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Chapter 5
Price-based Control of Electrical Power Systems

A. Jokié, M. Lazar, and P.P.J. van den Bosch

Abstract In this chapter we present the price-based control as a suitable approach
to solve some of the challenging problems facing future, market-based power sys
tems. On the example of economically optimal power balance and transmission
network congestion control, we present how global objectives and constraints can
in real-time be translated into time-varying prices which adequately reflect the cur
rent state of the physical system. Furthermore, we show how the price signals can be
efficiently used for control purposes. Becoming the crucial control signals, the time-
varying prices are employed to optimally shape, coordinate and synchronize local,
profit-driven behaviors of producers/consumers to mutually reinforce and guarantee
global objectives and constraints. The main focus in the chapter is on exploiting
specific structural properties of the global system constraints in the synthesis of
price-based controllers. The global constraints arise from sparse and highly struc
tured power flow equations. Preserving this structure in the controller synthesis
implies that the devised solutions can be implemented in a distributed fashion.
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5.1 Introduction

The aim of this chapter is to present, illustrate and discuss the role of prices in
devising certain control solutions for electrical power systems. In particular we
focus on the problem of capacity management in the sense of optimal utilization of
scarce transmission network capacity. The term price-based control, as we use it
in this chapter, can be considered as equivalent to market-based or incentives-based
operation and control. In general terms, the main idea of the chapter is to present
how the price signals can be used as the main control signals lbr coordination of
many local behaviors (subsystems) to achieve some crucial global objectives.

As an introduction to the control problem considered in this chapter, we continue
with pointing out to some of the changes that are taking place in the operation of
today’s power systems, and to some specific features of these.systems which make
their control an extremely challenging task.

5.1.1 Power systems restructuring

In spite of their immense complexity and inevitable lack of our full comprehen
sion of all dynamic phenomena that are taking place in electrical power systems,
to the present days these systems have shown an impressive level of performance
and robustness. To a certain extent, this can be attributed to the long persistence
of a traditional, regulated industry, which had a practice of rather conservative en
gineering, control and system operation. Another reason for their success is that
traditional power systems are characterized by highly repetitive daily patterns of
power flows, with a relatively small amount of suddenly occurring, uncertain fluctu
ations on the aggregated power demand side, and with well-controllable, large-scale
power plants on the power production side. As a consequence, in traditional power
systems, a large portion of power production could be efficiently scheduled in an
open-loop manner, while the classical automatic generation control (AGC) scheme
[17] sufficed for efficient real-time power balancing of uncertain demands.

Market-based operation

The most significant change that is taking place in power systems over the past
decade is a liberalization and a policy shift towards competitive market mechanisms
for their operation. From a monopolistic, one utility controlled operation, the sys
tem is being restructured to include many parties competing for energy production
and consumption, and for provision of many of the ancillary services necessary for
the system operation, e.g., provision of various classes of capacity reserves [30].
The main operational goal has shifted from centralized, utility cost minimization
objective to decentralized profit maximization objectives of individual parties, e.g.,
of producers, consumers, retailers, energy brokers, etc. Fulfillment of crucial sys
tem constraints, such as global power balance and transmission network limits, has
become a responsibility of market and system operators. The challenging task in

designing the control and decision algorithms for these “global” operators is to en
sure that the autonomous, profit driven behaviors of local subsystems will not act
in a way that the system is driven to a highly unreliable and fragile state (or even
instability), but will rather mutually reinforce on ensuring its integrity. The physi
cal properties of electrical power systems play a prominent role in designing these
markets and control architectures, and they are responsible for a very tight cou
pling in between economical and physical/technical layers of an electrical power
system. They are also a reason why a straightforward transfer of knowledge and
experience from deregulation, restructuring, operation and control of other sectors
to the electric power system sector is often hampered or, even more often, is simply
impossible.

Distributed generation and renewable energy sources

Another major change that is taking place in today’s power systems is large-scale
integration of distributed power generators (DG), many of which are based on in
termittent renewable sources like wind and sun. Non-dependence on fossil fuels
of many DG technologies, together with environmental issues, are the main driv
ing forces for this change, and many countries have posed high targets concerning
deployment of renewable sources over ten years horizons.

As a consequence, future power system will face a significant increase of uncer
tainties in any future system state prediction. Large and relatively fast fluctuations in
production are likely to become normal operating conditions, standing in contrast to
today’s operating conditions characterized by highly repetitive, and therefore highly
predictable, daily patterns. Note that the success of the present power systems heav
ily relies on this high predictability, while in the future, the need for fast acting,
power balancing control loops will increase significantly.

5.1.2 Some specific features of power systems

Electrical power systems are one of the largest and most complex engineering sys
tems ever created. They consist of thousands of generators and substations, and
hundreds of millions of consumers all interconnected across circuits of continen
tal scale. A distinguishing feature of electrical power systems, when compared for
example to telecommunication networks, internet or road traffic networks, is that
the subsystems in a electrical power system are all physically interconnected, i.e.,
dynamics of subsystems in the network are directly coupled.t .2

1)irect dynamical coupling is expressed through a set of equality constraints relating certain
physical quantities among subsystems. e.g.. coupling power flow equations in the electrical power
system.
2 Note that the networks in other infrastructures. e.g., telecommunication networks, internet or

road traffic networks, could also be considered as physically interconnected in the sense that the
subsystems in a network are related through certain physically realized links (which are possibly
further characterized by some constraints), e.g., a highway in a road traffic network. However,
the distinguishing feature of these systems. when compared to an electrical power system, is that
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Large scale, physical interconnections, and the following specific features of
electrical power systems makes mastering their complexity and devising an efficient
operational and control solutions an extremely challenging task:

• Heterogeneity and autonomy. There is an enormous variety of physical de
vices interconnected to the network, with huge spectra of possible dynamical
(physical) characteristics. All these local, almost exclusively nonlinear, dy
namical characteristics of the subsystems are taking part in shaping the global
dynamic behavior of the system, as they are all physically interconnected. In
the economical layer of liberalized power systems, power producers and con
sumers (prosumers) are autonomous decision makers which are driven by their
local, profit-driven objectives. As they are sharing the same po~ver transmission
network, which has a limited capacity, care has to be taken that the local and
autonomous behaviors do not overload or destabilize the system. This generic
global goal is not the natural aim of autonomously acting prosumers.

• No free routing. Unlike other transportation systems, which assume a free
choice among alternative paths between source and destination, the flow of
power in electrical energy transmission networks is governed by physical laws
and is characterized by complex dependencies on nodal power injections (nodal
productions and consumptions). Due to the complex relations, creating efficient
congestion management schemes to cope with the transmission constraints is
one of the toughest problems in design of market, operational and control ar
chitectures for power systems.

• No buffering of commodities. Electrical energy cannot be efficiently stored in
large quantities, which implies that production has to meet rapidly changing
demands immediately in real-time. This characteristic makes electricity a com
modity with fast changing production costs, and is responsible for a tight cou
pling between economical and physical/techical layers of a power system.

5.1.3 Related work

The publications of Fred Schweppe and his co-workers can be considered as the
first studies that systematically investigated the topic of price-based operation of
electrical power systems. Many of the results from that period are summarized in
[8, 26—28]. Ever since, there has been a tremendous amount of research devoted to
a market-oriented approach for the electrical power system sector. For a detailed
introduction and an overview, the interested reader is to referred to many books on
the subject, e.g., [14, 18, 27, 29, 30]. In particular, for a detailed overview and some
recent results concerning different approaches to price-based power balancing and
congestion management of transmission systems we refer to [3, 6, 10, 13, 23, 31]
and the references therein.

the dynamics of subsystems (e.g., cars on a highway) are not directly coupled, but possibly only
indirectly, e.g., through some common performance objectives (common tasks) and/or inequality
constraints (e.g., collision avoidance).

Probably the most closely related to some of the results presented in this chapter
is the work of Alvarado and his co-workers [1—4, 11]. In [11], the authors have
investigated how an independent system operator (ISO) could use electricity prices
for congestion management without having an a priori knowledge about cost func
tions of the generators in the system. There, the authors illustrated how, in principle,
a sequence of market observations could be used to estimate the parameters in the
cost function of each generator. Based on these estimates, and by solving a Suit
ably defined optimization problem, an ISO could issue the nodal prices causing
congestion relieve. Although dealing with an intrinsically dynamical problem, the
paper considered all the processes in a static framework. In [2, 3] the results of
[11] have been extended by addressing possible issues of concern when price-based
congestion management is treated as a dynamical process. The usage of price as a
dynamic feedback control signal for power balance control has been investigated in
[4]. There, the effects of interactions of price update dynamics and the dynamics
of an underlying physical system (e.g., generators) on the stability of the overall
system have been investigated. However, no congestion constraints have been con
sidered and therefore only one, scalar valued, price signal was used to balance the
power system.

In this chapter we present how nodal prices can be efficiently used for real
time power balance control and congestion management of a transmission net
work. These results, which treat the considered problem in a dynamical framework,
present an extension of the above mentioned contributions. In particular, the empha
sis in this chapter is on devising efficient control structures that exploit the specific
structure of global power flow equations and constraints related to the transmission
network. We show how preserving this structure in the proposed solutions results in
a price-based control structure with an advantageous property that it can be readily
implemented in a distributed fashion.

5.1.4 Nomenclature

The field of real numbers is denoted by R, while RIIIXII denotes in by n matrices
with elements in R. For a matrix A E RJIIX!?, A]11 denotes the element in the i-th
row and f-tb column ofA. For a vectorx e R”, [x]1 denotes the i-th element ofx. The
transpose of a matrix A is denoted by AT. A vector x e R” is said to be nonnegative
(nonpositive) if [x]1 > 0 ([x]~ <0) for all i E { 1,. . . n}, and in that case we write x > 0

~ 0). For u,v e R’~ we write u I v if uTv 0. We use the compact notational
form 0 ≤ ii I v ~ 0 to denote the complementarity conditions u > 0, v ~ 0, ii I v.

KerA and ImA denote the kernel and the image space of A, respectively. We use
I,~ and 1,~ to denote an identity matrix of dimension ii x ii and a column vector with
ii elements all being equal to 1, respectively. The operator col(.,...,.) stacks its
operands into a column vector, and diag(.,...,.) denotes a square matrix with its
operands on the main diagonal and zeros elsewhere. The matrix inequalities A >— B
and A >- B mean A and B are Hermitian and A—B is positive definite and positive
semi-definite, respectively. For a scalar-valued differentiable function f: IR” —f
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Vf(x) denotes its gradient at x = col(xi . . . ,x,1) and is defined as a column vector.
With a slight abuse ofnotation we will often use the same sy,nbol to denote a signal,
i.e., a function of time, as well as possible values that the signal may take at any
time instant.

