

A proof repository for formal verification of software

Citation for published version (APA):
Franssen, M. G. J. (2010). A proof repository for formal verification of software. In H. Kienle (Ed.), Proceedings
of the 3rd International Workshop on Academic Software Development Tools and Techniques (WASDeTT 2010,
Antwerp, Belgium, September 20, 2010) (pp. 76-94)

Document status and date:
Published: 01/01/2010

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 05. Oct. 2023

https://research.tue.nl/en/publications/7102d4d3-c821-4a14-9f20-9f5523f42985

A Proof Repository for Formal Verification of Software

Michael Franssen

Eindhoven University of Technology, Dept. of Mathematics and Computer Science, P.O. Box 513/HG5.36, 5600 MB
Eindhoven, The Netherlands

Abstract

We present a proof repository that provides a uniform theorem proving interface to virtually any
first-order theorem prover. Instead of taking the greatest common divisor of features supported
by the first-order theorem provers, the design allows us to support any extension of the logic that
can be expressed in first-order logic. If a theorem prover has native support for such a logic, this
is exploited. If the prover has no such support, the repository automatically uses the first-order
encoding of the extension. A built-in proof assistant is provided that allows the user to manually
guide the proving process when all provers fail to prove a theorem. To prove sub-theorems, the
proof assistant is able to use the repository’s full capabilities. The repository also maintains a
database of proven theorems. When a requested theorem has been proved before, the result from
the database is re-used instead of reconstructing the proof all over again. To test the repository,
we constructed a tool for static verification of a basic programming language. This language is
also described in this paper.

Keywords: Theorem proving, Program verification, Software tools

1. Introduction

Many tools for program verification use a layered model [1, 2]. The bottom layer exists of a
logic, usually supported by some (semi)automatic tool. On top of this there is a layer of an
intermediate language in which programs to be verified will be expressed. Typically, this inter-
mediate language is simple, since it will not be used to directly write programs, but only as a
stepping stone to verify programs in a more complex language. The programs in the interme-
diate language are explicitly annotated with assertions that express the program properties to be
verified. For annotated programs written in the intermediate language a verification condition
generator will calculate a set of logical conditions that must hold in order for the program to
be correct. The upper layer consists of the actual programming language. Programs written
in this language will first be translated into the intermediate language. During this translation,
many complex features of the input language are expressed in the much simpler features of the
intermediate language. Also, annotations are inserted into the intermediate program that claim

Email address: m.franssen@tue.nl (Michael Franssen)
1

- 76 -

absence of null-dereferences, array-index-out-of-bounds, etc. If the actual program is annotated
with additional specifications, these specifications are translated into assertions too.

In order to obtain a high degree of automation, most tools select a single theorem prover to
construct the required proofs and then tweak their proof obligations towards this theorem prover
(ESCJava and SpecSharp use Simplify [1] and Perfect developer [3] has its own built-in theorem
prover). When a proof fails, one can only add assumptions or tweak the program to get different
verification conditions, hoping that these can be proved. Also, none of the aforementioned tools
keep track of the constructed proof. So even if only a small part of the code changed, all the
verification conditions are sent to the prover again. Moreover, during the development of a
program, the context of definitions and assumptions grows larger. Proofs of theorems that were
already proved when this context was small will take much more time to reconstruct in a larger
context.

In this paper, we present a proof repository that provides the following services: (1) A rich logic
to denote program specifications, definitions and abstract datatypes. (2) A single interface to
connect to a wide range of automated theorem provers. This way, the programming tool is not
restricted to using just one. (3) An interactive proof assistant that allows the user to guide the
proof by manually constructing it himself as much as necessary. Instead of guessing assertions
that might help the prover, this allows the user to gain insight in why a proof fails and what
lemmas are needed to complete the proof. (4) A database of completed proofs that avoids recon-
structing proofs for completed theorems all over again. This also implies that the allotted time to
prove the verification conditions can be spent entirely on new or altered verification conditions.

To test the repository, we also introduce a basic programming language designed for modular
verification. This programming language is a small extension of the guarded command language
which is used, among others, by ESC/Java as an intermediate language to express programs to
be verified. Nevertheless, a number of tree and list algorithms can be conveniently expressed in
this language, since it exploits the repository’s inductive type definitions.

2. Tool Structure

The structure of the entire toolkit described in this paper is depicted in Figure 1. The user enters
a program in the text editor. This program is read by a JavaCC generated parser. The result
is type-checked and then verification conditions are computed (see Section 4). Proofs for the
verification conditions are obtained from the proof repository.

The repository first checks for every request whether or not the theorem exists in the database. If
so, the stored result is returned. If not, one or more external theorem provers are launched (either
remotely or on the same machine). For each different prover, the theorem is first translated into
the native input language of that prover by a connector object. The order and time limits for the
theorem provers can be configured by the user. If a proof is found, it is stored in the database for
future re-use and sent back to the programming tool. If no proof is found, the proof assistant is
launched to let the user manually construct a proof. The proof assistant lets the user select tactics
that invoke small proof-steps. At any point the user may request a proof for a sub-theorem from
the repository. In practice the proof-assistance is mainly used to perform a few initial steps
and indicate where induction should be used to complete a proof. Automated theorem provers
typically cannot handle proofs that require induction.

