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Abstract Decomposition-based design optimization con-
sists of two steps: partitioning of a system design prob-
lem into a number of subproblems, and coordination of
the design of the decomposed system. Although several
generic frameworks for coordination method implementa-
tion are available (the second step), generic approaches for
specification of the partitioned problem (the first step) are
rare. Available specification methods are often based on
matrix or graph representations of the entire system. For
larger systems these representations become intractable due
to the large number of design variables and functions. This
article presents a new linguistic approach for specification
of partitioned problems in decomposition-based design opti-
mization. With the elements of the proposed specification
language, called � (the Greek letter “Psi”), a designer can
define subproblems, and assemble these into larger sys-
tems in a bottom-up fashion. The assembly process allows
the system designer to control the complexity and tractabil-
ity of the problem partitioning task. To facilitate coupling
to generic coordination frameworks, a compiler has been
developed for � that generates an interchange file in the
INI format. This INI-definition of the partitioned problem
can easily be interpreted by programs written in other lan-
guages. The flexibility provided by the � language and
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the automated generation of input files for computational
frameworks is demonstrated on a vehicle chassis design
problem. The developed tools, including user manuals and
examples, are made publicly available.
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1 Introduction

Decomposition-based optimization approaches are attrac-
tive for addressing the challenges that arise in the optimal
design of advanced engineering systems (see, e.g., Wagner
and Papalambros 1993; Papalambros 1995; Sobieszczanski-
Sobieski and Haftka 1997; Alexandrov 2005). The main
motivation for the use of decomposition-based optimization
is the organization of the design process itself. Since a sin-
gle designer is not able to oversee each relevant aspect, the
design process is distributed over a number of design teams.
Each team is responsible for a part of the system, and typ-
ically uses specialized analysis and design tools to solve
its design subproblems. Generally speaking, a subproblem
can be associated with a design discipline, or represent a
subsystem or component in the entire system.

Solving a system optimization problem with a
decomposition-based approach entails three steps (Fig. 1):

1. Specifying the variables and functions of each discipline
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Fig. 1 The three steps involved in decomposition-based system opti-
mization. The proposed � language is developed for the specification
of partitioned problems in Step 2

2. Specifying the partitioned problem (i.e. the distribu-
tion of variables and functions over subproblems and
systems)

3. Coordinating the solution of the partitioned system

Variable and function specifications of Step 1 include
information such as initial estimates and bounds for vari-
ables, how functions and their sensitivities are to be evalu-
ated, and on which variables each function depends. These
specifications are typically provided by each discipline sep-
arately, most likely with only partial knowledge of the
interdisciplinary interactions.

The interactions are defined in the partitioned system
specification of Step 2. A partitioned system specification
defines how the variables and functions are distributed
over design subproblems and which interactions are present
between subproblems. Defining the partitioned system is a
task performed partially by the disciplinary designers that
define the subproblems, and a system designer that defines
the interaction between the subproblems.

Once the partitioned problem is defined, a coordina-
tion algorithm needs to be implemented to solve the sys-
tem design problem in Step 3. The coordination process
requires the specifications of the first two steps as inputs.
Which coordination algorithm is used needs to be defined as
well (e.g. distributed analysis or distributed optimization).
The coordination algorithm drives the design subproblems
defined in Step 2 towards a system design that is consistent,
feasible, and optimal. Here, consistency assures that quan-

tities shared by multiple subproblems take equal values,
feasibility refers to the satisfaction of all design constraints
of all disciplines, and optimality reflects that the obtained
design is optimal for the system as a whole.

Most research on decomposition-based optimal design
has focussed on the final, most challenging step: coor-
dination. Many coordination algorithms are available (see
Balling and Sobieszczanski-Sobieski 1996; Sobieszczanski-
Sobieski and Haftka 1997; Tosserams et al. 2009a, for
overviews), as well as generic approaches for the implemen-
tation of these methods (e.g. Michelena et al. 1999; Etman
et al. 2005; Huang et al. 2006; Moore et al. 2008; de Wit and
van Keulen 2008; Martins et al. 2009). The first two steps
have received far less attention.

Theoretical and numerical studies however show that
both the choice of coordination algorithm and the
way the system is partitioned have an effect on the
efficiency and effectiveness of decomposition-based opti-
mization. See Balling and Sobieszczanski-Sobieski (1996),
Sobieszczanski-Sobieski and Haftka (1997), Perez et al.
(2004), Tosserams et al. (2007), Allison et al. (2007), de Wit
and van Keulen (2007), Yi et al. (2008), and Tosserams
et al. (2009a) for examples of these observations. Experi-
mentation with different system decompositions within the
available generic coordination frameworks is not straight-
forward. Since each framework is developed for its appro-
priateness for implementation of coordination methods, it
typically does not provide an intuitive environment for spec-
ifying partitioned problems. As systems become larger, their
specification in such a non-intuitive environment becomes
complicated and is prone to errors. Being able to specify
partitioned problems in a more intuitive language is clearly
preferable. Such a generic specification language provides
a tool for the easy manipulation of the way a system is
partitioned.

In this paper, we present a linguistic approach that allows
an intuitive, compact, and flexible specification of parti-
tioned problems. We adopt the name � (the Greek letter
“Psi”), an acronym for partitioning and specification. The
proposed language � is highly expressive and has only a
small set of language elements, which is a clear advan-
tage over more generic system modeling languages such as
SysML (Friedenthal et al. 2008).

� follows a composition paradigm that starts from the
definition of individual components (subproblems) that are
assembled into larger systems. Components are typically
specified by disciplinary designers, while defining systems
is the task of a system designer (see Fig. 1). The com-
position process is modular in that definitions of variables
and functions are local to components and systems; disci-
plinary designers do not have to worry whether a variable or
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function they use locally is used by another designer else-
where in the system. Instead, the user must specify interac-
tions between components by defining systems that describe
the interactions between the local definitions.

