajectory.

Similarly, Gaur et al. aimed at automating the recognition of animate and
inanimate characteristics solely based on motion features [82]. They repre-
sented the motion data as a vector of motion angle, which gives the direction
of motion, and the moved distance between breaks. From this raw repre-
sentation they calculated more specific motion features, including mean
distance, mean rotation, range of distance, range of rotation, variance of
distance, variance of rotation, spline coefficients representing the sharpness,
and an energy metric that calculates the energy that the objects gains to
give the impression of being animated. Beside these continuous variables,
they also calculated binary flags indicating if the object is static and if it
moves on an exact straight line. With these input data they trained a Bayes
classifier with a human annotated training set and performed a knockout
analysis with every feature, to investigate which features contributed the
most to the perception of animacy. They found that a combination of spline
coefficients, change in velocity and direction together with the energy fea-
ture hold the most information for classifying a motion as either animate
or inanimate. The absolute values seemed to be of less importance.

Bethel and Murphy reviewed different methods for affective expressions,
among others using motion [21]. They found that depression is connected
with slow and hesitating movements while elation is connected to fast ex-
pansive motions. Blythe et al. analyzed motion patterns for basic behavior
patterns of pursue, evade, fight, court, be courted and play [22]. In their ex-
periments they let participants control an ant on the screen and asked them
to move according to one of the predefined basic behaviors. They validated
the resulting trajectories in a confusion matrix and found that participants
were able to categorize the motion trajectory as it was intended. An in-
teresting result was that participants were even able to judge the behavior
when the target, i.e., the second ant was taken away. These results stress
the informational content of motion that is independent from the context.
Analyzing specific motion features in detail, Blythe et al. tested seven cues
relevant for the categorization: 1) relative distance, 2) relative angle, 3) rel-
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ative heading, 4) absolute velocity, 5) relative velocity, 6) absolute vorticity
and 7) relative vorticity. To find out which motion parameters carried the
most information for the categorization task they trained a Categorization
by Estimation (CBE) algorithm. They found the following order of im-
portance of the features: 1) absolute velocity, 2) relative angle, 3) relative
velocity, 4) relative heading, 5) relative vorticity, 6) absolute vorticity and
7) relative distance. Additionally, they quantified the information that the
context holds for correctly interpreting a particular behavior. Therefore,
they measured the performance drop that was observed when the context
was taken away.

Pollick et al. calculated from a point light display of human body mo-
tion [192] the following movement features: 1) wrist kinematics, 2) average
velocity, 3) peak velocity, 4) peak acceleration, 5) peak deceleration and
6) jerk index. They found that kinematic features correlated with the acti-
vation dimension of arousal and valance. Energetic motions were positively
correlated with shorter duration, acceleration, jerk, greater magnitudes of
average velocity, and peak velocity. The authors explained that the arousal
could more robustly be decoded by the redundancy of motion information,
because all of the kinematic measures were related to the arousal axis.
Furthermore, they conjecture that information on the pleasantness axis is
encoded in the phase relations between the different limb segments.

Lee et al. present a relational framework between motion features and emo-
tions [142] for which they used a two dimensional emotional model with the
axis of valance and arousal. They generated multiple motion trajectories
for which they varied the degree smoothness, speed and openness. They
found a positive correlation between velocity and activation axis and a pos-
itive correlation between pleasantness and smoothness, but they could not
find an effect for openness.

From the above results it appears that especially relative motion features
hold important information for categorizing a motion trajectory. In all
studies changes of speed and changes of direction had an effect, while the
absolute values seemed to be of less importance. Only the study of Blythe et
al. found absolute velocity to carry most information, but they also found
that the absolute ordering of the features was of less importance. The
study of Gaur et al. found the absolute values explicitly of less importance
[82]. Based on these results we chose to focus our study on the motion
parameters of acceleration (representing differences in speed) and curvature
(representing differences in direction).
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9.3 Measuring perception of motion

From our discussion above we selected to investigate the parameters accel-
eration and curvature and to focus on the perception of motion of a robot
with a physical embodiment. Multiple studies have shown that the em-
bodiment of a robot has an effect on how it is perceived [15, 128, 13, 193,
122, 106, 153]. Furthermore, depending on the embodiment two different
types of motion are possible, to which we refer to as external motion and
internal motion. With external motion we refer to motion ‘external’ to the
embodiment, i.e., movement of an object from location x to location y in
a defined space. With internal motion we refer to motion internal to the
embodiment, i.e., movement of the limbs.

Therefore, we chose for our study two embodiments with two different types
of motion, namely the iCat robot for implementing the internal motion and
the Roomba robot for implementing the external motion.

9.3.1 Robotic embodiments

For this study we chose two robotic embodiments, namely the iCat robot
and the Roomba robot (see Chapter 2.3). The iCat robot is a non mobile
robotic research platform developed by Philips Research for human ma-
chine interactions. The robot is depicted in Fig. 9.4. The iCat robot has
the shape of a cat and is approximately 40cm tall. It has an animated
mechanical face with 13 degrees of freedom to express basic emotions, such
as, happiness, sadness or disgust. Furthermore, iCat is equipped with a
camera, a microphone, a distance sensor and four touch sensors. For our
experiment we focused on the pan and tilt degrees of freedom of the head
only. The expression of the face was kept neutral in order to avoid an
interpretation of iCat based on the symbolic expression of the face rather
than the impression of the movement patterns.

The Roomba robot is a commercially available vacuum cleaning robot de-
veloped by iRobot. The robot is depicted in Fig. 9.5. Roomba has a circular
shape with a radius of approximately 15cm. It has a differential drive sys-
tem, consisting out of two velocity controlled wheels that can be controlled
via a serial interface. The interface defines two parameters, namely radius
and velocity to control the motion. Roomba has a state based controller,
which means that it keeps driving on a circle with given radius and velocity
until a new command arrives. More complex trajectories can be approxi-
mated from small arc segments. Additionally, the interface defines special
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Figure 9.3: Experimental setup of the room indicating the movement of
Roomba, starting from position S. In the Roomba condition participants
were placed in position A and in the iCat condition in position B. The
experimenter was placed at position E.

case parameters for driving straight or rotating on the spot. We tested and
evaluated the drive accuracy of the robot as described in Chapter 7.4.

9.3.2 Motion pattern generation

The goal of this study was to systematically vary certain motion features.
Therefore, we used the graphical animation tools as described in [212] to
create behaviors. The editor for creating animations for iCat is depicted
in Fig. 6.15 on page 127 and the editor for creating a path for Roomba is
depicted in Fig. 6.18 on page 130.
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Figure 9.4: Sample interaction in the iCat condition.

