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Chatter control in the high-speed milling process using µ-synthesis

Niels van Dijk, Nathan van de Wouw, Ed Doppenberg, Han Oosterling and Henk Nijmeijer

Abstract— Chatter is an instability phenomenon in machining
processes which limits productivity and results in inferior work-
piece quality, noise and rapid tool wear. The increasing demand
for productivity in the manufacturing community motivates the
development of an active control strategy to shape the chatter
stability boundary of manufacturing processes. In this work a
control methodology for the high-speed milling process that
alters the chatter stability boundary such that the number
of chatter-free operating points is increased and a higher
productivity can be attained. The methodology developed in this
paper is based on a robust control approach using µ-synthesis.
Hereto, the most important process parameters (depth of cut
and spindle speed) are treated as uncertainties. Effectiveness
of the methodology is demonstrated by means of illustrative
examples.

I. INTRODUCTION

Chatter is an instability phenomenon in machining pro-

cesses. The occurrence of (regenerative) chatter results in

an inferior workpiece quality due to heavy vibrations of the

cutter. Moreover, much noise is produced and the tool wears

out rapidly. The occurrence of chatter can be visualised in

so-called stability lobes diagrams (SLD). In a SLD the chatter

stability boundary between a stable cut (i.e. without chatter)

and an unstable cut (i.e. with chatter) is visualised in terms

of spindle speed and depth of cut.

In the present day manufacturing industry, an increasing

demand for high-precision products at a high productivity

level is posed. This motivates the desire for the design of

dedicated control strategies, which are able to actively alter

the chatter stability boundary. Hence, this paper presents a

control methodology for the high-speed milling process that

alters the chatter stability boundary such that the number

of chatter-free operating points is increased and a higher

productivity can be attained.

Basically three methods exist in literature to control chat-

ter. The first method to avoid chatter is to adjust process

parameters (i.e. spindle speed, feed per tooth or chip load)

such that a stable working point is chosen [1], [2]. Although

chatter can be eliminated by adaptation of process parame-

ters, the methodology does not enlarge the domain of stable

operation points towards those of higher productivity.

A second method is to disturb the regenerative effect by

continuous spindle speed modulation [3], [4]. Although the

stability boundary is altered by spindle speed modulation
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[5], the method cannot be used in the case of high-speed

milling since the modulation speed is limited by the inertia

and actuation power of the spindle.The third method is to

passively or actively alter the machine dynamics to alter

the chatter boundary. There are passive chatter suppression

techniques that use dampers [6] or vibration absorbers [7].

Passive dampers are relatively cheap and easy to implement

and never destabilise the system. However, the practically

achievable amount of damping is rather limited. Moreover,

vibration absorbers require accurate tuning of their natural

frequencies and, consequently, lack robustness to changing

machining conditions. Active chatter control in milling has

mainly been focused on active damping of machine dynam-

ics [8], [9] or workpiece [10]. Damping the machine or

workpiece dynamics, either passively or actively, results in

a uniform increase of the stability boundary for all spindle

speeds. To enable more dedicated shaping of the stability

boundary (e.g. lifting the SLD locally around a specific

spindle speed), the regenerative effect should be taken into

account during chatter controller design. In [11], an optimal

state feedback-observer controller with integral control in the

case of turning was designed. Recently, Chen and Knospe

[12] developed three different chatter control strategies in the

case of turning: speed-independent control, speed-specified

control and speed-interval control. Except for the work in

[9], all research on active chatter control is limited to low

spindle speeds (i.e. below 5000 rpm).

In this paper, an active chatter controller methodology

for the high-speed milling process is presented, which can

guarantee chatter-free cutting operations in an a priori de-

fined range of process parameters such as spindle speed and

depth of cut. Current chatter control strategies for the milling

process cannot provide such a strong condition.In general,

the existing techniques require a posteriori calculation of the

set of stable working points. The methodology developed

in this paper is based on a robust control approach using

µ-synthesis. Hereto, the most important process parameters

(depth of cut and spindle speed) are treated as uncertainties.

The proposed methodology will allow the machinist to define

a desired working range (in spindle speed and depth of cut)

and lift the SLD locally in a dedicated fashion. Moreover,

in practice the maximum actuator force is limited. Hence,

robust stabilisation of high-speed milling operations while

minimising the control effort is considered. Effectiveness of

the proposed control methodology is shown by means of an

illustrative example.