The non-automated composition process of � provides
specification autonomy to disciplines, it provides control
over the composition process, and allows for the definition
of multi-level systems. This in contrast to automated
composition methods that assemble component definitions
based on overlaps in variable and function names; a process
that can become intractable for larger systems. An example
of an automated system composition approach is given by
Alexandrov and Lewis (2004a, b).

We would like to point out that a specification in � is
independent of the type of coordination method selected
for Step 3. Subproblems become analysis subproblems
if a single-level coordination method is selected, or they
become optimization subproblems if a multi-level coordi-
nation algorithm is selected. Similarly, the language does
not differentiate between hierarchical or non-hierarchical
coordination methods.

As a second contribution, a compiler and two genera-
tors have been developed for �. The compiler is required
for processing specifications in �, and the generators have
been developed as examples of how input files for com-
putational coordination frameworks can be automatically
generated. The compiler and the two generators provide
an easy transition from the specification of the partitioned
problem in Step 2 to the solution of the partitioned problem
in Step 3. The compiler checks the � specification for cor-
rectness, and translates it to a normalized structure designed
to simplify further automatic processing. The data is writ-
ten to a file in the generic INI format. The INI format can
easily be interpreted by programs in other languages such
that framework-specific input files can easily be generated.
As validation of the concept, we have implemented two
additional generators that operate on this INI format. One
generator derives the functional dependence table of the sys-
tem, and another generator derives Matlab files that are used
as inputs for a generic implementation of the augmented
Lagrangian coordination algorithm (ALC, Tosserams et al.
2008, 2009c). This generator for ALC was the original
motivation for the work presented in this article, and we
expect that similar generators can be developed for other
computational frameworks.

The paper is organized as follows. First, the general sys-
tem design problem and its decomposition are discussed in
Section 2. Second, we illustrate the elements of � for
a simple example in Section 3, and discuss the compiler-
generated output formats in Section 4. The application of
the language and the developed tools to a larger example is

described in Section 5. Concluding remarks are offered in
Section 6.

The developed tools, including user manuals and several
examples, are available for download at http://se.wtb.tue.nl/
sewiki/mdo.

2 Decomposition-based optimization for system design

Decomposition-based optimization approaches are used for
the distributed design of large-scale and/or multidisciplinary
systems. Decomposition methods consist of two main steps:
partitioning the system and coordinating the partitioned sys-
tem (Wagner and Papalambros 1993; Papalambros 1995).
In partitioning, the optimal design problem is divided into
a number of smaller subproblems, each typically associated
with a discipline or component of the system. The task of
coordination is then to drive these individual subproblems
towards a design that is consistent, feasible, and optimal for
the system as a whole. The main advantage of decompo-
sition methods is that a degree of disciplinary autonomy is
given to each subproblem, such that designers are free to
select their own analysis and design tools.

In this section, we introduce the general system design
problem followed by a description of the two main steps in
decomposition: partitioning and coordination.

2.1 Optimal design problem in integrated form

The starting point of decomposition methods is the system
design problem in integrated form:

min
z

f(z, r)

subject to g(z, r) ≤ 0
h(z, r) = 0

where r = a(z, r)

(1)

where z = [z1, . . . , zn] is the vector that contains the
design variables of the entire system. Response variables
r = [r1, . . . , rma] are intermediate quantities computed
by analysis functions a = [a1, . . . , ama]. These response
variables are also known as coupling variables. With r =
a(z, r), we mean to express that each analysis function ai

for response ri may depend on the other responses ri |i �= j ,
i.e. ri = ai (z, r j | j �= i). The response ri may not depend on
itself. f = [ f1, . . . , fmf] is the vector of objective functions,
and constraints g = [g1, . . . , gmg] and h = [h1, . . . , hmh]
are the collections of inequality and equality constraints,
respectively. Although the majority of the coordination
methods do not allow multiple objectives, we do so here
for the sake of generality. We refer to the above formulation

http://se.wtb.tue.nl/sewiki/mdo
http://se.wtb.tue.nl/sewiki/mdo
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as integrated since it includes the variables and functions of
all disciplines in a single optimization problem.

2.2 Partitioning

The purpose of partitioning is to distribute the variables and
functions of the integrated problem (1) over a number of
subproblems. These subproblems are typically mathemati-
cal entities that perform (possibly coupled) analyses, eval-
uate objective and constraint values, or solve optimization
problems. The subproblems may therefore (partially) differ
from the original disciplines from which the integrated
problem was synthesized.

Three partitioning strategies are often identified (Wagner
and Papalambros 1993): aspect-based, object-based, and
model-based partitioning. Aspect-based partitioning fol-
lows the human organization of disciplinary experts and
analysis tools. Object-based partitioning is aligned with
the subsystems and components that comprise the system.
Model-based partitioning relies on mathematical techniques
to obtain an appropriately balanced partition computation-
ally. Model-based partitioning methods often rely on graph
theory or matrix representations of problem structure (see,
e.g., Krishnamachari and Papalambros 1997; Michelena
and Papalambros 1997; Chen et al. 2005; Li and Chen
2006; Allison et al. 2007, for examples of model-based
partitioning methods).

Partitioning problem (1) requires a distribution of all
variables and functions over a number of subproblems. To
this end, the variables z are partitioned into M sets of vari-
ables x j allocated to subproblems j = 1, . . . , M , and a set
of system-level variables x0. Each set of subproblem vari-
ables x j = [y j , x j , r j , rmj |m ∈ N j ] consists of a set of
local design variables x j associated exclusively to subprob-
lem j , and a set of shared design variables y j and response
variables r j and rmj , m ∈ N j . Here, N j is the set of neigh-
bors from which subproblem j requires analysis responses,
and rmj is an auxiliary variable introduced at subproblem
j for the responses received from subproblem m. The set
of system variables x0 contains the system-level response
variables r0.

