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Abstract

This paper is part 1 of two companion papers dealing with a multi-item production system
in which the production is controlled by a fixed cycle scheme. The cycle consists of a produc-
tion period with a fixed number of production times that can be used for production or idling,
followed by a vacation. The duration of the vacation is independent of the production period.
Demand arrives according to a (compound) Poisson process and is satisfied from stock or
backlogged. The embedded process is modeled in discrete time and analyzed using generating
functions. The optimal base stock level is derived from a newsvendor type relation. The
model is extended to one with time slot dependent base stock levels. The results are used to
construct a presumably optimal fixed cycle policy. In part 2 this fixed cycle policy is used to
construct a dynamic production policy.

Keywords: fixed cycle, polling, multi-item production system, discrete time

1 Introduction

In two companion papers we will develop a dynamic control strategy for a multi-item production
system, in which for each of the N items, demand arrives according to a (compound) Poisson
process and is satisfied from stock or backlogged. In order to satisfy the demand, the machine has
to switch between the items which requires a certain switch-over time. A fast switching scheme
increases the responsiveness of the system to changes in demand, while a slow switching scheme
increases the short term utilization of the system. Decisions on producing, switching and idling
the machine should be based on the stock levels of the different product types, with as goal the
minimization of a linear cost function in the number of products on stock and the backlog. This is
a multi-dimensional decision problem, for which, in principle, the optimal solution can be obtained
via MDP. However, this approach becomes numerically intractable if the system is large in the
number of product types. Therefore, alternative policies are to be considered.

This multi-item production system can be seen as a polling model, which has been extensively
studied in queueing theory with as typical application data transfer in a service switch. Service
disciplines that are studied are exhaustive, gated and k-limited control in which respectively all
jobs, all jobs upon arrival of the server and at most k jobs are served during a visit, see for
example Resing [22]. He gives a moment generating function of the joint queue length distribution
at polling instants for so called multitype branching processes, which includes the exhaustive and
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gated policy in a polling model. The exhaustive, gated and k−limited policy can be translated to
production strategies by setting base stock levels. According to an exhaustive base stock policy,
the machine produces the items in a fixed order and switches to the next item if the current stock
level equals the base stock level. In the gated base stock policy, the number of products that is
produced during a visit is equal to the number of products short to the base stock level upon
arrival. In the k−limited base stock policy, the machine switches if the current stock level equals
the base stock level or if k units are produced.

Federgruen and Katalan [11] also look at exhaustive and gated base stock policies, but insert a
fixed idle time before every switch-over time. Because the total average costs only depend on the
total idle time in a cycle, they can derive the optimal idle time via a numerical procedure. The
exhaustive, gated and k-limited policies are so-called local lot-sizing policies, where decisions only
depend on the stock level or backlog of the product type currently set up. Local lot sizing policies
do not react to the complete state of the system and are therefore suboptimal. In Winands et
al. [27], where this problem is called a stochastic economic lot sizing problem, more research on
dynamic policies is advocated to develop more insights in the optimal policy.

In this first paper we will analyse the system when it is controlled by a so-called fixed cycle. The
fixed cycle control means that in each cycle each product receives a fixed number of production
slots. These slots can be used for production or for idling, but they cannot be skipped. Given such
a fixed cycle, the system decomposes into N independent subsystems, one for each product type.
Therefore the analysis of the fixed cycle strategy is much easier than the analysis of practically any
other strategy. In the second paper we will use the results for the fixed cycle strategy to construct
a dynamic control strategy according to what has become known as the one-step improvement
method, which in fact is a single policy improvement step in Howard’s policy iteration algorithm.
In order to perform such an improvement step one needs the relative values (or bias terms) that
in general are too hard to obtain for a system with a very large number of states, but the special
structure of the fixed cycle strategy, particularly the fact that it allows for the decomposition,
makes computation of these relative values easy.

The idea for this one step improvement approach goes back to Norman [19] and was used in [2], [14]
and [23] for call centers, the control of a traffic light and telecommunication systems respectively.
Based on the fixed cycle production scheme discussed in this paper, the same approach is performed
on a multi-item production system in [4]. The current paper discusses the optimal decision levels
for a given fixed cycle and presents a local search algorithm for a (close to) optimal fixed cycle
scheme.

Güllü et al. [13] also study the fixed cycle production scheme and present two heuristic algorithms
to find the lengths of the production periods of the different items. Both algorithms are (partly)
based on a deterministic model. Further, the optimal decision level is derived for a single period
model. In Erkip et al. [10], the same model is studied and a matrix analytic method is used to
find the optimal decision level for the infinite horizon model. The difference between the model
studied in [10] and the model we consider, is that in [10] all time slots have the same length and
demand distributions are equal for each time slot.

A more general queueing model with vacations is studied in Fuhrmann and Cooper [12]. They
give a decomposition result for the distribution of the number of customers present in a queueing
model with vacations which holds under certain conditions. These conditions include: Customers
arrive according to a Poisson process, the customers are served in an order that is independent of
their service times and the number of customers that arrive during a vacation is independent of
the number of customers present just before the start of that vacation. The decomposition consists
of the number of customers present in a standard M |G|1 queue and the number of customers who
arrive during a residual vacation. Unfortunately, the fixed cycle model does not satisfy all necessary
conditions, because if the base stock level is reached during a production period, the system idles
during one production time. This idling time is also called a vacation and therefore, the number
of customers that arrive during a vacation is not independent of the number of customers present
in the system when the vacation began. Fortunately, the limiting distribution of the stock out
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(which can be seen as the queue length distribution of items that need to be produced) can be
found in a more direct way, without using the decomposition result of [12].