2

- 77 -

Figure 1: Architecture of the toolkit: Grey boxes represent external systems. White boxes are
part of the repository. Textured boxes are part of the programming toolkit. Arrows with a @ sign
represent internet connections.

Although the main contribution of our tool is the proof repository with support for inductive types
and recursive definitions, we start in Section 3 by describing the programming language used to
test the repository. This also introduces the notation for formulas and inductive definitions used
by the repository. In Section 4, we explain how to compute the verification conditions. This
demonstrates the kind of theorems for which the repository was constructed. We then describe
the modules that make up the proof repository in Section 5. In Section 6 we explain how we
handle inductive types and recursive function definitions. We conclude in Section 7.

3. The Programming Language

The programming language employed by our tool is an example language to show the usefulness
of the repository. It is designed to be able to express some basic programming problems and to
support simple generation of verification conditions.

3

- 78 -

The language is defined by the grammar in Figure 2. It is based on the guarded command lan-
guage of Dijkstra, since he first proposed the weakest precondition calculus to establish formal
correctness of programs. As a result, we support non-deterministic guarded if and do statements
and multiple assignments. In order to make the language a bit more powerful and a more real-
istic test case for the proof repository, we added procedures, inductive datatypes and recursive
specification functions. We will first discuss the main features of this language informally. In
Section 4 we discuss how the tool computes the verification conditions.

Prog ::= program Id; Decl∗ var Idlt {post: Pred} Stat
Decl ::= procedure Id(Idlt, var Idlt) {pre: Exp post: Exp [⇓]} Stat

| type Id is Id(Idlt) [2 Id(Idlt)] ∗ end
| {define Id(Idlt) : Id as (Match | Exp) end}

Stat ::= Stat; Stat | skip | Idl[, Idl]∗ := Exp[,Exp]∗ | |[var Idlt; Stat]|
| if GStats fi | {inv: Exp [dec: Exp]}do GStats od
| match Exp with GStats end
| Id(Expl)

GStats ::= GStats 2 GStats | Exp → Stat
Match ::= match Id with Id(Idl)→ Match[2Id(Idl)→ Match] ∗ end
Exp ::= Exp = Exp | (∀Id : Id.Exp) | (∃Id : Id.Exp) | Id[(Expl)]

| Exp ∧ Exp | Exp ∨ Exp | ¬Exp
| Exp + Exp | Exp − Exp | Exp ∗ Exp

Expl ::= [Exp[,Exp]∗]
Id ::= 〈identifier〉
Idl ::= [Id[, Id]∗]
Idlt ::= [Id : Id[, Id : Id]∗]

Figure 2: The grammar for the example programming language

3.1. Scope rules

Basically, there are two contexts: The program context and the specification context. The pro-
gram context contains all the variables and definitions that are available to program statements.
These are written outside the curly brackets. The specification context contains additional defi-
nitions that are available to program specifications (pre and post conditions, invariants, function
definitions, etc.). In specifications, all definitions and variables of the program context and the
specification context can be used.

Parameters of definitions and procedures only exist within the body of the definition or procedure.
Local variables can be declared between |[and]|. These variables only exist within this range.
Local variable blocks can be nested. Within procedures, only variables in the parameter list and
locally declared variables exist. Global variables are not supported in order to avoid aliasing
problems.

The main program can only alter the variables introduced in its own var part and locally declared
variables.

4

- 79 -

3.2. Inductive Types

Our language supports inductive type definitions called strictly positive types (See [4]). Given
the syntactic restrictions of our language, all types that can be denoted are strictly positive and
hence, well defined. Hence, there is no need to discuss the theory of strictly positive types in this
paper. Variables of inductive types have value semantics (sometimes called copy semantics).

There is no need for built-in types, but the language assumes fixed definitions of bool and int.
These types are additionally supported by basic operators and universal and existential quantifiers
∀ and ∃. Moreover, guards of if and while statements must be of type bool and may not contain
any quantifiers. Also, we have the polymorphic boolean relation = between elements of any
datatype.

All datatypes other than bool and int must be defined within the program itself. For example,
lists of integers can be defined by:

type list is empty() 2 cons(x : int, tail : list) end

3.3. Specification Functions

Functions can be defined only within the specification context, since the type of definitions al-
lowed does not guarantee computability of the function. Once a function is defined, a procedure
can be written that actually computes it. When this procedure is proved correct, the function
apparently was computable. For instance, the function to compute the length of a list of integers
is written as:

{define length(L : list) : int as
match L with

empty() → 0
2 cons(x, tail) → length(tail) + 1
end

end}

Since function definitions can only occur in the declaration part of a program, they can never
refer to any program variables. Therefore, the match-pattern (following the keyword match)
must be a variable referring to one of the function parameters. Following the with keyword, all
constructors of the recursive type of this parameter are listed (including dummies representing
the constructor’s parameters) followed by→ and a result-expression. This result-expression can
be a direct expression or a match-expression. Note that by definition of the grammar, match-
expressions are no ordinary expressions, since they cannot occur as sub-expressions at arbitrary
places. They are only allowed when providing specification function definitions.

3.4. Match-Statements

To write a procedure implementing a specification function, we support match-statements. Al-
though they are similar to match-expressions there are important differences: (1) The match-
pattern can be any expression instead of just a variable. (2) Result-expressions are replaced by
statements (3) Match-statements are ordinary statements. Semantically, a match-statement is like
an if-statement where all the guards have a specific form and introduce a set of local variables to
the corresponding branch.