Some of the shared variables y j and all coupling
responses rmj are auxiliary variables introduced for decou-
pling the optimization subproblems. Interactions between
the various shared and coupling variables are defined in a
set of consistency constraints c(x0, x1, . . . , xM ) = 0, where
it is understood that these constraints depend only on the
shared variables and coupling responses. For further details
on the use of consistency constraints in distributed opti-
mization, the reader is referred to Cramer et al. (1994),
Alexandrov and Lewis (1999), and Tosserams et al. (2009a).

Objective functions f, constraints g and h, and analyses a
are partitioned into M sets of local functions f j , g j , h j , a j ,

j = 1, . . . , M , and a set of system-wide functions f0, g0,
h0, a0.

The partitioned problem can then be written as:

min
x0,x1,...,xM

[f0(x0, x1, . . . , xM ), f1(x1), . . . , fM (xM )]
subject to g0(x0, x1, . . . , xM ) ≤ 0

h0(x0, x1, . . . , xM ) = 0
r0 = a0(x0, x1, . . . , xM )

g j (x j ) ≤ 0 j = 1, . . . , M
h j (x j ) = 0 j = 1, . . . , M
r j = a j (x j ) j = 1, . . . , M
c(x0, x1, . . . , xM ) = 0

where x0 = [r0]
x j = [y j , x j , r j , rmj |m ∈ N j ] j = 1, . . . , M

(2)

Similar to the integrated formulation, with r j = a j (x j ) we
mean to express that a response in r j may depend on other
responses in r j , but a response cannot depend on itself.

Although the above formulation assumes that the inte-
grated problem (1) possesses a certain sparsity structure (i.e.
the presence of local variables and functions), it is general
enough to encompass many practical engineering problems.
Several coordination methods have been developed for a
subclass of (2), so-called quasiseparable problems that do
not have coupling objectives f0, but may have additively
separable coupling constraints g0 and h0 and analysis func-
tions a0 (see Tosserams et al. 2009a). For the remainder
of this article, however, we consider partitioned prob-
lems of the form (2) with general coupling objectives f0,
general coupling constraints g0, h0, and general analysis
functions a0.

The artificially introduced variables in the above problem
can be eliminated from the optimization variables through
the consistency constraints c or the analysis equations.
Whether or not these variables are eliminated is however
a matter of coordination, and not a choice we want to
make at the partitioning stage. Similarly, the coordination
method determines how local and coupling variables and
functions are treated. Hence, we will refer to problem (2)
with all optimization variables included when we speak of
the partitioned problem for the remainder of this article.

2.3 Coordination

After partitioning, a coordination strategy prescribes how
the partitioned problem is to be solved. Single-level meth-
ods typically act directly on the partitioned problem (2),
while the use of multi-level methods involves the formu-
lation of optimization subproblems for j = 1, . . . , M and
a method for coordinating the solution of these subprob-
lems. Each coordination method is unique in its treatment



A specification language for problem partitioning in decomposition-based design optimization 711

of variables and functions, the way in which the partitioned
problem is reformulated, and how the reformulated problem
is solved. For reviews of coordination methods, the reader
is referred to the works of Wagner and Papalambros (1993),
Cramer et al. (1994), Balling and Sobieszczanski-Sobieski
(1996), Alexandrov and Lewis (1999), and Tosserams et al.
(2009a). Note that partitioned problem specifications in �

are independent of the choice of coordination method.
Numerical and analytical studies indicate that the choice

of coordination method has a direct influence on the com-
putational performance with which a problem can be solved
(Perez et al. 2004; de Wit and van Keulen 2007; Yi et al.
2008). Computational frameworks have been developed
to facilitate the implementation and testing of coordina-
tion methods (see again the introduction section for ref-
erences). The execution of the coordination algorithms is
typically automated for these frameworks, and the user is
required to supply a problem specification. Such a problem
specification has two ingredients (Steps 1 and 2 of Fig. 1):

1. Variable and function information
2. Partitioned problem structure

Variable specifications typically include a definition of
properties such as its name, a description, its type (e.g.
real/integer, scalar/vector), its size, and upper and lower
bounds. Function definitions include similar properties
together with additional information regarding function
arguments and outputs, and how these output values are
actually computed. This may for example be an explicit
expression or a path to a script that should be executed.
The second ingredient is the specification of the parti-
tioned problem. The specification describes how variables
and functions are allocated to subproblems, and how their
couplings are defined.

For the computational frameworks listed in the intro-
duction, the problem specification needs to be supplied
in the programming language environment in which the
framework is implemented. This programming language is
selected for its appropriateness as a computational envi-
ronment, and its language elements are relatively well-
suited for defining variable and function specifications.
The definition of the problem partitioning may however be
less intuitive. The language limitations become more pro-
nounced if a decomposition has non-hierarchical couplings,
or has multiple levels. For such decompositions, specify-
ing the problem becomes a tedious process that is prone to
errors (Alexandrov and Lewis 2004a, b). A more intuitive
specification process is clearly desired. In addition, having
partitioned problem specifications in a unified format pro-
motes their portability between computational frameworks.
In the following section, several representation concepts are

reviewed with respect to their appropriateness for specifying
the partitioned problem.

2.4 Existing approaches for specification
of the partitioned problem

Several representations have appeared in research focused
on model-based partitioning (see, e.g., Kusiak and Larson
1995; Krishnamachari and Papalambros 1997; Michelena
and Papalambros 1997; Chen et al. 2005). Model-based par-
titioning methods typically rely on matrix or graph abstrac-
tions of the couplings between variables and functions to
define a sparsity structure of the integrated problem (1).
Examples of such representations are the functional depen-
dence table and the adjacency matrix. The use of matrices
and graphs to specify the partitioning becomes prohibitive
for larger systems due to the large number of variables and
functions.