In this paper, the optimal decision levels for a given fixed cycle are derived from a newsvendor
type equation in Section 2 and a heavy traffic approximation is given to avoid numerical problems.
Furthermore, a fixed cycle scheme with time slot dependent decision levels is analysed in Section
3 and again a newsvendor type equation is given. Section 4 presents an algorithm to find a
near-optimal fixed cycle scheme. A summary is given in Section 5.

2 Fixed Cycle

2.1 Cyclic production

The fixed cycle policy reserves a production period of fixed length for every item i. This production
period consists of a number of gi production times, each with a length TP,i. The order of production
is fixed and the decision to produce or not to produce a product is based on the base-stock level
Si. If the stock level of item i equals this level just before a production slot of type i, the system
idles during the next slot. This clearly is suboptimal, but this condition (the fact that slots aren’t
skipped) allows us to analyse the system as a combination of N independent queues, one for each
product type. Every queue can be seen and analysed as a single-item production system with
periodic vacations, which is done in the first part of this paper. Because the analysis is focussed
on only one of the N product types, the index i is omitted in the notation.

So, we consider a single-item cyclic production system where each cycle starts with g production
times and is concluded by a vacation. This vacation period consists of the reserved production
periods for the other items and the total time spent on switching, say σ. Production and vacation
times are possibly random but independent. Demand arrives according to a (compound) Poisson
process. The system is embedded on the instances corresponding to the start of a production time
or the start of a vacation. The time intervals in this chain will be called slots, where each cycle
consists of g production slots and 1 vacation slot. Whether a production slot is used for production
or for idling is read from a base stock level S. If at the start of a production slot the stock level is
less than S, then the slot is used to produce exactly one item. Given the assumptions about the
demand process and the production rule we obtain a periodic (cyclic) Markov chain embedded at
the moments a slot starts.

The state of this chain will be described by the number of products short to the level S at
the beginning of a slot and the slot number within the cycle. Using this formulation, the limiting
behavior of the Markov chain is independent of the value of S. Linear cost functions are considered
for the number of items on stock and the backlog. Then, as we will show, if the distribution of
the number of products short to the base stock level S is known, an expression for the optimal
value S∗ can be derived from a newsvendor type equation. This stock-out distribution will be
determined via a generating function approach.

To this end, first some notation is introduced. The generating function for the demand in a
production slot is denoted by AP (z) =

∑∞
k=0 aP (k)zk, with aP (k) the probability that the demand

in a production slot is equal to k. The average length of a production slot is denoted by TP .
Similarly, AV (z), aV (k) and TV are defined for the vacation slot. Further, λ denotes the mean
demand per time unit and X is defined as the number of products short to the level S. In
the following subsection an expression is derived for Gn(z), the generating function of X at slot
boundary n.
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2.2 The generating function

Define Xn,t as the value of X at slot boundary n in cycle t for n = 1, . . . , g + 1. Now consider the
limiting random variable

Xn = lim
t→∞

Xn,t, n = 1, . . . , g + 1.

Denote its limiting distribution by

p(k, n) = P(Xn = k), k ≥ 0, n = 1, . . . , g + 1

and the generating function of Xn by

Gn(z) =
∞∑

k=0

p(k, n)zk, n = 1, . . . , g + 1.

The distribution of Xn is well-defined if the Markov chain {Xn,t, t = 1, 2, . . .} is aperiodic and
irreducible (which is immediate from the (compound) Poisson demand assumption) and provided
the system is stable, i.e. if the number of arrivals per cycle is less than the available number of
production slots, so if λ (gTP + TV ) < g. We assume this is the case.

Then, with An the demand that occurs in time slot n

X1 = Xg+1 + Ag+1,

Xn = Xn−1 + An−1 − I{Xn−1>0}, n = 2, . . . , g + 1.

From these equations one gets

G1(z) = Gg+1(z)AV (z),

Gn(z) =
1
z
AP (z) [Gn−1(z) + p(0, n− 1)(z − 1)] , n = 2, . . . , g + 1.

As one easily verifies, this leads by iteration to

G1(z) =
∑g

m=1Ag+1−m
P (z)AV (z)(zm − zm−1)p(0,m)

zg −Ag
P (z)AV (z)

, (1)

Gn(z) =
(AP (z)

z

)n−1

G1(z) +
n−1∑
m=1

p(0,m)(z − 1)
(AP (z)

z

)n−m

, (2)

n = 2, . . . , g + 1.

The generating function of X1 is of indeterminate form, but the g boundary probabilities p(0, n), n =
1, . . . , g, can be determined by considering the zeros of the denominator in (1) that lie on or within
the unit circle. The following Rouché type lemma is taken from [1] and is specialized to our case.

Lemma 1 If ρ := λ(gTP +TV )
g < 1 and AV (0)Ag

P (0) 6= 0, then zg = Ag
P (z)AV (z) has g roots on

or within the unit circle.

Denote the g roots of zg = Ag+1(z) in |z| ≤ 1 by z0 = 1, z1, . . . , zg−1. Since the function G1(z) is
finite on and inside the unit circle, the numerator of the right-hand side of (1) needs to be zero for
each of the g roots, i.e., the numerator should vanish at the exact points where the denominator of
the right-hand side of (1) vanishes. Lemma 1 and (1) together lead to g equations in terms of the
g boundary probabilities, from which the latter can be determined. The roots can be determined
using methods from [16]. It is assumed that these g roots are all different. If roots with multiplicity
greater than one occur, the derivatives (up to the number of multiplicity) of the numerator of (1)
can be set to zero to obtain sufficiently many equations. For the root z = 1, l’Hôpital’s rule is
applied to obtain one equation from G1(1) = 1.
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2.3 The limiting distribution

In principle, the probabilities p(k, n) can be found by numerically inverting Gn(z). However, in
this case, the probabilities can be derived directly from the g boundary probabilities.