II. THE MILLING PROCESS

This section present a comprehensive model of the milling

process which describes regenerative chatter. Stability prop-
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Fig. 1: Schematic representation of the milling process.
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erties of the model will be discussed. Moreover, for the

purpose of controller design some model simplifications are

necessary which will be treated subsequently.

A. A comprehensive milling model

In Figure 1, a schematic representation of the milling

process is given. A block diagram of the milling process,

with controller, is given in Figure 2. As can be seen from the

block diagram, the milling process is a closed-loop position-

driven process. The setpoint of the milling process is the

predefined motion of the tool with respect to the workpiece,

given in terms of the static chip thickness hj,stat(t) =
fz sin φj(t), where fz is the feed per tooth and φj(t) the

rotation angle of the j-th tooth of the tool with respect

to the y (normal) axis (see Figure 1). However, the total

chip thickness hj(t) also depends on the interaction between

the cutter and the workpiece. This leads to cutter vibrations

resulting in a dynamic displacement vt(t) of the tool which is

superimposed on the predefined tool motion. This results in

a wavy surface on the workpiece. The next tooth encounters

the wavy surface, left behind by the previous tooth, and

generates its own waviness. This is called the regenerative

effect and results in the block Delay in Figure 2 see [13]. The

difference between the current and previous wavy surface is

denoted as the dynamic chip thickness hj,dyn(t) = vt(t) −
vt(t − τ) with τ the delay. Hence, the total chip thickness

of tooth j, hj(t), is the sum of the static and dynamic chip

thickness, hj(t) = hj,stat(t) + hj,dyn(t).

The cutting force model (indicated by the Cutting block in

Figure 2) relates the total chip thickness to the forces acting

at the tool tip of the machine spindle. The forces in tangential

and radial direction for a single tooth j are described by the

following exponential cutting force model:

Ftj
(t) = gj

(

φj(t)
)

Kt ap hj(t)
xF ,

Frj
(t) = gj

(

φj(t)
)

Kr ap hj(t)
xF ,

(1)

where 0 < xF ≤ 1 and Kt, Kr > 0 are cutting parameters

which depend on the workpiece material, and ap is the axial

depth of cut. The function gj

(

φj(t)
)

describes whether a

tooth is in or out of cut:

gj

(

φj(t)
)

=

{

1, φs ≤ φj(t) ≤ φe ∧ hj(t) > 0,

0, else,
(2)

where φs and φe are the entry and exit angle of the cut,

respectively. Via trigonometric functions, the cutting force

can easily be converted to x(feed)- and y(normal)-direction.

Hence, cutting forces in x- and y-direction can be obtained

by summing over all z teeth:

F (t) = ap

z−1
∑

j=0

gj

(

φj(t)
)

(

(

hj,stat(t)

+
[

sin φj(t) cosφj(t)
] (

vt(t) − vt(t − τ)
)

)xF

S(t)

[

Kt

Kr

])

,

(3)

where

S(t) =

[

− cosφj(t) − sinφj(t)
sinφj(t) − cosφj(t)

]

.

The cutting force interacts with the spindle and tool dy-

namics (block Machine) in Figure 2. The machine dynamics

are modelled via a linear multi-input-multi-output (MIMO)

state-space model,

q̇(t) = Aq(t) + BtF t(t) + BaF a(t),

vt(t) = Ctq(t), va(t) = Caq(t),
(4)

where q(t) is the state (the order of this model primarily

depends on the order of the spindle-tool dynamics model)

and cutting forces F t(t) =
[

Ft,x(t) Ft,y(t)
]T

, where Ft,x(t)
and Ft,y(t) are the cutting forces in x- and y-direction,

respectively. The control forces are given by F a(t) =
[

Fa,x(t) Fa,y(t)
]T

, where Fa,x(t) and Fa,y(t) are the con-

trol forces acting in x- and y-direction, respectively. More-

over, vt(t) and va(t) are the displacements of the cutter

and the measured displacements available for feedback,

respectively.

Substitution of (3) into (4) yields the nonlinear, non-

autonomous delay differential equations (DDE) describing the

milling process:

q̇(t) = Aq(t) + Btap

z−1
∑

j=0

gj

(

φj(t)
)

(

(

hj,stat(t)+

[

sin φj(t) cosφj(t)
]

Ct

(

q
t
(t)−q

t
(t − τ)

)

)xF

S(t)

[

Kt

Kr

])

+ BaF a(t),

va(t) = Caq(t).