5.2 Optimization decomposition: Price-based control

It is fair to say that the modern control systems theory is grounded on the follow
ing remarkable fact: virtually all control problems can be casted as optimization
problems. It is insightful to realize that the same, far reaching statement, holds as
well for the power systems: virtually all global operational goals of a power system
can be formulated as constrained, time-varying optimization problems. Similarly as
modern control theory accounts for efficiently solving these optimization problems
(which is in most cases a far from trivial task), the same mathematical framework
provides a systematic and rigorous scientific approach to shape operational and con
trol architectures of power systems3. For illustration, in mathematical terms, a shift
from monopolistic, one utility controlled system, to the market-based system is seen
as a shift from explicitly solving a primal problem (e.g., economic dispatch at the
control center) to solving its dual problem (e.g., operating real-time energy mar
ket). The former case can be called the cost-based operation, while the latter can be
called the price-based operation. Before continuing with consideration of some spe
cific problems in power systems, and their price-based solutions, we will first recall
some basic notions from optimization theory. For the general introduction, closely
related subjects and the state-of-the-art results on the distributed optimization, the
interested reader is refereed to [5, 7, 9, 19, 22] and the references therein.

Consider the following structured, time varying4, optimization problem

Xl~.~N

(5.lc)

where x1 ~ R”, i = 1,. . . ,N are the local decision variables, the functions J1 : —*

R, i = I,. . . ,N, denote the local objective functions, while each set 2c~ C R”i is
defined through a set of local constraints on the corresponding local variable x1 as
follows

The interested reader is referred to the excellent paper [91 where the role of alternative ways
for solving optimization problems is reflected in devising alternative operational structures for
communication networks.
‘~ For notational convenience, we have omitted the explicit reference to the time dependence.

{x~ E R” I gj(xj) ~ 0, h1(x~) O},

where gj(’) and h1(•) are suitably defined vector valued functions. The functions G
and H, which respectively take values in IRk and R’, define global inequality and
equality constraints.

Note that the optimization problem (5.1) is defined on the overall, global sys
tem level, where global objective function is sum of local objectives as indicated in
(5.la). Furthermore, note that if the global constraints (5.lc) and (5.ld) are omitted,
the optimization problem (5.1) becomes separable in a sense that it is composed
of N independent local problems which can be solved separately. For such a com
pletely separable case, we say that the optimization problem can he solved in a de
centralized way. For the future reference, we will call the problem (5.1) the primal
problem.

Next, from (5.1) we formulate the dual problem as follows

In (5.3) and (5.4) ~ e R’~ and it e are the dual variables (Lagrange multipliers)
and have an interpretation of prices for satisfying the global constraints (5.lc) and
(5.1 d). If (5.1) is a convex optimization problem, it can be shown that the solutions
of the primal and the dual problem coincide5.

Remark 5.1. Decomposition and local optimization. If the functions H and G have
an additive structure in local decision variables x1, meaning that H(xi,. . . ,XN)

ZZ1 h~(x1) and G(x1,. . . ,XN) = ~Z1~ with some given functions h1(.), ~j(.),

i= 1,... ,N, then for a fixed )~ and ~i the optimization problem in (5.4) is separable
and can be solved in a decentralized way. In that case the i-th local optimization
problem is given by

mm J1(x1)_)~Th1(x1)+,sT,~1(x1).
xi EX~

Li

In fact, an additional mild condition, the so-called Slater’s constraints qualification, is required
for the solutions to coincide, see e.g., [7j for more details.

(5.2)

max
A4t

where

£(A, it)

subject to it ≥ o,

(5.3a)

(5.3h)

£(~,it) :=m ~~NExN (~J~~TH( , . . . ,XN)

subject to

(5.1 a)

x1EX1, i=1,...,N,

(5.4)

H(x1 XN)O,

(5.lb)

(5.ld)

(5.5)
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Remark 5.2. coordination via global price determination. Updating the the dual
variables (prices) A, ~ to solve the maximization problem in (5.3) can he achieved
in a centralized way on a global level, e.g., at the central market operator which cal
culates the market clearing price. In some important cases, as it will be presented in
the following section, the optimal prices (A, ji) can also he efficiently calculated in a
distributed way. This means that they can be calculated even if there is no one cen
tral unit that gathers information and communicates with all the subsystems (local
optimization problems) in the network, but the optimal price calculations are based
only on the locally available information and require only limited communication
among neighboring systems.

Example 5.1. Loosely speaking, the market-based power system can be seen as solv
ing the dual optimization problem (5.3). When the power limits in transmission
network are not considered, this can be more precisely described as follows. Sup
pose that for each i, local decision variable x1 is a scalar and represents the power
production (x1 > 0) of a power plant i, or a power consumption (x1 <0) if the sub
system i is a consumer. Furthermore, let J1(x1) denote power production costs when
the i-th subsystem is a producer, and its negated benefit function when the i-th sub
system is a consumer. Since we do not consider the transmission network limits,
the only global constraint is the power balance constraint x1 = 0, i.e., in (5.1)
and (5.3) we have that H(xj,... ,xN) zZ1 x1. Obviously, the primal problem (5.1)
now corresponds to minimization of total production costs and maximization of to
tal consumers benefit, while the power balance constraint is explicitly taken into
account via (5.1 d). Let us now consider the price-based solution through the corre
sponding dual problem. First note that minimization problem in (5.4) is in this case
given by

fl

£(A) :=min (Jj(xj)-Axj).

