

Fujaba hits the Wall(-e)

Citation for published version (APA):
Van Gorp, P. M. E., Jubeh, R., Grusie, B., & Keller, A. (2009). Fujaba hits the Wall(-e). (BETA publicatie :
working papers; Vol. 294). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2009

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://research.tue.nl/en/publications/63de7291-2411-4f65-bda0-6afcdee8f9de

Fujaba hits the Wall(-e)

Pieter Van Gorp
∗

Eindhoven University of
Technology,

School of Industrial
Engineering

De Lismortel 2
5600MB, Eindhoven, The

Netherlands
p.m.e.v.gorp@tue.nl

Ruben Jubeh,
Bernhard Grusie
Kassel University,

Software Engineering Group
Wilhelmshöher Allee 73
34121 Kassel, Germany

ruben@cs.uni-kassel.de,
bernhard.grusie@gmx.de

Anne Keller
†

University of Antwerp,
Dept. of Mathematics and

Computer Science
Middelheimlaan 1

2020, Antwerpen, Belgium
anne.keller@ua.ac.be

ABSTRACT
With the ever increasing pervasiveness of software in every
day’s life, it is quite easy to explain children the impor-
tance of software development. Especially when using gad-
gets such as LEGO robots, one can fascinate young pupils.
It is much harder though to find a fair link to the actual edu-
cational and research programs from a particular university
without blowing the audience away with details of a partic-
ular Java framework. This paper illustrates how one can use
Fujaba to involve children from 8 to 18 years old in realistic
requirements elicitation workshops. The children implicitly
get in touch with the object-oriented paradigm by playing
in the real world the communication between objects in a
robot’s computer. Fujaba’s visual object browser provides
a convincing means to illustrate that the game adequately
represents the robot’s internals.

1. INTRODUCTION
Fujaba has been used for educational robotics programming
since 2002 [2, 3]. The Fujaba NXT framework provides the
technical infrastructure for interacting with the NXT ver-
sion of the LEGO Mindstorms hardware [4]. So far, there
has been more focus on the fine-tuning and debugging of
this framework than on the elaborate use thereof. This pa-
per describes the current state of the NXT framework and
provides an overview of the quickly growing set of educa-
tional projects in which it has been used so far.

This work is based on a collaboration between the devel-
opers of the framework (from the University of Kassel) and
external ”users” thereof (from the University of Antwerp and
the University of Eindhoven). From this collaboration, one
can conclude that:

∗Thanks to Ronny Mans and Jana Samalikova for support-
ing the TU/e workshop mentioned in this paper. Thanks to
Nena Van Deun for supporting the tryout session for that
workshop.
†This work was partially funded by (i) the Interuniversity
Attraction Poles Programme - Belgian State – Belgian Sci-
ence Policy, project MoVES, and (II) the Research Founda-
tion – Flanders (FWO) project G.0422.05. Additionally, the
authors wish to thank Nick Baetens and Glenn van Loon for
both their conceptual as well as practical work on the copy
robot.

• the framework supports smooth migrations to new im-
plementation layers (e.g., to move to a non-polling sen-
sor implementation),

• even when both teams use completely different robot
hardware designs, one can share valuable software ar-
tifacts.

This paper also specifically points to the limitations of the
NXT framework that was presented on the Fujaba Days in
2008 and indicates which problems were overcome and which
tough issues remain unsolved so far. As a major novelty, this
paper shows how to combine story driven modeling (SDM [1,
11]) with Statechart modeling for optimizing model read-
ability. Obviously, such readability is an essential property
of models that are used in an educational context. The
remainder of this text is structured as follows: Section 2
briefly introduces the Fujaba NXT framework that is used
throughout this paper. Section 3 presents an overview of the
educational projects that use this framework. Section 4 de-
scribes which lessons have been learned from developing the
NXT examples for these projects. Finally, Sections 5 and 6
close this paper by summarizing, concluding and pointing to
future work.

2. THE FUJABA NXT FRAMEWORK
This section briefly revisits those concepts from [4] that are
essential for understanding the core of this paper. More
specifically, a first subsection describes the framework’s ar-
chitecture while a second subsequent explains tools for exe-
cuting a Fujaba NXT application.

2.1 Architecture
The Fujaba NXT framework adds the ability to model com-
plete applications for LEGO Mindstorms in Fujaba using
model driven development with a graphical programming
environment. It relies on the LeJOS [10] framework, a Java
firmware and API for LEGO Mindstorms. The basic ap-
proach is to remote control a NXT with a program running
on a host PC. The main advantage of remote controlling the
NXT is that it can be easily debugged with a Standard Java
Debugger. Debugging a remote program running directly on
the NXT is not possible yet. The Fujaba NXT framework
consists of four layers, where each layer should communicate
only with its adjacent layers:

Figure 1: Overview of the architecture

1. The Application layer: A Fujaba model for the con-
crete application and robot, most likely containing con-
crete classes of the problem domain. This can be a
Robot (sub)class composing objects of the next layer
(e.g. certain sensor types) to reflect the used hardware,
and environment and problem describing classes.