5

- 80 -

3.5. Procedures

Once a procedure p(a1, . . . , an, var x1, . . . xm){pre: P post: Q} S is defined, it can be called from
all succeeding procedures and the main program. S can only refer to its parameters and locally
declared variables. In order to avoid aliasing problems, all arguments of variable parameters in
a procedure call must be different. Also, expressions used for value parameters in a procedure
call may not depend on any of the variables parameter arguments. We denote p’s precondition
by p.pre and p’s postcondition by p.post.

3.6. Optional termination proofs

It is up to the programmer whether or not termination of (part) of the program has to be proved.
If a bound expression is provided for a loop (after the keyword dec), the required termination
verification conditions are generated. Since procedures cannot be recursive, it is sufficient to
add the optional ⇓ to the postcondition. Terminating procedures may only call other terminating
procedures and all loops within its body must terminate. Loops within terminating loops must
also terminate. The tool checks whether the required bound expressions and ⇓ are present in
these cases.

4. Verification Conditions

The tool parses a string according to the given grammar using a JavaCC generated parser. The
resulting tree is type-checked to find out if the program is valid. If so, verification conditions
are generated based on a weakest precondition approach. That is, for any statement and post-
condition, we compute a weakest precondition that must hold in the initial state, to guarantee
that the postcondition holds in any final state. Apart from the weakest precondition, a set of
side-conditions are computed that also must hold in order for the program to be correct. Based
on this weakest precondition, the verification conditions for procedures and the main program
are computed.

Every verification condition generated is labeled with a name that clarifies the property it ex-
presses. In the remainder of this paper, an overlined term represents a comma-separated list of
terms of the appropriate length.

Definition 1. Weakest Preconditions
The weakest precondition wp(S ,Q) for statement S and postcondition Q is defined as:

6

- 81 -

wp(S 1; S 2,Q) = wp(S 1,wp(S 2,Q))

wp(skip,Q) = Q

wp(x := e,Q) = Q[x := e]

wp(|[varx : T ; S]|,Q) = (∀x : T .wp(S ,Q))

wp(if G1 → S 1
2 . . .
2 Gn → S n

fi ,Q)

= G1 ⇒ wp(S 1,Q)
∧ . . .
∧ Gn ⇒ wp(S n,Q)
∧ (G1 ∨ . . . ∨Gn)

wp({inv:I dec:B}
do G1 → S 1
2 . . .
2 Gn → S n

od ,Q)

= I

Also, the following side-conditions have to be proved:
invariance: I ∧Gi ⇒ wp(S i, I) for any 1 ≤ i ≤ n
finalisation: I ∧ ¬G1 ∧ . . . ∧ ¬Gn ⇒ Q
boundness: I ∧Gi ⇒ 0 ≤ B for any 1 ≤ i ≤ n
progress: I ∧Gi ∧ B = C ⇒ wp(S i, B < C) for any 1 ≤ i ≤ n

where C is a fresh constant
boundness and progress only have to be proved if the optional B is provided

wp(match E with
C1(v1) → S 1

2 . . .
2 Cn(vn) → S n

end,Q)

= E = C1(v1)⇒ wp(S 1,Q)
∧ . . .
∧ E = Cn(vn)⇒ wp(S n,Q)

wp(p(e, v),Q) = p.pre[a, x := e, v]
Also, the following side-condition has to be proved:

correct use of p: p.post[a, x := e, v]⇒ Q

Note that in order to prove a side condition with free variables, we actually prove its universal
closure.

Using the wp function from Definition 1 directly would yield a very rigid system. A procedure’s
postcondition would always have to match the entire postcondition of a procedure call. Usually,
a procedure is used to satisfy only part of the postcondition.

To relax the verification conditions, we will split a postcondition into two parts: A part that is
altered by the program and the part that is independent of the program. In order to define this
split, we first provide some definitions.

FV(P) denotes the free variables in P and is defined as usual.

7

- 82 -

Definition 2. Altering Variables
Given a program S , the set of variables that can possibly be altered during execution of S is
computed by the function AV : S tat → P(V). AV is defined as:

AV(S 1; S 2) = AV(S 1) ∪ AV(S 2)
AV(skip) = ∅

AV(x := e) = {x}
AV(|[var x • S]|) = AV(S) \ {x}
AV(if G1 → S 12 . . .2 Gn → S n fi) = (

⋃
1≤i≤n AV(S i))

AV({inv: I}do G1 → S 12 . . .2 Gn → S n od) = (
⋃

1≤i≤n AV(S i))
AV(p(e, x)) = {x}

Note that AV is computed from the syntax of the statement. Stated simply: AV(S) lists all free
variables that occur in S either at the left-hand side of an assignment statement or as an argu-
ment for a var-parameter of a procedure call.

Definition 3. Keeps and Alters
Let Q = Q1∧ . . .∧Qn be a predicate and let S be a statement. Without loss of generality, assume
that FV(Qi) ∩ AV(S) = ∅ for 0 ≤ i < j and FV(Qi) ∩ AV(S) , ∅ for j ≤ i < n for some j (if
needed, we can re-order the conjuncts). We define Keeps and Alters as follows:

Keeps(S ,Q) = Q1 ∧ . . . ∧ Q j−1
Alters(S ,Q) = Q j ∧ . . . ∧ Qn

Since Keeps(S ,Q) does not depend on any variable that can be changed by S , it must hold in the
precondition iff it has to hold in the postcondition. We will use this to change the computation of
wp for loops and procedure calls (changing wp for other statements is not necessary).