In (5.6) each term in the summation, i.e., J1(x1)—Ax1, denotes the benefit of a sub
system i where A denotes the price for electricity. Obviously, the dual problem (5.3)
then amounts to maximizing the total benefit of the system. Note that in solving
the dual problem, the power balance constraint is not explicitly taken into account.
However, the corresponding maximum in (5.3) is attained precisely when the price
A is such that for the solution to the corresponding minimization problem in (5.6) it
holds that ~ x1 0. In other words, the price A which maximizes the total benefit
of the system is precisely the price for which the system is in balance.

To summarize, while in primal solution the global constraints were explicitly
taken into account, in the dual solution they are enforced implicitly through the
price A.

The observation from the above presented example can be generalized to the core
idea of the price price-based control approach: In the price-based control, a price
(Lagrange multiplier) is assigned to each crucial global constraint (i.e., each row in

(5.lc) and (5.Id), see (5.4)) and is used to implicitly enforce this constraint via local
optimization problems (see e.g., (5.5)).

In a rather general sense, the price-based control loop can be illustrated as shown
in Figure 5.1, and is encompassing the interplays between:
i.) physical layer of a power system (C and D in Figure 5.1), with time varying
power flows as prominent signals; and economical layer (A and B in Figure 5.1)
with time varying price signals as the prominent information carriers;
ii.) local objectives of producers/consumers (prosumers) (B and C in Figure 5.1,
corresponding to (5.5)) and global constraints, e.g., power balance, transmission
network limits and reliability constraints (A and D in Figure 5.1, corresponding to
(5.lc) and (5.ld)).

Furthermore, prices are the signals used for coordination and time synchroniza
tion of actions from decentralized decision makers, so that the global system objec
tives are necessarily achieved in such that way that the total social welfare of the
system is maximized, i.e., that they are achieved in the economically optimal way.
It is also insightful to interpret the price-based solutions as incentives-based solu
tions, as prices A are used to give incentives to the local subsystems so that their
local objectives will make them behave in a way which serves global needs.

Figure 5.1: The price-based control loop.

(5.6)
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5.3 Preserving the structure: Distributed price-based
control

5.3.1 Problem definition

Consider a connected undirected graph Q = (V, ~‘,A) as an abstraction of an electrical
power network. V = {v1 , . . . ,v,~} is the set of nodes, E C V x V is the set of undi
rected edges, and A is a weighted adjacency matrix. Undirected edges are denoted
as = (v1, v1), and the adjacency matrix A e R~~<’~ satisfies [A]11 ~/O ~ nj E E and
[A]1~ = 0 ~ ~ E. No self-connecting edges are allowed, i.e., ejj ~ ~ We asso
ciate the edges with the power lines of the electrical network and, for convenience,
we set the weights in the adjacency matrix as follows: [A]1~ —b11, where b11 is the
line susceptance. Note that the matrix A has zeros on its main diagonal and A =AT.
The set of neighbors of a node iij is defined as N1 ~ {ii~ E V I (,í1, v,i) E ~}. Often
we will use the index i to refer the node v1. We define 1(N1) as the set of indices
corresponding to the neighbors of node i, i.e., 1(N1) ~ {J I vj E N1}. We associate
the nodes with the buses in the electrical energy transmission network.

5.3.1.1 Primal: Optimal power flow problem

To define the optimal power flow problem as a primal optimization problem (5.1)
on the global level, with each node v~ we associate a set of local decision variables
{p~,6j} , i.e., in (5.1) x1 := col(p1,61), a singlet j3~ and a triplet (p.,751,J1). Here
p~,6~,p.,751,j3~ ~ R, p. <75~ and J, : R —~ R is a strictly convex, continuously dif
ferentiable function. The values P1 and /3~ denote the reference values for node
power injections into the network, while 6~ denotes a voltage phase angle at the
node v,. Positive values of p~ and j3~ correspond to a flow of power into the network
(production), while negative values denote power extracted from the network (con
sumption). Both p~ and j3~ can take positive as well as negative values, and the only
difference is that, in contrast to ~ the value p, has an associated objective function
J1 and a constraint p. <p~ <]5~. In the case of a positive P1, the function J1 rep
resents the variable costs of production, while for negative values of p~, it denotes
the negated benefit function of a consumer. We will refer to P1 as the power from a
price-elastic producer/consumer (or simply, power from a price-elastic unit), and to
j3~ as the power from a price-inelastic producer/consumer (price-inelastic unit).

Note that the assumption that one price-elastic unit and one price-inelastic unit
are associated with each node is made to simplify the presentation and it does not
result in any loss of generality of the presented results.

We use a “DC power flow” model6 to determine the power flows in the network
for given values of node power injections. The power flow in a line n11 e E is given
by Pu = b1~(61 — 6~) = Pji~ If PIJ > 0, power in the line ejj flows from node v1
to node iii. The power balance in a node yields p~ + j5~ = ZIEI(N) Pij~ With the

6 The DC power flow model is a linear approximation of a complex AC power flow model and is
often used in practice. For a study comparing the AC and DC power flow models, and in particular
the impact of the linear approximation on the nodal prices, the interested reader is referred to [20].

abbreviations p=col(pi,...,p,,), j3=col(j31,...,j3,,), 6=col(61,...,6,1) the overall
network balance condition is p+j3 = B6, where the matrix B is given by B = A —

diag(A1,1).