Three different values for curvature and acceleration were created for both
embodiments, resulting in 9 animations for every embodiment. For creating
the animations both robots were assigned a simple task. For Roomba, we
defined a circular trajectory through the room as depicted in Fig. 9.3 so
that the robot would start from a defined home position S, drives through
the room on the indicated trajectory and returns to the home position
afterwards. On this route, Roomba passes the participant at position A.
An example picture with Roomba is depicted in Fig. 9.5.
In the iCat condition we placed two objects in front of iCat and defined
an animation to look at both objects. We realized the animation with
the iCat editor by moving the head so that the robot would start from a
central position, look first at the left object then at the right object and
finally return to a central position. The participants were seated with an
approximate distance of 80 cm to iCat, in Fig. 9.3 marked as position B.
A sample picture from the iCat condition is shown in Fig. 9.4.
These two basic animations were used to create animations for the different
levels of acceleration and curvature by repositioning the keypoints and ad-
justing interpolation parameters of the functional animations. Afterwards,
we calculated the values for acceleration and curvature separately for both
embodiments as follows. For acceleration, we first approximated the first
and second derivatives based on the motion trajectories from the editors.
In the current version, the iCat robot updates the motor positions with 10
frames per second. Therefore, the velocity v of an actuator can be approx-
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Figure 9.5: Sample interaction in the Roomba condition.

imated by the difference in position of two consecutive frames and in an
analogous manner the acceleration a can be approximated as the difference
of two consecutive velocities:

v = ṡ =
si+1 − si

t
(9.1)

a = s̈ = v̇ =
vi+1 − vi

t
(9.2)

For an animation the average acceleration ā was calculated over the number
of frames F as:

ā =
1

F

F
∑

i=1

ai (9.3)

In the same manner also the average velocity of the Roomba robot was
calculated, but with the difference that the velocity didn’t have to be ap-
proximated, because the serial interface directly accepts a target velocity
as a parameter, which was used for the calculation.
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As a measurement for curvature we calculated the extrinsic curvature κ. If
the radius is known, the curvature can directly be calculated by:

κ =
1

r
(9.4)

For the Roomba robot we could directly apply this definition, because it
always moves in circular segments. For the iCat robot, however, the radius
of a line segment cannot directly be derived from the control signals. In
order to calculate the curvature of the movements of iCat, we analyzed the
path in space of the center of iCat’s face as it moved the head to accomplish
the task. The center is given by the tip of the nose and moves on an ellipsoid
surface, which is defined by the radius for the pan and tilt axes. The shape
of the ellipsoid is parameterized by the equatorial radii a, b and c along the
axes of the coordinate system

x2

a2
+

y2

b2
+

z2

c2
= 1 (9.5)

The parameters are given by the iCat embodiment as a = b = 10.5cm and
c = 12.5cm, assuming that z is the vertical axis and the x-y plane is parallel
to the table. Furthermore, the control signal of the motors can be directly
converted to viewing angles. The pan angle Φ is controlled by the value
that is send to the actuator labeled ‘body’ and the tilt angle Θ is controlled
by the actuator labeled ‘neck’. The maximum viewing angles for Φ and Θ
are in the range of −45 ≤ Φ ≤ 45 and −25 ≤ Θ ≤ 25, respectively.

Φ = body 45
100 (9.6)

Θ = neck−50
2 (9.7)

With these parameters the three dimensional path is parameterized by

x = a sin (Φ) cos (Θ) (9.8)

y = b sin (Φ) sin (Θ) (9.9)

z = c cos (Φ) (9.10)

The curvature of a parameterized curve in a three dimensional space is
given by:

κ =

√

(ẋ2 + ẏ2 + ż2)(ẍ2 + ÿ2 + z̈2) − (ẋẍ + ẏÿ + żz̈)2

(ẋ2 + ẏ2 + ż2)3
(9.11)

After designing the animations for the two embodiments, we calculated the
actual values for curvature and acceleration to make sure that they indeed
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Robot mean acceleration mean curvature
Condition low medium high low medium high

iCat 0.33 0.81 1.19 0.46 0.56 1.41
Roomba 0.18 0.60 1.10 0.85 1.50 2.20

Table 9.1: Values of acceleration and curvature for the three levels low,
medium and high.

represent three levels for the two motion characteristics. The resulting
values are summarized in Table 9.1.

9.3.3 Participants

We recruited participants through the J. F. Schouten School participant
database [73]. The database contains people of all age groups who are
interested to participate in scientific research experiments. 42 healthy adult
participants, aged 20-45 years, were randomly selected and recruited from
this database. All participants were reimbursed for their participation in
the experiment. Three participants participated in the initial pilot study.
The other 39 participants, 12 female, 17 male, participated in the final
experiments.

9.3.4 Procedure

The experiment took approximately 45 min and consisted out of three parts:
1) Intake (5̃ min), 2) Rating of stimuli (3̃5 min) and 3) Final interview
(5̃min). When the participants entered the room, they were greeted by the
experimenter who introduced himself and gave an outline of the activities
during the experiment. After this introduction the participants were given
an informed consent form to sign before the experiment started.

The participants were randomly assigned to see either the iCat or the
Roomba embodiment first. Every robot performed nine animations, one
for every combination of acceleration and curvature for the values of low,
medium and high, respectively. The order of the nine animations was ran-
domized. After every behavior the participants filled in the PANAS and
SAM questionnaires. Most of the participants gave spontaneous comments
in a think-out-loud fashion, which were also noted down. After the com-
pletion of all stimuli, a semi-structured interview was performed in which
the participants were asked: 1) to give their general impressions on the
behaviors, 2) to describe the differences and similarities of the behaviors,
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3) to indicate a preference for behaviors and to elaborate why and 4) to
compare the observed behaviors with behaviors they would expect from a
commercial product. At last the participants received a small reimburse-
ment according to the guidelines of the J.F. Shouten participant database.

9.4 Results

9.4.1 Missing values

One participant had to be excluded from the data, because she misunder-
stood the task and responded to all items of the PANAS and SAM ques-
tionnaires with the same value, arguing that a machine with wires does
not have emotions. However, during the final interview she had a clear
preference for certain behaviors of both robots. In fact she used the same
emotional words to describe these behaviors as the other participants, i.e.,
“... this one was too aggressive. It seemed to be very angry about some-
thing.”(participant 26) or “I liked this the most, because it seemed very
happy and confident with the task” (participant 26).

Some participants couldn’t finish answering the questionnaires in the sched-
uled time. For this reason, we had to leave out some of the animations for
eleven participants in order to minimize scheduling conflicts. All animations
for the Roomba embodiment were included. A fixed number of animations
for the iCat embodiment were excluded. The main reason for leaving out
these iCat animations was to record all responses to the Roomba embod-
iment, which is presumably a more abstract stimulus than the iCat. In
particular, the four animations in which one of the independent variables
was set to medium were not shown. This allowed us to get a stable rep-
resentation of the affective space at the borders of the motion parameter
space, but reduced the resolution for in-between values. Using this pro-
cedure, for every missing value close neighbors were available in the data
set.

9.4.2 Gender effects

First of all, we tested whether gender had an effect. We performed an anal-
ysis of variance with the sex as independent variable and tested if there is a
significant effect on any combination of acceleration and curvature for the
Roomba and the iCat condition. All combinations summed up to a total of
90 measurements (three levels for acceleration, three levels for curvature,
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two levels for embodiment and five measurements for valence, arousal, dom-
inance, positive affect and negative effect). Neither significant main effects
nor significant interactions were found for gender. Hence gender could be
excluded from the following measurements.