Definition 4. wp with Keeps and Alters
We use S to denote the entire statement, K to denote Keeps(S ,Q) and A to denote Alters(S ,Q).
wp is redefined for loops and procedure calls by:

wp({inv:I dec:B}
do G1 → S 1
2 . . .
2 Gn → S n

od ,Q)

= K ∧ I

The following side-conditions have to be proved:
invariance: K ∧ I ∧Gi ⇒ wp(S i, I) for any 1 ≤ i ≤ n
finalisation: K ∧ I ∧ ¬G1 ∧ . . . ∧ ¬Gn ⇒ A
boundness: K ∧ I ∧Gi ⇒ 0 ≤ B for any 1 ≤ i ≤ n
progress: K ∧ I ∧Gi ∧ B = C ⇒ wp(S i, B < C) for any 1 ≤ i ≤ n

where C is a fresh constant
boundness and progress only have to be proved if the optional B is provided

wp(p(e, v),Q) = K ∧ p.pre[a, x := e, v]
The following side-condition has to be proved:

correct use of p: K ∧ p.post[a, x := e, v]⇒ Q
8

- 83 -

Computing weakest preconditions is not sufficient to obtain all verification conditions for a pro-
gram. Therefore, we will define the function VC, based on wp to compute verification conditions
for procedures and the main program.

Definition 5. Verification conditions
The function VC computes the verification conditions that must be proved in order to establish
the correctness of an entire program. It is defined as:

VC(program n
Proc
var x
{post: Q}
|[S]|)

= VC(Proc)
∪ {correctness of n:(∀x.wp(S ,Q))}

VC(procedure p(a, var x)
{pre: P post: Q}
|[S]|)

= {correctness of p:(∀a,x.P⇒ wp(S ,Q))}

Proving all side conditions obtained by computing wp and the conditions computed by VC es-
tablishes full correctness of the entire program.

Example 1. power
By means of a hello world example, we give a program to efficiently compute ab on natural num-
bers. In this example, the power function is defined and implemented. Since recursive function
definitions are only available in specifications, users are forced to call the procedure, which (in
this case) is much more efficient.

. . .
{define pow(a, b : nat) : nat as

match b with
0 → 1

2 suc(x)→ a ∗ pow(a, x)
end

end}

procedure power(A, B : nat, var p : nat)
{pre: true post: p = pow(A, B) ⇓}
|[var a, b : nat;

p, a, b := 1, A, B;
{inv: p ∗ pow(a, b) = pow(A, B) dec: b}
do b > 0 →

if even(b) → a, b := a ∗ a, b div 2
2 ¬even(b)→ p, b := p ∗ a, b − 1
fi

od
]|
. . .

9

- 84 -

The generated verification conditions are:

correctness of power: true⇒ 1 ∗ pow(A, B) = pow(A, B)
finalisation: p ∗ pow(a, b) = pow(A, B) ∧ ¬(b > 0)⇒ p = pow(A, B)
invariance: p ∗ pow(a, b) = pow(A, B) ∧ b > 0⇒

even(b)⇒ p ∗ pow(a ∗ a, b div 2) = pow(A, B)
∧¬(even(b))⇒ p ∗ a ∗ pow(a, b − 1) = pow(A, B)
∧(even(b) ∨ ¬(even(b)))

progress: p ∗ pow(a, b) = pow(A, B) ∧ b > 0⇒
even(b)⇒ b div 2 < b ∧ ¬(even(b))⇒ b − 1 < b

boundness: p ∗ pow(a, b) = pow(A, B) ∧ ¬(b > 0)⇒ 0 ≤ b

For a long period of time in the Eindhoven Computer Science curriculum students were taught to
manually derive programs from specifications. This involved (amongst other skills) constructing
and proving verification conditions like the ones in this example. The proofs themselves are an
order of magnitude larger than the program being derived. Hence, the chance of mistake in the
manually constructed proofs was at least as big as the chance of a mistake in the constructed
program.

Apart from the convenience of automatic proof construction, tool support also provides more
certainty about the absence of errors in the proofs. In fact, for somewhat larger programs tool
support is mandatory, since manually constructing the verification conditions becomes infeasi-
ble, let alone proving them.

The verification conditions from the example can be sent directly to the proof repository. In order
to solve them, induction will be needed.

5. A Modular Repository

The repository’s task is to provide proofs for theorems on request. How it does this should not be
the concern of the client application posing the requests. Hence, basically, the proof repository
acts as a theorem prover. All verification conditions mentioned in Section 4 can be handled by
our repository. Also, the inductive type definitions and recursive function definitions are passed
as such.

5.1. The Architectural Modules

The basic architectural design consists of a number of modules: A connector, which connects
an external automated theorem prover to the system; A proof assistant, to interactively construct
proofs; A database, which stores proofs that have already been constructed; and a controller,
which connects all components in a configurable way to the user application.

The user application communicates with the controller and asks for the proof of a theorem. If the
controller finds the theorem in the database, it is returned to the application. If not, one or more
theorem provers are launched to construct a proof. A connector component is used to translate
the theorem into the format of the theorem prover. If a proof is found, it will be stored in the

10

- 85 -

database and returned to the application. If no proof is found, the proof assistant can be used to
manually construct one or the application is notified.

