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Abstract

In this paper we study a branching Brownian motion on Rd with
branching rate � in a Poissonian trap �eld whose Borel intensity mea�
sure � is such that d��dx decays radially with the distance to the origin
as d��dx � ��jxjd��� jxj � �� The process starts with a single parti�
cle at the origin� The annealed probability that none of the particles
hits a trap up to time t is shown to decay like exp��I��� �� d�t 	 o�t�

as t � �� where the rate constant I��� �� d� is computed in terms of
a variational problem� It turns out that this rate constant exhibits a
crossover at a critical value �cr � �cr��� d�� For � � �cr the optimal
survival strategy is to empty a ball of radius

p
�� t around the origin�

to stay inside this ball and to branch at rate �� For � � �cr� on the
other hand� the optimal survival strategy depends on the dimension


d � �
 suppress the branching until time t� empty a ball of radius o�t�
around the origin and stay inside this ball�

d � �
 suppress the branching until time ��t while moving �within a
small empty tube� to a site at distance c�t away from the origin�
empty a ball of radius

p
�� ������t around this site� and during

the remaining time ��� ���t stay inside this ball and branch at
rate �� Here� � � �� � � and c� � � are the minimisers of the
variational problem for I��� �� d��

�



Remarkably� it turns out that �� and c� tend to a strictly positive
limit as � � �cr� i�e�� the crossover at �cr is discontinuous� Moreover�
c� �

p
�� ��� ��� for all � � �cr� i�e�� the empty ball does not contain

the origin�
In contrast� the annealed probability that at least one of the par�

ticles does not hit a trap up to time t is shown to decay to a strictly
positive limit�

AMS ���� subject classi�cations� ��J��� ��J��� ��F��� ��B���
Key words and phrases� Branching Brownian motion� Poissonian traps�
large deviations� survival probability� variational problem� optimal
survival strategy�
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� Introduction and main theorems

In Sznitman ��
 a whole range of questions is investigated that con�
cern Brownian motion among Poissonian obstacles� in particular� sur�
vival probabilities and optimal survival strategies� The present paper
generalises this setting by including branching and addresses a basic
question in the same spirit�

Let Z � �Z�t��t�� be the d�dimensional binary branching Brown�
ian motion �BBM� with a spatially and temporally constant branch�
ing rate � � �� The informal description of this process is as follows�
A single particle starts at the origin� performs a Brownian motion
on Rd � after a mean���� exponential time dies and produces two o��
spring� the two o�spring perform independent Brownian motions from
their birth location� die and produce two o�spring after independent
mean���� exponential times� etc� Think of Z�t� as the subset of Rd

indicating the locations of the particles alive at time t� Write P�x to
denote the law of Z when the initial particle starts at x�

Let 	 be the Poisson point process on Rd with a spatially depen�
dent Borel intensity measure � such that

d�

dx
� �

jxjd�� � jxj � �� � � �� �����

i�e�� the integral of d��dx over large spheres centered at the origin is
asymptotically constant� Write P to denote the law of 	� and E to
denote the corresponding expectation� For a � �� let

K � Ka�	� �
�

x�supp���
Ba�x� �����

be the a�neighborhood of 	� which is to be thought of as a con�gura�
tion of traps attached to 	 �here Ba�x� is the closed ball of radius a
centered at x��

��� Hard killing rule� Theorems ���

For A � Rd Borel and t � �� let jZ�t� �Aj be the number of particles
located in A at time t and

jZ�t�j � the total number of particles at time t
 �����

�



For t � �� let

R�t� �
�

s����t	
supp�Z�s�� �����

denote the collection of all the particle trajectories up to time t ��
the range of Z up to time t�� Let T be the �rst time that Z hits a
trap� i�e��

T � inf ft � � 
 jZ�t� �Kj � �g
� inf ft � � 
 R�t� �K 	� 
g 
 �����

Thus� the event fT � tg stands for the survival up to time t of Z
among the Poissonian traps� i�e�� no particle hits a trap up to time t�
Our goal is to describe the asymptotic decay of the annealed survival
probability �E � P����T � t� as t � � and to identify the optimal
survival strategy�

Our motivation comes from Engl�ander ��
� where it was shown
that if d � � and d��dx � �� then the annealed survival probability
decays like exp���t 	 o�t�
� Intuitively� this means that the system
completely suppresses the branching up to time t in order to avoid the
traps� The corresponding asymptotics for d � � was left as an open
problem� In the present paper we will solve this problem� In addition�
we will consider the higher�dimensional model with a decaying trap
density �eld as in ����� and show that its behavior is partly similar to
and partly di�erent from the one�dimensional model�

To formulate our main results� we need some more notation� For
r� b � �� de�ne

fd�r� b� �

Z
Br���

dx

jx	 bejd�� � �����

where e � ��� �� 
 
 
 � ��� For � 
 ��� �
 and c 
 ������ let

k��d��� c� � lim
t��

�

�t
�
�
Bp�� �����t�ct�

�

� fd

�p
�� ��� ��� c

�
�����

�recall ������� Let

��cr � ��cr��� d� �
�

sd

r
�

�
�����

�



with sd the surface of the d�dimensional unit ball �s� � ��� De�ne

�cr � �cr��� d� �

�
��cr if d � ��
�d�

�
cr if d � ��

�����

with

�d �
�� 	

q
� 	 �M�

d

�M�
d


 ��� ��� ������

where

Md �
�

�sd
max

R������
�fd��� R� � fd��� R�

 ������

Theorem � 	variational formula
 Fix d� �� a� For any ��

lim
t��

�

t
log�E � P����T � t� � �I��� �� d�� ������

where

I��� �� d� � min
������	� c������

�
�� 	

c�

��
	 �k��d��� c�

�

 ������

�For � � � put c � � and k��d��� �� � fd�
p
��� �� � sd

p
����

Theorem � 	crossover
 Fix �� a�
�i� For d � � and all � 	� �cr� the variational problem in ������ has

a unique pair of minimisers� denoted by �� � ����� �� d� and c� �
c���� �� d��
�ii� For d � ��

� � �cr 
 I��� �� d� � �
�

��cr
�

� � �cr 
 I��� �� d� � �� ������

and

� � �cr 
 �� � �� c� � ��

� � �cr 
 �� � �� c� � �
 ������

�iii� For d � ��

� � �cr 
 I��� �� d� � �
�

��cr
�

� � �cr 
 I��� �� d� � �

�
� � �

��cr

�
� ������

�



and

� � �cr 
 �� � �� c� � ��

� � �cr 
 � � �� � �� c� � �
 ������

�iv� For d � �� � �� I��� �� d� is continuous and strictly increasing�

with lim��� I��� �� d� � � �see Fig� ���

�v� For d � �� � �� ����� �� d� and � �� c���� �� d� are both discontinu	

ous at �cr and continuous on ��cr���� with

lim
���

�� ����� �� d�
c���� �� d�

� �� lim
���

c���� �� d� � �
 ������

Moreover� c� �
p
�� ��� ��� for all � � �cr�

�

s�

�cr � ��cr

�i�

� �cr ��cr

s

�

�ii�

Fig� � � �� I��� �� d� for
 �i� d � �� �ii� d � ��

Theorem � 	optimal survival strategy
 Fix �� a� For r� b � �
and t � �� de�ne

C�t� r� b� � f�x� 
 Rd 
 jx�j � b�Brt�x�t� �K � 
g
 ������

�i� For d � �� � � �cr or d � �� any �� and � � � � �� ���

lim
t���E � P���

�
C
�
t�
p

�� ��� �� � �� � c�
�
j T � t

�
� ��

lim
t���E � P���

�
jZ�t�j � be���������tc j T � t

�
� �
 ������

�



�ii� For d � �� � � �cr and � � ��

lim
t���E � P���

�
B��
��

p
�� t��� �K 	� 
 j T � t

�
� ��

lim
t���E � P���

�
R�t� � B��
��

p
�� t��� j T � t

�
� ��

lim
t���E � P���

�
R�t� � B�����p�� t��� j T � t

�
� �
 ������

�iii� For d � �� � � �cr and � � � � ���

lim
t���E � P���

�
jZ���� � ��t�j � btd
�c j T � t

�
� �
 ������

�iv� For d � �� � � �cr and � � ��

lim
t���E � P���

�
B�t��� �K 	� 
 j T � t

�
� ��

lim
t���E � P���

�
R�t� � B�t��� j T � t

�
� �
 ������

Theorem � can be explained as follows� Fix �� d and �� c�

� The probability to completely suppress the branching �i�e�� only
the initial particle is alive� up to time �t is

exp ����t	 o�t�
 
 ������

� The probability for the initial particle to move to a site at dis�
tance ct from the origin during time �t is

exp

�
� c�

��
t	 o�t�

	

 ������

� Under ������ the probability to empty a
p
�� �����t�ball around

a site at distance ct from the origin is �see ������

exp ���k��d��� c�t 	 o�t�
 
 ������

The probability to empty a �small tube� connecting the origin
with this site is exp�o�t�
� For the initial particle to remain inside
this tube up to time �t is also exp�o�t�
� �See Section �����

� The probability for the o�spring of the initial particle present
at time �t to remain inside the

p
�� �� � ��t�ball during the

remaining time ��� ��t is exp�o�t�
 as well� �See Section ���

�



The combined cost of these three large deviation events gives rise to
the sum under the minimum in ������� The minimal cost is therefore
determined by the minimisers of ������� �The proof of Theorem �
shows that any other strategy has a probability that decays faster
than exponential��

Theorem � shows that ������ exhibits a crossover at the critical
value �cr � �cr��� d� de�ned in ������ separating a low intensity from
a high intensity regime� In the low intensity regime the minimisers
are trivial� in the high intensity regime they are trivial only for d � ��
It is noteworthy for d � � that the minimisers are discontinuous at
�cr and that in the high intensity regime the empty ball inside which
the BBM branches freely does not contain the origin� Thus� at the
crossover the centre of the empty ball jumps away from the origin and
the radius jumps down�

Theorem � shows that the optimal strategy indeed is as described
above �modulo �ne details that are not seen on the exponential scale��
We have


� In the low intensity regime � � �cr� the system empties a ball of
radius

p
�� t� and until time t stays inside this ball and branches

at rate �� The cost of this strategy is exp���sd
p
�� 	 o�t�
�

� In the high intensity regime � � �cr


d � �
 the system empties an o�t��ball� and until time t suppresses
the branching �i�e�� produces a polynomial number of par�
ticles� and stays inside this ball� The cost of this strategy
is exp���t	 o�t�
�

d � �
 the system suppresses the branching until time ��t while
moving to a site at distance c�t from the origin �inside a
small empty tube�� empties a ball of radius

p
�� ��� ���t

around this site� and during the remaining time ��� ���t�
stays inside this ball and branches at rate �� The cost of
this strategy is exp��f��� 	 c��

��� 	 �k��d��
�� c��gt	 o�t�
�

��� Soft killing rule� Theorem �

Suppose that� instead of considering the trapping time in ������ we kill
the process when all the particles are absorbed by a trap� That is� if
ZK � �ZK�t��t�� denotes the BBM with killing at the boundary of

�



the trap set K� then we de�ne

�T � inf


t � � 
 jZK�t�j � �

�
������

and we pick f �T � tg as the survival up to time t� It turns out that
then the survival probability does not even decay to zero�

Theorem � Fix d� �� a� Then� for any Borel intensity measure ��

lim
t���E � P����

�T � t� � �
 ������

Theorem � follows from the assertion that the system may sur�
vive by emptying a ball with a �nite radius R � R�� where R� is
chosen such that the branching rate � balances against the killing
rate 
�BR������ the principal Dirichlet eigenvalue of ���� on the
ball BR����
 