9.4.3 Perception of affect

In order to test whether the motion features had an impact on the per-
ception of affect we performed a repeated measure analysis with the in-
dependent variables curvature c, acceleration a, embodiment e and the
dependent variables valence (V ), arousal (A), dominance (D), positive af-
fect (PA) and negative affect (NA). As input we used only the levels of
acceleration and curvature. We first only tested the 18 participants for
which we had all data available. The mean and standard deviation for the
measurements for Roomba are summarized in Table 9.2 and the according
values for iCat are summarized in Table 9.3. The significance levels and
partial eta square effect sizes are reported in Tables 9.5 and 9.6. Mauchly’s
test indicated that sphericity was for none of the cases violated, therefore
degrees of freedom did not have to be corrected. After this first test we
also repeated the test with all 38 participants, replacing the missing values
with the means over the combination of stimulus and measurement. We
found that none of the results changed significance. That is, the measure-
ments that showed a significant difference for 18 participants also stayed
significant with 38 participants and all non-significant values remained to
be non-significant. In fact, the values changed only marginally. Therefore,
we report in the following only on the cases where full data was available.

From Table 9.5 it can be seen that the embodiment had no main effect on
the measurements, but that in general acceleration and curvature showed
significant effects. However, there are a few exceptions. For example, the
acceleration did not have a main effect on valence.

Comparing the results from the PANAS and SAM scales we found both to
be similarly responsive to the manipulations of the independent variables.
In our repeated measure design, we calculated for every experimental con-
dition a correlation table for the five measurements, resulting in 18 tables
with 5x5 entries. We calculated a mean correlation table by averaging
over the factors. The mean correlation values are reported in Table 9.4.
The highest absolute value was found between valence and positive affect.
However, comparing the significance values, the PAD model indicated that
acceleration has no effect on the perceived valence, which was not visible



9.4. RESULTS 253

acc. cur. valence arousal dominance positive negative
affect affect

low low 4.89/0.32 6.00/0.20 4.33/0.18 21.00/1.10 15.50/1.00
low med. 4.11/0.29 6.06/0.30 4.11/0.24 20.61/1.35 14.50/0.85
low high 5.44/0.28 5.17/0.32 3.94/0.24 21.56/1.57 17.72/0.89
med. low 5.67/0.31 5.28/0.29 3.78/0.28 20.78/1.26 17.06/0.85
med. med. 4.56/0.27 5.17/0.22 4.00/0.34 21.00/1.61 14.56/0.83
med. high 3.89/0.25 4.33/0.23 4.11/0.27 24.06/1.89 16.00/1.15
high low 5.39/0.37 3.11/0.20 5.22/0.29 24.44/1.57 19.50/1.14
high med. 3.67/0.26 3.61/0.28 5.11/0.35 26.56/1.54 16.78/1.04
high high 5.00/0.28 2.67/0.29 4.11/0.14 27.11/1.37 20.28/1.51

Average 4.73/0.29 4.60/0.26 4.30/0.26 23.01/1.47 16.88/1.03

Table 9.2: Mean and standard deviation for Roomba (N=18). Reported in
the format: mean/std. dev. (acc. = acceleration, cur. = curvature)

acc. cur. valence arousal dominance positive negative
affect affect

low low 5.39/0.29 6.39/0.27 3.89/0.18 16.11/1.26 16.67/1.13
low med. 3.83/0.34 5.72/0.21 4.17/0.19 22.89/1.18 15.17/0.70
low high 5.06/0.30 5.61/0.29 3.94/0.25 18.61/2.03 14.89/1.08
med. low 5.17/0.22 5.22/0.25 4.22/0.24 20.33/0.71 14.67/0.63
med. med. 3.94/0.24 5.17/0.22 4.17/0.28 22.50/1.64 13.89/1.00
med. high 4.39/0.29 3.56/0.29 4.11/0.36 26.89/1.04 17.28/1.00
high low 4.44/0.37 3.28/0.21 5.44/0.35 28.67/1.01 13.94/1.00
high med. 4.17/0.25 3.83/0.22 4.61/0.18 25.44/1.08 19.33/0.96
high high 4.78/0.31 3.11/0.27 3.89/0.29 25.17/1.23 17.89/1.37

Average 4.57/0.29 4.65/0.25 4.27/0.26 22.96/1.24 15.97/0.99

Table 9.3: Mean and standard deviation for iCat (N=18). Reported in the
format: mean/std. dev. (acc. = acceleration, cur. = curvature)

valence arousal dominance PA NA
V 1.00 0.11 -0.17 -0.38 0.30
A 0.11 1.00 -0.10 -0.28 0.05
D -0.17 -0.10 1.00 0.28 -0.19
PA -0.38 -0.28 0.28 1.00 0.02
NA 0.30 0.05 -0.19 0.02 1.00

Table 9.4: Mean correlation values of the PAD and PA-NA space. (PA =
positive affect, NA = negative affect)
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when expressed in the positive and negative affect dimensions. Addition-
ally, there was some discrepancy in the interaction between acceleration
and curvature. While in the PAD space all dimensions showed a significant
interaction, this could not be reported on the negative affect axis. Fur-
thermore, in the PAD space there was no interaction between curvature
and embodiment visible, but the negative affect measurement reported a
value below the significance threshold of 0.05. A similar observation can be
made when analyzing the three way interaction of acceleration, curvature
and embodiment. Only along the valence axis this interaction was signifi-
cant, while both, the positive and negative dimensions showed significance.

9.4.4 Relational of motion features to perceived affect

In order to estimate a relation between the motion and affective space, we
performed linear regression analysis. As model parameters we used the
linear and squared terms of acceleration and curvature as well as the linear
interaction between those two. We did not include the embodiment, be-
cause it did not have a main effect in the previous analysis. Furthermore,
we only analyzed a relationship dependent on the levels of acceleration
and curvature in order to be able to compare between the different em-
bodiments. From the resulting five parameters, we searched for the best
predictors using a stepwise selection in a linear regression. That is, in every
step the predictor that contributed the most to minimize the residual error
was chosen. The results are summarized in Table 9.7. The first column
gives the order of the predictors, the second column gives the quality of
the approximation, i.e., how much of the variance is accounted for by the
model the third column gives the corresponding ANOVA results for testing
the approximation. First, from these values it can be seen that most of
the information for perceived arousal is carried in the acceleration parame-
ter of the motion. Secondly, even if all ANOVAs report significant results,
only small percentages of the variance could be predicted with these simple
models. This is most evident for the PA-NA space in which the variance
of the negative affect dimension cannot conclusive be explained with the
calculated models.