(5)
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B. Stability of the milling process

In the milling process the static chip thickness is periodic

with period time τ = 60
zn

. Here n is the spindle speed in

revolutions per minute (rpm). In general, the milling model

(5) has a periodic solution q∗(t) with period time τ [14].

When no chatter occurs, the periodic solution is (at least

locally) asymptotically stable and when chatter occurs it

is unstable. Therefore, the chatter stability boundary can

be found by studying the (local) stability of the periodic

solution. To this end, the milling model is linearised about the

periodic solution q∗(t) for zero control input (i.e. Fa(t) = 0)

which yields the following linearised dynamics in terms of

perturbations q̃(t) (q(t) = q∗(t) + q̃(t)):

˙̃q(t) = Aq̃(t) + apBt

z−1
∑

j=0

Hj(t)Ct(q̃(t) − q̃(t − τ))

+ BaF a(t), ṽa(t) = Caq̃(t),

(6)

where

Hj(t) = gjxF (fz sin φj)
xF−1

S(t)

[

Kt

Kr

]

[

sinφj cosφj

]

. (7)

As can be seen from (6) the linearised model is a nonau-

tonomous DDE. The focus in this work lies on full immersion

cuts, where the full width of the cutter is used for cutting. As

described in [15], for full immersion cuts it is sufficient to

average the dynamic cutting forces
∑z−1

j=0 Hj(t) over the tool

path such that the milling model becomes an autonomous

(time-invariant) DDE model. Since the cutter is only cutting

when φs ≤ φ ≤ φe the averaged cutting forces are given by

H̄ =
z

2π

∫ φe

φs

z−1
∑

j=0

Hj(φ)dφ. (8)

The characteristic equation of the linear DDE (6), with

Hj(t) = H̄ and H̄ given in (8), is then given as

det(I − apGtt(iω)H̄(1 − e−iωτ )) = 0, (9)

where Gtt(iω) = Ct(iωI − A)−1
Bt represents the fre-

quency response function (FRF) from cutting forces at the

tooltip to tooltip displacements. The chatter stability bound-

ary can be obtained by solving (9) for depth-of-cut ap and

delay τ as e.g. discussed in [15].

C. Model simplification for control

The model (6), with Hj(t) = H̄ and H̄ given in (8), can

readily be employed for stability analysis (i.e. determination

of the SLD). However, the presence of time-delay complicates

the development of robust control synthesis techniques. Here,

we apply a finite-dimensional approximation using a Padé

approximation (see also [11], [12]). Hereto, the delayed tool

vibrations ṽt(t − τ) = Ctq̃(t − τ) is approximated by Padé

approximation denoted by ṽp(t), such that ṽt(t − τ) =
Ctq̃(t − τ) ≈ ṽp(t). The milling model in (6) with cutting

force averaging, defined in (8), and Padé approximation is
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Padé order k = 15

Fig. 3: Stability lobes diagram for the milling process with
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TABLE I: Milling model parameters.

Parameter Value Parameter Value

mt,x = mt,y 0.015 kg Kt 462 [N/mm(1+xF )]
ma,x = ma,y 0.14 kg Kr 38.6 [N/mm(1+xF )]
ωt,x = ωt,y 2350 Hz xF 0.744 [-]
ωa,x = ωa,y 1400 Hz φs 0 [rad]
ζt,x = ζt,y 0.05 [-] φe π [rad]
ζa,x = ζa,y 0.12 [-] fz 0.2 mm/tooth

z 4 [-]

given as,

[

˙̃q(t)
˙̃qp(t)

]

=

[

A+apBtH̄(Ct−DpCt) −apBtH̄Ct

BpCt Ap

][

q̃(t)
q̃p(t)

]

+

[

Ba

0

]

F a(t), ṽa(t) = Caq̃(t),

(10)

where Ap,Bp,Cp and Dp denote matrices of the state-

space description of the Padé approximation. The size of

these matrices depends on the chosen order k for the Padé

approximation. The order of the Padé approximation will

be based on a desired level of accuracy regarding the

predicted chatter stability boundary using the model with

Padé approximation.

In Figure 3 the chatter stability boundary is given for

the model with time-delay obtained by solving (9), and for

different orders k of Padé approximation. Hereto, the ma-

chine spindle-toolholder-tool dynamics is modelled by two

decoupled subsystems consisting of two mass-spring-damper

systems, with masses ma,j , mt,j j = x, y eigenfrequencies

ωa,j, ωt,j j = x, y and damping ratios ζa,j , ζt,j j = x, y.