Alternative matrix and graph representations have ap-
peared in research on the decomposition of the system de-
sign process into individual design tasks (see, e.g., Steward
1981; Eppinger et al. 1994; Kusiak and Larson 1995;
Browning 2001). The transfer of information between engi-
neers defines precedence relations between the individual
tasks that can be captured in matrices or graphs. For exam-
ple, element i, j of the so-called design structure matrix is
non-zero if task j requires information from task i , and zero
otherwise. In a graph format, vertices can be defined for
each task, and precedence relations between two task can
be represented by directed edges between the associated
vertices. Partitioning methods for process decomposition
aim at obtaining a sequence of tasks that minimizes the
amount of feedback coupling between tasks or maximizes
concurrency of tasks. The main difference between process
decomposition and optimization problem decomposition is
that the amount of detail in process decomposition is much
smaller than for optimization. The number of tasks in design
processes is typically one or more orders of magnitude
smaller than the number of variables and functions in system
optimization.

2.5 Linguistic approach to partitioned problem
specification

To our opinion, the decomposition-based design community
would benefit from an approach that allows the intuitive
specification of partitioned problems from which matrix
or graphs representations can be automatically generated,
instead of working directly with matrices or graphs.

We propose to use a linguistic approach to specifying
partitioned problems. The developed language is similar
to the reconfigurable multidisciplinary synthesis approach



712 S. Tosserams et al.

(REMS) proposed by Alexandrov and Lewis (2004a, b).
REMS is a linguistic approach to problem description, for-
mulation, and solution that follows a bottom-up assembly
process. The method starts from the definition of individ-
ual subproblems that are automatically assembled into a
complete system optimization problem.

The language we propose in the next section follows
a similar bottom-up process, but does not automate the
assembly process. Instead, disciplines have purely local
definitions of variables and functions, and it is the system
designer that assembles the subproblem definitions into sub-
systems and systems. The advantage of having a multi-level
architecture composed of subproblems, lower-level systems
and higher-level systems is that a designer no longer has to
work on the entire system. Instead, the designer can divide
the assembly into multiple levels, where each level is asso-
ciated to a level of abstraction in the system. The designer
can control the complexity of the specification tasks and
does not have to oversee the entire system. We expect that
this controllability of the complexity improves a designer’s
overview of the system, and provides control over the inter-
actions between disciplines. This control over the assembly
process is not available in the REMS approach.

An additional advantage is that variable and function
definitions are local to subproblems. One designer does
not have to worry about whether a variable defined locally
also exists in another context somewhere else in the system.
Instead, subproblems are free to use local nomenclatures,
and the interactions between subproblem nomenclatures
have to be defined explicitly at the system level. Such a
decoupling of definitions appears to be appropriate in a
distributed design environment.

The proposed specification approach is similar to the
python-based format used for the pyMDO framework of
Martins et al. (2009). However, the pyMDO approach does
not have local subproblem nomenclatures, nor does it allow
the definition of multi-level systems.

The multi-level assembly process has another advantage.
Since a different coordination method can be assigned to
each system, a multi-level nested coordination process can
be formulated. For example, one can nest a lower-level
system that is coordinated with a multidisciplinary feasible
formulation within a higher-level system that is coordinated
with collaborative optimization. Note that it is the choice of
the designer how to assign coordination tasks to lower-level
systems.

3 The � language

The � language is a linguistic approach for the intuitive
specification of partitioned problems. Before describing

� in more detail,1 we first introduce the following main
definitions:

– A variable is an optimization variable of the system
design problem (2), and can be an actual design vari-
able or a response variable computed as the output of
an analysis.

– A function represents an analysis that takes variables as
arguments, and computes responses based on the values
of the variables.

– A component represents a computational subproblem
in a partitioned problem, which contains a number of
variables and functions.

– A system contains a collection of coupled sub-
components whose coupled solution is guided by a
coordination method.

– A sub-component is a component or system that is a
direct child of another system.

The � language specifies a partitioned problem by defining
how variables and functions are distributed over the com-
ponents, and how these components are combined into
larger subsystems and systems. The building blocks of
a specification in � are therefore components and sys-
tems. The specification of detailed information of variables
and functions (Step 1 in Fig. 1) is beyond its purpose.
It is assumed that such additional information is supplied
in conjunction with the specification of the partitioned
problem and that the variables and functions defined in
� specification are pointers to this externally supplied
information.

Note that � is not a model-based partitioning method
that automatically derives problem decompositions that can
be efficiently coordinated. � is dedicated to specif ication
of partitioned problem, no claim is made regarding the
“optimality” of the partitioning. Model-based partitioning
techniques are beyond the scope of this article, and the inter-
ested reader is referred to Krishnamachari and Papalambros
(1997), Michelena and Papalambros (1997), Chen et al.
(2005), Li and Chen (2006), and Allison et al. (2007, 2009)
for examples of such approaches. � can of course be used to
generate input for a model-based partitioning software tool
with the aim to optimize the partitioning structure.

3.1 Components

The main building blocks of a partitioned problem
definition in � are components. These components are typ-
ically associated with analysis disciplines in aspect-based

1For a formal definition of the � language, the reader is referred to the
� reference manual (Tosserams et al. 2009b).
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decompositions or with components in object-based parti-
tions, but may also be purely computational subproblems
that have no direct relation to the physical system. At the
partitioning stage, we are not concerned with the assignment
of analysis and/or optimization authorities to components.
This is a choice that is made at the coordination stage, and
does therefore not appear in the component definitions.