Problem 5.1. Optimal Power Flow (OPF) problem.
For any constant value of j3,

rninJ(p) ~ r~~J1(pi)
1=1

b11(6u—6~) ≤ 75~, V(i,j E 1(N1)).

where p = col(p1 ,. . . ,p), 75 = colG51,... ,75~), and ]5,~ = J5~~ is the maximal allowed
power flow in the line nu,. LI

We will refer to a vector p that solves the OPF problem as a vector of optimal power
injections.

For an appropriately defined matrix L and a suitably defined vector of power line
limits 75L’ the set of constraints in (5.llc) can be written in a more compact form as
follows:

Note that the constraints (5.7b) and (5.7d) (or equivalently (5.8)) represent global
equality and inequality constraints (5.ld) and (5.lc), respectively. Furthermore,
for each node i, the corresponding constraint (row) in (5.7c) represent the local
inequality constraint in (5.2).

Remark 5.3. In Problem 5.1 we have included 6 explicitly as a decision variable,
which will be crucial in the price-based control design. Another possibility, com
mon in the literature, is to introduce a “slack bus” with zero voltage phase angle and
to solve the equations for the line flows, completely eliminating 6 from the problem
formulation. However, in that case a specific structure, i.e., sparsity, of the power
flow equations is lost. As we will see later in this chapter, preserving this sparsity
will show to be beneficial for distributed controller implementation. LI

Remark 5.4. The matrix B is a singular matrix with rank deficiency one and with the
kernel space spanned by the vector 1,~. Physically, this reflects the fact that only the
relative voltage phase angles determine the power flow. LI

In traditional power system structures, where the production units are owned by
one utility and there are little or no price elastic consumers, adjusting the production
according to the solution of the OPF problem is one of the major operational goals of
a utility. In such a system, the OPF problem is directly (explicitly) solved at a utility
dispatch center, and the optimal reference values p are sent to the production units.

subject to

(5.7a)

p—B6+13 = 0,

:~i; i’ ~ 75,

(5.7b)

(5.7c)

(5.7d)

L6≤]SL. (5.8)
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In contrast to this, in deregulated and liberalized power systems, the OPF problem
is only indirectly (implicitly) solved by utilization of nodal prices. Next we define
the optimal nodal prices problem as a central problem of liberalized, price-based
operated systems.

5.3.1.2 Dual: Optimal nodal prices problem

According to price-based control approach we assign prices (Lagrange multipliers)
to the global coupling constraints (5.7b) and (5.7d) (i.e., (5.8)) in Problem 5.1 to
obtain the corresponding dual problem:

where

max i~(A,lt) (5.9)

N
£~A,it):= mm

6:PE{j~p p )~} ~J1(p,)—A (p_B6+13)+itT(Ls_PL). (5.10)
1=1

In (5.9) and (5.10) A and it are (vector) Lagrange multipliers.

Remark 5.5. The global coupling constraints (5.7b) and (5.8) do not have an additive
structure in the decision variables p and 6, see Remark 5.1. Therefore for some
fixed A and ~i the optimization problem in (5.10) is not separable (see Remark 5.1).
However, when only the prices A and the decision variables p are considered, the
problem (5.10) becomes separable, i.e., it can readility be decomposed into n local
problems, each assigned to one price-elastic unit.

With respect to Remark 5.5, it is insightful the reformulate the dual problem (5.9)
to the following equivalent problem.

Problem 5.2. Optimal nodal prices (ONP) problem. For a constant value of p,

I,

min~J,(T’(,\’)) (5.1 Ia)
1=1

subjectto T(A)—B6+130, (5.Ilb)

Lö<PL, (5.llc)

where A = colQ~1 ,.. . , A,,) is a vector of nodal prices,

col(T~ (A1),... ,

argmin{J1(~1)—A,~1 I p. <j5, ~Y,}. (5.12)
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Although equivalent to (5.9), the problem formulation via (5.11) and (5.12) is in
sightful as it clearly indicates on one hand the role and global objectives of a system
operator and on the other hand the local objectives of price elastic units. The letter
is described by (5.12) and has the following interpretation: when a price elastic unit
at node i receives a price A, for electricity at that particular node, it will adjust its
production ~i to maximize its own benefit J~(p1) — A,p,. The role of a system opera
tor is to determine and issue a vector of nodal prices A such that the overall system
benefit is maximized (5.1 Ia) while the system is in balance (5.1 Ib) and while no
line in the transmission system is congested (5.1 Ic). A vector A that solves the ONP
problem is the vector of optimal nodal prices.

5.3.1.3 Price-based control problem

Consider a power network where each unit, i.e., producer/consumer, is a dynamical
system, and assign to each such unit an appropriate model of its dynamics. Let G,
and G, denote respectively a dynamical model of price-elastic and price-inelastic
unit at node i as follows:

C1: x, = f,(x1,p~,p1) =fj(x1,p~’ ,T1(A1)), Vi, (5.13a)

f,(z~, AI3~;’ , ~ ‘v/i, (5.1 3b)

where x1 and Z, are the state vectors, p~’~ and ~ denote the actual node power in
jection from the system C and C’, respectively, into the network. As already men
tioned, the input p, = T,(A1) denotes a price-dependent reference signal for power
injection, i.e., p = T1(A,) represents desired production/consumption of a price-
elastic unit, while the input p, denotes a reference value for the power injection of
a price-inelastic unit. The desired production/consumption p~ of a price-inelastic
unit does not depend on the electricity price A1, neither on any other signal from the
power system.