In order to find all limiting probabilities p(k, n) from the probabilities p(0, n), n = 1, . . . , g (ob-
tained via Lemma 1), the balance equations are used:

p(k, 1) =
k∑

j=0

p(j, g + 1)av(k − j), (3)

p(k, n) =
k+1∑

j=1

p(j, n− 1)ap(k + 1− j) + p(0, n− 1)ap(k), n = 2, . . . , g + 1. (4)

Using (3) with k = 0, the probability p(0, g + 1) can be obtained from

p(0, g + 1) =
1

av(0)
p(0, 1). (5)

Next let us rewrite equation (4) for n = 2, . . . , g + 1 as

p(k + 1, n− 1) =
1

ap(0)


p(k, n)−

k∑

j=1

p(j, n− 1)ap(k + 1− j)− p(0, n− 1)ap(k)


 . (6)

Then, starting with k = 0, we first find the probabilities p(1, n), n = 2, . . . , g +1. The probability
p(1, 1) can then be obtained from equation (3). Continuing in this way, one recursively gets the
probabilities p(k, n), k ≥ 2.

2.4 The optimal base-stock level

In this section the optimal base stock level will be determined for the case of linear holding and
backlogging costs. These costs will be computed from the expected number of products on stock or
backlogged at slot boundaries. Therefore, the vacation period is divided into a number of vacation
slots, say gV , such that the slots are small enough to get a good approximation for the expected
costs per time unit. The lengths of the vacation slots are all equal to Tv := TV

gV
. Because the

demand distribution is assumed to be (compound) Poisson, the stock-out distribution at the new
slot boundaries can easily be found, using the stock-out distribution at slot boundary g (which
was already found in the previous section).

The expected stock-out at slot boundary g + n, n = 1, . . . , gV is just E(Xg) + nλTv. Now define
the following linear cost function, with weights based on the average slot duration:

C(S) =
g∑

n=1

TP

gTP + TV
(cIE(I(n)) + cBE(B(n)))

+
g+gV∑

n=g+1

Tv

gTP + TV
(cIE(I(n)) + cBE(B(n))) , (7)

where I(n) is the number of items on stock and B(n) the backlog at slot boundary n. Because the
cost function is a weighted sum of costs at different time slots, we also look at the corresponding
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weighted limiting distribution:

p(k) =
g∑

n=1

TP

gTP + TV
p(k, n) +

g+gV∑
n=g+1

Tv

gTP + TV
p(k, n) .

The optimal base-stock level S∗ for this ‘newsvendor problem’ (see for example Porteus [21]) is
now readily obtained as:

S∗ = min

{
S

∣∣∣∣∣
S∑

k=0

p(k) >
cB

cI + cB

}
. (8)

2.5 A geometric tail approximation

The probabilities p(k) in (8) can be found using the recursive method from Section 2.3. However,
we have experienced numerical problems with this procedure for large values of k. If the load on
the system is high and S gets larger than 20, the recursive method gives numerically unstable
results. Therefore we propose to use the following approximation for p(k) if S∗ gets large.

In [9], Van Eenige encounters the same numerical problems and uses an approximation from Tijms
and Van de Coevering [25] for the tail probabilities that is based on the following asymptotic
behavior

lim
k→∞

p(k)
p(k + 1)

= γ,

with γ the unique root of zg − Ag
P (z)AV (z) in (1,∞). This root can easily be computed with

bisection.

Let us use the direct computation of pk up to K and the tail approximation for k > K. (The
choice of K can be made during the direct computation. If either the geometric behavior seems
to have started or one seems to lose the numerical stability, one switches to the geometric tail
behavior.)

So, we use

P(X = k) ≈ κγ−k, k = K + 1, . . . , (9)

where κ is the normalization constant which can be expressed in terms of P (X ≤ K):

κ =
(
1− γ−1

)
(1− P (X ≤ K)) γK+1.

Upon substituting (9) into (8), and assuming that S∗ > K, so that the tail approximation holds,
one gets the following approximative value for S∗:

S̃ =
⌈−ln(cI) + ln(cI + cB) + ln(κ)− ln(γ − 1)

ln(γ)

⌉
, (10)

with dxe the smallest integer that is greater than or equal to x.

In order to see whether (10) results in a good approximation, we give some numerical results
comparing the approximation with the exact method.

2.6 Numerical results

For various parameters settings, for which we can determine the exact value of S∗ numerically, the
results for S∗ and S̃ are presented in Tables 1, 2 and 3. These results are based on a fixed cycle
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scheme with deterministic time slots of unit length and a Poisson demand process. The values of
S̃ from (10) are given without taking the ‘ceiling’ to show the real difference with the value of S∗.

cI = 1, cB = 10, g = 5, TP = 1, TV = 5
ρ EI EB S∗ costs S̃ costs

0.50 1.26 0.12 2 2.50 2.12 2.58
0.60 1.92 0.11 3 2.98 2.65 2.98
0.70 2.48 0.14 4 3.89 3.59 4.89
0.80 3.65 0.21 6 5.78 5.54 5.78
0.90 7.32 0.44 12 11.68 11.48 11.68
0.95 14.74 0.89 24 23.62 23.45 23.62

Table 1: The values of EI, EB, S∗ and S̃.

cI = 1, cB = 10, g = 10, TP = 1, TV = 10
ρ EI EB S∗ costs S̃ costs

0.50 1.89 0.14 3 3.30 3.69 3.37
0.60 2.48 0.13 4 3.81 4.07 4.00
0.70 2.96 0.17 5 4.62 4.85 4.62
0.80 4.04 0.22 7 6.27 6.63 6.27
0.90 7.62 0.43 13 11.91 12.40 11.91
0.95 15.00 0.88 25 23.71 24.29 23.71

Table 2: The values of EI, EB, S∗ and S̃.