2. Library API Layer: this is also a Fujaba model, con-
taining pure object-oriented wrapper classes equivalent
to the LeJOS core NXT classes like (F)NXT, (F)Motor
and (F)Sensor. Furthermore, it consists of some ab-
stractions and basic algorithms. As being modeled it-
self in Fujaba, these classes conform to the standard
Fujaba access style, so they can be easily used in the
application layer. Furthermore, Application and Li-
brary layer objects can easily be visualized and ma-
nipulated using eDOBS: one can interactively invoke
methods to control the robot manually.

3. The Adapter Layer: Hand-coded classes which can be
exchanged at runtime, either adapting the wrappers to
the LeJOS Pccomm API or just simulating the robot
hardware to run an application without actual hard-
ware. The simulation adapters still don’t adapt to
(3D) Mindstorms simulation environments like [9] yet,
but allow to run applications as JUnit test without the
actual hardware. The LeJOS adapters also deal with
the bluetooth connection to the NXT and synchronize
and serialize all NXT commands and requests. A ben-
efit of that approach is that upgrading to newer LeJOS
versions just requires this layer to be updated, upper
layers remain untouched. This is also the layer where
the ActiveSensors plug in, as described in Section 4.2.

4. The Foundation layer - all LeJOS classes, the LeJOS
firmware with a TinyJava virtual machine (VM) on
the NXT control unit (often called the NXT brick) and
since 2009 also the ActiveSensors component running
on the NXT.

Layers 2-4 form the whole framework. The Library already
contains some Layer-1 classes like Fork and MobileRobot
abstraction, but usually these need to be extended.

2.2 Running and Debugging NXT Applications
Using the eclipse Dynamic Object Browsing System (eDOBS),
one can (i) inspect the java heap space and watch a visu-
alization of objects, their attributation and links and (ii)

Figure 2: Using eDOBS to control NXT instances.

interactively change attributes (or links) and invoke meth-
ods. This is very useful in the NXT context, as one can
control the robot interactively by invoking motor methods
manually within the context of the running program. Fig-
ure 2 amongst other connected objects, the fork object and
its attributes.

3. EDUCATIONAL PROJECTS
This section presents the educational projects in which the
NXT library was applied. Each project was developed with
a different target audience in mind. Therefore, for each
project the strengths, weaknesses, opportunities and inher-
ent limitations are evaluated.

3.1 Towers of Hanoi: Fujaba Robotics Classic
3.1.1 Case Description

The Towers of Hanoi example was first elaborated by Di-
ethelm et al. [2, 3]. The 2002 solution relies on very lim-
ited LEGO hardware of the so-called RCX (Robotic Com-
mand Explorer) type. That RCX hardware has (among
other problems) rather unreliable infrared PC communica-
tion. Since 2008, the NXT library relies on more modern
hardware (e.g., bluetooth instead of infrared communica-
tion). In [4], the second author of this paper describes how
this overcomes much of the problems from 2002. A remain-
ing weak point of the 2008 solution is that it makes the
robot drive blind just with the help of a single touch sensor.
Especially the 90-degree turn to drive to another place is un-
reliable. In the 2009 version, the robot uses straight black
lines leading from the disc places to find each place. A single
light sensor is used to detect that the robot crosses the black
line while driving between the places. After turning almost
90 degrees, a black/white-edge line follower algorithm to fol-
low the line to the disc place. Figure 3 shows the robot with
a disc picked up, following the black line on the ground.

Mind the so-called “continuous track” wheels, whose design
is primarily known from caterpillar tanks. As discussed
in [4], this wheel design provides a precise steering mech-
anism and the capability of turning on the spot, and is ca-
pable of carrying high loads. The hardware design has been
improved in 2009. For example, the robot uses now a very
sophisticated fork construction operated by a nylon wire,
which allows precise fork movements and doesn’t fail acci-
dentally in comparison to the 2008 chain actuated fork.

3.1.2 Models
While the actual application model (called HanoiRobot) is
quite small (5 story diagrams, 15 story patterns), its story
patterns contain quite a number of collaboration statements

Figure 3: UniKassel Forklift robot in action

Figure 4: Story diagram for measuring the size of a
Hanoi tower.

and rarely any graph transformations. As an example of
the consequences on model readability, Figure 4 shows the
method responsible for measuring the initial disc tower height.
In general, the exclusive use of collaboration statements is
a rough indicator of bad modeling style in Fujaba. How-
ever, it is still under evaluation whether this is the case here
and how the modeling style could be improved. On the one
hand, the use of collaboration statements seems reasonable
since one is modeling a simple control command sequence.
On the other hand, one could emphasize more the timing
effect of statement 3 and 4 by translating this monolithic
story pattern in a statechart.