In the following subsections, we describe the components in more detail. We assume that a proof
request from the user application has the form Γ ` P, where Γ is the context of definitions and
assumptions and P is the theorem to be proved in this context.

5.1.1. Connector

A connector is responsible for connecting an external theorem prover to the repository. In general
it takes a request Γ ` P and translates it into the form of the external prover. It then launches
the prover to construct a proof and translates the output into the internal representation of the
repository. We provide a separate connector for each prover, but all connectors provide the same
interface.

Also, a connector solves the problem of slight differences in the logic supported by different
provers. For instance, Simplify [5] offers internal support for arithmetic, like the operators +,
− and ∗, while Spass [6] and E [7] do not. We could neglect any extensions and only support
first-order predicate logic with equalities, which is supported by all theorem provers considered.
However, since built-in support for extensions is usually more efficiently than the corresponding
axiomatizations, this would weaken our system.

Therefore, our repository supports any extension to the basic logic that can be defined by ax-
iomatizations in first-order predicate logic. A connector recognizes the use of an extension and
chooses to either use extensions of the external theorem prover or to provide the corresponding
axiomatization. The axiomatization of a theory is given once in the internal representation of our
repository and translated by a connector when needed.

As a result of this approach, our repository provides a very rich language to the user application.
For example: One often needs lists, sets, stacks, etc. These can easily be axiomatized in first-
order logic, but many basic theorems about them are also needed. Since not all theorem provers
support these datatypes, one might be tempted to choose one specific prover at an early stage.
By using the repository instead, one can use all extensions and connect to different provers as
needed. Different provers have different specialties, but the user application can use them all.

Currently, the repository provides native support for the theorem provers Spass [8], Simplify [5],
Z3 [9], and any theorem prover that accepts the TPTP [10] input format (like E-prover [7]).
Also, through the TPTP webservice, more than 50 theorem provers (including different versions)
are directly available. In case of Simplify and Z3, the repository uses their internal support for
integer numbers instead of their translations to first-order axioms. This includes the operators +,
− and ∗.

How the translated theorem is sent to the prover depends on the interface provided by the external
prover. Currently, a file is generated that contains the theorem in the external provers native
format. The theorem prover is then launched as an external process on this file. The resulting
output is parsed and included in the result. In case of the TPTP webservice, the file is sent over
the internet to the TPTP servers and no external process is started.

11

- 86 -

5.1.2. Proof Assistant

First-order logic is semi-decidable, meaning that although every valid theorem can (in theory) be
proved automatically, an invalid theorem might cause an infinite proof-attempt. Hence, if after
a given amount of time no proof has been found, one cannot distinguish between the theorem
being incorrect or the amount of time being insufficient. A theorem prover therefore hardly ever
gives other reasons than ’insufficient resources’ (including time) if it fails to find a proof.

When the automatic theorem provers fail (for example, if induction is needed), it is necessary
to (partially) construct a proof manually. For this, an interactive proof assistant is provided (an
extension of the prover used in Cocktail [11]). In this proof assistant, single proof steps called
tactics are used to split the main theorem in smaller sub-goals. These sub-goals can in turn be
passed to the external automated theorem provers to complete the proof. If needed, the entire
proof can be constructed manually by the interactive prover.

5.1.3. Theories

The repository supports first-order logic with equalities, because it (1) is a well-known logic
supported by many systems, (2) is at least semi-decidable and (3) is powerful enough to express
meaningful theorems.

Several systems exist that have more efficient native support for theories often expressed in first-
order logic (e.g. [5] has support for integer numbers and [12] is specialized in Clean programs).
Since we want to exploit this special support, any theory that can be expressed in first-order logic
is added as a theory module in the proof repository. A theory module consists of the first-order
definitions and theorems needed to define this theory for external provers that do not natively
support it. When a connector translates a theorem to an external prover, this theory module is
added to the translation only if the external prover has no native support for the theory. Otherwise,
the translation will exploit the native support, yielding better performance.

The theories module is not really a module as such. It is more like a library of translations from
logic extensions to basic first-order logic that is used by connectors to deal with logic extensions
that are not supported natively by the external theorem prover.

5.1.4. Database

The repository provides a database in which proven theorems can be stored for re-use. Instead
of storing each variant of a theorem, a normal form of the theorem is stored. When searching the
database, we do not look for exactly the same theorem, but for a theorem which is “more gen-
eral”, i.e. a theorem that implies the theorem we seek. As a result, renaming program variables
or adding assumptions does not invalidate previous results. Also, obviously equivalent formulas
are considered equal (e.g. P ⇒ Q and ¬P ∨ Q). The normal form used and the notion “more
general” is defined below.

We first define a Database Normal Form (DbNF) that puts all conjuncts, disjunct and universal
quantifications together and eliminates implications and existential quantifications. This will
allow searching the database in such a way that the exact order of these conjuncts, disjuncts and
universal quantifications is irrelevant. The DbNF of a formula is computed as follows:

12

- 87 -

1. We start by computing the negation normal form of the formula, thereby eliminating ⇒
and putting negations only in front of atomic formulas.