One sees that the approximation S̃ is correct for nearly all parameter settings, except for ρ = 0.5
in the first table and ρ = 0.5, 0.6 in the second table. For higher values of ρ, the approximation
is equal to S∗, which is just what we want, because the numerical problems occur if ρ is high.
Further, it is observed that the approximation of S∗ is less accurate if S∗ is low, because it is
based on (9), which is only an approximation for the tail probabilities. But for low values of S∗,
there are no numerical problems, so this is (again) not a problem.

Figure 1 gives the effect of g on the value of S∗ and shows that S∗ increases if g decreases. This
is explained by the fact that decreasing g increases the effective utilization. Another point is that
if g is somewhat longer, one needs the safety stock for the vacation period only at the end of
the production period. This suggests that a cost reduction can be obtained with a base-stock
level that is lower at the beginning of a production period and increases towards the end of the
production period.

cI = 1, cB = 10, g = 3, TP = 1, TV = 9
ρ EI EB S∗ costs S̃ costs

0.50 1.31 0.10 2 2.29 1.86 2.29
0.60 2.00 0.09 3 2.85 2.42 2.85
0.70 2.58 0.12 4 3.79 3.37 3.79
0.80 3.78 0.19 6 5.71 5.33 5.71
0.90 7.46 0.42 12 11.66 11.29 11.66
0.95 14.89 0.87 24 23.57 23.26 23.57

Table 3: The values of EI, EB, S∗ and S̃.
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Figure 1: The optimal base stock level, for different lengths of the production period,
TP = 1, TV = 4, λ = 0.5, cI = 1, cB = 10.

3 Time slot dependent base-stock levels

So, let us now consider the system in which the base-stock levels are time slot dependent. Denote
the different base-stock levels by S1, . . . , Sg, with Sn the base-stock level for time slot n, see Figure
2. In the sequel, particularly the analysis in Subsection 3.1, we will often use the following two
assumptions:

Assumption 1

Sn ≤ Sn+1, n = 1, . . . , g.

Assumption 2

Sn+1 ≤ Sn + 1, n = 1, . . . , g.

For most realistic settings, these assumptions will hold, but it might be possible to construct
counterexamples for this based on the following intuition.

Assumption 1 might be violated in the following situation. If the production times are highly
variable and the non-production slots are not, then one might need a higher safety stock at the
beginning of the production period than near the end of it.

With respect to Assumption 2 the following could occur. At the end of the production period one
wants a higher base stock level because of the coming long vacation period. However, because of
the holding costs, one does not want to invest in this higher stock in the production slots before
the final one. However, if less than expected demand arrived during the last cycle and there are
still Sg−1 +1 products on stock at the start of the g−th production slot, then one might be willing
to produce one more product, which would mean Sg > Sg−1 + 1.

In order to find the optimal values of S1, . . . , Sg, we slightly adapt the model description from
Section 2.1. With different base-stock levels (and compound Poisson demand) in every slot the
stock level can reach the maximum of S1, . . . , Sg, so in some slot(s) n the actual stock can be
larger than the base-stock level Sn.

This is shown in Figure 3, where the stock level just before the first production slot in the second
cycle is higher than S1.

Therefore, define Smax as max{S1, . . . , Sg} and let X̃n denote the number of products short com-
pared to Smax at slot boundary n.
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Figure 2: The base stock levels of 5 production slots.
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Figure 3: The inventory level during two cycles.

As before, if ρ < 1 the limiting distribution of X̃n exists and it will be denoted by

p̃(k, n) = lim
t→∞

P(X̃n,t = k), n = 1, . . . , g + 1, k ≥ 0,

with generating function

G̃n(z) =
∞∑

k=0

p̃(k, n)zk, n = 1, . . . , g + 1.

Define

δ(Sn) := Smax − Sn, n = 1, . . . , g.

In the same way as in Section 2.2, we get

G̃1(z) =
∑g

m=1

∑δ(Sm)
k=0 p̃(k, m)(zk+m − zk+m−1)Ag+1−m

P (z)AV (z)
zg −Ag

P (z)AV (z)
, (11)

G̃n(z) = G̃1(z)
(AP (z)

z

)n−j

+
n−1∑
m=1

δ(Sm)∑

k=0

p̃(k,m)(zk − zk−1)
(AP (z)

z

)n−m

,

n = 2, . . . , g + 1,

The expressions for G̃1(z), . . . , G̃g+1(z), however, still contain the unknown boundary probabilities
p̃(k, n), k = 0, . . . , δ(Sn), n = 1, . . . , g. Lemma 1 gives g equations. Since there are more
than g unknowns, we will have to construct a larger set of balance equations for these boundary
probabilities. A similar problem is discussed in [8]. In the next subsection we will follow the
approach used there to find these boundary probabilities.

3.1 The boundary probabilities

The boundary probabilities we are looking for only concern probabilities from the production
period. For ease of notation we combine the last production slot and the vacation period into one
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production slot.