During the final interview, all but one participant reported that they had
the impression that the robots clearly had different emotions or were in
particular moods. We will summarize these subjective impressions in the
following. All participants consistently attributed animacy and almost all
participants perceived some type of personality. While some reported that
they had the impression to face every time a completely new robot with a
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acceleration curvature embodiment

F p p.η
2 F p p.η

2 F p p.η
2

V .755 .478 .043 15.726 .000 .481 2.018 .174 .106
A 114.112 .000 .870 19.546 .000 .535 .230 .638 .013
D 11.255 .000 .398 4.687 .016 .216 .084 .776 .005
PA 28.061 .000 .623 4.336 .021 .203 .014 .909 .001
NA 9.457 .001 .357 3.857 .031 .031 3.871 .066 .185

Table 9.5: Significance values for the main effects of the independent vari-
ables on the measurements and partial η2 effect sizes. (N=18)

acc.*cur. acc.*emb. cur.*emb. acc.*cur.*emb.

F p p.η
2 F p p.η

2 F p p.η
2 F p p.η

2

V 4.331 .004 .203 .146 .865 .009 .381 .686 .022 4.215 .004 .199
A 3.109 .021 .155 1.708 .196 .091 .704 .502 .040 1.708 .158 .091
D 4.157 .005 .196 .727 .491 .041 .173 .842 .010 1.019 .404 .057
PA 2.843 .031 .143 2.077 .141 .109 1.027 .369 .057 3.747 .008 .181
NA 1.990 .106 .105 1.033 .367 .057 4.005 .027 .191 5.202 .001 .234

Table 9.6: Significance values for the interaction effect of the independent
variables on the measurements and and partial η2 effect sizes. (N=18)

different personality, others had the impression of observing the same char-
acter in different moods. When asked to describe the observed behaviors, all
participants used emotional adjectives to describe the robots’ behavior, e.g.,
“. . . this one was a little moody. It seemed to be not very happy with what
he was doing.”(participant 6). Interestingly, some participants attributed
male and female characteristics depending on the current condition and
addressed the robots either with “he” or with “she”. It was our impression
that high levels of curvature were associated with female characteristics
while high levels of acceleration were associated with male characteristics.
When asked for a preference, some participants preferred seemingly neu-
tral behaviors with medium levels of acceleration and arousal, while others
liked the expressiveness of the robots in the high and low conditions. Espe-
cially the younger participants liked more the expressive behaviors, while
older participants stated that neutral behaviors are more appropriate for
a robotic device. However, almost all participants stated that they rather
would buy a robot that is friendly and helpful, instead of a robot that is
very aggressive or moody.
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predictors R2 ANOVA

V (1) a ∗ c 0.10 F(1,616)=7.26, p = 0.07
A (1) a2(2) c2(3) a ∗ c 0.471 F(3,614)=184.03, p < 0.001
D (1) a2(2) a ∗ c(3) c 0.10 F(3,614)=23.86, p < 0.001
PA (1) a2(2) c 0.106 F(2,615)=37.70, p < 0.001
NA (1) a2(2) a(3) c2(4) c 0.063 F(4,613)=11.41, p < 0.001

Table 9.7: Stepwise linear regression results

9.5 Discussion

The results show that acceleration is correlated with the perceived arousal.
However, no direct relationship between acceleration or curvature and va-
lence could be found. A significant interaction between acceleration and
curvature was found, suggesting that these parameters are not perceived
independently from each other. Even though the dimensions of accelera-
tion and curvature are independent in movement space and the dimensions
valance, arousal and dominance are independent in affect space, they inter-
fere in the cognitive process that transforms between the two spaces. For
example, in the high curvature condition of Roomba, it depended on the
level of acceleration how the behavior is interpreted. In the low acceleration
condition participants interpreted the behavior as “careful”(participant 27),
“moving like a cat that wants attention”(participant 6), “not determined
wandering around” (participant 9). In contrast, for the same value of cur-
vature, participants interpreted the behavior for a high level of acceleration
as “stressed”(participant 4), “aggressive; guarding an area”(participant 25)
or even “very proud, exhibiting a macho kind of behavior” (participant 7).
From Table 9.6 it can also be seen that the way the two dimensions interact
with each other is influenced by the embodiment. The same manipulation
from low to high acceleration in the iCat condition, keeping the curvature
constant, resulted in a change from “falling asleep” (participant 4) and
“calm and relaxed” (participant 19) to “nervously searching” (participant
16) and “very chaotic and unorganized” (participant 6).

Pollick et al. estimated that most of the information on the valence axis is
encoded in the frequency relations between limb movements [192]. However,
in our experiment the Roomba robot did not possess limbs, but participants
were still able to perceive different levels of affect. Our results suggest
that the valence information is at least partly encoded in the interaction
between acceleration and curvature. However, this model did not explain
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a sufficient amount of the variance to be conclusive. Analysis of further
motion features and models is required to isolate the valence information
from motion signals.

It remains to be tested if discrepancies between the PAD space and PA-NA
space can be explained by being a rotational variant of the same space. For
example, Mehrabian claimed that the PANAS model lacks validity, because
it does not capture certain aspects of the affective space [164]. When an-
alyzing dance moments, Pollick et al. stated that activity or arousal could
be predicted from the motion parameters, but no direct relation between
movement parameters and valence was found [192]. Our results give evi-
dence that the perceived level of arousal is highly correlated with the level
of acceleration. However, there seems to be no independent model that con-
nects curvature to valence, but that most of the information about valence
is carried in the interaction between acceleration and curvature. Further-
more, some participants reported that the words on the PANAS scale did
not really match their impression of the robot. They reported to miss
words such as “happy”, “tiered”, “moody”, “confused” or “disinterested”
and therefore rated the other items lower, because they did not seem them
fit their impression. A specialized questionnaire would have to be devel-
oped that captures possible interpretations of motion patterns better than
the PANAS. In contrast there were no problems with the SAM scale.

Some people reported that at the beginning they were confused, because
iCat kept a neutral face during the conditions. Therefore, they perceived a
mismatch between expression in the motion and in iCat’s mechanical face.
However, they also stated that they quickly got used to it, interpreting that
iCat did not want to reveal her true emotions but kept a Poker-face. In
general, there was no clear preference for an embodiment. Some reported
it was easier to “see” emotions in iCat, others reported that the task was
easier for the Roomba condition.