To illustrate the use of �, consider the following opti-
mization problem:

min
x1,x2,x3,x4,y,r,u

[ f0(x2, x3), f1(x1, x2, y, r), f2(x3, x4, y)]
subject to g1(x1, y) ≤ 0

g2(x3, x4, y, u) ≤ 0
r = a1(x2, y)

u = a2(x3, x4, r)

(3)

This problem may be partitioned into two subproblems.
The first subproblem has local variables {x1, x2} and local
functions { f1, g1, a1}. The second subproblem has local
variables {x3, x4, u} and local functions { f2, g2, a2}. The
two components are coupled through the variables {y, r}
and the system-wide objective { f0} that depends on vari-
able x2 of the first subproblem and on x3 of the second. The
partitioning structure is depicted in Fig. 2.

For this partitioned problem, the specification of the two
components is given below.

comp First =
|[ extvar x2, y, r

intvar x1

objfunc f1(x1, x2, y, r)

confunc g1(x1, y)

resfunc r = a1(x2, y)

]|

comp Second =
|[ extvar x3, y, r

intvar x4, u
objfunc f2(x3, x4, y)

Fig. 2 Illustration of the specified partition for problem (3)

confunc g2(x3, x4, y, u)

resfunc u = a2(x3, x4, r)

]|

The first component has name First and has four vari-
ables x1, x2, y, r and three functions f1, g1, a1. The lan-
guage distinguishes between two types of variables: external
variables defined after the keyword extvar, and inter-
nal variables defined after the keyword intvar. External
variables can be accessed by the system the component is
part of. External variables can be shared variables or cou-
pling variables that are communicated between components,
or local variables on which system-wide functions depend.
Variables y, r fall in the former category and x2 falls in
the latter since it is an argument of the system-wide objec-
tive f0. Internal variables are only accessible within the
component.

The reason for taking a division of variables different
from the traditional local and coupling/shared variables
is that from a system designer’s viewpoint it is relevant
to know which variables have an influence beyond the
component in which they are defined. From this perspec-
tive, external variables are those variables that affect other
components and systems and therefore also include local
variables that are arguments of system-wide functions.

Three groups of functions are available in the �

language: objective functions, constraint functions, and
response functions. In component First of the example,
function f1(x1, x2, y, r) is a local objective with four argu-
ments x1, x2, y, r , and function g1(x1, y) is a local con-
straint with two arguments x1, y. Function a1(x2, y) is a
response function that determines the values of variable r .
A response function may have multiple variables as outputs.
It is possible to apply the same function multiple times with
different arguments.

Definitions of variables and functions in components
(and systems) have a local scope. Variables and functions
defined in one component may have the same name as
other variables and functions of another component without
being automatically coupled. Instead, interactions between
components have to be specified in systems.

It is important to realize that a component definition is
independent on the choice of coordination method. At the
coordination stage, the system designer can use a multi-level
coordination method and formulate an optimization prob-
lem for each component. Alternatively, using a single-level
coordination method only assigns analysis capabilities to
components, and decision-making is centralized in a single
optimization problem. Hence, defining design variables and
objective and constraint functions in a component does not
necessarily imply that an optimization problem is actually
formulated for this component. It simply indicates where
the variables and functions originate from.
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3.2 Systems

Once the components of a partitioned problem are defined,
they can be assembled into systems. A system definition
includes two or more subcomponents and describes the
couplings between them. The subcomponents of a system
can be components or other systems. In the latter case, a
multi-level system is obtained.

The system definition for the example partitioning of
problem (3) is given by

syst Problem =
|[ sub A: First, B: Second

link A.y -- B.y, A.r -- B.r
objfunc f0(A.x2, B.x3)

]|

The system is named Problem and has two subcomponents:
A of type First, and B of type Second. Multiple subcom-
ponents of the same type can be instantiated in a system.
The expression A1, A2: First instantiates two subcompo-
nents A1 and A2 of the same type First. These multiple
instantiations are useful for systems that have many iden-
tical components, such as structural systems consisting of
many similar elements.

The consistency constraints between the two components
are given by the link statement that connects variables y
and r of component A to variables y and r of component B,
respectively (note that the linked variables need not have the
same local name). In systems, the dot notation A.y denotes
variable y from component A.

The specification of the system is completed by the
definition of the system-wide objective function f0 that
depends on variable x2 of A and x3 of subcomponent B.
Systems can also have system-wide constraint functions or
response functions.

In contrast to components, a system does not have design
variables of its own. However, response variables associated
with the coupling analysis functions have to be included
as variables of the system definition. Similar to compo-
nents, the keywords extvar and intvar are used to
define which response variables are external and which are
internal.

The systems used in � are different from the traditional
notion of systems in the MDO context. Here, a system
is simply a collection of components that are coordinated
jointly. Systems in the MDO context typically also include
design aspects and typically have design variables of their
own (so-called global variables or system variables). The
task of these MDO systems is to solve the system-level
design problem while at the same time coordinating the

solution of the subproblems. These are actually two separate
tasks that should be considered as such. In �, this distinc-
tion is made explicit since a user needs to define the design
part of the MDO system in a component, while the cou-
plings associated with the coordination part are specified in
a system definition.

The final ingredient of the partitioned problem specifica-
tion for the example partitioning of problem (3) is the
statement

topsyst Problem

which instantiates the partitioned problem by defining
that the highest system in the hierarchy is Problem. The
definitions for components First and Second, system Prob-
lem, and the topsyst statement comprise the specification
of the partitioned problem for our example problem.

4 Automatic processing and generation of input files

A compiler and two generators have been developed to auto-
matically derive input files for a coordination framework
and a matrix representation of the problem structure. The
two generators presented in this article should be seen as
examples of how framework-specific input files can be auto-
matically derived. The development of additional generators
for other frameworks are expected to be easy to add due to
the use of the generic INI format, and the information cre-
ated by the compiler. The compiler and the two generators
have been coded in Python (Lutz 2006).

The compiler-based approach proposed in this article
offers developers of coordination methods the freedom to
focus on input files that integrate easily with the compu-
tational routines they are designing. The � language and
the associated compiler and generators should therefore
be seen as powerful, generic pre-processors that provide
these computational frameworks with easy-to-process input
specifications while allowing users to specify the partitioned
problem in an intuitive and easy way.