3.1.3 Analysis
The main strengths of the Towers of Hanoi example are that
(i) it has been implemented several times already (which
facilitates a comparison between the different approaches),
and (ii) it involves challenging tasks in the real world (pick-
ing up a block, delivering it at a variable height, moving
from tower to tower, ...). An important weakness is that
it requires an understanding of recursion. It turns out that
very little children come to the intended solution sponta-
neously. As a potential opportunity, one could indicate that

there is also a non-recursive algorithm for solving the Hanoi
challenge. Since that algorithm is very complex too, the au-
thors do not consider it a viable alternative. Instead, the
Hanoi example will primarily be used as an internal test-
case: from that perspective it presents the opportunity to
use new sensor types (compass sensor for accurate 90-degree
turns, ultrasonic, ...). Reusable functionality will obviously
be moved to the appliation-independent library layer.

3.2 Forklift in Factory
This example has been designed in the context of a promo-
tion event at the University of Antwerp in 2008. During
one week, the university welcomed secondary school classes
in order to motivate them for higher education in exact sci-
ences. The local Software Engineering groups working with
Fujaba aimed to seize this opportunity for making students
between the age of 14 and 18 excited about model-driven
software development.

3.2.1 Case Description
The goal of the role playing game is to derive behavioral
models for an autonomous forklift robot. This robot needs
to pick up all goods from a bill of materials and deliver them
to an output line. More specifically, the robot needs to pick
up four wheels, an engine, and a bodywork kit to enable the
assembly of a car. In practice, students should mimic the
different pieces of a robot (its navigator, its wheels, its sen-
sors, ...) and walk through a classroom. Tables are arranged
in rows that mimic the different shelves in the factory. At
the end of each row, they can pick up an item. The robot is
initialized next to the first row and should return there for
item delivery.

At first, the instructor explains the factory layout: the path
between all rows and inside each row is assumed to be marked
with colored lines. Moreover, each crossing point is marked
with an additional dot on the working floor. The instruc-
tor clarifies that this approach is needed to make the role
playing game independent of the concrete number of shelves,
and the distance between them.

Secondly, the instructor explains two example robots (the
continuous-track design, as shown on Figure 3 and a trike
design, as shown on the bottom left of Figure 5. Students
should agree that although these two robot designs require
a different driving controller, the two robots should in prin-
ciple be able to move through the factory and pick up goods
using the same algorithm.

In a third step, the instructor opens a question and answer
session to investigate different strategies for following a line
marker on a factory floor. Students get in touch with cost
considerations (one sensor designs versus two sensor designs)
and design freedom (there are multiple valid solutions in any
engineering project).

In a fourth step, students derive what different participants
are relevant for solving the role playing game. After some
discussion, one agrees that it is reasonable to use a Robot
instance, a Navigator instance, two Motor instances for driv-
ing, one motor instance for affecting the forklift, and to sen-
sors (for following the line and for detecting crossings).

Figure 5: Pictures from the Science Week event in Antwerp, 2008.

Fifth, the instructor starts the NXT robot and accesses the
corresponding objects via eDOBS. Students are made aware
of the graph structure: objects are represented as nodes and
can only talk to those objects that are directly connected via
a link. Additionally, the instructor asks what responsibili-
ties belong to which object and validates whether this cor-
responds with the information from eDOBS. At this point,
the instructor executes some methods to show that the vi-
sual representation is not just a pretty picture but is actively
connected to the real-world robot.

Sixth, students are divided in groups. Each group relates
to one object and all group members get a T-shirt with the
same color. Each group has one active member who will
perform the actual role playing whereas the others can help
him/her to figure out what to do. All active members are
connected with cords to form a structure that corresponds
with the eDOBS diagram shown before. During the role
playing game, students are made aware once more that they
cannot send messages to an arbitrary object. By referring
back to the methods on the eDOBS diagram, students it-
eratively learn to be precise in naming the correct method
names and using proper arguments.

Finally, the instructor shows the model-driven implementa-
tion of some methods.

3.2.2 Models
Figure 6 models how one can keep track of the robot’s loca-
tion: it is assumed that the robot has an internal represen-
tation of the factory layout. This enables the robot to main-
tain a pointer to the shelf where it is currently located at.
Figure 7 shows in more detail how item location and stock
levels are represented. The diagram also shows the concept
of a ”JobDescriptor”, which represents both a bill of material
and a delivery location: the ordered Descriptor2Product as-
sociation indicates what items need to be picked up whereas
the Descriptor2Target association indicates where the items
need to be dropped.

Finally, Figure 8 shows an eDOBS instance graph for these
data structures. In fact, this instance graph has been used

Figure 6: Class diagram for factory representation.

Figure 7: Class diagram item representation.

Figure 8: eDOBS snapshot: example object graph.

for the role playing in the 2008 science week event. The
graph represents a situation where five wheels, three engines
and one piece of bodywork are in stock. The robot is located
on the shelf to which items need to be delivered. The job
descriptor is displayed on the left of the diagram. It points to
all goods that are needed to assemble a car. When handing
over this job descriptor to the robot, it should visit shelves
iteratively and inspect whether the item on the top of the
bill of material is located on a particular shelf. If so, the
robot should turn and collect the item. Otherwise, it should
move on to the next shelf. If there is no such shelf, the
robot can (for example) signal that an item is missing on
the shelfs.