With a∗g(k), k ≥ 0, denoting the distribution of the total demand in time slots g and g+1 together,
the set of balance equations becomes:

p̃(k, n) =
k+1∑

m=δ(Sn−1)+1

p̃(m,n− 1)ap(k + 1−m) +
δ(Sn−1)∑

m=0

p̃(m,n− 1)ap(k −m),

2 ≤ n ≤ g, k ≥ δ(Sn−1), (12)

p̃(k, n) =
k∑

m=0

p̃(m,n− 1)ap(k −m),

2 ≤ n ≤ g, 0 ≤ k < δ(Sn−1), (13)

p̃(k, 1) =
k+1∑

m=δ(Sg)+1

p̃(m, g)a∗g(k + 1−m) +
δ(Sg)∑
m=0

p̃(m, g)a∗g(k −m),

k ≥ δ(Sg), (14)

p̃(k, 1) =
k∑

m=0

p̃(m, g)a∗g(k −m), 0 ≤ k < δ(Sg). (15)

Under the assumption that Sn ≤ Sn−1 + 1 for all n (see Assumption 2), it would be enough
to look at the equations described by (13), (15) and the equations from Lemma 1. However, if
this assumption does not hold, then for one or more equations described by (13) and (15) the
probability on the left hand side does not appear in the expression for G1(z). Therefore, below an
algorithm is given that results in a set of balance equations which, combined with the equations
from Lemma 1 gives us the boundary probabilities that appear in (1).

The algorithm below uses two sets: a set of unknown probabilities (variables), U , and a set of
equations, E, from which the unknowns have to be obtained. Initially we define U = {p̃(k, n); k =
0, . . . , δ(Sn), n = 1, . . . , g} and we let E contain the g equations from Lemma 1 plus the equations
described by (13) and (15). The balance equation with left-hand side p̃(k, n) will be labeled with
(k, n). So at the start U contains the variables p̃(k, n), k = 0, . . . , δ(Sn), and E the equations
(k, n), k = 0, . . . , δ(Sn−1) − 1. Then the number of equations in E (including the ones from
Lemma 1) and the number of unknowns in U are both equal to

∑
n δ(Sn) + g. However, not all

the probabilities that appear in the equations in E are in U . For each of these probabilities, an
equation will be added to E.

We start with the slot just after the one with the lowest decision level, thus the largest δ(Sn). Let
n be the current production slot. For each (k, n) ∈ E for which p̃(k, n) is not yet in U the variable
p̃(k, n) is added to U .

Next, for each of these variables an extra balance equation is added to E, namely equation (k −
1, n + 1) (where g + 1 is to be read as 1). All probabilities appearing at the right-hand side of
this new equation are already in U and at most one extra unknown probability appears at the
left-hand side.

Then we move to the next slot, n + 1. Again each variable that appears in E but is not in U is
added to U , and in the same way as before, for a new variable p̃(k, n) equation (k−1, n+1) is added
to E. Continue until all slots have been considered. In the last step (step g), the slot with the
highest value of δ(Sn) is reached. Therefore, the probabilities on the left-hand side of all equations
added in the previous step are already in U , because k can not exceed max{δ(S1), . . . , δ(Sg)}.)
This means that the construction ends with |E| = |U | and the variables in U being the only ones
appearing in E.

Assuming that all equations from the roots, from l’Hôpital’s rule, and obtained via this algorithm
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are linearly independent, the unknowns in U can be found.

3.2 Optimal value for Smax

Denote the number of products short compared to Smax at ‘weighted’ random slot boundaries by
X̃. The generating function of X̃ is defined as

G̃(z) =
∞∑

k=0

p̃(k)zk =
g∑

n=1

TP

gTP + TV
Gn(z) +

TV

gTP + TV
Gg+1(z),

with

p̃(k) =
g∑

n=1

TP

gTP + TV
p(k, n) +

TV

gTP + TV
p(k, g + 1), k ≥ 0.

The limiting distributions of X̃, X̃1, . . . , X̃g can be found by inverting G̃(z) and G̃n(z), n = 1, . . . , g.
The distribution of X̃ depends on δ(S1), . . . , δ(Sg), but not on Smax. Therefore, a newsvendor
type equation can be given for the optimal value of Smax. For a given vector (δ(S1), . . . , δ(Sg)),
the optimal value of Smax is given by

Smax∗ = min

{
Smax

∣∣∣∣∣
Smax∑

k=0

p̃(k) >
cB

cI + cB

}
. (16)

We emphasize that the distribution of X̃ depends on the whole vector (δ(S1), . . . , δ(Sg)) and thus
Smax∗ does as well. Furthermore, there is no expression for the optimal value of every individual
Sn, n = 1, . . . , g.
In order to also find the expected costs C(S1, . . . , Sg) for a given vector {S1, . . . , Sg}, one can
write

C(S1, . . . , Sg) = (cI + cB)
Smax∑

k=0

p̃(k)(Smax − k) + cB(EX̃ − Smax), (17)

where the weights TP

gTP +TV
and Gv

gTP +TV
are now hidden in p̃(k) and EX̃.

The finite sum
∑Smax

k=0 p̃(k)(Smax − k) is obtained from the equilibrium probabilities. For EX̃ we
use E(X̃1), . . . ,E(X̃g+1). For the derivation of E(X̃1), we refer to Appendix A. The expressions
for E(X̃n), n = 2, . . . , g + 1 are then obtained with

X̃n = X̃n−1 + An−1 − IX̃n−1>δ(Sn−1)
, n = 2, . . . , g + 1,

with An−1 the number of arrivals in time slot n − 1 and IX̃n−1>δ(Sn−1)
the production indicator

of time slot n− 1. The result is:

E(X̃1) =
1

g − λ (gTP + TV )




g∑
m=1

δ(Sm)∑

k=0

p̃(k, m) [(gTP + TV ) λ + k + m− 1]

− 1
2

[
g(g − 1)− (gTP + TV )2 λ2

])
,

E(X̃n) = E(X̃1) + λ (gTP + TV )−
n−1∑
m=1

δ(Sm)∑

k=0

p̃(k,m), n = 2, . . . , g + 1.