4.1 Partitioned problem normalized format

The compiler checks a partitioned problem specification
in � for errors, and translates it into a specification in
INI format. The compiler checks for around 50 semantic
requirements such as

– Uniqueness of variable/component/system names,
– Whether arguments and outputs of functions are defined

as variables in components/systems,
– Whether sub-components of a system refer to existing

component or system definitions,
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– Whether variables used in systems exist in the associ-
ated sub-component,

– Etc.

Informative error messages are generated to assist the user
in debugging incorrect specifications. Checking partitions
in this early stage assures that further automated processing
at later stages does not require to do so and can rely on cor-
rectly specified partitions. The reader is referred to the user
manual (Tosserams et al. 2009b) for a complete list of the
semantic requirements that are checked for.

After a specification is checked for errors, an INI-
specification is generated. The generated INI-specifications
are less compact and harder to read than specifications in
�, but have the advantage that they can be easily inter-
preted by programs in other languages (Cloanto 2009). The
INI-format serves as a normalized format between � and
coordination frameworks. Figure 3 illustrates the relations
between the different files and the associated compiler and
generators.

The specification of the partitioned problem in INI for-
mat is defined by a number of sections. Each section con-
tains a section header [section] and a number of key/value
pairs of the form keyname = value. Separate sections
are introduced for each variable, each function, each com-
ponent, each coupling link, each system, and one for the
top-level system. The collection of sections contains the
necessary information to uniquely represent the partitioned
problem.

The contents of the normalized file generated from the
�-specification for the example partitioning of problem (3)
are given in Fig. 4. The order of sections and keys in this

Fig. 3 Relations between the available specification formats for
Step 2. Within Step 2, boxes represent partition formats and arrows
are associated with compilers and generators. Shaded boxes and solid
arrows represent the currently implemented format, compiler, and
generators

Fig. 4 Contents of normalized file generated from �-specification of
the example partitioning of problem (3)

file may appear unconventional, but this is not an issue
since the file is intended for further automatic processing
rather than for human understanding. For variable and func-
tion sections, the key-value pairs define, respectively, the
variable’s/function’s name in the �-specification (name),
the component or system definition in which it is specified
(defined_in), and the instantiation path of this definition
(path). Function sections also include the keys argvars
and resvars that define the arguments and responses of
a function, respectively (where only analysis functions have
responses).

Component and system sections include keys for its
definition name (type), the name of its instantiation
(name) and the associated instantiation path (path),
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its shared and local variables (coupling_vars2 and
local_vars, only for components), its coupling and
local responses (coupling_resvars and local_
resvars), and its objective, constraint, and response
functions (objfuncs, confuncs, resfuncs). Sys-
tem sections also include a list of sub-components
(sub_comps) and links (links). Note that the local and
shared variables correspond to the definitions of x j and y j

in the partitioned problem (2). Response functions r j are
split into local (i.e. disciplinary) responses and coupling
responses similarly.

A coupling section (link_) includes the variables that
it couples (coupling), the name of the system definition
in which it is defined (defined_in), and the instantia-
tion path of this system (path). A coupling can be defined
between two shared design variables or between two cou-
pling response variables. Finally, the top section includes
the key system whose value denotes the name of the
top-level system.

4.2 Matlab input file for ALC toolbox

The first generator translates the INI output into Matlab
problem specification files that can be used as input for our
Matlab implementation of the augmented Lagrangian coor-
dination algorithm (ALC, Tosserams et al. 2008, 2009c).
This ALC-generator was the original motivation for the
work presented in this article. It is beyond the scope of
this article to discuss the ALC method or the details of the
input files in greater detail. Our intention is to present the
generated ALC files to demonstrate the possibilities that
the compiler-based approach offers. The interested reader
is referred to the references given above for further details
on the ALC method.

The ALC input files make use of matrices, vectors, and
similar data types, which are easily processable with stan-
dard Matlab commands. Although the ALC format is very
different from � or normalized specifications, the generator
can automatically generate ALC files from the partitioned
problem specification in INI format. The contents of the
generated Matlab file for the example partitioning of prob-
lem (3) is given in Fig. 5. The ALC toolbox does not
allow response functions or response variables, and the
response functions r = a1(x2, y) and u = a2(x3, x4, r)

of the example have been included as constraint functions
h1(r, x2, y) = r − a1(x2, y) = 0 and h2(u, x3, x4, r) = u−

2We use the term coupling_vars for shared variables, and
coupling_resvars for coupling responses.

Fig. 5 Contents of ALC input file generated from normalized
specification of the example partitioning of problem (3)

a2(x3, x4, r) = 0 for this purpose. The ALC-generator auto-
matically checks whether a � specification has response
functions or not. The reason for including these checks in
the ALC-generator (and not in the compiler) is that � is
generic, i.e. independent of the coordination method. The
difference between the Matlab and � specifications is obvi-
ous, as well as the difference in readability between the two.
Specification of the partitioned problem using � is clearly
more intuitive than specifying them using the ALC format
in Matlab.

4.3 Function dependence table file

A second generator creates a file that contains the func-
tional dependence table (FDT) of the specified problem.
The FDT is a matrix whose rows and columns are associated
with the functions and variables of the problem, respec-
tively. The (i, j)-th entry of the matrix is 1 if the function
of row i depends on the variable of column j . The FDT
and related mathematical representations are typical inputs
to model-based partitioning methods such as those proposed
by Krishnamachari and Papalambros (1997), Michelena
and Papalambros (1997), Chen et al. (2005), Li and Chen
(2006), and Allison et al. (2007).
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Fig. 6 Contents of FDT file generated from the normalized
specification of example (3)

The generated functional dependence table file for the
example partitioning of problem (3) is given in Fig. 6. Hav-
ing to specify a problem’s structure in a functional depen-
dence table is clearly a tedious process that is prone to errors
and becomes increasingly prohibitive as systems become
larger. Specifying problem structures using � provides a
much more intuitive environment for this purpose. The FDT
can be automatically generated from the � specification,
using the INI normalized format.