This in order to capture the inherent dynamics between

the actuator/sensor system (denoted by subscript a) and the

cutting tool (denoted by subscript t). The parameters of the

machine spindle model and cutting force coefficients are

listed in Table I. From Figure 3 it can be observed that,

for increasing order k of the Padé approximation, the error

between the stability lobes determined using the exact delay

term and the approximated delay term becomes smaller.

Moreover, since the delay is inversely proportional to the

spindle speed, the approximation becomes more accurate as

the spindle speed increases. Here we focus on high-spindle

speeds (i.e. above 15 krpm). Hence, throughout this paper the

order of the Padé approximation is chosen equal to k = 10.
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III. ROBUST CONTROLLER DESIGN

This section describes the controller design for an active

chatter control methodology that will alter the chatter sta-

bility boundary, such that stable operating points, reflecting

higher productivity, can be attained.

A. Control objective

As outlined in the introduction, we aim to design a

controller such that the milling process is stabilised for a pre-

defined area of working points (in terms of depth-of-cut ap

and spindle speed n) for bounded control effort. This control

problem can be cast into the µ-synthesis framework. The set

of milling operations to be stabilised will be expressed as

uncertainties in depth of cut ap and spindle speed n.

B. Nominal model

Given the milling process, modelled as in (10), as dis-

cussed in the previous section, we propose to design a linear

dynamic controller with transfer function

K(s) =

[

Kxx(s) Kxy(s)
Kyx(s) Kyy(s)

]

, (11)

s ∈ C, from measured perturbation displacements ṽa to

actuator forces F a to effectively adapt the spindle dynamics.

However, in contrast to most active chatter control methods

discussed in the introduction, in this work we do not only

consider the spindle dynamics during the control design,

but also take the interaction between the spindle dynamics

and the cutting forces into account. Equation (10) gives the

nominal plant model used during µ-synthesis.

C. Uncertainty modelling

This section describes the modelling of the uncertainties

in the process parameters, which can be considered as a

key step in achieving the control objective defined above:

robust stability (i.e. chatter avoidance) in a range of process

parameters.

First, the uncertainty in depth of cut ap is considered

which is modelled as a parametric uncertainty ap,u. An

important (practical) aspect is that robust control design

should provide stability for small as well as (relatively) large

values of the depth of cut. Hereto, the uncertain depth of cut

is modelled such that it specifies a range from zero up to

a maximum value, i.e. ap,u ∈ [0, āp]. Let us define a real

scalar uncertainty set ∆ap
=

{

δap
∈ R

∣

∣ ‖δap
‖ ≤ 1

}

. The

uncertainty for the depth of cut is then defined by

ap,u ∈ 1
2 āp(1 + ∆ap

), (12)

where āp is the maximal depth of cut for which stable cutting

is desired.

The uncertainty in the time-delay τ (and thus spindle

speed) is formulated as considered by Chen and Knospe

[12]. Hereto, note that for arbitrary frequency ω, the value

set of e−iωτ for all τ ∈ [τ , τ̄ ] can be represented in the

complex plane as a circular arc extending along the unit

circle. Then, this time-delay interval can be approximated

by choosing any stable transfer functions Gd(s) and Wd(s)
such that Gd(s) + Wd(s)∆d, with ∆d ∈ C and |∆d| ≤ 1,

Real Axis

Im
ag

in
ar

y
A

x
is

Fig. 4: Transfer functions Gd(s) and Wd(s) to cover of a

range of Padé approximations Gp(s, τ) of e−sτ of interval

time-delay τ ∈ [τ , τ̄ ] (based on [12]).

covers the interval delay element, as shown in Figure 4. In

order to reduce conservatism, Chen and Knospe propose to

choose Gd(s) and Wd(s) such that at each frequency: 1) the

arc length covered by the disk is nearly that of the delay

element and 2) the area of the disk lying outside the unit

circle is minimised. Then, stable filter Gd(s) is defined as

follows [12]

Gd(s) =

(

Gpn(0)

Gpd(s)

)2

, (13)

where Gp(s) = Gpn(s)/Gpd(s) and a lower bound for the

magnitude of the filter Wd(s) can be calculated as:

√

1 + |Gd(jω)|2 − 2|Gd(iω)| cos hω
2 ≤ |Wd(iω)|. (14)

The filter Wd(s) is then obtained by fitting the magnitude

with a stable minimum-phase transfer function.