�BR����� � �� Indeed� as shown in Engl�ander and
Kyprianou ��
 Theorem ��iv�� for any R � R� there is a strictly posi�
tive probability that at all times at least one particle has not yet left
BR���� Consequently� the survival probability is bounded from below
by exp����BR�����
�

��� Open problems

We conclude with some open problems� For the hard killing model


� For d � � and � � �cr� what is the radius of the o�t��ball that is
emptied and how many particles are there in this ball at time
t�

� For d � � and � � �cr� what is the optimal shape of the �small
tube� in which the BBM moves away from the origin while
suppressing the branching� How many particles are alive at
time ��t�

� What is the optimal survival strategy at � � �cr�

� Instead of letting the trap density decay to zero at in�nity� an�
other way to make survival easier is by giving the Brownian
motion an inward drift while keeping the trap density �eld con�
stant� Suppose that d��dx � � and that the inward drift radi	
ally increases like � �jxjd��� jxj � �� � � �� Is there again a
crossover in � at some critical value �cr � �cr��� �� d�� What is
the optimal survival strategy�

	



For the soft killing model


� What is the limit in ������� say� when d��dx is spherically sym�
metric�

� If the Brownian motion is given an outward drift� then for what
values of the drift does the survival probability decay to zero�

Section � contains preparations� Theorems ��� are proved in Sec�
tions ���� respectively�

Finally� we refer the reader to R ev esz ��
 for many interesting re�
sults on branching Brownian motion and branching random walk�

� Preparations

In this section we formulate three preparatory propositions� Propo�
sitions ��� are needed in the proof of Proposition �� which is itself
needed in the proof of Theorem � in Section ��

Recall from ����� that jZ�t�j denotes the total number of particles
at time t� The following result says that overproduction is superexpo�
nentially unlikely�

Proposition � Let � � �
 Then

lim
t��

�

t
log P��

�
jZ�t�j � e��
��t

�
� ��
 �����

Proof of Proposition �� Since jZ�t�j under P�� is a pure birth process
�Yule!s process� with jZ���j � �� we have

P���jZ�t�j � k� � e��t��� e��t�k��� k 
 N� t � � �����

�see e�g� Karlin and Taylor ��
� equation ������ and the discussion
afterwards�� Hence

P���jZ�t�j � l� � ��� e��t�l� l 
 N� t � �� �����

giving ������ �

For B � Rd open or closed� let �B and "�B denote the �rst exit
times from B for one Brownian motion W resp� for our BBM Z


�B � infft � �
 W �t� 
 Bcg�
"�B � infft � �
 jZ�t� �Bcj � �g
 �����

The following result makes a comparison between these two quantities�

�




Proposition � Let Px denote the law of Brownian motion starting

from x� For any B � Rd open or closed and any x 
 B�

P�x

�
"�B � t j jZ�t�j � k

�
� �Px��B � t�
k� k 
 N� t � �
 �����

Proof of Proposition 
� By an obvious monotonicity argument� it is
enough to show that

P�x

�
"�B � t j jZ�t�j � k

�
� �Px��B � t�
k� k 
 N� t � �
 �����

We will prove this inequality by induction on k� The statement is
obviously true for k � �� Assume that the statement is true for
�� �� 
 
 
 � k � �� Let �� be the �rst branching time


�� � infft � �
 jZ�t�j � �g
 �����

By the Markov property� it su#ces to prove the assertion conditioned
on the event f�� � sg with � � s � t �xed� To that end� let px�s �
Px��B � s� and

�p�s� x�dy� � Px

�
W �s� 
 dy j �B � s

�

 �����

After time s the BBM evolves like two independent BBM!s Z�� Z�

starting from Z�s�� For i � �� 
 
 
 � k � � and y 
 Rd � let

qi�k�s� t� s� � P�y

�
jZ��t� s�j � i� jZ��t� s�j � k � i

j jZ�t�j � k� �� � s
�

�����

�which does not depend on y�� Write "��B � "�
�
B to denote the analogues

��



of "�B for Z�� Z�� Then

P�x

�
"�B � t j jZ�t�j � k� �� � s

�
�

Z
B
Px��B � s�W �s� 
 dy�

�P�x
�
"��B � t� s� "��B � t� s j jZ�t�j � k� �� � s

�

� px�s

Z
B
�p�s� x�dy�

k��X
i��

qi�k�s� t� s�

�P�y
�
"��B � t� s j jZ��t� s�j � i

�
�P�y

�
"��B � t� s j jZ��t� s�j � k � i

�

� px�s

Z
B
�p�s� x�dy�

k��X
i��

qi�k�s� t� s�

��Py��B � t� s�
i�Py��B � t� s�
k�i

� px�s

Z
B
�p�s� x�dy��Py��B � t� s�
k

� px�s

�Z
B
Py��B � t� s��p�s� x�dy�

	k
� ������

where we use the induction hypothesis and Jensen!s inequality� Re�
placing px�s by �px�s�

k� we obtain

P�x

�
"�B � t j jZ�t�j � k� �� � s

�

�
�
px�s

Z
B
�p�s� x�dy�Py��B � t� s�

	k

 ������

By the Markov property� the right�hand side precisely equals �Px��B �
t�
k� giving ������ �

Recall from ����� that R�t� � �s����t	 supp�Z�s�� denotes the range
of Z up to time t� Let

M
�t� � supR�t� for d � ��

M��t� � inf R�t� for d � ��

M�t� � inffr � � 
 R�t� � Br���g for d � �� ������

��



be the right�most and left�most point of R�t� resp� the radius of the
minimal ball containing R�t�� The following result identi�es the typi�
cal behavior of these quantities as t���

Proposition � �i� For d � �� M
�t��t and �M��t��t converge top
�� in P��	probability as t���

�ii� For d � �� M�t��t converges to
p
�� in P�� 	probability as t���

Proof of Proposition �� For �i�� the reader is referred to McKean ��
�
��
 �see also Freidlin ��
� Section ��� and equation �������� Turning to
�ii�� �rst note that the projection of Z onto the �rst coordinate axis
is a one�dimensional BBM with branching rate �� Hence� the lower
estimate for �ii� follows from �i� and the inequality

P��

�
M�t��t �

p
�� � �

�
� P �

��

�
M
�t��t �

p
�� � �

�
�� � �� t � �� ������

where P �
��

denotes the law of the one�dimensional projection of Z� To
prove the upper estimate for �ii�� pick any � � �� abbreviate B �
B�

p
��
��t���� and pick any � � � such that

�

�
�
p

�� 	 ��� � � 	 �
 ������

Estimate �recall ������

P��

�
M�t��t �

p
�� 	 �

�
� P��

�
jZ�t�j � be��
��tc

�
	P��

�
"�B � t j jZ�t�j � be��
��tc

�

 ������

By Proposition �� the �rst term in the right�hand side of ������ tends
to zero superexponentially fast� To handle the second term� we use
Proposition � to estimate

P��

�
"�B � t j jZ�t�j � be��
��tc

�
� �P���B � t�
be

�����tc
 ������

Inserting the formula for Brownian hitting times �see e�g� Karlin and
Taylor ��
� equation ������� we �nd that for t large enough


P��

�
"�B � t j jZ�t�j � be��
��tc

�

�
�
�� exp

�
� ��

p
�� 	 ��t
�

�t
�� 	 o���


�	be�����tc

 ������

��



By ������� the right�hand side of ������ tends to � exponentially fast
as t��� so that ������ yields

lim
t��P��

�
M�t��t �

p
�� 	 �

�
� � �� � �� ������

which completes the proof� �

In Proposition �� �i� is stronger than �ii� for d � �� since it says
that the BBM reaches both ends of the interval ��p��t�

p
��t
�

� Proof of Theorem �

��� Proof of the lower bound

Fix �� d and �� c� We recall the type of strategy the lower bound is
based on� as already explained heuristically in Section ���


� Completely suppress the branching up to time �t �i�e�� only one
Brownian particle is present up to time �t�� This event has
probability

exp ����t	 o�t�
 
 �����

� Move the single particle to a speci�c site at distance ct from the

origin during time �t� This event has probability

exp

�
� c�

��
t	 o�t�

	

 �����

� We may assume without loss of generality that the speci�c site
has �rst coordinate ct and all other coordinates zero� Pick t ��
r�t� such that limt�� r�t� � � and limt�� �

t r�t� � �� Pick
k � c and de�ne the two�sided cylinder ��small tube�� as

Tt �
n
x � �x�� 
 
 
 � xd� 
 Rd 


jx�j � kt�
q
x�� 	 � � �	 x�d � r�t�

o

 �����

Since r�t� � o�t�� the probability to empty Tt is exp�o�t�
 �recall
������� Moreover� if W � denotes the �rst coordinate of the d�
dimensional Brownian motion and

At � fct �W �
�t � ct	 r�t�g�

Bt � fjW �
s j � kt � � � s � �tg� �����

��



then

P �At �Bt� � exp

�
� c�

��
t	 o�t�

	
�����

because

exp

�
� c�

��
t	 o�t�

	
� P �At� � P �At �Bt� � P �At�� P �Bc

t �

� exp

�
� c�

��
t	 o�t�

	
� exp

�
�k�

��
t	 o�t�

	

� exp

�
� c�

��
t	 o�t�

	

 �����

Decompose the Brownian motion W into an independent sum
W � W � 	W d��� and let

Ct � fjW d��
s j � r�t� � � � s � �tg
 �����

Since r�t� � �� we have P �Ct� � exp�o�t�
� Combining this
with ����� and using the independence of W � and W d��� we
�nd

P �At � Bt � Ct� � exp

�
� c�

��
t	 o�t�

	

 �����

In words� emptying Tt� con�ning the Brownian particle to Tt up
to time �t and moving it to a speci�c site at distance ct 	 o�t�

from the origin at time �t� altogether costs exp�� c�

�� t	 o�t�
�

� Empty a
p
�� �� � ��t	ball around the speci�c site at distance

ct 	 o�t� from the origin� �The tube Tt need not be disjoint
from this ball� but this does not a�ect the argument�� Under
������ the probability of this event is

exp ���k��d��� c�t 	 o�t�
 
 �����

� Finally� require the branching system to stay inside the
p
�� ���

��t	ball during the remaining time ��� ��t� $From Proposition
� it follows that the probability of this event is exp�o�t�
�

Minimising the combined cost of all these events over the parameters
� and c provides us with the lower estimate for the annealed survival
probability�

��



��� Proof of the upper bound

Fix �� d and � � � small� Recall that Nt is the number of particles at
time t� For t � �� de�ne

�t � sup
n
� 
 ��� �
 
 N�t � btd
�c

o

 ������

Then� for all n 
 N�

�E 	 � P���T � t�

�
n��X
i��

�E 	 � P��

�
fT � tg �

�
i

n
� �t �

i	 �

n

��

�
n��X
i��

exp

�
�� i

n
t	 o�t�

	
�E 	 � P

�i�n�
t ��T � t�� ������

where we use ����� and introduce the conditional probabilities

P
�i�n�
t ��� � P �� j N i��

n
t � btd
�c�� i � �� �� 
 
 
 � n� �
 ������

Let A
�i�n�
t � i � �� �� 
 
 
 � n� �� denote the event that� among the N i��

n
t

particles alive at time i
�
n t� there are � btd
�c particles such that the

ball with radius

�
�i�n�
t � ��� ��

p
��

�
�� i	 �

n

�
t ������

around the particle is non�empty �i�e�� contains a point from 	�� Triv�
ially�

�E 	 � P
�i�n�
t ��T � t� � �E 	 � P

�i�n�
t ��fT � tg �A

�i�n�
t �

	�E	 � P
�i�n�
t ��T � t j �A�i�n�

t 
c�
 ������

Consider the BBM!s emanating from the particles alive at time i
�
n t�

There is an obvious radial symmetry regarding each of these BBM!s
with respect to their starting points� Using this fact� along with their
independence and Proposition �� we conclude that the second term in
the right�hand side of ������ is bounded above by