Being able to generate different types of input files from
the same � specification not only saves time, but also
leads to consistent definitions of the partitioned problem.
These advantages make comparing results from different
computational frameworks easier.

5 Chassis design example

In this section, we demonstrate the use and advantages of �

on a larger example. Two variants of partitioning the prob-
lem are demonstrated using the � language. For one variant,
the INI output files, as well as the Matlab ALC files and the
FDT table are generated, clearly showing the compactness
and intuitiveness of the specification in �.

The example is a vehicle chassis design problem taken
from Kim et al. (2003) that aims at optimizing five han-
dling and ride quality metrics while considering the design
of front and rear suspensions, and vertical and cornering
stiffness models. A detailed description of the problem can
be found in Kim et al. (2003). The reader is referred to
Table 1 for a brief description of the optimization variables.

Table 1 Description of the optimization variables for the vehicle
chassis problem

Design variables Response variables

a Tire position ωsf Spring nat. freq.

b Tire position ωsr Spring nat. freq.

Pif Tire pressure ωtf Tire nat. freq.

Pir Tire pressure ωtr Tire nat. freq.

Df Coil diameter kus Understeer gradient

Dr Coil diameter Ksf Spring stiffness

df Wire diameter Ksr Spring stiffness

dr Wire diameter Ktf Tire stiffness

pf Pitch Ktr Tire stiffness

pr Pitch Cαf Cornering stiffness

Zsf Suspension deflection Cαr Cornering stiffness

Zsr Suspension deflection KLf Linear stiffness

KLr Linear stiffness

KBf Bending stiffness

KBr Bending stiffness

L0f Free length

L0r Free length

Indices “f ” refer to front and “r” to rear

The chassis design optimization problem is given by

find a, b, ωsf, ωsr, ωtf, ωtr, kus, Ksf, Ksr, Ktf, Ktr,

Cαf, Cαr, Zsf, Zsr, KLf, KLr, KBf, KBr, L0f,

L0r, Pif, Pir, Df, Dr, df, dr, pf, pr

min f(ωsf, ωsr, ωtf, ωtr, kus)

subject to g1(Zsf, KLf, KBf, L0f) ≤ 0
g1(Zsr, KLr, KBr, L0r) ≤ 0
g2(Df, df, pf) ≤ 0
g2(Dr, dr, pr) ≤ 0
(ωsf, ωsr, ωtf, ωtr, kus)

= a1(a, b, Ksf, Ksr, Ktf, Ktr, Cαf, Cαr)

Ksf = a2(Zsf, KLf, KBf, L0f)

Ksr = a2(Zsr, KLr, KBr, L0r)

(Ktf, Ktr) = a3(Pif, Pir, a, b)

(Cαf, Cαr) = a4(Pif, Pir, a, b)

(KLf, KBf) = a5(Df, df, pf, L0f)

(KLr, KBr) = a5(Dr, dr, pr, L0r)

(4)

5.1 Specification of the partitioned problem

The partitioned problem given in Kim et al. (2003) is
specified in � below, and is illustrated in Fig. 7a. The
system Chassis has seven sub-components: Vehicle, Tire,
Corner, two of type Suspension, and two of type Spring.
Each sub-component includes its relevant set of optimiza-
tion variables and functions. The similarity of the front
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(b)

(a)

ω ω ω ω

ω ω ω ω
α α

α α

Fig. 7 Two problem partitions for the chassis design example

and rear suspensions and springs is exploited by defining
a single suspension and a single spring component. By
instantiating these components twice in system Chassis, two
independent subproblems are defined, each with a separate
set of design variables.

comp Vehicle =
|[ extvar a, b, Ksf, Ksr, Ktf, Ktr, Cαf, Cαr

intvar ωsf, ωsr, ωtf, ωtr, kus

objfunc f(ωsf, ωsr, ωtf, ωtr, kus)

resfunc (ωsf, ωsr, ωtf, ωtr, kus) =
a1(a, b, Ksf, Ksr, Ktf, Ktr, Cαf, Cαr)

]|

comp Tire =
|[ extvar a, b, Ktf, Ktr, Pif, Pir

resfunc (Ktf, Ktr) = a3(Pif, Pir, a, b)

]|

comp Corner =
|[ extvar a, b, Cαf, Cαr, Pif, Pir

resfunc (Cαf, Cαr) = a4(Pif, Pir, a, b)

]|

comp Suspension =
|[ extvar Ks, KL, KB, L0

intvar Zs

confunc g1(Zs, KL, KB, L0)

resfunc Ks = a2(Zs, KL, KB, L0)

]|

comp Spring =
|[ extvar KL, KB, L0

intvar D, d, p
confunc g2(D, d, p)

resfunc (KL, KB) = a5(D, d, p, L0)

]|

syst Chassis =
|[ sub V : Vehicle, T : Tire, C : Corner

, Sf, Sr: Suspension, Spf, Spr: Spring
link V .a -- {T .a, C.a}, T .Pif -- C.Pif

, V .b -- {T .b, C.b}, T .Pir -- C.Pir

, V .Ktf -- T .Ktf, V .Cαf -- C.Cαf

, V .Ktr -- T .Ktr, V .Cαr -- C.Cαr

, V .Ksf -- Sf.Ks, V .Ksr -- Sr.Ks

, Sf.KL -- Spf.KL, Sf.L0 -- Spf.L0

, Sr.KL -- Spr.KL, Sr.L0 -- Spr.L0

, Sf.KB -- Spf.KB

, Sr.KB -- Spr.KB

]|

topsyst Chassis

A second partitioning of the problem as shown in Fig. 7
is used to demonstrate how multi-level coordination can be
facilitated by including systems as sub-components of other
systems. This partition has a subsystem SuspSpring that
includes a Suspension and a Spring component. Two instan-
tiations of this lower-level system are included in a system
Chassis2 that also includes the Vehicle, Tire, and Corner
components of the first definition above. The differences
between the two partitioned problems are illustrated in
Fig. 7. The specification of the systems SuspSpring and
Chassis2 for second problem partitioning is given below.