Note that (5.1 Ib) is always fulfilled when T(A) and p are replaced respectively
with p’~ = col(p’~,... ,p~) and ~A = col(j4,. . . ~ since in this case (5.1 Ib) repre
sents the conservation law, i.e.,

PA_B6+I3A_O (5.14)

To summarize, the complete dynamical model of a power system is described with
the set of differential algebraic equations (5.13) and (5.14), with A and p as inputs.

As opposed to the actual power injections, which are always in balance (5.14),
keeping the balance in reference values (5.1 Ib), i.e., balance in desired production
and consumption, is a control problem. For future reference, we will always use the
term power balance to refer to the power balance in sense of (5.11 b), and not to the
physical law (5.14).

To solve the power balance control problem, a measure of imbalance has to be
available. The network frequency serves that purpose. Let Z~f ~ col(z~f1 ,.. . ,

denote the vector of nodal frequency deviations. In steady-state the network fre

and
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Figure 5.2: Price-based control scheme for real-time power balancing and congestion man
agement.

quency is equal for all nodes in the system and the system is in balance if the network
frequency is equal to its reference value, i.e., if /.~f = 0. More precisely, if a system
is in a steady-state with ~f = 0, then for each node (5.13a) implies p~ = T1(A1) = p~’,
while (5.13b) implies j3~ = ~ and therefore (5.14) implies (5.1 Ib).

In addition to controlling the power balance, nodal prices are used for congestion
control, i.e., for fulfilment of the inequality constraints (5.8). For convenience we
will define the vector of line overflows as /.~PL ~ Ló—15L.

Finally, we are ready to define the control problem.

Problem 5.3. Optimal price-based control problem. For a power system (5.13) -

(5.14), design a feedback controller that has the network frequency deviation vector
L~f and the vector of line overflows ~~PL as inputs, and the nodal prices A as output
(see Figure 5.2), such that the following objective is met: for any constant value of
j3 such that the ONP problem is feasible, the state of the closed-loop system con
verges to an equilibrium point where the nodal prices are the optimal nodal prices
as defined in Problem 5.2. LI

5.3.2 Distributed price-based controller

In this subsection we first present an algebraic characterization (the Karush-Kuhn
Tucker optimality conditions) of optimal nodal prices in Problem 5.2 and study the
structure of the matrices B and L which define the global coupling constraints (5.7b)
and (5.7d) (i.e., (5.8)). As the main point, we show that this structure is preserved in
the algebraic characterization of optimal nodal prices. Secondly, we show how an
appropriate dynamic extension of these algebraic optimality conditions can be used
as a solution to Problem 5.3.

5.3.2.1 Algebraic characterization of optimal nodal prices: the KKT
conditions

The optimal power flow problem (5.7) is a convex problem which satisfies Slater’s
constraint qualification [7]. Therefore, for this problem the strong duality holds and
the first-order Karush-Kuhn-Tucker (KKT) conditions [7] are necessary and suffi
cient conditions for optimality, and present us with the following characterization
of optimal nodal prices.

Consider some constant value ,‘3 such that the ONP problem (and therefore the
optimal power flow problem (5.7)) is feasible. The KKT conditions for the optimal
power flow problem (5.7) are given by:

0< (p+p) I y~ ≥0,

where A and j.i are Lagrange multipliers associated to global constraints (5.7b) and
(5.7d) (i.e., (5.8)) as before in (5.9),(5. 10), while ~ and -y~ the Lagrange multipliers
associated with the local inequality constraints p ≤ 75 and p ≥ p, respectively. Recall
that the for a,b ~ R”, the expression 0 <a J~ b ≥ 0 means a >0, b ≥ 0 and aTb = 0.

Notice that if no line is congested in the system, then the Lagrange multiplier
jz in (5.15) is equal to zero and (5.15b) yields BA 0. This implies A E KerB or
A = 1,~A* A* E R (see Remark 5.4), i.e., at the optimum, there is one price in the
network for all nodes. In the case that at least one line in the system is congested,
it follows that the optimal nodal prices will in general be different for each node in
the system.

Remark 5.6. The only “direct” coupling of the elements in of optimal Lagrange mul
tipliers A and jt is present in equality (5.lsb) and is completely determined by ma
trices B and L, while the “indirect” coupling beween elements of A and ,u is via p
and 6 and through (5.15a), (5.15c) and (5.lsd). LI

Example 5.2. Consider a simple network depicted in Figure 5.3 and let 712 and 7513

denote the line flow limits in the lines Et2 and E13, respectively. With /~l2 and

I~I3 denoting the corresponding Lagrange multipliers from (5.15d), the optimality
condition (5.1 Sb) relates the optimal nodal prices with the following equality:

p—B6+13=0,
BA+LT/i 0,

VJ(p) — A + ii~ — = 0,

0< (—Lö+75L) J~ p~ ≥0,

0≤ (—p-f-75) 1 ~

(5.l5a)

(5.15b)

(5.15c)

(5.15d)

(5.15e)

(5.1Sf)
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where b12 13 = b12 +b13 and so on. Each row in (5.16) represents an equality related
to the corresponding node in the network, i.e., the first row is related to the first
node etc. Note that the i-th row directly relates the nodal price A, only with the
nodal prices of its neighboring nodes, i.e., with A~, j e 1(N1), and that only the nodal
prices in the nodes corresponding to the congested line ~rj~ are directly related to the
corresponding Lagrange multiplier ,Ujj.