D. Performance requirement

In essence, the chatter control problem at hand is a robust

stabilisation problem. This robust stability requirement has to

be achieved with limited control effort, since actuator forces

can not become infinitely large. Therefore, the control input

to the system (F a(t)) will be limited during µ-synthesis.

Limiting the control input (F a(t)) is done by applying a

performance requirement to the control problem, in terms

of an upper bound on the control sensitivity KS(s) =
K(s)(I − K(s)P(s))−1, where P(s) gives the transfer

function representation of the nominal plant given by (10) .

Here, the control sensitivity is defined as the transfer function

from a input signal r(t) (which can e.g. be interpreted as

measurement noise entering the feedback loop) to the control

input F a(t). The bound on the control sensitivity is enforced

by defining a weighting function WKS(s) = WKS(s)I,

where WKS(s) is written as:

WKS(s) = Kp

1
2πfr

s + 1
1

2πfp
s + 1

. (15)

The structure of WKS(s) is chosen such that, for frequencies

larger than a roll-off frequency fr, the inputs to the controller

are attenuated in order to reduce the (undesired) influence

of high-frequent measurement noise on the control action.

Moreover, Kp denotes the static control gain and a pole, at

frequency fp (such that fp > fr), is added to obtain a proper

weighting function, necessary for implementation.
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IV. RESULTS

In this section, the actual controller synthesis is addressed.

In order to demonstrate the feasibility of the µ-synthesis

approach proposed in the previous section, control design

is performed for an illustrative example.

Hereto, consider the parameters of the milling process

as given in Table I. The spindle dynamics is modelled,

as before, by two decoupled subsystems consisting of a

two mass-spring-damper model in order to capture the in-

herent compliance between the actuator/sensor system (with

mass ma,j j = x, y) and the cutting tool (with mass mt,j j =
x, y).

Controllers are sought that stabilise milling operations for

a single spindle speed as well as for a spindle speed interval,

for a range of depth-of-cut ap which should be as large

as possible for the given performance requirement (in this

case the bound on the control sensitivity KS(s)). Hereto,

µ-synthesis is employed within a bi-section scheme.

From the uncertainty models, presented in the previous

section, it can be concluded that we are dealing with a

so-called mixed µ-synthesis problem, i.e. both complex

and real uncertainty sets are present. Although, mixed µ-

synthesis can be employed via D,G-K-iteration [16], it will

in general result in high-order controllers due to high-order

fits required for the G-scales. As the general plant in this

work is of relatively high order (since a relatively high-order

Padé approximation is needed to accurately approximate the

time delay), the uncertainty in depth-of-cut is considered

as a complex uncertainty and controller design is employed

using D-K-iteration. We accept the additional conservatism

introduced by considering only complex uncertainties during

the controller design over a controller of even higher order.

The performance requirement, presented in the previous

section, is used to limit the control forces. Hereto, the upper

bound on the control sensitivity gain is set to Kp = 1 ·
10−6 mm/N. Moreover, fr = 7500 Hz and fp = 1e5 Hz,

where the roll of frequency is set to approximately three

times the largest eigenfrequency of the machine spindle and

the extra pole is chosen arbitrarily.

The results are presented where controllers K(s) are

designed for a single spindle speed n = 27000 and a spindle

speed interval n ∈ [34000, 36000] rpm. A 10-th order Padé

approximation is used to construct Gp(s) (and Gd(s)) and a

6-th order weighting function Wd(s) is used for the case with

spindle speed uncertainty. Controller synthesis using D-K-

iteration yields a 38-th order controller for a maximal depth

of cut of āp = 2.75 mm (µ = 0.995) for n = 27000 rpm

and a 62-th order controller for a maximal depth of cut of

āp = 2.25 mm (µ = 0.98) for n ∈ [34000, 36000] rpm. The

higher order of the controller with spindle speed uncertainty,

compared to the fixed spindle speed case, is mainly due to the

delay uncertainty modelling. To reduce the controller order,

(closed-loop) model reduction techniques can be applied, see

e.g. [17]. We leave this topic for future work.