During the interview, all participants articulated a clear preference for cer-
tain types of behavior. Based on these responses we can recommend to
avoid combinations of high level or low levels for curvature and arousal, be-
cause generally these conditions were most disliked. However, participants
liked the expressiveness of the character when low levels in one dimension
were combined with high levels of the other dimensions. In these cases the
robot was perceived as most emotional, for example very active or aggres-
sive. Medium levels for both conditions gave a rather neutral impression
that was generally accepted.
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9.6 Conclusions

In this study we investigated the relation between robot motion and the
perceived affective state of the robot. From literature we derived two mo-
tion characteristics that seemed to be most influential for the perceived
affective state, namely acceleration and curvature. We systematically var-
ied both conditions and tested the perceived affect with two embodiments.
For assessing affect we selected the PANAS and SAM scales, which are
supposed to be rotational variants of the same space. With our variations
we were able to trigger the perception of different emotions.
We found that both parameters, acceleration and curvature, have a sig-
nificant effect on the perceived affective state. However, there were slight
differences between the two emotional models that were difficult to explain
by being a rotational variant. In general, we found the SAM to be more
appropriate, because all participants were able to report their general im-
pression according to the pictographic representation of the self-assessment
manikins.
Furthermore, we found that the embodiment had no significant main ef-
fect on the perceived affective state, stressing the importance for care-
fully designed robot behaviors. Analyzing the relationship in more detail,
we found that acceleration carries most of the information for perceived
arousal. However, no such simple relationship could be found for the di-
mensions of valence and dominance or for the dimensions of positive affect
and negative affect. Our results indicate that the information for valence is
at least partly carried by a linear relation between curvature and arousal.
From these results we can derive design knowledge for the design of move-
ment behaviors of social robotic interfaces. If the designer wants to convey
different levels of arousal he can adjust the acceleration parameter of the
animation accordingly. Motion can therefore be used as a design modal-
ity to induce a desired perception. However, further research is needed to
investigate such a model for valence. Especially if a designer intends to
convey a positive or negative emotion it has to be analyzed what motion
features carry this valence information in order to be able to predict user
responses.
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Discussion

This technological design has analyzed the design process of applications for
social robotic interfaces. Social interaction technology facilitates seamless
user interaction, by utilizing people’s natural interaction capabilities to
interact with other social communication partners.

Socially interactive interfaces offer a range of opportunities. For example,
social interactive interfaces might serve as enabler for a variety of products
that require human-machine cooperation. A potential advantage could be
that people tend to be more forgiving when the system doesn’t behave
as they expected. During a pilot for the robot motion experiment (see
Chapter 9) Roomba got stuck at a table. The participant was immediately
willing to pick it up and place it at a free spot where it could continue.
Typical reactions to a failure of a technical device such as a mobile phone
are frustration and anger. Instead, users appeared to feel empathy when
dealing with a social interface. Several researchers in the field of human-
robot interaction have made similar observations [9, 214]. This phenomenon
can help to enable applications in which user support is required. Especially
in the field of home robotics, technology is not yet mature enough to handle
all situations that can occur in unstructured environments.

10.1 Design challenges

The design of social interactive interfaces poses new design challenges on
the designer. In comparison to traditional interfaces, robotic user interfaces
do not only provide a set of interface elements that offer the control over
a given set of functions, but the sum of all elements is perceived as one
entity. That is, these interface elements induce the perception of dealing
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with a character. However, already subtle flaws in the design can destroy
this perception, which has a negative effect on the interaction, potentially
leading to frustration and a loss of trust of the user.

Throughout this work, design challenges for the application design for social
robotic interfaces have been analyzed at three levels: 1) application design,
2) interaction design and 3) behavior design level.

Analyzing the design challenge at application design level, it was shown that
incorporating social interaction technology in the interface design does not
necessarily enhance interaction. The challenge is to find applications which
benefit from social interaction, but take limitations of currently available
technology into account. To support the designer, a balancing framework
has been proposed that requires to balance between the four elements of 1)
application, 2) user, 3) interface and 4) technology. Multiple applications
have been analyzed. It was shown that carefully choosing a restricted
application domain is a crucial requirement for applying social interaction
technology that is often overlooked.

Analyzing the design challenges at the second, interaction design level, it
was found that social robotic interfaces provide means to offer complex
control over device autonomy. Most notably, social interaction technology
has the potential to provide interface artifacts that fall in the category of
programming. For example, in order to instruct a robotic vacuum cleaner
to execute a customized cleaning plan, the user essentially needs to program
the device’s behavior. In traditional interface design, a trade-off between
level of control and ease-of-use has to be made. Traditional configuration
interfaces only allow to select from a predefined set of options. Program-
ming interfaces, on the other hand, allow to define new device behavior.
The challenge for the designer is to find an interface metaphor that is fa-
miliar to the user, but allows programming. One option that is offered in
the context of social interaction is a learning and teaching metaphor [232].
If the users perceives a device as a character, the user most commonly
also attributes human-like capabilities. However, there are not necessarily
all human capabilities such as natural language or symbolic reasoning re-
quired. The example of training a pet shows that knowledge transfer can
be realized on a very basic level of communication. A promising approach
in this context is to teach by demonstration. The important point from a
design perspective is to maintain the impression of a life-like character.

Inducing this perception has been addressed at behavior design level. In
this context, the concept of believability [145, 201, 158, 17, 112, 8] becomes
important. For example, the work of Reeves and Nass [198] has shown
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that people apply social interaction rules even if they are consciously aware
of dealing with a machine. This phenomenon can also be observed in the
field of movie and film animation. Even though the audience is consciously
aware that the characters on the screen (e.g., cartoon characters) do not
really exist, they attribute a rich set of life-like characteristics including
desires and emotions.

However, there seems to exist a fine line between which attributes are per-
ceived as life-like and which induce the perception of a dull machine. The
field of animation has shown that the illusion of life can be destroyed al-
ready by subtle flaws in the animation [231, 253]. In game character design,
one of the most challenging behaviors to design is idle behavior [113]. This
fine line makes it increasingly challenging to create the appropriate inter-
face for the user. Throughout this thesis it has been argued that animation
technology provides adequate means for designing believable behaviors for
social robotic interfaces.

10.2 Animation Technology

Believability is one the core requirements for the design of an interactive
character [17]. The user will only engage in social natural interaction if
he receives appropriate feedback from the device. For example, for many
users it would be awkward to start talking to a VCR. However, if the
interface presents itself as a character, people immediately attribute life-
like attributes and start using their natural interaction capabilities [161].
Furthermore, the degree of socialness has an effect on the effectiveness of
the interaction [211].

Design knowledge for the design of social robotic user interfaces can be
derived from the field of animation. The movie and animation industry
have impressively demonstrated that expressive behaviors can evoke emo-
tional responses, even without special expressive degrees of freedom [231].
Film characters can engage the audience over the entire length of a movie.
However, there are several important differences between movie or game
character animation and robotic character animation. First of all, in a
movie script the whole scene is predefined. For example, a cartoon de-
signer has control over camera perspective, characters in the scene and
their interactions down to a pixel level. This level of control is not possible
for robotic applications as they need to react dynamically to the environ-
ment. For game characters, this has mainly been solved by defining a set
of basic animations and modifying them using signal processing techniques
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[30, 85, 113]. Also scripting technology and automatic equation solvers have
been used in case of well defined application domains [186, 84]. However,
for game character design the actions of the user are limited by the controls
of the game. All information about the environment are digitally accessi-
ble to game characters. This rich source of information is not available
for physical robots, but the advantage is that users can physically interact
with the device.

In order to facilitate the behavior design process, three basic design dimen-
sions of robotic behavior design have been identified: 1) Naturalness, 2)
Adequateness, and 3) Development over time. For adhering to these design
dimensions, new tools are required that support the development process.