5.3.2.2 Price-based controller

Next, we present the price-based controller that solves Problem 5.3. Let KA, 1<1,
K,, and K0 be positive definite diagonal matrices, such that K1- = crKA, c~ E R and
c~ > 0. Consider the following dynamic linear complementarity7 controller:

where xA and x~, denote the controller states, col(L~f, /-~pL) and w denote inputs to
the controller, while A denotes the output. The matrices KA, K1, K,, and K(~. represent
the controller gains. The input coI(L~f, /~PL), which collects the nodal frequency
and line overflow vectors, is an exogenous input to the controller, while the input
w is required to be a solution to the finite dimensional complementarity problem
(5.17b). The output A is a vector of nodal prices.

Assumption 5.1. The closed-loop system resulting from the interconnection of the
controller (5.17) with the power system (5.13) - (5.14) is globally asymptotically
stable for any constant value of j3 (i.e., with respect to the corresponding steady
state) such that the ONP problem is feasible.

Theorem 5.1. Suppose that Assumption 5.1 holds. Then the dynamic contiviler
(5. 17) solves the optimal power balance and congestion control problem, as defined
in Problem 5.3.

The proof of Theorem 5.1 follows from straightforward algebraic manipulations
on the steady-state relations of the closed-loop system, i.e., of the power system
(5.13),(5.l4) in the closed-loop with the controller (5.17), where it can he shown
that these steady-state relations necessarily include the KKT optimality conditions
(5.15). The complete proof is omitted here for brevity, and for all the details, as well
as for an approach how to verify Assumption 5.1, the interested reader is referred to
[15] and [16].

Note that the controller (5.17) is in fact nothing else than a suitable dynamic ex
tension of the optimality condition (5.15b), which is further appropriately updated
by input signals col(~f, L\pL). With a reference to Remark 5.6, we have the fol
lowing insightful interpretation of (5.17): the controller (5.17) explicitly includes
the “direct” coupling among the elements in A and ~s, while the “indirect” coupling
is obtained by adjustment of A and j~i to the inputs L~f and L~PL which respec
tively carry the information if the constraints (optimality conditions) (5.15a) and
(5.15d) are satisfied or not. The remaining optimality conditions (5.15c), (5.15e)
and (5.1Sf), from (5.15) are satisfied on the local level through profit maximization
behavior of price-elastic units as defined by (5.12).

Remark 5.7. The only system parameters that are explicitly included in the con
troller (5.17) are the transmission network parameters, i.e., the network topology
and line impedances, which define the matrices B and L. To provide the correct
nodal prices, the controller requires no knowledge of cost/benefit functions J, and
of power injection limits (p.,~5,) of producers/consumers in the system (neither is it
based on their estimates). Furthermore, note that in practice often only a relatively
small subset of all lines is critical concerning congestion, and for the controller
(5.17) it suffices to include only these critical lines by appropriately choosing /~PL

andL.

1 P13 P13 3 4

p12 = P12

b12.i3 —b12 —b13 0

—b12 b1223 —/)23 0
—b13 —b23 b132334 —b34

0 0 —b34 b34

Figure 5.3: An example of a simple congested network.

A1

A2

A3

A4

/~l2

j~l3.

b12 b13

—b12 0

0 —b13

00

=0, (5.16)

= —K~B _K~LT x~ + —K1 0 z~f
0 0 x,~ 0 K,, L~PL+W

0~ w L K,~X0+L~pL+w ≥ 0,

A = [i,~ o] [fl],

(5.l7a)

(5.17b)

(5.1 7c)

~‘ For an introduction to complementarity systems, the interested reader is referred to e.g., [12, 25]

and the references therein.
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Figure 5.4: Distributed control scheme for power balance and congestion control.

Example 5.3. Consider again a simple network depicted in Figure 5.3 and described
in Example 5.2. The highly structured relations from the optimality condition
(5.15b) are as well present in the proposed controller (5.17), allowing for its dis
tributed implementation. This means that the control law (5.17) can be implemented
through a set of nodal cont,vllers, where a nodal controller (NC) is assigned to each
node in the network, and each NC communicates only with the NC’s of the neigh
boring nodes. From (5.17) and (5.16) it is easy to derive that the NC corresponding
to node I in the network depicted in Figure 5.3 is given by:

F~A~l [—kAb12.13 kA1bl2 k~1b131 EXA, 1
= I 0 0 0

L~~LlJ L o o o j [x,~13j

xA2

I~WI2l Ek02~~1 + EApI2 F~121
o≤l I~Li +1 i≥0,[w13j [k0~3x,~13j L~Pl3] LW13]

~i=[lO0] X1,12

X1Lj3

where kA1 = [KA]l j, k1~ = [K]1, and ~ k,,13,k012, k0~3 are the corresponding ele
ments from the gain matrix K,, and K(, in (5.l7c). Note that the state x~ is present
only in one of the adjacent nodal controllers, i.e., in node i or in node j, and is
communicated to the NC in the other node.

Figure 5.5: IEEE 39-bus New England test system.

The distributed implementation of the developed controller is graphically illustrated
in Figure 5.4. The communication network graph among NC’s is the same as the
graph of the underlying physical network. Any change in the network topology
requires only simple adjustments in NC’s that are in close proximity to the location
of the change. A distributed control structure is specially advantageous taking into
account the large-scale of electrical power systems. Since in practice B is usually
sparse, the number of neighbors for most of the nodes is small, e.g., two to four.