3.2.3 Analysis
The authors observe the following strengths in this example:

• most students are aware that several factory workfloors
are full of lines and therefore their game has some in-
dustrial relevance,

• the game design is flexible and can be adapted easily
for half hour sessions as well as sessions beyond one
hour,

• the game can easily be completed, which leaves the
student with a satisfied impression,

• the complication of having multiple robot designs pro-
vides a nice basis for discussing inheritance and del-
egation mechanisms in a manner that is surprizingly
understandable,

• the application domain can be visualized nicely in eDOBS
by using some pictures of shelves and other factory el-
ements,

• the example involves quite some graph rewriting, which
makes it a nice application for Story Driven Modeling
(since quite some Story Patterns have create and de-
stroy markers). It turns out that the students easily
understand the semantics of such operations.

• the story diagram implementation turned out to be
sufficiently understandable and at least much more rec-
ognizable than the underlying program code,

• the T-shirt based approach turns out to be succesful
for scaling up role playing games to groups of about
20 students. Students also appreciate that they are
backed up by peers when they don’t understand what
to do.

However, the game has some weaknesses:

• For children under the age of 16, this game may be bor-
ing, since they may not yet be interested in industrial
relevance,

• In 2008, the Fujaba solution relied on story diagrams
exclusively. These story diagrams were still too tech-
nical,

• The trike design from 2008 was built in a rather ad-
hoc manner. It turned out (too late) that in the real
world, the specific trike design makes precise steering
very hard. More specifically, turning 90 degrees on the
spot requires several iterations of steering forward and
backward. Although this is interesting in general, it is
irrelevant for this specific application.

Given the new – Statechart-based – modeling approach, there
is an obvious opportunity for making the underlying Fujaba
models even more understandable. Finally, the authors are
aware that the T-shirt based approach also has inherent lim-
itations: first of all, we expect a practical upper bound of
about 25 in the number of participating students; secondly,
the instructor (or an assistant) needs to keep friendly control
of those students that are not actively role-playing. Espe-
cially when trying to correct minor role playing errors, these
students may start loose focus.

3.3 A Copy Robot
The copy robot example was developed by students of the
University of Antwerp in the course of a student project fol-
lowing the science week held at the University of Antwerp.
The goal was to produce a educational demonstration in-
troducing computer science principles to secondary school
students in their last two years of school and consequently
motivating them for computer science studies in general.
The aim was to create a reusable teaching unit for occa-
sions such as the prior science week. The result was a 1,5
hour interactive lecture that was held in a secondary school
in Essen, Belgium. About 20 students attending the school’s
computer science class, between 16 and 17 years old, took
part in the lecture.

3.3.1 Case Description
The robot developed for this demonstration copies an im-
age consisting of non-crossing, connected lines by scanning
it with a light sensor and drawing it on a sheet of paper with
a attached pen. The choice of a copy robot was motivated
by the idea that copying and scanning are well known mech-
anisms that can be understood instantly. Additionally, the
copy robot offers a physically compact setup (i.e., does not

Figure 9: Copy Robot in action.

drive around) that is well suited for the intended interactive
lecture setup (see Figure 9).

The lecture was structured around the evident technologi-
cal issues of the robot’s hardware and software setup. The
lecture consisted of two parts, one introducing the hardware
and a second introducing software aspects of the robot’s de-
sign. The first part of the lecture familiarized the students
with the given robot by introducing hardware of the robot.
This introduction ranged from issues of the motor’s move-
ment, to the different attached sensors and their different
functionalities. The students were shown the concrete hard-
ware setup and introduced to some problems faced with the
given LEGO robot setup, e.g., the dependence of the light
sensor on the light source and light intensity. This section
concluded with showing the class diagram of the now fully
explained copy robot.

In the second part the students were introduced to the algo-
rithms used, mainly the scan-line algorithm. The algorithm
was explained step by step guided by slides and based on
interaction of the students. The presenters asked questions
such as, what kind of lines can be scanned, what are the lim-
itations of the scan-line algorithm and how efficient are the
proposed in between solutions. The slides contained story
diagrams as well as pseudo code supporting the explanation
of parts of the algorithms. Also in second part, the stu-
dents were given two exercises to solve on their own. The
first exercise was to model a simple loop that gets values
until the value is above a specific threshold. The second
exercise was an extension of exercise one that resembled a
simple scan-line algorithm. To solve the exercises students
were modeling the intended behavior in flow charts that they
were already familiar with from their class. When compar-
ing the results the flow charts were presented next to the
story diagrams.

3.3.2 Models
Supporting the lecture, class diagrams, object diagrams and
story diagrams were used. While a simple object diagram
showed the current sensor and motor setup, the class dia-
gram summarized the hardware introduction of part one. In
part two of the lecture, introducing the algorithms, mainly
snippets of story diagrams were used to explain the involved
algorithms. Since the secondary school students were ac-
customed to flow charts from their class, with only a little

explanation and comparing flow charts and story diagrams,
it was reasonably easy for them to understand the story dia-
grams. However, it is interesting to note that the university
students setting up the lecture were using story diagrams
mainly to give an overview of the algorithm. When going
into detail however, they were using pseudo code explaining
method details and loop behavior. Also when programming
the robot’s behavior they were using this mixed approach of
modeling and coding.