2. Next we replace all ∃-quantifications by skolem-functions. Equivalence of formulas is no
then longer dependent on where exactly the ∃ formula is inserted. That is, ∃x.(P(x) ∧ Q)
and (∃x.P(x))∧Q become equal because they both have the skolem form P(s())∧Q, where
s is the skolem function replacing x. There are several ways to skolemize a formula. We
use the rewrite rule (∃x.A) → A[x := s(x1, . . . , xn)], where s is a fresh skolem function of
arity n and {x1, . . . xn} = FV(A) \ {x}.

3. Then we turn the formula into head-normal form by putting all ∀ quantifiers in front of the
formula.

4. Finally, we compute the conjunctive normal form of the unquantified parts.

We now have a formula of the form ∀x1, . . . xn.C1 ∧ . . . ∧ Cm, where every Ci is a disjunction
L1 ∨ . . . ∨ Lk of literals. The Ci are called clauses.

We also define a Query Database Normal Form (QDbNF), which is only slightly different from
DbNF. The QDbNF is needed, since the skolem functions in the database will be different from
the ones in the query, yet they represent existentially quantified variables that might match.
Therefore, in the QDbNF we keep the existential quantifiers, but skolemize universal quantifica-
tions.

The QDbNF of a formula P is computed as follows: Perform steps 1 till 3 on the formula ¬P,
yielding P′, which is a skolemized head-normal form in which negations only occur in front of
atomic formulas. We then apply step 1 again on ¬P′ and finally apply step 4. The QDbNF has
the form ∃x1, . . . xn.C1 ∧ . . . ∧Cm, where every Ci is again a clause.

It is semi-decidable if a stronger theorem is already in the database. Therefore, we define a notion
of “more general”, which is a more restrictive, but computable claim about theorems. Instead
of checking if a stronger theorem is already in the database, we will check if a more general
theorem is in the database.

Definition 6 (More general clause).
Let L = L1∨. . .∨Ln and L′ = L′1∨. . .∨L′m be clauses and let θ be a mapping from FV(L)∪FV(L′)
to ground terms. L is said to be more general than L′ according to θ if there exists a mapping
σ : {1, . . . , n} → {1, . . . ,m} such that θ(Li) = θ(L′σ(i)) for i = 1, . . . , n. Note that 〈〉 ` θ(L)⇒ θ(L′).

Definition 7 (More general CNF formula).
Let P = P1 ∧ . . . ∧ Pn and Q = Q1 ∧ . . . ∧ Qm be formulas in conjunctive normal form (CNF)
and let θ be a mapping from FV(P,Q) to ground terms. P is said to be more general than Q if
there exists a mapping σ : {1, . . . ,m} → {1, . . . , n} such that Pσ(i) is more general than Qi for
i = 1, . . .m. Note that 〈〉 ` θ(P)⇒ θ(Q).

Definition 8 (More general (Q)DbNF formula).
Let P and Q be formulas, such that the DbNF of P is ∀x1, . . . xn.P′ and the QDbNF of Q is
∃y1, . . . ym.Q′. P′ and Q′ are in CNF. P is said to be more general than Q if there exists a
mapping θ from x1, . . . , xn, y1, . . . ym to ground terms such that P′ is more general than Q′.

13

- 88 -

Definition 9 (More general theorem).
A theorem Γ ` P is defined to be “more general” than theorem ∆ ` Q if P is more general than
Q and for every formula in Γ there is a more general formula in ∆.

Theorem 1 (More general implies stronger).
If Γ ` P is more general than ∆ ` Q, then ∆ is stronger than Γ and P is stronger than Q, hence
Γ ` P is stronger than ∆ ` Q.

We consider a theorem to be in the database if a more general theorem is in the database, which
is a valid conclusion because of theorem 1.

In order to store a proven theorem Γ ` P in the database, we first compute the QDbNF of all
formulas in Γ and the DbNF of P. This yields Γ′ ` P′, which is actually stored.

When a query ∆ ` Q is looked up in the database, we compute the DbNF of all formulas in ∆ and
the QDbNF of Q. The unquantified parts of the required normal forms of all formulas to find a
more general theorem in the database are now directly available. The required substitutions are
found by using a simple Robinson unification algorithm [13], which also solves the problem of
the order of universal quantifications. By using an incremental, substitution free unification algo-
rithm [14], the efficiency is comparable to syntactic comparison. To find the required mappings
between conjuncts and disjuncts, we use trial and error (trying for each disjunct and conjunct
every opposing disjunct and conjunct) yielding a quadratic search. This is made almost linear by
imposing an ordering (like lexicographical path ordering, LPO) on the terms within the clauses.

5.1.5. Controller

The task of the controller is twofold: It provides an API to the user application to pose queries
and it manages the tools it has available to answer them.

The queries posed by the user application must have the form Γ ` P, where Γ is a list of declara-
tions, definitions and assumptions called the context and where P is a formula.

To answer the query, the controller first consults the database (if available). If the theorem is not
in the database, external automated theorem provers are launched. The launching order and the
timeout for each theorem prover can be configured within the controller. It is also possible to
launch all theorem prover simultaneously and see which one find an answer to the query first.

The answer to a query can be True, meaning that P holds in the given context Γ, False, meaning
that P does not hold in Γ, unknown, meaning that the repository processed the query completely,
but cannot find an answer, and error, meaning that some error occurred while processing the
query. The answer also contains other information, like the name and version of theorem prover
that provided the result, the time taken to construct the proof and, if desired, the literal proof-
output of the theorem prover.