11



3.3 Numerical results

Some numerical results are presented to compare the expected costs per time unit for fixed cycles
with a constant decision level with the costs for fixed cycles with time slot dependent decision
levels.

Recall that given the vector (δ(S1), . . . , δ(Sg)) the distribution of X̃ does not depend on Smax and
that the corresponding optimal Smax is given by (16).

In order to limit the number of possible vectors δ Assumptions 1 and 2 are used. The number
of different values for δ then equals 2g−1. In the numerical results below, the presented optimal
values {S1, . . . , Sg} are the optimal ones given these two restrictions.

Table 4:
cI = 1, cB = 10, g = 5, TP = 1, TV = 5

ρ S∗ costs [S1, S2, S3, S4, S5] costs cost reduction in %
0.75 5 4.642 [4 4 5 5 5] 4.608 0.716
0.8 6 5.782 [5 5 6 6 6] 5.762 0.334
0.85 8 7.731 [7 7 8 8 8] 7.716 0.195
0.9 12 11.682 [11 11 12 12 12] 11.672 0.089
0.95 24 23.630 [23 23 24 24 24] 23.625 0.023

Table 5:
cI = 1, cB = 20, g = 5, TP = 1, TV = 5

ρ S∗ costs [S1, S2, S3, S4, S5] costs cost reduction in %
0.75 6 5.807 [4 5 6 6 6] 5.699 1.869
0.8 8 7.262 [7 7 8 8 8] 7.239 0.324
0.85 10 9.794 [9 9 10 10 10] 9.769 0.248
0.9 15 14.749 [15 15 15 15 15] 14.749 0.000
0.95 30 30.000 [29 30 30 30 30] 29.963 0.110

Table 6:
cI = 1, cB = 10, g = 5, TP = 1, TV = 25

ρ S∗ costs [S1, S2, S3, S4, S5] costs cost reduction in %
0.75 5 4.984 [3 4 5 5 6] 4.933 1.024
0.8 7 6.039 [4 5 6 7 7] 6.006 0.551
0.85 9 7.931 [6 7 8 8 9] 7.902 0.365
0.9 12 11.816 [10 11 11 12 13] 11.798 0.150
0.95 24 23.692 [22 23 23 24 24] 23.688 0.015

Tables 4 and 5 show numerical results for TV = 5, while in Tables 6 and 7, TV = 25. In Tables 4
and 6 we have the results for cI = 1, cB = 10, while in Tables 5 and 7 cB = 20. For almost every
value of ρ < 0.95, Tables 6 and 7 show a larger cost reduction than Tables 4 and 5. Apparently, the
length of the vacation period has a positive effect on the attainable cost reduction, while the value
of ρ and the fraction cI

cI+cB
have a negative effect on it. The first observation can be explained

by the fact that the average number of arrivals per time slot decreases if TV increases, so there is
relatively more time to get a high stock level at the end of the production period. Therefore, the
decision levels at the beginning of the production period can be lower. The second observation
is easy to explain: The values of ρ increase the load on the system, so the system should use its
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Table 7:
cI = 1, cB = 20, g = 5, TP = 1, TV = 25

ρ S∗ costs [S1, S2, S3, S4, S5] costs cost reduction in %
0.75 7 6.118 [4 5 6 6 7] 5.976 2.329
0.8 8 7.448 [6 6 7 7 8] 7.425 0.309
0.85 11 9.961 [9 9 10 11 11] 9.894 0.670
0.9 16 14.946 [14 14 15 16 16] 14.856 0.604
0.95 31 30.029 [29 30 30 31 31] 29.987 0.140

full capacity to get Smax∗ products on stock. The last observation is explained by the fact that
if the backlogging costs are relatively high, one wants to prevent the system to create backlog.
Therefore, the decision levels are all close to Smax∗.

The optimal values of δ are more difficult to find than Smax∗. The main problem here is that the
number of possible vectors is too large. Therefore, time slot dependent base stock levels will not
be discussed in more detail.

4 The production periods

The (close to) optimal lengths of the production periods can be determined with the local search
algorithm presented in Subsection 4.2. Although this algorithm can deal with both constant and
time slot dependent base stock levels, we will focus on constant base stock levels. (As we have
seen, the search for an optimal vector of base stock levels is time consuming and the difference in
costs with the constant base stock level is limited.)

In the remainder of the paper, a fixed cycle will be described by g = (g1, . . . , gN ), a vector with the
lengths of the production periods. With TP,i denoting the average length of a production slot of
item i, the average duration of the cycle, denoted as TFC(g), satisfies TFC(g) =

∑
i giTP,i+σ. Such

a cycle is stable if for every item the number of production slots in it suffices, i.e, if λiTFC(g) < gi

for all i.

4.1 The shortest stable fixed cycle

The local search algorithm presented in Subsection 4.2 starts with a stable cycle of minimum
length.

Lemma 2 If ρ =
∑N

i=1 λiTP,i < 1, there exists a unique stable fixed cycle of minimum length.

A proof of this lemma is found in Appendix B.