3.3.3 Analysis
The authors observe the following strengths in this example:

• The demonstration fitted well in the curriculum of the
class since the high school students were studying be-
havioral modeling with flow charts at the moment.
Positive feedback was given about the connection of
the classes subject matter to a well-understandable ex-
ample. The students claimed to now better understand
the subject matter.

• The copy robot itself and its example setup are a com-
pact, well portable teaching unit. In the current setup
it can be used independently of group size and location
(except a projector no further equipment is needed).

• By covering both hardware and software aspects the
lecture is quite demanding and reaches a coverage of
different aspects. We think that this is a challenge
appreciated by secondary school students of this age.

There are some weaknesses however:

• The interactive lecture was a welcome change in the
student’s daily routine. However, we found in evalua-
tion of the lecture that students with no prior interest
in computer science also did not show any increased
interest in the lecture.

• Although students were encouraged to contribute to
the discussion, there were no activities that strictly re-
quired interaction. To solve the exercises the students
were left on their own which resulted in unsolved exer-
cises where time did not suffice or students had prob-
lems.

• Finally, a better usage of the available 1,5 hour time
slot would improve the lecture. In the 1,5 hours of
the lecture both hardware and software issues were
covered in high detail. While this is interesting for
students wishing to get a broad view of all possible
issues involved, it harmed the interaction in the class
and was especially visible in the number of unsolved
second exercises.

3.4 Wall•E Rescues Eve
Less than one year after the science week at the University
of Antwerp, one of the instructors was asked to organize
at Eindhoven University of Technology (TU/e) a science-
related workshop for families with kids. It seemed promising
to use this event as an opportunity to tackle some of the
weaknesses of the Factory example described above. The
so-called ”open day” targeted kids between the age of 8 and
12 and a session should take about half an hour at most.

The following considerations have driven the design of a new
Fujaba NXT example: (i) all existing examples were too
complicated for the children younger than 12 years of age,
(ii) the 2008 forklift design and its multi-step turning ap-
proach was a promising basis, (iii) several participants to
the 2008 Factory Robot workshop had made enthusiastic
references to the Wall•E movie.

3.4.1 Case Description
Wall•E is a 2008 computer-animated film produced by Pixar
Animation Studios that follows the story of a robot named
Wall•E [5]. This robot is designed to clean up a waste-
covered Earth far in the future. The robot has transformed
an old container in a cosy home where he keeps valuable
waste items organized in shelves. He eventually falls in love
with another robot named EVE, and follows her into outer
space on an adventure that changes the destiny of both his
kind and humanity [8]. The movie includes scenes about a
sandstorm that puts Wall•E and EVE into trouble.

The Fujaba NXT example picks up from here: EVE gets
stuck in a big pile of waste and Wall•E also gets damaged in
the storm. Fortunately, he manages to return to his home,
where he has some spare parts to repair his broken wheels.
Wall•E does not have spare set of his original continuous-
track wheels and is forced to use three wheels instead. He
mounts two wheels in front and one wheel in the back. One
motor is attached to the axis on which the front wheels are
mounted whereas a second motor enables Wall•E to turn
the rear wheel. How should Wall•E program his navigation
computer to find his way back to EVE? The children are
invited to assist him in this quest.

The instructor can show some motivating pictures and scenes
from the movie. In fact, for the ”open day”, a lively set with
waste bags and pictures of large dumps is constructed. The
interested reader can access a dedicated instructor’s manual
for further details [7].

Figure 10 shows the track design that has been used to
demonstrate that the robot could in fact find his way through
the imaginary duststorm. Figure 11 shows an example exe-
cution. Note how the robot drives from the black line several

Figure 10: hardware setup for the Wall•E example.

Figure 12: Wall•E session with kids from 12 years
of age.

times and backs up iteratively to find a state where his both
light-sensors are on top of the black line again.

When arranging tables as a corridor in the shape of the
path from Figure 10, 12 year old kids need about 5 min-
utes to walk from start to end. In order to avoid cheating,
one can blindfold particular role players. As shown on Fig-
ure 12, we decided to blindfold the child playing the robot
instance only, since the robot instance needs to map light
sensor events to navigator calls. The pictures shown in Fig-
ure 10 are from a tryout session in an elementary school in
Mol, Belgium.

3.4.2 Models
Figure 13 shows a story diagram that models how to make
the trike robot (i.e., Wall•E) move forward. The diagram is
specified in the context of a navigator class that specializes
navigation behavior for the three-wheel (trike) design. Such
specialization is necessary since the default FNavigator class
assumes a differentially wheeled robot design (such as the
UniKassel continuous track robot of the Hanoi example).

The this node shown on Figure 13 represents the special-
ized trike navigator. Story diagrams of the shown level of
complexity can be used for explaining to kids (or the par-
ents that accompany them) that the role playing game is
more than just a game: these implementation models of the
robot turn out to be so close to the walkthroughs that al-
most anyone who is able to read can comprehend them (at
least partially).

It is the responsibility of the instructor though to make the

Figure 11: Example run of the Wall•E Rescues EVE scenario.