Access to the repository is provided in two ways: (1) By a direct API of method calls of a Java
object and (2) By commands issued through a socket stream to the repository (i.e. the repository
acts as an internet service). While the first way is more direct and usually easier to implement
for the user application, the second way opens a whole new perspective to use the repository.
A special network connector object is provided that allows one repository to consult another

14

- 89 -

Figure 3: Using a separate machine for each theorem prover

repository as if it were a theorem prover. A controller then only configures the provers available
on the local machine. By connecting the local repository to other repositories on other sites, the
entire setup of the system becomes configurable. We will elaborate on this in Section 5.2.

5.2. Configurations

The main user applications we had in mind when designing the repository were tools for prov-
ing correctness of programs. Usually these tools are linked to a specific prover. For instance,
ESC/Java [1] and Boogie are linked to Simplify [5] and ZAP [15], the Omnibus system [16] is
linked to PVS [17], Perfect Developer [3] and Cocktail [11] use their own internal provers, etc.

By connecting these systems to the repository instead, they are able to benefit from the strengths
of several theorem provers. Also, proofs only have to be constructed once, since the database
prevents the same proof from being constructed repeatedly. Reconstruction of proofs proved
to be a drawback of systems that rely solely on automated theorem provers, like ESC/Java and
Perfect Developer (see [18]).

Also, the modules can be used to boost computational power: One can configure one machine
for each theorem prover, using only one connector and the controller (without database). The
machine running the user application then consults the other machines through the special net-
work connector instead of running its own theorem provers (see Figure 3). One can also setup
one additional node that only runs the database to implement a central repository that is used
by several user applications. An extreme case of this situation is to run the entire repository as
Software as a Service.

Using the modules with the database only locally and with just one prover is already useful to

15

- 90 -

support reusing proofs. This will already speed up a user application by avoiding the needless
reconstruction of proofs.

6. Handling inductive types and recursive functions

Inductive datatype definitions and recursive function definitions are supported by the repository
and its built-in proof assistant. As useful as this kind of definitions are to the user, they are not
part of standard first-order logic and not generally supported by first-order theorem provers. The
reason for this is that proving properties of inductive type definitions usually requires induction
proofs, but induction proofs only prove the property for elements of the inductive type with a
finite size. Theorem provers do not assume that all models only map to values of finite size and
hence, they do not use induction. We only consider programs about elements of finite size, so
we can safely allow induction proofs in our system.

Since the theorem provers do not support inductive types, their definitions must be translated into
a set of first-order formulas to send to the theorem provers.

We use a translation function to1st to translate inductive datatypes and recursive functions into
first-order logic.

Definition 10. Translation function to1st
Inductive type definitions and recursive specification function definitions are translated into sets
of first-order declarations and axioms (assumptions) by the translation function to1st:

to1st(type t is C1(p1) 2 . . .2 Cn(pn) end) =

t : ∗s;
C1(p1) : t;
. . .
C2(pn) : t;
Cons t : (∀v : t.(∃a1.t = C1(a1)) ∨ . . . ∨ (∃an.t = Cn(an)));

∗s is used to denote the set of all sets (i.e. t : ∗s declares that t is a type). The Cons t axiom
enables the external provers to make case distinctions when proving properties over elements of
t (every element of t can be written as the result of one of its constructors). Note, that Cons t can
be derived from the inductive definitions by an induction proof.

to1st(define f (p) : t as M end) =

f (p) : t;
T (f (p), id,M)

where id is the identity mapping (the empty substitution). T translates the match-expressions
for a function to a set of assumptions. T (F, θ, E) with F a function, θ a substitution and E a
(match-)expression is defined by:

16

- 91 -

T (F, θ,match v with C1(a1)→ E1 2 . . .2 Cn(an)→ En end) =

T (F, [v 7→ θ(C1(a1))] ◦ θ, E1);
. . .
T (F, [v 7→ θ(Cn(an))] ◦ θ, En)

T (F, θ, E) = C(θ(F) = θ(E)) if E is not a match-expression

where C(P) denotes the universal closure (∀FV(P).P). These declarations and assumptions are
such that any first-order theorem prover is able to handle them.

Example 2. trees For example, consider the following inductive definition of trees and the func-
tions to compute the number of leafs and nodes in a tree:

type tree is leaf (x : int) 2 node(L,R : tree) end
{define leafcount(t : tree) : int as

match t with
leaf (x) → 1

2 node(L,R)→ leafcount(L) + leafcount(R)
end

end}
{define nodecount(t : tree) : int as

match t with
leaf (x) → 0

2 node(L,R)→ nodecount(L) + nodecount(R) + 1
end

end}

The translation into first-order logic then becomes:

tree : ∗s;
leaf (x : int) : tree;
node(L,R : tree) : tree;
Cons tree : (∀t : tree.(∃x : int.t = leaf (x)) ∨ (∃L,R : tree.t = node(L,R)));
leafcount(t : tree) : int;
(∀x : int.leafcount(leaf (x)) = 1);
(∀L,R : tree.leafcount(node(L,R)) = leafcount(L) + leafcount(R);
nodecount(t : tree) : int;
(∀x : int.nodecount(leaf (x)) = 0);
(∀L,R : tree.nodecount(node(L,R)) = nodeount(L) + nodecount(R) + 1;

which are indeed first-order axiomatic definitions that can be handled by any theorem prover.