This thesis proposed functional animations as a step to close this gap.
Functional animations generalize traditional animations by adding the dy-
namic power of describing animations by equations and combine the expres-
sive power of keyframe animation techniques with the dynamic control of
scripted behaviors. For example, using keyframe animations, the designer
has direct control over a particular expression, but lacks high level control
to adapt the animation to a particular context. Scripted animations offer
highly dynamic behaviors but are limited in expressivity. Functional ani-
mations offer the possibility to adjust an animation in a formally defined
way using parameter models. An important difference to motion editing
methods is that the allowed adjustments of an animation can be parameter-
ized. Motion editing techniques such as blending often destroy an internal
structure of the animation and produce behaviors that are not believable
or even impossible to execute for a given embodiment [84, 253].

Furthermore, functional animations support the design process by defining
an interface between trajectory designers and interaction designers. Using
parameter models, animation designers can define a parameter space that
is allowed to modify the animation. For example, they can define a param-
eter space to let the same animation appear happy or sad. Well defined
interfaces are especially important for development of more complex appli-
cations in which designers of multiple disciplines need to collaborate. These
requirements have been reflected in the overall design of a social robotic
development framework.

10.3 Requirements

The results from the analysis of the design challenges have been used to
derive a set of requirements for a software framework that supports the
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development process of social robotic interfaces. Requirements have been
collected in an iterative design process in which basic features have been
prototyped, tested and refined. Another important source of input has been
the OPPR user community [188] and published results of user studies with
the iCat research platform.

Based on these sources and general design knowledge derived from litera-
ture, four major sources of requirements have been defined: 1) Application
designer requirements, 2) Development process requirements, 3) Domain
requirements, and 4) Framework requirements. The requirements in these
categories served as the main guideline for the implementation of the SRD
architecture. Additionally, they denote design knowledge that was gained
throughout this design project. In future iterations, the list of require-
ments might be supplemented with additional demands as the architecture
increases in level of abstraction. For example, one envisioned feature for
one of the next generations is to extend the framework with an emotion
design tool. In fact, one of the core qualities of the framework is to be
sufficiently flexible to accommodate changing requirements. This has been
achieved by identifying major building blocks and architectural decoupling
to restrict changes to a single software component.

10.4 Architecture

Based on the requirements, two different environments have been intro-
duced, a 1) Development-Environment and an 2) Execution-Environment
for the Social Robot Development architecture. A similar approach has
been followed for example by the Lego R© Mindstorms platform as it allows to
develop an application and later execute it on the Lego-Brick independently
from the development environment. However, the Lego R© architecture does
not allow to directly test application artifacts. In other development en-
vironments for robotic applications, these two cases are intertwined [168],
which makes it very difficult to maintain development and deployment in-
dependently from each other.

The separation introduced for the SRD architecture, has several advan-
tages. First of all, it allows different communication models. For the Dev-
elopment-Environment a synchronous communication model was chosen,
which responds to the designer requirement of being able to fully test and
verify correctness of the application logic as it allows deterministic execu-
tion of the program. For the Execution-Environment, this is not a feasible
communication structure, due to the hardware setup of many systems and
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real-time constraints. However, a synchronization index has been defined
that indicates the difference between a synchronous and asynchronous exe-
cution. In concrete situations, this index can be used as quality criteria to
insure correct program execution.

Another quality attribute of the proposed architecture is that several design
patterns have been applied throughout the design process. These design
patterns impact mainly the non-functional attributes of the architecture.
Flexibility is one of the main non-functional attributes that must be guar-
anteed. In the SRD architecture, flexibility has been achieved by modular-
ization and separation of independent software components. However, as
soon as social robot applications become available for customers, security
might become the most important requirement. During the evaluation of
the non-functional requirements, it has been shown that the SRD architec-
ture is already prepared to satisfy basic security needs, but these are still
missing in the current implementation.

In the course of the architecture design, several editors have been defined
to support the design task on several levels of abstraction. The tools have
been successfully applied in two case studies. They offer not only operators
to design application artifacts, but also define interfaces to communicate
between different design disciplines.

10.5 Case studies

The software tools of the SRD architecture have been used in two case
studies. In the first study, a tutoring application was developed to test
the effects of social supportive behavior on the learning performance in a
tutoring scenario. The conclusions and the research goals of the case study
are not part of the documentation of this technological design, but it was an
opportunity to see the software architecture in action. Roughly speaking,
the case study confirmed that the design tools could be used to vary the
degree of social behavior of the robot.

In the second case study, the software tools were used to investigate people’s
perception of robot motion in terms of perceived emotions. The functional
animations were used to vary systematically the motion of two robots with
different embodiments. The results of the experiment showed that the mo-
tion patterns have an influence on how the robot is perceived. In particular,
the acceleration parameter of the motion appears to be directly related to
the perceived emotion. No such relationship could be found to explain the
perceived valence. One important finding in terms of design knowledge for
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social robotic interfaces was that no main effect between the two embodi-
ments could be found. This result suggests that the motion design can be
generalized across embodiments. This means that design tools can be cre-
ated that transcends a particular embodiment. However, more experiments
are necessary to identify relevant motion features to be able to predict the
emotion that is perceived from a motion feature.

10.6 Options for future research

One of the biggest challenges for social robotic interfaces is to find appli-
cations in which the interface is balanced with the application. Designing
for social interaction does not necessarily mean to engage in social relation-
ships, but to behave appropriately in social environments and communicate
using naturally understandable modalities. Many promising application do-
mains have been proposed, including tutoring, game buddy [60, 143] and
general interface to ambient intelligent environments [9]. However, none
of the applications has yet reached a critical mass and wide acceptance.
Instead, only few social signs are incorporated in interface design, such as
the AppleTM desktop login screen that indicates a shaking of a head to
signal that access was denied.
Currently, the biggest problem is the adequateness design dimension, be-
cause adequateness requires to appropriately react to a given situation.
Technology for correctly assessing a social situation or emotions of the in-
teraction partner are still immature. Furthermore, interaction rules needs
to be defined that match a given situation.
Further research is required to extend available interaction design knowl-
edge. This knowledge can in turn be used to create even higher level editors,
such as an emotion editor. This level of abstraction would allow a designer
to modify a basic action such as “look at the object” with an emotional pa-
rameter such as “look at the object angrily”. Such high level of abstractions
are needed for creating believable characters.
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Chapter 11

Conclusions

This thesis has investigated the design process of creating social interactive
interfaces using interface robots. Social interaction technology provides a
powerful interface metaphor to ease the interaction with technological de-
vices. It has been shown that, for enabling social interaction, application
designers face a new set of design challenges and requirements. Most no-
tably, social interfaces need to create and maintain the impression of a
believable character.

Four research questions have been addressed:

1© Design challenges: What are the design challenges in the process to
develop an application for a social robotic interface?

2© Tools: How can the design process be supported by design tools?

3© Requirements: What are the requirements for a software architecture
that unifies the design process?

4© Architecture: What architecture fulfills the requirements for a robot
application design framework?