�
�� C�

��
�i�n�
t 
d��


btd��c
� exp

��C����t
�
�
�

������

��



uniformly in all parameters� Indeed� on the event �A
�i�n�
t 
c there are

� btd
�c balls containing a trap� in the remaining time �� 	 i
�
n �t

the BBM emanating from the centre of each ball exits this ball with
a probability tending to � as t � � �by Proposition � and ��������
and by radial symmetry the trap inside the ball has a probability

C����
�i�n�
t 
d�� to be hit by the BBM when exiting� The estimate in

������ is superexponentially small �SES��
To estimate the �rst term in the right�hand side of ������� ran�

domly pick btd
�c	 � particles from the N i��
n

t particles alive at time
i
�
n t� doing so independently of their spatial position and according to

some probability distribution Q � Here is a way how to realize Q � Mark
a random ancestral line by tossing a coin at each branching time and
choosing the �nicer� or the �uglier� o�spring according to the out�
come� In this way we choose a �random� particle from the o�spring�
Repeat this procedure independently so many times until it produces
btd
�c 	 � di�erent particles� Since the particles are chosen indepen�
dently from the motion process� each of them is at a �random point�
whose spatial distribution is identical to that of W � i
�

n t�� where W
denotes the standard Brownian motion�

Consider now the centers of the empty balls at time i
�
n t and let

x
�i�n�
� be the one closest to the origin� We have

�E 	 � P
�i�n�
t �

�n
jx�i�n�� j � ct

o
�A

�i�n�
t

�

� �E 	 � P
�i�n�
t � Q�

�
� a random point at distance � ct�

the ball with radius �
�i�n�
t around this random point is empty

�

� �btd
�c	 �� exp

�
� c�

��i	 ���n
t	 o�t�

	

� exp

�
��fd

�
��� ��

p
��

�
�� i	 �

n

�
� c

�
t	 o�t�

	

 ������

Indeed� on the event A
�i�n�
t the number of empty balls is � btd
�c� so

that at least one of the btd
�c 	 � particles picked at random must

��



have a non�empty ball around it� From ������ and ������ we now get

�E 	 � P
�i�n�
t ��T � t�

�
n��X
j��

�E 	 � P
�i�n�
t �

��
j

n

p
�� t � jx�i�� j �

j 	 �

n

p
�� t

�
�A�i�n�

t

�

	exp���t	 o�t�
 	 SES

�
n��X
j��

�btd
�c	 �� exp

���j��n�
�i	 ���n

t	 o�t�

	

� exp

�
��fd

�
��� ��

p
��

�
�� i	 �

n

�
�
j

n

�
t	 o�t�

	

	exp���t	 o�t�
 	 SES
 ������

�The SES comes from the second term in the right�hand side of �������
Substitute this estimate into ������� optimize over i� j 
 f�� �� 
 
 
 � n�
�g� let n�� followed by � � �� to obtain

lim sup
t��

�

t
log�E 	 � P���T � t� � �I��� �� d�
 ������

�In ������� put � � i�n and c � j�n before letting n�� and use the
continuity of the functional from which the minimum is taken�� �

� Proof of Theorem �

��� Proof of Theorem ��i	

Let

Fd��� c� � �� 	
c�

��
	 �fd

�p
�� ��� ��� c

�

 �����

Then ������ reads �insert ������

I��� �� �� � min
������	� c������

Fd��� c�
 �����

Since Fd is continuous in both variables and diverges as c � �� the
minimisers ��� c� of ����� exist� We need to show that they are unique
when � 	� �cr�

��



d � �
 Since f��r� b� � �r� we have f��
p
�� ��� ��� c� � �

p
�� ��� ���

which does not depend on c� Hence the minimum over c in ����� is
taken at c� � �� so that ����� reduces to

I��� �� �� � min
������	

n
�� 	 ��

p
�� ��� ��

o

 �����

The function under the minimum in ����� is linear in �� and changes
its slope from positive to negative as � moves upwards through the
critical value �cr given by � � �cr�

p
��� This identi�es �cr as in ������

The minimiser of ����� changes from �� � � to �� � �� proving �������
while I��� �� �� changes from ��

p
�� to �� proving �������

d � �
 We have

Fd��� c� � Fd��� �� � �� 	
c�

��
	 �Ad����� c� �����

where

A��d��� c� � fd�
p

�� ��� ��� c� � fd�
p

��� �� � � �����

with equality if and only if ��� c� � ��� ��� �The latter statement is
easily deduced from ������� Suppose that ��� c� � ��� �� is a minimiser
when � � ��� Then the right�hand side of ����� is nonnegative for all
��� c� when � � ��� Consequently� for all � � �� the right�hand side
of ����� is zero when ��� c� � ��� �� and strictly positive otherwise�
Therefore we conclude that there must exist an �cr 
 ����
 such that

�i� ��� c� � ��� �� is the unique minimiser when � � �cr�

�ii� ��� c� � ��� �� is not a minimiser when � � �cr�

In Section ��� we will identify �cr as given by ����������� and this will
show that actually �cr 
 ������ It remains to prove that when � � �cr
the minimisers are unique� This is done in Steps I�III below�

I� Minimisers in the interior
 First note that the combination �� �
�� c� � � is not possible because F ��� c� � � for all c � � �see the
remark below �������� Also the combination �� � �� c� � � is not
possible because F ��� �� takes its minimum either at � � � or � � ��
and so �� � � would imply �� � �� However� �� � � can be excluded
through following lemma�

Lemma � For every �� � � there exists a �� � ������ � � such that

�� � �� �� for all � � ���

�	



Proof of Lemma �� Since Fd��� c� � � 	 c�

� � a minimiser �� � � would
necessarily come with a minimiser c� � �� giving the value � for the
minimum� However� it is possible to do better� Namely� note from
����� that fd�r� b� � vdr

d�bd�� as r � � and r�b � �� with vd the
volume of the d�dimensional unit ball� Pick � � � � � and c � ��

�
Then� for � � ��

Fd��� �� ��

� � ���� �� 	
��
�

��� � ��
	 �fd�

p
�� �� ��

�

� ��� � �� 	

�
�

�
��
� 	 �vd����

d
���d
��



	
�� 	 o����

� ��� � �� 	 o���
 �����

For � small enough� the right�hand side is strictly decreasing in ��
showing that the minimum cannot occur at � � �� In fact� the above
expansion shows that � � ������ for any � � ��� �

Thus we may conclude that for � � �cr it is enough to consider � �
� � � and c � �� and consequently we may look for the stationary
points of Fd�

II� Stationary points
 For R � �� let

fd�R� �

Z
BR���

dx

jx	 ejd�� 
 �����

Then we may write ����� as

Fd��� c� � �� 	
c�

��
	 �cfd

�p
�� ��� ��

c

�

 �����

The stationary points are the solutions of the equations

� � � � c�

���
� �
p

��f �d

�p
�� ��� ��

c

�
�

� �
c

�
	 �
h
fd

�p
�� ��� ��

c

�

�
p
�� ��� ��

c
f �d

�p
�� ��� ��

c

�i

 �����

Eliminating f �d� we obtain

�fd

�p
�� ��� ���

c�

�
� � c�

��
	

�� ��

c�

�
� � c��

����

	
������

�




and hence

Fd��
�� c�� � � � c��

����

 ������

Putting

u �

p
�� ��� ��

c
� v �

cp
�� �

� ������

we may rewrite ����� as

� � � � �v� � �
p

��f �d�u��

� �
p

�� v 	 ��fd�u�� uf �d�u�
� ������

and ������ as

Fd�u
�� v�� � ���� v���
 ������

III� Uniqueness
 Suppose that �u�� v�� and �u�� v�� give the same min�
imum� Then� by ������� we have v� � v�� Suppose that u� 	� u�� Then
from the �rst line of ������ it follows that f �d�u�� � f �d�u��� Using this
in the second line of ������� we get

fd�u��� u�f
�
d�u�� � fd�u��� u�f

�
d�u��� ������

or

fd�u��� fd�u��

u� � u�
� f �d�u�� � f �d�u��
 ������

This in turn implies that there must exist a third value u�� strictly
between u� and u�� such that

f �d�u�� � f �d�u�� � f �d�u��
 ������

Uniqueness now follows from the following property of fd� implying
that f �d does not attain the same value at three di�erent points� �The
singularity of f �d at � does not a�ect the above argument��

Lemma � R �� f �d�R� is strictly increasing on ��� ��� in�nity at ��
and strictly decreasing on ������

��



Proof of Lemma 
� Using polar coordinates� we can write ����� as

fd�R� � C�d�

Z R

�
dr rd��

Z �

�
d	

�
� 	 r� � �r cos	

�� d��
� � ������

where only one angle variable 	 appears because of radial symmetry�
Hence

f �d�R� � C�d�Rd��
Z �

�
d	

�
� 	R� � �R cos	

�� d��
� 
 ������

Set S � ��R to write

f �d���S� � C�d�

Z �

�
d	

�
� 	 S� � �S cos	

�� d��
� 
 ������

For S � �� the integrand is strictly decreasing in S for all 	 
 ��� �
�
Therefore S �� f �d���S� is strictly decreasing on ������ At S � �� it
diverges� For S � �� ������ equals

f �d���S� � C�d��F ��� �� �� S�� � C�d��
�X
k��

S�k

�Qk��
l�� �� 	 l�

k%

��

�

������

where F is the hypergeometric function and � � d��
� �see Gradshteyn

and Ryzhik ��
� ������� and ������� The summand is strictly increasing
in S for all k� Therefore S �� f �d���S� is strictly increasing on ��� ���
�

��� Proof of Theorem ��ii�iii	

Part �ii� is an immediate consequence of the calculation for d � � in
Section ���� Part �iii� partly follows from the calculation for d � � in
Section ���� The remaining items are proved here�

From ����� and ������ we see that

I��� �� d� � ���� v��� ������

with v� the maximal value of v on the curve in the �u� v��plane given
by the equation

�p
��

fd�u� � �v 	 �

�
u��� v��� ������

��



which is obtained from ������ by eliminating f �d�u�� Using ������ we
can write the left�hand side of ������ as �

��cr

�
�sd

fd�u�� Since fd�u� � sdu

as u�� by ������ we obtain from Lemma � that the left�hand side of
������ is strictly convex on ��� ��� has an in�nite slope at �� is strictly
concave on ������ and has the line u �� �

�
�
��cr
u as its asymptote �see

Fig� ��� Therefore we can identify �cr through the following formula


�cr � sup

�
� � �


�

��cr

�

sd
fd�u� � �

s
�� �

��cr
	

�

�

�

��cr
u �u 
 �����

�



������

Indeed� consider the line on the right�hand side of ������ when v is
chosen such that � � v� � �

��cr
� in which case it runs parallel to the

asymptote of the curve on the left�hand side� If � � �cr� then the
line and the curve do not touch� As v is decreased� the line cuts the
curve at in�nity� indicating that v� corresponds to u� � �� On the
other hand� if � � �cr� then the line will touch the curve for a larger
value of v� indicating that v� corresponds to u� 
 ������ In fact� v�

corresponds to u� 
 ��� �� because the curve has in�nite slope at u � �
and is concave for u 
 ������

� u

r

�
�v

���

���

Fig� � Qualitative plot of


��� u �� �
��cr

�
�sd

fd�u�� ��� u �� �v 	 �
�u��� v���

The dotted line has slope �
�

�
��cr

�

��



Put

"fd�u� � sdu� fd�u�� Md �
�

�sd
max

u������

"fd�u�
 ������

Then ������ reads

�cr � sup

�
� � �


s
�� �

��cr
�

�

��cr
Md

�

 ������

Hence s
�� �cr

��cr
�

�cr
��cr

Md
 ������

This completes the proof of �����������
We have now proved all the statements in Theorem ��ii�iii� �see

also Section �����

��� Proof of Theorem � �iv�v	

The following properties hold


�a� � �� u���� �� d� and � �� v���� �� d� are continuous on ��cr����

�b� � �� v���� �� d� is strictly decreasing on ��cr����

�c�

lim
���cr

u���� �� d� � ud� lim
���cr

v���� �� d� �
p
�� �d� ������

where ud is the unique maximiser of the variational problem in
������ and �d is given by �������

�d� lim��� u���� �� d� � lim��� v���� �� d� � ��

�e� u���� �� d� 
 ��� �� for all � 
 ��cr����

These properties are easily deduced from Fig� �� Note that curve ���
is � times a function that does not depend on ��

�iv� Items �a� and �b� in combination with ����� and ������ imply that
� �� I��� �� d� is continuous and strictly increasing on ��cr���� To
see that it is continuous at �cr� use item �c� to get lim���cr I��� �� d� �

��



��d � � �cr
��cr

�recall ������� which coincides with the limit from below�

Item �d� in combination with ����� yields lim��� I��� �� d� � ��

�v� Since �recall �������

�� �
�

� 	 u�v�
� c� �

p
��

v�

� 	 u�v�
� ������

item �a� implies that � �� ����� �� d� and � �� c���� �� d� are continuous
on ��cr���� Clearly� ������ and ������ imply that �� and c� tend to a
strictly positive limit as � � �cr� which shows a discontinuity from their
value zero for � � �cr� Item �d� shows that ��� ����c� and c� tend to
zero as ���� Finally� from item �e� we obtain that c� �

p
�� ������

�recall ��������

� Proof of Theorem �

The proofs of the various statements in Theorem � all rely on the
following simple consequence of Theorem �� Let fEtgt�� be a family
of measurable events satisfying

lim sup
t��

�

t
log�E � P����fT � tg �Ec

t � � �I��� �� d�
 �����

Then

lim
t���E � P����Et j T � t� � �
 �����

Since all the statements in Theorem � have the form of ������ they
may be proved by showing the corresponding inequality of type ������
The proofs below are based on Section ���� We use the notations of
that section freely�


�� Proof of Theorem ��iii	

Let � � �cr and � � � � ��� Abbreviate

Kt �
n
jZ���� � ��t�j � btd
�c

o

 �����

��



Since Kc
t � f�t � ����g �recall �������� we have similarly as in ������

that

�E � P��� �fT � tg �Kc
t �

�
bn������c��X

i��

�E 	 � P��

�
fT � tg �

�
i

n
� �t �

i	 �

n

��

�
bn������c��X

i��

exp

�
�� i

n
t	 o �t�

	
�E 	 � P

�i�n�
t � �T � t� 
 �����

To continue the estimate� substitute ������ into ����� and optimise
over j 
 f�� �� 
 
 
 � n� �g� but with the constraint

i 
 f�� �� 
 
 
 � bn��� � ��c � �g
 �����

By Theorem ��i�� the variational problem de�ning I��� �� d� has a
unique pair of minimisers� However� under the optimisation� the pa�
rameter � � i�n is bounded away from �� because of ������ Conse�
quently�

lim sup
t��

�

t
log�E � P��� �fT � tg �Kc

t � � �I��� �� d�
 �����


�� Proof of Theorem ��i	

The proof of the �rst limit in ������ is very similar to that of part �iii��
First� recall that ct is the distance between the origin and the centre
of the closest empty ball in the proof in Section ���� Let �� � � and
� � � be so small that p

�� � �
p

�� �� 	 �
 �����

Then� obviously� the event

Ct � f�x� 
 Rd 
 j jx�j � c� j � �� Bp�� ���������t�x�t� �K � 
g
�����

is contained in the event C�t�
p
�� �� � �� � ��� c��� so it su#ces to

prove the claim for Ct� Consider the optimisation procedure in the
proof in Section ���� but now for the probability

�E � P��� �fT � tg � Cc
t � 
 �����

��



Similarly to the proof of part �iii�� the vector parameter ��� c� �
�i�n� j�n� is again bounded away from its optimal value� The dif�
ference is that� instead ������ now �i�n� j�n� is bounded away from
the set

��� � ��� �� 	 ���� �c� � �� c� 	 ��
 ������

Again� it follows from the uniqueness of the minimisers that

lim sup
t��

�

t
log�E � P��� �fT � tg �Cc

t � � �I��� �� d�
 ������

To prove the second limit in ������� abbreviate

&Kt �
n
jZ�t�j � be���������tc

o

 ������

First note that� by ������ for any � � ��m and k � �� �� � ��m�

sup
x�Rd

P�x

�
jZ �kt� j � be���������tc

�
� e������
m�t�� 	 o���

 ������

The probability �E � P��� �T � t� was already estimated through
������ and ������� To estimate �E � P��� �fT � tg � &Kc

t �� use the
analogue of ������� but modify the estimate in ������ as follows� First�
observe that for

i	 �

n
� �� 	

�

m

we can use the Markov property at time i
�
n together with ������� to

obtain an estimate that is actually stronger than the one in ������


�E 	 � P
�i�n�
t ��fT � tg � &Kc

t �

� exp

�
��

�
�� �

m

�
t	 o�t�

	

�
n��X
j��

�btd
�c	 �� exp

���j��n�
�i	 ���n

t	 o�t�

	