5.3.3 Illustrative example

To illustrate the potential of the developed, distributed price-based control method
ology, we consider the widely used IEEE 39-bus New England test network. The
network topology, generators and loads are depicted in Figure 5.5. The complete
network data, including reactance of each line and load values can be found in [21].
All generators in the system are modeled using the standard third order model used
in automatic generation control studies [17]. The parameter values, in per units, are
taken to he in the ±20% interval from the values given in [24], pp. 545. Each gen
erator is taken to be equipped with a proportional feedback controller for frequency
control with the gain in the interval [18, 24].

We have used quadratic functions to represent the variable production costs,
i.e., J,(p~) = ~C,.jp? + bg.jpj, where the values of parameters Cg.j, bg.j, with i
30,31 39 denoting the indices of generator busses, are taken from [4] and are
listed in Table 5.1. For simplicity, no saturation limits p, ]5 have been considered.
All loads are taken to be price-inelastic, with the values from [21].

The proposed distributed controller (5.17) was implemented with the following
values of the gain matrices: KA = 3139, K1 = 8139. For simplicity of exposition, the
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39

k,~b12k,~b13—k11 0 0

+ 0 0 0 k,,12 0

0 0 0 0 k,,13

L~f1

L~pj3+wj3

(5.18a)

(5.18b)

(5.18c)
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Table 5.1: Production cost parameters for generator buses.

Bus number I ~

30 0.8 30.00

31 0.7 35.99

32 0.7 35.45

33 0.8 34.94

34 0.8 35.94

35 0.8 34.80

36 1.0 34.40

37 0.8 35.68

38 0.8 33.36

39 0.6 34.00

line power flow limit was assigned only for the line connecting nodes 25 and 26,
and both corresponding gains K,, and K(, in the controller were set equal to 1. The
simulation results are presented in Figure 5.6 and Figure 5.7. In the beginning of
the simulation, the line flow limit p2526 was set to infinity, and the corresponding
steady-state operating point is characterized by the unique price of 39.16 for all
nodes. At time instant 5s, the line limit constraint p2526 = 1.5 was imposed. The
solid line in Figure 5.6 represents the simulated trajectory of the line power 110w
P25.26~ In the same figure, the dotted line indicates the limits on the power flow
P25.26~ The solid lines in Figure 5.7 are simulated tra)ectorieS of nodal prices for
the generator buses, i.e., for buses 30 to 39, which is where the generators are con
nected. In the same figure, dotted lines indicate the off-line calculated values of
the corresponding steady-state optimal nodal prices. For clarity, the trajectories of
the remaining 29 nodal prices were not plotted. In the simulation, all these trajec
tories converge to the corresponding optimal values of nodal prices as well. The
optimal nodal prices for all buses are presented in Figure 5.8. In this figure, the
nodal prices corresponding to generator buses 30—39 are emphasized with the gray
shaded bars. The obtained simulation results clearly illustrate the efficiency of the
proposed distributed control scheme.

5.4 Conclusions and future research

In this chapter we have presented and illustrated on examples the price-based control
paradigm as a suitable approach to solve some of the challenging problems facing
future, market-based power systems. It was illustrated how global objectives and
constraints, updated from the on-line measurements of the physical power system
state, can be optimally translated into time-varying prices. The real-time varying
price signals are guaranteed to adequately reflect the state of the physical system,
present the signals that optimally shape, coordinate and in real or near real-time syn

Figure 5.6: Power flow in the line connecting buses 25 and 26.

c,.

0

Figure 5.7: Trajectories of nodal prices for generator buses. i.e.. for busses 30—39 where the
generators are connected.

Figure 5.8: Optimal nodal prices in the case of congestion. The nodal prices corresponding
to generator busses 30—39 are emphasized with the gray shaded bars.
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chronize local, profit driven behaviors of producers/consumers to mutually reinforce
and guarantee global objectives and constraints.

Future research will be devoted to modification of the devised price-based con
trol scheme so that the prices are updated on the time scale of 5—15 minutes, rather
than on the scale of seconds. Instead of using rapidly changing network frequency
deviations as an indication of power imbalance in the system, one possibility is to
use deviation of power production reference values to the generators which origi
nate from (slightly modified) automatic generation control ioops over the sampling
period (i.e., over 5—15 minutes). These deviations can be used as a measure of
imbalance in the system.

As a final remark, we would like to point out that in its core id~!a the price-based
control approach presented in this chapter, which is based on a suitable dynamic
extension of the Karush-Kuhn-Tucker (KKT) optimality conditions, is suitable for
application in some other types of infrastructures as well. More precisely, when the
system’s objectives are characterized in terms of steady-state related constrained op
timization problems, the time-varying price signals can be efficiently used for con
trol purposes. In particular, the proposed approach is suitable for solving problems
of economically optimal load sharing among various production units in a network.
Examples of such systems include smart power grids in energy-aware buildings, in
dustrial plants, large ships, islands, space stations or isolated geographical areas;
water pumps, furnaces or boilers in parallel operation, etc. A distinguishing and
advantageous feature of the presented approach is that the dynamic extension of the
KKT optimality conditions preserves the structure of the underlying optimization
problem, which implies that the corresponding price-based control structure can be
implemented in a distributed fashion.
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