To answer the first question, a top-down analysis was performed and the
design challenges were investigated on application, interaction and behavior
design level. The analysis on application design level has shown that not
every application benefits from social interaction technology. A balancing
framework was conceived that supports the design process and serves as a
predictor for the success of an application in an early design phase.

On the next level, the design process of social interactive interfaces has
been analyzed with regards to the interaction design. It was found that
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current interface technology can be grouped in two classes, configuration
and programming. Most of the current interfaces only use elements of
the configuration class. However, these interfaces do not scale up and fail
to provide high level control over complex autonomous devices. Instead,
programming interfaces must be used.

On the behavior design level, the design process has been analyzed with
regards to behavior generation of the interface character. Three basic de-
sign dimensions have been identified: 1) Naturalness, 2) Adequateness and
3) Development over time. Existing animation technology was found to
provide an adequate abstraction for satisfying the first dimension. How-
ever, for the other two dimensions, interactivity had to be added. This
demand has been solved by introducing the functional animation princi-
ple. A particular advantage of functional animation is that they combine
the expressiveness of keyframed animations with the flexibility of scripted
behaviors.

In order to answer the second research question, an iterative design ap-
proach was adhered throughout this thesis for the development of appli-
cation design tools. Multiple tools have been developed, including the
functional animations editors to animate the iCat robot and the Roomba
robot and an interaction design editor. It was found that the design task
can best be supported by providing specialized tools for the different levels
of abstraction. A posture editor provided an adequate level of abstraction
to control the iCat robot. For the Roomba robot, it was demonstrated that
a path editor on the level of path segments was a more appropriate level
of abstraction. For both editors, the functional animation principle was
applied, which provided high level, parameterized control over expressive
keyframe animation. On the level of interaction design, a specialized do-
main language was provided, which allowed high level commands such as
‘look-at-user’ or ‘wait-for-reply’.

To answer the third research question, the requirements for a unified soft-
ware architecture that supports the design process have been analyzed.
Four basic categories of requirements have been identified: 1) Application
designer requirements 2) Development process requirements, 3) Domain
requirements and 4) Framework requirements. Several requirements of ev-
ery domain have been motivated and subsequently addressed in the de-
sign of unified software architecture, which answers the last research ques-
tion. A separate Development-Environment and Execution-Environment
have been introduced, which allowed a modular decomposition with dif-
ferent communication models. It has been motivated that synchronous
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communication is appropriate for the Development-Environment, while the
Execution-Environment benefits from asynchronous communication. Both
environments share software components that are related to the construct
of an application.
The architecture has been evaluated with regards to functional and non-
functional requirements. For functional requirements, traces have been
analyzed that map the individual requirements on the architecture. The
non-functional requirements have been evaluated using a scenario based
architecture evaluation, based on the established ATAM and SBAR eval-
uation methods. Additionally, two case studies have been performed, one
of which is reported in Chapter 9. In this case study, the design tools
have been used to control the behavior of two robot embodiments in order
to investigate how different motion patterns are perceived by a user. The
results revealed a relationship between perceived arousal and acceleration
parameters of the behavior. No such direct relationship could be found
that conclusively explains the perceived valence. Instead, it seems that the
interaction of acceleration and curvature encodes parts of the valence infor-
mation. Further research is necessary to isolate the features that elicit the
perception of different degrees of valence in order to create a model that
allows automatic high level emotional direction of a character. Emotional
direction provides a high level of abstraction that in turn can be integrated
in the presented design framework to develop a next generation of social
robotic interfaces.
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Appendix A

Robot motion experiment
material

A.1 Interview questions

• What was your first impression observing these behaviors?

• Could you see any differences in the behaviors? Which differences?

• How would you interpret this behaviors?

• What was your preferred behavior? Why?

• Could you see any similarities between the Roomba and iCat? Which
similarities?

• Was it easier to fill in questionnaire for iCat of for Roomba?

• What behavior would you expect from a robot?
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Figure A.1: Informed consent was handed before the experiment started
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Figure A.2: Panas scale was filled by the participants after every stimulus
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Figure A.3: Self assessment manikin scale was filled in by the participants
after every stimulus.



Summary
Software Architectures for Social Robots

Ongoing developments of digital technology steepen the learning curve to
operate digital systems. New interface technology is necessary to achieve
easy and natural interaction. This PhD project envisions that social inter-
action technology will change how people perceive and interact with digital
technology. Social interaction technology utilizes people’s natural abilities
to interact with other social communication partners.

The overall goal of this thesis is to equip the application designer with
design knowledge, software tools and a unified development environment
to support him in the process of creating applications for social robotic
interfaces. Throughout this thesis, an iterative design process was followed.
Design knowledge has been adopted from the fields of computer science,
animation technology, psychology, social science and education to identify
design challenges and software requirements.

The design challenges to create applications for social robotic interfaces
have been analyzed at three levels: 1) Application design, 2) Interaction
design and 3) Behavior design.

At the application design level, it has been demonstrated that incorporating
social interaction artifacts in the interface of a system do not necessarily en-
hance the interaction. To address this problem, a balancing framework has
been proposed to guide the design process by requiring a balance between
four elements: 1) application, 2) user, 3) interface and 4) technology.

At the interaction design level, this technological design has shown that
current interface technology can be classified into two major classes: 1)
configuration and 2) programming. Most of the interfaces of contemporary
devices fall in the configuration category. However, configuration interfaces
do not scale up to provide high level control over device autonomy. Instead,
programming interfaces are necessary. The challenge is to make program-
ming easy and understandable for a user. Social interaction technology has
the potential to close this gap. For example, a social teaching and learning
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metaphor can be used to instruct devices, analogously to how people train
their pets to react on certain conditions or to perform certain actions on
demand.

At the behavior design level, the application designer faces the challenge
to create appropriate behaviors that induce and maintain the perception of
dealing with a life-like character. Three basic behavior design dimensions
have been identified: 1) naturalness, 2) adequateness and 3) development
over time. It has been illustrated that animation technology is well suited
for addressing the adequateness dimension. However, interactivity and dy-
namic change needed to be added to address the other two behavior design
dimensions. The functional animation principle was proposed to close this
gap. It supports the design process by raising the level of abstraction for
behavior design. It combines the control over the expressiveness of keypoint
animations with the dynamic power of behavioral animations.

The results of the analysis at these three levels have subsequently been used
for deriving the main requirements for the tools and software architecture
that have been developed in this thesis. Furthermore, design knowledge
from the Philips OPPR software framework and interactions with the iCat
community served as valuable source of information in the design for the
unified Social Robot Design (SRD) architecture. In summary, four major
categories of requirements have been identified: 1) application designer re-
quirements 2) development process requirements 3) domain requirements
and 4) framework requirements. For every category, the requirements have
been motivated and subsequently been addressed in the architecture spec-
ification.

Based on these requirements, a unified software architecture has been de-
veloped. Two separate environments have been modeled to best suite the
different demands on the software during development and execution time.
For both environments, a central component model has been synthesized,
which also specified a communication protocol between these components.
From these general component structure, several concrete instances have
been derived, including a centralized editor concept, preview and debug
facilities as well as a situation awareness component that manages sensory
input of a robot.