Figure 13: Story Diagram: move the trike forward.

children aware of which node on the diagram they have been
playing. Similarly, the instructor should indicate explicitly
the mapping from diagram edges to the cords from the role
playing game and (roughly speaking) the physical wires on
the LEGO robot. Finally, we have perceived that the in-
structor should not take for granted that all children grasp
immediately the order of execution of collaboration state-
ments.

Remark that the icon mechanism has turned out to be very
practical in this context. Unfortunately, the icons associ-
ated to classes are not used automatically at runtime by
eDOBS. Instead, a getIcon method (as shown for example
on Figure 6) needs to return the image location as a string
explicitly. Obviously, we have filed the automatic genera-
tion of such a simple method implementation as a feature
request.

3.4.3 Analysis
We have collected feedback from a group of 12 year old kids.
We asked the children (i) which part of the session they liked
the most, (ii) which part of the session they disliked the
most, (iii) what they had learned, (iv) what they did not
comprehend, and (v) what they would have liked to have
seen or done additionally.

Some results are hard to map to improvements. For exam-
ple, some kids like most the part were they have to guess
how Wall•E finds its way to EVE by means of looking at
the actual LEGO device in action. Such kids find the role-
playing rather boring. Others indicate exactly the opposite.
The trial session has also exposed significant differences in
mental capabilities, even though the trial session has been
performed with kids from the same class: some children can
specify exactly how many degrees the rear motor has to turn
(+45 degrees or -45 degrees for turning right or left respec-
tively) whereas others indicate that ”they simply do not un-
derstand why there are so many motors involved”.

The survey does provide feedback that can be used directly:
a very large portion of students has indicated that they dis-
liked that only one child per group of three children was
actively role-playing. We did not get this feedback when
performing the Factory session, which targeted adolescents
and take the difference into account. More specifically, we
aim to have more than one instructor available during future
workshop sessions for kids, such that multiple role-playing
sessions can be organized in parallel. We can still keep the
T-shirts available for those kids (if any) that fear to be ex-
posed in group.

Additionally, a significant amount of children indicated that

Figure 14: Class diagram extract of the Fujaba NXT
library layer.

they would have liked to have ”driven” the robot by them-
selves. It is hard to figure out whether they simply wish
to instruct the navigator explicitly (e.g., via eDOBS) or
whether they wish to change some diagrams (i.e., do ac-
tual programming). We acknowledge that both directions
are quite interesting but so far we have not managed to per-
form such activities within the available time of half an hour.
Obviously, we look forward to exploring this further when
more time is available and when the groups are smaller.

4. LESSONS LEARNED
This section presents the main lessons that the authors have
learned after the publication of [4]. First of all, we present
new modeling guidelines, secondly we describe an improve-
ment of the underlying engine. Finally, this section presents
a list of known open issues.

4.1 Modeling Guidelines
The common approach to model a custom robot is to sub-
class one or more classes from the core API, like FNXT.
This way, default behaviour can be easily overridden. A
statechart should be used to model the global robot states.
From that, story diagram methods are called to execute ac-
tual robot actions. Furthermore, Statecharts can be used to
react to sensor events. Figure 14 shows an extract of the
Fujaba NXT API:

Some methods of these classes are synchronous whereas oth-
ers are not. This is neccessary to model efficiently, but
for inexpierenced developers, it is very difficult to distin-
guish between these. For example, all waitFor...()-methods
are blocking, forward() and backward() not, whereas ro-
tate(long) is synchronous as well: it returns when the rotate
task is completed. A waitFor...() method implicitly encodes
an event handler.

4.1.1 Bad Style in Story Driven Modeling
When using the waitFor...() methods frequently in story di-
agrams, one is scattering implicit event handlers. Figure 15
for example contains some, rather hard to find, waitIfLast
and waitIfEmpty calls.

In general, Figure 15 illustrates the authors’ negative expe-
riences with the Story Driven Modeling of multi-threaded
event handling. These experiences have eventually lead to
the combined use of Story Diagrams and Statecharts. Ob-
viously, Figure 15 is not intended to be readable. In fact,

Figure 15: Example of SDM bad style.

it does not even fit on a mainstream notebook screen. One
could work around this limitation by refactoring some frag-
ments to separate methods. However, the core complexity,
which relates to the explicit modeling of an event queue,
cannot be removed using Story Driven Modeling constructs.
Mind that this is not only an issue of forced over-specification
(i.e, a lot of work) but more dramatically we have learned
the hard way that this modeling style is very error-prone
and hard to debug.

4.1.2 Proposed Style: Combine SDM and Statecharts
Statecharts seem to be a feasible solution to overcome the
problems related to the Story Driven Modeling of event han-
dling: each statechart runs in a separate thread implicitly
while wait and notify methods are called when expected, be-
hind the scenes. The current sensor adapter implementation
ensures that all sensor events can be used to trigger state
transitions. Currently, we use a very simple string encod-
ing of the event triggers: <sensor-port> <state>, where
sensor-port is s1, s2, s3 or s4 referring the hardware ports at
the NXT brick, and state is black, white, pressed or released,
depending on the connected sensor type.