Frequency response functions (FRF) of the obtained con-

trollers together with the inverse of the frequency bound

imposed on the control sensitivity (i.e. W−1
KS(s)) are given

in Figure 5. It can be seen that the resulting controllers
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Fig. 5: Magnitude of FRF of the controllers obtained by D-

K-iteration for fixed spindle speeds n = 27000 (black) and

n ∈ [34000, 36000] rpm (grey).

exhibit highly dynamical characteristics indicated by the

inverse notches in the FRF. However, for the spindle speed

interval case, the (inverse) notch-like characteristics exhibit

more damping. Although the magnitude of the controllers

do not exactly fulfill the imposed bound (since the bound

is imposed on the control sensitivity KS(s)), it can be seen

that the magnitude is bounded. In Figure 6(a) the SLD for

the case with and without control can be found. The SLDs

are determined using the original milling model (6) (i.e. with

time delay), with Hj(t) = H̄ and H̄ given in (8), as outlined

in Section II-B. Figure 6(a) clearly illustrates the power of

the proposed approach, as the SLD is shaped to guarantee

robust stability for the desired range of depth of cut and spin-

dle speed (while avoiding chatter and satisfying a specified

bound on the control gain). Due to conservatism of the delay

approximation, for the case with spindle speed uncertainty,

stability is guaranteed for an area somewhat larger than the

domain to be stabilised. For the fixed spindle speed case,

stability is increased at the desired spindle speeds, while

it decreases significantly at the remaining spindle speeds.

This can be explained by examining the controlled machine

dynamics.

The FRF of the closed-loop tool-tip spindle dynamics

Gtt,c(s) (i.e. the FRF from F̃ t(t) to ṽt(t)) is given, together

with the original (uncontrolled) spindle dynamics, in Figure

6(b). While the original (uncontrolled) spindle dynamics only

has x- and y-components, the controlled machine dynamics

also has off-diagonal components. This results from the

fact that the nominal plant contains a coupling between x-

and y-direction terms introduced by the cutting force model

(resulting in a full matrix H̄ and consequently in a full 2×2
controller K(s)). It can be seen that the fixed spindle speed

controller tailors the spindle dynamics such that a dominant

weakly-damped resonance is created. The frequency at which

this dominant resonance is situated is f = 1800 Hz which

corresponds to the tooth excitation frequency ftpe = nz
60

at this spindle speed. Hence, it can be concluded that, in

order to create a stability lobe at a certain spindle speed, the

natural frequency of the spindle dynamics should be set equal

to the corresponding tooth passing excitation frequency.
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Fig. 6: Stability boundaries and tooltip spindle dynamics for

controllers designed for fixed spindle speed, n = 27000
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Robustness for a range of spindle speeds (dashed line in

Figure 6(b)) results in better damped modes as compared

to the fixed spindle speed case. The fact that a closed-loop

spindle resonance is situated at a tooth-passing excitation

frequency can be explained as follows. In the milling process

the highest depth of cut can be obtained when the dynamic

chip thickness hj,dyn(t) = vt(t)− vt(t− τ) is equal to zero.

This relation can be transformed to the frequency domain as

follows

Hj,dyn(iω) = (1 − e−iωτ )Vt(iω) = : Q(iω)Vt(iω). (16)

Hence, the difference between the present and previous cut

is actually a filter, denoted by Q(iω), with zeros at lωτ =
lω 1

ftpe
, l = 0, 1, . . .. Moreover, for the milling process, the

dominant (chatter) frequency of the perturbation vibrations

lies in general close to the eigenfrequency of the spindle

dynamics [14]. Then, by designing the controller such that

the closed-loop resonance of the spindle dynamics is close

to a tooth-passing frequency and due to the filter properties

of the Q(iω), this results in the dynamic chip thickness to be

zero at the desired spindle speed, resulting in a large depth

of cut.

V. CONCLUSIONS

This paper proposes a control methodology in which

the problem of actively controlling regenerative chatter in

the high-speed milling process is addressed. Herein, the

requirement for a priori stability for a predefined range of

process parameters is cast into a robust stability requirement.

The control problem is solved via µ-synthesis using D-

K-iteration. A comprehensive milling model is presented

which, due to the presence of a time-delay, complicates the

development of robust control synthesis techniques. Hereto, a

finite-dimensional approximation of the time delay is applied

during controller synthesis. The set of milling operations to

be stabilised are expressed as uncertainties in the process

parameters depth of cut and spindle speed. Moreover, a

performance requirement is imposed on the control sen-

sitivity in order to limit the actuator forces. Results, for

illustrative examples, show the power of the proposed control

methodology. The chatter stability boundary is locally shaped

to stabilise the desired range of working points.
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