syst SuspSpring =
|[ sub S: Suspension, Sp: Spring

link S.KL -- Sp.KL, S.L0 -- Sp.L0, S.KB -- Sp.KB
alias Ks = S.Ks]|
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Fig. 8 Contents of normalized file generated from �-specification of chassis example—partition 1
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syst Chassis2 =
|[ sub V : Vehicle, T : Tire, C : Corner

, Sf, Sr: SuspSpring
link V .a -- {T .a, C.a}, T .Pif -- C.Pif

, V .b -- {T .b, C.b}, T .Pir -- C.Pir

, V .Ktf -- T .Ktf, V .Cαf -- C.Cαf

, V .Ktr -- T .Ktr, V .Cαr -- C.Cαr

, V .Ksf -- Sf.Ks, V .Ksr -- Sr.Ks

]|

topsyst Chassis2

The couplings between the variables of Suspension and
Spring are included in the system SuspSpring. Two systems
SuspSpring are instantiated in system Chassis2, and links
between the different sub-components are defined accord-
ingly. With this second partitioning, the coordination of the
SuspSpring lower-level systems can be performed nested
within the coordination of the top-level system Chassis2.

System SuspSpring includes the definition of an alias
(Ks), which is introduced to make this variable of compo-
nent Suspension accessible by system Chassis2. In general,
aliases are used in systems that are themselves part of

Fig. 9 Contents of ALC input file generated from normalized file of chassis example—partition 1
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another system, and are included to make a variable of
a sub-component accessible by a higher level system. An
advantage of using aliases instead of an identifier such as
N.S.v is that the higher-level systems do not need to have
detailed knowledge of the structure of its subsystems. Addi-
tionally, the definition of the higher level system does not
need to be changed if the structure of the subsystem is
modified. Observe that an alias definition does not define
a consistency constraint; aliases are simply used to forward
variable values of lower to higher levels in the problem
hierarchy.

5.2 Generated input files

For the first partitioned problem, the compiler and both gen-
erators are used to automatically generate the three input
files from the �-specification. Note that for the purpose
of the ALC input file, the response functions have been
included as constraint functions, similar to Section 4.2.

The generated normalized file, the ALC input file, and
the FDT file are given in Figs. 8, 9, and 10, respectively.
The advantages of being able to generate the ALC and FDT

formats automatically are obvious since neither of these
two formats is attractive for specification of the partitioned
problem structure. Valuable time and effort can be saved
by specifying partitioned problems using the intuitive and
compact � language.

6 Summary and discussion

Decomposition-based design of engineering systems requires
two main ingredients: a problem specification that defines
the structure of the system to be optimized, and a compu-
tational framework that performs the numerical operations
associated with coordination and solution of the partitioned
problem. Several generic computational frameworks have
been developed over the past decade, but generic and intu-
itive approaches to partitioned problem specification are
rare.

This article proposes a linguistic approach to partitioned
problem specification that is generic, compact, and easy to
use. The proposed language � allows a designer to intu-
itively define partitioned optimization problems using only

Fig. 10 Contents of FDT file generated from normalized file of chassis example—partition 1
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a small set of language elements. The developed tools,
including user manuals and several examples, are available
for download at http://se.wtb.tue.nl/sewiki/mdo.

So-called components are the building blocks of a
specification in �. A component definition includes a num-
ber of variables and objective, constraint, and response
functions. Components are assembled into systems in which
variable couplings between components are defined as well
as coupling functions. These systems can themselves be
part of another system, allowing an incremental multi-
level assembly of the partitioned problem. This incremental
assembly process allows the designer to control the com-
plexity of the individual assembly tasks, and improves the
overview of the system.

A generic compiler has been developed that produces
an easy to process normalized format. Two generators
automatically derive input files for computational coordi-
nation frameworks. The compiler-based approach proposed
in this article offers developers of coordination methods
the freedom to focus on input files that integrate easily
with the computational routines they are designing. The
� language and the associated compiler should therefore
be seen as powerful generic pre-processor that provides
these computational frameworks with easy-to-process input
specifications while allowing users to focus on partition-
ing the problem in an intuitive and easy way rather than
handling the details needed by the coordination frameworks.

Users that want to use the � language for their com-
putational framework need to develop a generator. This
generator is similar to the examples presented in this paper,
and should automatically translate the partition specification
in the INI format to an input file appropriate for the compu-
tational framework. It is recommended that this generator
also checks for framework-specific requirements that are
not covered by the generic �-compiler. Examples of such
requirements are not allowing system-wide functions or not
allowing response functions.

The flexibility of � can be used to experiment with
different partitions of the same problem. By solving
different decompositions of the same problem, insights can
be gained with respect to the notion of coupling strength
present in a partitioned problem. These insights can be used
to further refine model-based partitioning methods as those
proposed by Krishnamachari and Papalambros (1997), Li
and Chen (2006), and Allison et al. (2007). In turn, the prob-
lem partitions derived using model-based methods can be
stored in � or INI format.

Finally, we note that in the development of � we have
not made a priori assumptions about the class of opti-
mization problems that can be treated, nor about the coor-
dination method that will be used to solve the problem.
The language seems applicable to linear as well as non-
linear problems, continuous or discrete variables, single-

and multi-objective problems, deterministic or probabilistic
optimization problems, and is suitable for both single-level
as well as multi-level coordination methods.
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