This cycle will be referred to as the shortest stable fixed cycle and will be denoted by gmin, with
Tmin

FC =
∑N

i=1 gmin
i TP,i + σ the length of this cycle. The next algorithm produces this shortest

fixed cycle.

Algorithm 1

Step 1: Set n = 0 and g(0) = {1, 1, . . . , 1} (or alternatively g
(0)
i = λi

σ
1−ρ for all i, see Appendix C,

g(0) ≤ gmin.

Step 2: Compute TFC(g(n)) =
∑N

i=1 g
(n)
i TP,i + σ.

If the system is stable, i.e., λiTFC(g(n)) < g
(n)
i for all i, then the minimal fixed cycle

has been found: gmin = gn. Otherwise go to Step 3.
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Step 3: Compute: g
(n+1)
i =

⌊
λi

(∑N
i=1 g

(n)
i TP,i + σ

)
+ 1

⌋
, with bxc the largest integer less than or equal to x.

Set n = n + 1 and go back to Step 2.

Lemma 3 Algorithm 1 gives the shortest stable fixed cycle for any polling system with N queues.

A proof of this lemma is found in Appendix C.

4.2 A local search algorithm for a good fixed cycle

In order to find a good fixed cycle, we will start with gmin and apply a local search algorithm, which
works as follows. In each cycle improvement step we lengthen the cycle for one of the product
types, the one for which lengthening given the largest reduction in costs. However, there will be
two complicating factors. First of all, lengthening the cycle for one type might result in an unstable
system for one or more of the other types; this will be solved by lengthening the production period
for those product types as well. And second, it is possible that a longer production period for
only one product gives an increase in costs, whereas a longer production period for two or more
products gives a decrease in costs. This will be taken care of using a special termination criterion;
stop only if for a number of improvement steps no improvement has been found. This number is
chosen equal to N , so that for each product type simultaneously a production slot can be added.

Algorithm 2
Step 1: Start with the shortest stable fixed cycle that can be obtained with Algorithm 1

and define g(1,0) = gmin.
Step 2: In improvement step n, starting with the cycle g(n,0) try lengthening the production

period of every product type.
For item i, add a production slot for this type obtaining the cycle g(n,0) + ei, make this
cycle stable, denote this stable cycle by g(n,i) and calculate the expected costs C(g(n,i)).
Determine i∗ such that C(g(n,i∗)) = mini C(g(n,i)) and define g(n+1,0) = g(n,i∗).
Set n := n + 1.

Step 3: If in the last N steps no improvement has been found, i.e., if
C(g(n−N,0)) ≤ C(g(n−l,0)) for l = 0, . . . N − 1, then terminate.
The best cycle found is g(n−N,0). Otherwise, return to Step 2.

5 Conclusion

A fixed cycle policy is analysed for a multi-item production system. The structure of this policy
allows for a decomposition of the system into N independent periodic subsystems, one for each
product type. Then an analysis is performed per product type and the optimal base stock level
is found for a given fixed cycle. The analysis is extended to allow for slot dependent base stock
levels. The optimal base stock levels are obtained from newsvendor type expressions.

A local search algorithm is presented that produces a (close to) optimal fixed cycle policy. This
strategy will later be used to construct a good dynamic strategy by means of a single policy
improvement step. Because of the decomposition of the system in independent subsystems the
size of the problem in terms of product types only plays a minor role.
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A Expectation in the first slot

We obtain the mean value of X̃1 by taking the first derivative of the generating function G̃1(z).
We rewrite G̃1(z) as N (z)

D(z) , with

N (z) =
g∑

m=1

δ(Sm)∑

k=0

p̃(k, m)(zk+m − zk+m−1)Ag+1−m
P (z)AV (z)

and
D(z) = zg −A∗(z)

to keep the notation simple. Here, A∗(z) = Ag
P (z)AV (z), the generating function of the total

demand during one cycle.

G̃′1(1) can now be rewritten as

N ′(z)D(z)−D′(z)N (z)|z=1

D2(z)|z=1
=
N ′(z)−D′(z)G̃1(z)|z=1

D(z)|z=1
.

Since G̃1(1) = N ′(1)
D′(1) by l’Hôpital and D(1) = 0, we can use l’Hôpital again:

G̃′1(1) =
N ′′(z)−D′′(z)G̃1(z)−D′(z)G̃′1(z)|z=1

D′(z)|z=1

Using G̃1(1) = 1 and rearranging terms gives us:

G̃′1(1) =
N ′′(1)−D′′(1)

2D′(1)
,

with

D′(1) = g − (λ(gTP + TV ) ,

N ′′(1) = 2
g∑

m=1

δ(Sm)∑

k=0

p̃(k,m) [(gTP + TV )λ + k + m− 1] ,

D′′(1) =
[
g(g − 1)−A∗′′(1)

]
.

B Proof of Lemma 2

If ρ =
∑N

i=1 λiTP,i < 1, there exists a unique stable fixed cycle of minimum length.

Proof: The proof is twofold. First it is shown – with an example – that a stable fixed cycle
exists. Then the uniqueness of the shortest stable fixed cycle is shown by contradiction.
In order to construct a stable fixed cycle, consider the following system of linear equations:

gi = λiTFC , i = 1, . . . , N, (18)

TFC =
N∑

i=1

giTP,i + σ. (19)

The solution of this system is unique and (by substitution of the first equation into the second)
easily seen to be TFC = σ

1−ρ , gi = λi
σ

1−ρ , i = 1 . . . N . Now let K satisfy

(K − 1)σ >

N∑

j=1

Tj
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and let x = {x1, . . . , xN} denote the solution of Equations (18) and (19). Define ĝ(K) as
{dKx1e, .. . . . , dKxNe} and T̂FC(K) =

∑N
i=1dKxieTP,i + σ. Then we have that

ĝi(K)− λiT̂FC(K) = dKxie − λi

N∑

j=1

dKxjeTj − λiσ

≥ Kxi − λi

N∑

j=1

(Kxj + 1)Tj − λiσ = (K − 1)λiσ − λi

N∑

j=1

Tj > 0, i = 1, . . . , N.