� exp

�
��fd

�
��� ��

p
��

�
�� i	 �

n

�
�
j

n

�
t	 o�t�

	

	exp���t	 o�t�
 	 SES
 ������

��



Compare now ������ with ������� The presence of the extra factor
exp

��� ��� �
m

�
t	 o�t�

�
in ������ means that when the parameter

� � i�n is close to its optimal �for ������� value ��� the optimum
obtained from ������ is strictly smaller than the one obtained from
������� Since� on the other hand� �� is the unique minimiser for �������
this is already enough to conclude that

lim sup
t��

�

t
log �E � P��� �fT � tg � &Kc

t � � �I��� �� d�
 ������


�� Proof of Theorem ��ii	

To prove the second limit in ������� abbreviate

Dt � fR�t� � B��
��
p
�� t���g ������

and note that� since

�

�

�
�� 	 ��

p
��
��

� �� ������

the same argument as in the proof of ������ gives us that

lim sup
t��

�

t
log P���D

c
t � � ��� 	 ���� 	 � � ��� 	 ����
 ������

Pick �� � � such that ��� �
��cr

� �� 	 ����� Then ������ says that

lim sup
t��

�

t
log P���D

c
t � � ���� �

��cr

 ������

Using the �rst limit in ������ with � � ����� we �nd that �recall
�� � c� � � and ������

lim sup
t��

�

t
log �E � P��� �fT � tg �Dc

t �

� lim sup
t��

�

t
log �E � P���

�
C
�
t�
p

��
�
�� ����

�
� �
�
�Dc

t

�
� lim sup

t��
�

t

h
log P

�
C
�
t�
p

��
�
�� ����

�
� �
��

	 logP�� �D
c
t �
i

� � ��� ���� 	 ��
�
�
�

��cr
� � �� 	 ����

�
I��� �� d�

� �I��� �� d�� ������

��



where the second inequality uses ����� and ������� and the second
equality uses the �rst line of �������

To prove the third limit in ������� let � � �� � � and abbreviate

A�
t � fB�����p�� t��� �K � 
g�

A�
t � fB������p�� t��� �K � 
g�

D�
t � fR�t� 	� B�����p�� t���g
 ������

Estimate

�E � P����fT � tg � �D�
t 

c� � �E � P����fT � tg � �D�

t 

c �A�

t �

	�E � P���
�fT � tg � �A�

t 

c
�

 ������

From ������ we have that

lim sup
t��

�

t
log�E � P���

�fT � tg � �A�
t 

c
�
� �I��� �� d�
 ������

Clearly�

�E � P�����D
�
t 

c �A�

t � � P����D
�
t 

c�P�A�

t ��

�E � P�����D
�
t 

c �A�

t � � P����D
�
t 

c�P�A�

t �� ������

and

lim
t��

�

t
log P�A�

t � � lim
t��

�

t
log P�A�

t �
 ������

Hence

lim sup
t��

�

t
log�E � P�����D

�
t 

c �A�

t �

� lim sup
t��

�

t
log�E � P�����D

�
t 

c �A�

t �

� �I��� �� d�� ������

where the last inequality follows from Theorem � and the fact that
f�D�

t 

c �A�

t g � fT � tg� By ������������ and ������� we obtain that

lim sup
t��

�

t
log�E � P����fT � tg � �D�

t 

c� � �I��� �� d�
 ������

�	



The proof of the �rst limit in ������ is a slight adaptation of the
previous argument� Let � � �� � �� Let Dt be as in ������ but replace
� by ��� and abbreviate

A�
t � fB��
��

p
�� t��� �K 	� 
g�

A�
t � fB��
���

p
�� t��� �K 	� 
g
 ������

Estimate

�E � P����fT � tg � �A�
t 

c� � �E � P����fT � tg �Dt � �A�

t 

c�

	�E � P��� �fT � tg � �Dt

c� 
 ������

Now the statement follows from ������ and ������ along with the esti�
mate

lim sup
t��

�

t
log�E � P����Dt � �A�

t 

c�

� lim sup
t��

�

t
log�E � P����Dt � �A�

t 

c�

� �I��� �� d�
 ������


�� Proof of Theorem ��iv	

We will consider the two statements in the reversed order� For the
second statement in ������� �rst note that� by Theorem ��ii�� we have
�� � �� Now recall the de�nition of Kt from ������ The estimate in
����� with �� � � says that the event fT � tg �Kc

t has a probability
that is smaller than the probability of fT � tg on an exponential scale
�let us call such an event negligible�� i�e�� considering survival� we may
also assume that there are polynomially many particles only at time
t��� �� �� � � � ���

The strategy of the rest of the proof is to show two facts

�a� all the particles have not left an �t���ball around the origin up to
time t��� �� �let Ft denote this event��
�b� each BBM emanating from one of the �parent� particles at time
t�� � �� will be contained in an �t���ball around the position of the
parent particle �let Gt denote this event��

For �a�� note that trivially� Kt � F c
t has an exponentially small

probability �because the polynomial factor does not a�ect the expo�
nential estimate�� but we must in fact show that fT � tg �Kt � F c

t

is negligible� We now sketch how to modify ������ to prove this and

�




leave the obvious details to the reader� To estimate fT � tg�Kt�F c
t �

replace �� 	 ��
p
�� by ��� and� instead of the �rst limit in ������

�regarding the existence of the empty ball�� use Theorem ��iii� along
with the fact that the branching is independent of the motion�

For �b�� we must show that fT � tg �Kt � Gc
t is negligible� The

proof is similar to the one in the previous paragraph
 ������ should be
appropriately modi�ed� The di�erence is that now we must use the
Markov property at time t�� � �� and deal with several particles at
that time� However� this is no problem because on the event Kt we
have polynomially many particles only� �The use of Theorem ��iii� is
just like in the previous paragraph��

The �rst statement in ������ follows after replacing �� 	 ��
p
��

and �� 	 ���
p
�� by � resp� �� in ������������ and using the second

statement in ������ instead of �������
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