The resulting architecture and tools have been validated in terms of func-
tional and non-functional requirements. Furthermore, the software has
been applied in two case studies. The first developed a tutoring appli-
cation and the second used the developed tools to systematically vary the
behavior of two robot embodiments. It was shown that varying the accel-
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eration parameter of an animation has a direct influence on the perceived
arousal, but that acceleration and curvature have only limited effect on the
perceived valence. No significant difference between the two embodiments
could be found. Along this line of research, more experiments are neces-
sary to fully classify and predict the perceived emotion. The in this thesis
developed tools and architecture facilitate to perform such experiments.
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Samenvatting
Softwarearchitectuur for Sociale Robots

Voortdurende ontwikkelingen van nieuwe digitale technologieën, maken het
gebruik van deze systemen steeds moeilijker. Nieuwe interactieve technolo-
gieën zijn nodig om een gemakkelijke en natuurlijke interactie te bewerkstel-
ligen. Dit promotieonderzoek voorziet dat sociale interactietechnieken de
manier waarop mensen digitale technologieën ervaren en gebruiken zullen
veranderen. Sociale interactietechnieken maken gebruik van natuurlijke,
menselijke vaardigheden om met andere sociale partners te interacteren.

Het doel van dit proefontwerp is om toepassingsontwikkelaars en ontwerpers
uit te rusten met ontwerpkennis, softwareapplicaties en een ontwikkelomge-
ving, om het maken van toepassingen voor sociale robots te ondersteunen.
Gedurende het promotieonderzoek is gebruik gemaakt van een iteratief ont-
werpproces. Een verzameling van kennis, geleend van computerwetenschap-
pen, animatietechnieken, psychologie, sociale wetenschappen en onderwijs,
is toegepast om een programma van eisen voor de te ontwikkelen software
op te stellen. De probleemstelling is op drie niveaus geanalyseerd: 1) toe-
passingsniveau, 2) interactieniveau en 3) gedragsniveau.

Op toepassingsniveau heeft het ontwerp aangetoond dat het gebruik van
sociale interactieartefacten niet noodzakelijkerwijs een positief effect heeft
op de algehele interactie. Het voorstel om dit probleem op te lossen is een
raamwerk, dat het ontwerpproces ondersteunt middels een balans tussen
vier essentiële elementen: 1) toepassing, 2) gebruiker, 3) gebruikersinterface
en 4) technologie.

Op interactieniveau is aangetoond dat de hedendaagse interactietechnie-
ken kunnen worden opgesplitst in twee categorieën: 1) configuratie en 2)
programmering. Het merendeel van de hedendaagse apparaten valt bin-
nen de categorie configuratie. Echter, configuratie is niet voldoende om
de gewenste controle over het autonome gedrag van de apparaten mogelijk
te maken. Voor zulke controle is een door de gebruiker programmeerbare
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interface vereist. De uitdaging hierbij is om de programmering voor de ge-
bruiker begrijpelijk te maken. Sociale interactietechnieken kunnen gebruikt
worden om dit mogelijk te maken. Bijvoorbeeld: de manier van leren, zoals
gebruikelijk in een leraar-leerling situatie, kan gebruikt worden als een me-
tafoor voor het instrueren van apparaten. Gerelateerd hieraan is de manier
waarop mensen hun huisdieren trainen hoe op situaties te reageren en op
commando bepaalde acties uit te voeren.

Op gedragsniveau wordt de toepassingsontwikkelaar geconfronteerd met de
uitdaging om een geschikt passend gedrag te ontwerpen dat de ervaring
oproept van de omgang met een levensecht karakter. Er zijn drie dimensies
gedefinieerd voor basisgedragingen: 1) geloofwaardigheid, 2) gepastheid en
3) veranderingen over tijd. Het ontwerp toont dat gepastheid met anima-
tietechnieken kan worden bereikt. Interactiviteit en dynamische verande-
ringen van het gedrag moesten worden toegevoegd voor de andere twee
dimensies. Dit werd bereikt door middel van geparameteriseerde animaties
die het ontwerpproces ondersteunen door het verhogen van het abstrac-
tieniveau. Hierin wordt de controle over de expressiviteit van keypoint
animaties gecombineerd met het voordeel van geprogrammeerde animaties.

De resultaten van de analyse op drie niveaus zijn achtereenvolgend gebruikt
om de basis requirements te definiëren voor de softwareapplicaties en softw-
arearchitectuur die is ontwikkeld tijdens dit promotieonderzoek. Bovendien
hebben kennis van het “Philips OPPR software framework” en interactie
met de iCat gebruikersgemeenschap gediend als een waardevolle bron van
informatie tijdens het ontwerp van de “Social Robot Design” (SRD) softw-
arearchitectuur. Samenvattend zijn er vier belangrijke categorieën van ont-
werp requirements gedefinieerd: 1) toepassingsontwikkelaar requirements,
2) ontwikkelingsproces requirements, 3) domein requirements en 4) frame-
work requirements. Voor iedere categorie zijn de ontwerp requirements
beargumenteerd en daaropvolgend gëımplementeerd in the softwarearchi-
tectuur specificaties.

Deze requirements zijn de basis geweest voor de ontwikkeling van een con-
sistente softwarearchitectuur. Om aan de verschillende eisen aan de soft-
ware tijdens het ontwikkelen en het uitvoeren te voldoen, zijn er twee on-
afhankelijke omgevingen gemodelleerd. Voor beide omgevingen is er een
centrale component gerealiseerd die tevens een communicatieprotocol tus-
sen beide omgevingen specificeert. Van deze algemene componentstructuur
zijn meerdere concrete instanties afgeleid. Onder andere een gecentrali-
seerde bewerkingscomponent (“editor concept”), “preview-” en “debug”
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faciliteiten, alsmede een “situation awareness component” die de invoer
van sensordata beheert.
De hieruit resulterende softwarearchitectuur en softwareapplicaties zijn ge-
test op functionele en niet-functionele requirements. Bovendien is de ont-
wikkelde software toegepast in twee casestudies. In de eerste studie is een
studiebegeleidingapplicatie ontworpen en in de tweede studie is de ontwik-
kelde software gebruikt om het gedrag van twee verschillende robot uit-
voeringen systematisch te variëren. Dit toonde aan dat het variëren van
de acceleratie (“acceleration”) parameter van een animatie van directe in-
vloed was op de “perceived arousal” van de testpersonen. Acceleratie en
kromming (“curvature”) bleken echter een beperkte invloed te hebben op
ervaren “valence”. Er konden geen significante verschillen tussen de twee
uitvoeringen van de robots worden gevonden. In vervolgonderzoek zul-
len aanvullende experimenten nodig zijn om de ervaren emoties volledig in
kaart te brengen en te voorspellen. De softwareapplicaties en softwarear-
chitectuur ontwikkeld tijdens dit promotieonderzoek maken het uitvoeren
van zulke verdere experimenten mogelijk.
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