Figure 16 shows the statechart of a common task for a driv-
ing robot: Follow a black line on the ground. The robot
has two light sensors attached, which both should follow a
wide black line. When one sensor goes off the line, it will
read white, and an event trigger either s2 white or s3 white
is fired. The statechart goes in one of the turn states and
the robot will turn until both sensors read black again.

Recall from Section 3 that for sequential domain algorithms
(e.g., let a robot collect goods from shelves) and basic nav-
igation modeling (e.g., make a trike turn right), Story Dia-
grams do not expose the bad style that is discussed in the
previous section. In fact, it does not make sense to replace
the use of Story Diagrams by Statecharts completely: in sev-
eral cases, the pattern-based specification approach and the
use of icons appears a perfect fit for all children between 8
and 18 years of age. Therefore, a multi-formalism modeling
approach seems most appropriate.

Figure 16: Line Follower algorithm as a statechart.

Figure 17: Architectural change of the event polling
mechanism.

Also mind that we decided only show to the children those
diagrams that illustrated good modeling style (e.g., the one
shown on Figure 13). In the authors’ opinion, it is not yet
relevant for the children to learn from advanced pitfalls in
the context of sessions that are primarily intended to stim-
ulate motivation and a basic understanding.

4.2 Engine Improvements: ActiveSensors
The initial architecture of the Library as presented in 2008
suffered from the fact that the controlling PC had to poll all
sensors actively in a loop, generating a permanent load on
the bluetooth connection, which interfered with host com-
mands. Furthermore, the latency until a sensor change was
detected could be up to 50ms in the worst case, which makes
quick reactions difficult.

In 2009, the authors from the University of Kassel started
to investigate running parts of the library locally on the
NXT. Figure 17 visualizes the architectural restructuring:
the sensor poll loop now is now executed by the TinyJava
VM in the NXT brick.

Because even the NXT-local LeJOS sensor implementation
does not offer a notification mechanism upon sensor changes,
the framework still relies on polling. This has not resulted in
performance problems so far as there is no other code run-
ning on the NXT yet. The polling is already more efficient
than in 2008 due to the reduced bluetooth traffic. Each time

a sensor value changes, an event is generated and send to the
controlling PC (as well as the initial sensor value). The same
approach is done for motors: The motor state is monitored
permanently and when a motor state changes (running or
stopped), an event is send. Furthermore, when pressing one
of the NXT buttons, a button event is send to the PC.

The PC still controls the NXT over the bluetooth connec-
tion with host commands using the LegoControlProtocol
(LCP). Our program running locally on the NXT still needs
to handle LCP requests now. A full-duplex stream connec-
tion between the NXT and the PC will be opened when the
host application starts. As some of the LCP commands re-
quire answer packets, our program is responsible for sending
those back to the PC. Because of the limited NXT hardware
bluetooth module, which supports only a single full-duplex
stream connection, we cannot use a secondary connection for
sending the events to the PC. We have to send the events
using the same connection: This requires a demultiplexer at
the receiving PC to distinguish between LCP answer pack-
ets and event packets. After receiving such a event, a cor-
responding SensorEvent is generated and dispatched to the
application layer.

Except button events, which the Pccomm API doesn’t allow,
all ActiveSensors functionality is fully transparent to the
application layer. Thanks to the layered design discussed in
Section 2.1, an application can still choose between the 2008
remote polling mechanism and the 2009 approach. The lat-
ter one requires a local program to be deployed on the NXT,
which is part of the Fujaba NXT framework distribution.

4.3 Open Issues
Work on the Fujaba NXT framework and the construction
of the examples described in this paper has so far been quite
challenging. Although this should no longer be visible in a
finished example, it does have an impact on the number of
examples that has been completed successfully. The authors
are convinced that a core issue has been tackled with the new
statechart approach. However, the reader should be aware
that other challenging issues are still open. Therefore, this
section provides an overview of such issues and some known
workarounds. Although these issues have not been solved
yet, new developers of Fujaba NXT examples can save time
by taking into account the known dangers and pitfalls, as
experienced by the authors.

• when debugging Fujaba NXT applications (or embed-
ded software in general), one can often not easily make
erroneous behavior available for replay by other devel-
opers. This is due to the large amount of electrical
components that can have bugs or thoughput limita-
tions too (bluetooth dongles, electric cables, ...). So
far, the first and second author managed to collabo-
rate remotely by means of video sharing. In the case
that the other developer could not reproduce the un-
desirable behavior, the first developer understood he
had to consider deploying on another machine before
spending more time on software debugging. In future
work, best practices for using the simulation adapters
will be investigated to make the debugging cycle more
reliable and less time consuming.

• debugging multi-threaded software is a challenging task
in general. The following characteristics make debug-
ging the multi-threaded Fujaba NXT applications par-
ticularly hard to debug: when suspending a thread
running on the host computer, the related threads on
the LEGO components may continue to execute. To
tackle this, special debugging features should be added
to the Fujaba NXT framework (e.g., stopping all mo-
tors when suspending the VM on a breakpoint). This
can be tightly integrated with Design Level Debug-
ging [6]. Also mind that Design Level Debugging fa-
cilities would be very valuable too for the Statechart
models.