If we now request a proof for (∀t : tree.leafcount(t) = nodecount(t) + 1) from the repository, no
theorem prover is able to proof it, by lack of induction (note that the property does not hold for
infinite trees). We then indicate in the built-in proof assistant that we want to prove the main goal
by induction (just selecting the correct tactic). This yields two new subgoals (see the screenshot

17

- 92 -

in Figure 4), namely the base and the induction cases:

(∀x : int.leafcount(leaf (x)) = nodecount(leaf (x)) + 1)
(∀L,R : tree.(leafcount(L) = nodecount(L) + 1)⇒

(leafcount(R) = nodecount(R) + 1)⇒
(leafcount(node(L,R)) = nodecount(node(L,R)) + 1))

Both of these can be proved by automated theorem provers connected to the repository.

Figure 4: A screenshot of the proof assistant doing induction on trees.

7. Conclusions and Future Work

The language as described fulfils its purpose as a test suite for the proof repository. It can be
used to express smaller algorithmic examples that lead to interesting verification conditions that
cannot always be proved fully automatically.

The interactive theorem prover supports the inductive types and recursive definitions directly,
allowing the user to split some of the harder theorems into simpler sub theorems that are then
handled by the repository.

Since all proofs are stored in the database, verification conditions that have not changed after a
small change in the program are not proved again. This constitutes a dramatic speed-up when re-
verifying a program after small changes have been made. The time allotted to verify the program
can now be entirely spent on those verification conditions that are actually new or changed.
Also, since the database has some limited deductive capabilities, renaming variables or adding
new definitions does not lead to re-constructing proofs of verification conditions.

Next, we want to extend the language to include more advanced features (recursive procedures,
references, arrays, etc.) in order to write more interesting programs. Also, the language would
then become more interesting to serve as an intermediate language to verify real-world programs.

We also will test the repository in several different situations (e.g. educational settings) and
configurations (local repositories, a central database, etc) to find out what more is needed for
large scale application.

18

- 93 -

References

[1] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, R. Stata, Extended static checking for Java,
SIGPLAN Not. 37 (5) (2002) 234–245. doi:http://doi.acm.org/10.1145/543552.512558.

[2] M. Barnett, K. R. M. Leino, W. Schulte, Vol. 3362 of LNCS, Springer, 2005, Ch. The Spec] Programming System:
An Overview, pp. 49–69.

[3] G. Carter, R. Monahan, J. Morris, Software refinement with Perfect Developer, Software Engineering and Formal
Methods, IEEE, 2005, pp. 363–372.

[4] P. Morris, T. Altenkirch, N. Ghani, Constructing strictly positive families, in: CATS ’07: Proceedings of the thir-
teenth Australasian symposium on Theory of computing, Australian Computer Society, Inc., Darlinghurst, Aus-
tralia, Australia, 2007, pp. 111–121.

[5] D. Detlefs, G. Nelson, J. B. Saxe, Simplify: A theorem prover for program checking, Journal of the ACM 52 (3)
(2005) 365–473.

[6] C. Weidenbach, D. Dimova, A. Fietzke, R. Kumar, M. Suda, P. Wischnewski, SPASS Version 3.5, Automated
Deduction–CADE-22 (2009) 140–145.

[7] S. Schulz, E – A Brainiac Theorem Prover, Journal of AI Communications 15 (2/3) (2002) 111–126.
[8] C. Weidenbach, B. Afshordel, E. Keen, C. Theobalt, D. Topić, Spass theorem prover, in: URL: http:

//spass.mpi-sb.mpg.de/, Max-Planck-Institut für Informatik, 2007.
[9] L. De Moura, N. Bjørner, Z3: An efficient SMT solver, Tools and Algorithms for the Construction and Analysis of

Systems (2008) 337–340.
[10] G. Sutcliffe, C. Suttner, The TPTP problem library, Journal of Automated Reasoning 21 (2) (1998) 177–203.
[11] M. Franssen, Cocktail: A tool for deriving correct programs, Ph.D. thesis, Eindhoven University of Technology

(2000).
[12] M. de Mol, M. van Eekelen, A Proof Tool Dedicated to Clean, Applications of Graph Transformations with Indus-

trial Relevance (2000) 254–257.
[13] J. Robinson, A machine oriented logic based on the resolution principle, Journal of the Association for Computing

Machinery 12 (1) (1965) 23–41.
[14] M. Franssen, Implementing rigid E-unification, Computing Science Report 08–24, Eindhoven University of Tech-

nology (2008).
[15] T. Ball, S. Lahiri, M. Musuvathid, Zap: Automated theorem proving for software analysis, Tech. Rep. MSR-TR-

2005-137, Microsoft Research (October 2005).
[16] T. Wilson, S. Maharaj, R. G. Clark, Flexible and configurable verification policies with omnibus, Journal on Soft-

ware and Systems Modeling 7 (3) (2008) 257–272.
[17] S. Owre, J. Rushby, N. Shankar, PVS: A prototype verification system, in: D. Kapur (Ed.), 11th International

Conference on Automated Deduction, Vol. 607 of Lecture Notes in Artificial Intelligence, CADE, Springer Verlag,
1992, pp. 748–752.

[18] H. Maassen, Verified design by contract : case studies, Master’s thesis, Eindhoven University of Technology (2008).

19

- 94 -