Hence ĝ(K) describes a stable fixed cycle.

In order to prove the uniqueness, assume that there are two different stable fixed cycles of mini-
mum length, described by g(1) and g(2), and as both represent minimal cycles, the lengths of these
cycles, say T

(1)
FC and T

(2)
FC , are equal. Now construct a new cycle by taking the minimum of the

two: g
(1−2)
i = min{g(1)

i , g
(2)
i }, for i = 1 . . . N . Since the cycles were different, the new cycle must

be shorter, i.e., T
(1−2)
FC < T

(1)
FC = T

(1)
FC . But for all i the number of production slots g

(1−2)
i for type

i is already sufficient in a longer cycle (with duration T
(1)
FC or T

(2)
FC), so the cycle g

(1−2)
i is stable

as well. But this is a contradiction, because it was assumed that g(1) and g(2) describe a stable
fixed cycle of minimum length. Therefore, the shortest stable fixed cycle is unique.

C Proof of Lemma 3

Algorithm 1 produces the shortest stable fixed cycle for a polling system with N
queues.

Proof: The proof is based on induction.

Assume that for n ≥ 0, g(n) ≤ gmin, thus T
(n)
FC ≤ Tmin

FC . Then we have for all i that

g
(n+1)
i = bλiT

(n)
FC + 1c ≤ bλiT

min
FC + 1c = gmin

i ,

so g(n+1) ≤ gmin.
As long as g(n) is not stable g(n+1) will have at least one production slot more than g(n) and then
Tn+1

FC > Tn
FC . However, if g(n) is stable then one must have g(n) = g(n+1) = gmin.

It now remains to prove that g(0) ≤ gmin.
If one chooses g

(0)
i = 1 for all i, then obviously (assuming λi > 0) one has g

(0)
i ≤ gmin

i , since for
any stable cycle one has gi ≥ 1. This completes the proof: starting with g(0) = (1, . . . , 1) the
cycles g(n) monotonically increase until the minimal cycle has been found.

One may speed up the algorithm a little by choosing a different vector for g(0). In order to
see this, assume that T is the duration of some stable fixed cycle. Then the corresponding gi must
satisfy gi > λiT for all i. Thus

∑
i giTP,i >

∑
i λiTTP,i, or T − σ > ρT , so T > σ

1−ρ . Now define

g
(0∗)
i =

⌊
λi

σ
1−ρ

⌋
for all i. One easily sees that g

(0∗)
i ≤ gmin

i (since T
(0∗)
FC < Tmin

FC ), and g
(1)
i > g

(0∗)
i

for the g(1) constructed from g(0∗) along the lines of the algorithm.

16



References

[1] Adan, I.J.B.F., J.S.H. van Leeuwaarden and E.M.M. Winands (2006). On the application of
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[13] Güllü, R., N. Erkip and S. Hafizogullari. Fixed Cycle Time Policies for the Stochastic Multi-
Item Production/Inventory Problem.

[14] Haijema, R. and J. van der Wal (2008). An MDP decomposition approach for traffic control
at isolated signalized intersections, Probability in the Engineering and Informational Sciences
22(4): 587–602.

[15] Howard, R. (1960). Dynamic Programming and Markov Processes. The MIT Press, Cam-
bridge, Mass.

[16] Janssen, A.J.E.M., J.S.H. van Leeuwaarden (2004). Analytic computation schemes for the
discrete-time bulk service queue, Queueing Systems 50: 141–163.

[17] van Leeuwaarden, J.S.H. (2006). Delay Analysis for the Fixed-Cycle Traffic-Light Queue,
Transportation Science 40: 189–199.

[18] P. van Mieghem (1996). The asymptotic behavior of queueing systems: Large deviations
theory and dominant pole approximation Queueing Systems, 23: 27–55.

17



[19] Norman, J.M. (1972). Heuristic procedures in dynamic programming, Manchester University
Press, Manchester

[20] Pakes, A.G. (1969). Some conditions for ergodicity and recurrence of Markov
chains,Operations Research 17: 1058–1061.

[21] Porteus, E.L. (2002). Foundations of stochastic inventory, Stanford University Press, Stanford

[22] Resing, J.A.C.(1993). Polling systems and multitype branching processes,Queueing Systems
30: 409–426.

[23] Sassen, S.A.E., H. C. Tijms and R. D. Nobel (1997). A heuristic rule for routing customers
to parallel servers Statistica Neerlandica 51 (1): 107–121.

[24] Takagi, H. (1988). Queueing Analysis of Polling Models,ACM Computing Surveys 20: 5–28.

[25] Tijms, H.C. and M.C.T. van de Coevering (1991). A simple numerical approach for infinite-
state Markov chains, Probability in the Engineering and Informational Sciences 5: 85–295.

[26] Wijngaard, J. (1979). Decomposition for dynamic programming in production and inventory
control, Engineering and Process Economics 4: 385–388.

[27] Winands, E.M.M., I.J.B.F. Adan and G.J. van Houtum (2005). The Stochastic Economic
Lot Scheduling Problem: A Survey, BETA WP Eindhoven: BETA WP-133, Beta Research
School for Operations Management and Logistics; 2005.

18