• The underlying LeJOS framework still exposes bugs
(obviously where they are least expected) and has a
counter-intuitive design. For example, the bluetooth
startup code is in the static initializer of the Motor
class.

5. SUMMARY AND CONCLUSIONS
This paper illustrates how the Fujaba NXT framework is ap-
plied with reasonable success in several educational projects.
An intended outcome of these projects is that the children
acknowledge that role playing can provide a useful basis for
programming. The underlying hypothesis is that this will
break perceptions (if any) of software development as a pure
asocial activity and we hope this attracts additional bright
people to the software industry that would otherwise have
choosen another path.

The framework consists of (i) Fujaba models that provide
some basic data structures and building blocks of primitive
sensor and motor functionality, and (ii) a set of hand-coded
wrapper classes that integrate third party (LeJOS) binaries.
The object-oriented nature of the Fujaba models enables one
to easily apply inheritance and delegation techniques to deal
with variability in robot hardware designs (e.g., continuous
track designs versus the discussed trike design). The under-
lying LeJOS framework does not have this characteristic.

The Fujaba NXT framework turns out to be useful for role-
playing sessions (at least) with kids between 8 and 18 years
old. From 2002 onwards, behavioral modeling was done
with story diagrams that generalized the behavior of story
boards, that in turn represented snapshots from a role play-
ing game [2]. The authors of this paper still acknowledge
that the unique strengths of Story Driven Modeling remain
(i) its semi-structured method for role-playing, (ii) the sim-
ple mental mapping for role players, since several domain
alogithms involve rewriting steps, (iii) its syntax specializ-
ability by means of a simple icon mechanism, and (iv) its
tool support for runtime visualization (eDOBS).

In 2008, the inherent limitations of this approach became
better understood and since 2009 one can bypass these limi-
tations by expressing event-based behavior using Statecharts.

6. FUTURE WORK
Section 4.3 already lists the technical issues that remain to
be solved. This section focuses on future work on the con-
ceptual level.

From the Copy Robot example, we learn the following: in-
structors cannot expect that bachelor or master students
without Fujaba training will use story diagrams (or state-
charts) spontaneously for the development of new Fujaba
NXT projects. Such students do rely on a story boarding
process but resort to pseudocode for generalizing method
behavior. The authors consider it a challenge for the Fujaba
community to provide more, and more elaborately docu-
mented, examples of story diagrams (and statecharts). The
authors themselves will continue their collaboration to con-
tribute such examples to the community. On the sort term,
the Fujaba NXT library will be extended with more ready-
to-reuse basic functionality.

Additionally, some university student projects related to Fu-
jaba NXT are being supervised and even more will be su-
pervized on the longer term. These projects should result in
(i) stable hardware/robot/sensor setups (with building in-
structions) and (ii) multiple modeling solutions for one given
problem and one or more robot designs.

7. REFERENCES
[1] T. Fischer, J. Niere, L. Torunski, and A. Zündorf.

Story Diagrams: A New Graph RewriteLanguage
Based on the Unified Modeling Language and Java. In
Proceedings of the 6th International Workshop on
Theory and Application of Graph Transformation
(TAGT) , volume 1764 of LNCS, pages 296–309.
Springer Verlag, Nov 1998.

[2] I. Diethelm, L. Geiger, A. Zündorf. UML im
Unterricht: Systematische objektorientierte
Problemlösung mit Hilfe von Szenarien am Beispiel
der Türme von Hanoi. Erster Workshop der
GI-Fachgruppe Didaktik der Informatik, Bommerholz,
Germany, Oct. 2002.

[3] I. Diethelm, L. Geiger, A. Zündorf. Fujaba goes
Mindstorms. Objektorientierte Modellierung zum
Anfassen; in Informatik und Schule (INFOS) 2003,
München, Germany, Sept. 2003.

[4] R. Jubeh. Simple robotics with Fujaba. In Fujaba
Days. Technische Universität Dresden, Sept. 2008.

[5] P. Kanyuk. Brain springs: Fast physics for large
crowds in WALL-E. IEEE Computer Graphics and
Applications, 29(4):19–25, 2009.

[6] Leif Geiger. Design Level Debugging mit Fujaba. In
Informatiktage, Bad Schussenried, Germany, 2002. der
Gesellschaft für Informatik.

[7] P. Van Gorp, R. Mans, and J. Samalikova. Help
Wall•E door de vuilnisberg heen! handleiding voor
publieksdag project, Sep 2009.

[8] Wikipedia. WALL-E.
http://en.wikipedia.org/wiki/WALL-E.

[9] LeJOS, Lego Mindstorms NXT.
http://mindstorms.lego.com/, 2009.

[10] LeJOS, Java for Lego Mindstorms.
http://lejos.sourceforge.net/, 2009.

[11] A. Zündorf. Story driven modeling: a practical guide
to model driven software development. In G.-C.
Roman, W. G. Griswold, and B. Nuseibeh, editors,
ICSE, pages 714–715. ACM, 2005.

