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We present a novel low latency, high throughput and scalable optical packet switch
(UPS) capable to optically interconnect hundreds of input/output ports. We focus on a
strictly non-blocking Spanke architecture with contention resolution based on
wavelength conversion. Highly distributed control of the UPS reduces the switching
time to few nanoseconds regardless the amount of inputs/outputs. Queuing node
analysis (mean values analysis) of input buffers in a computer communication network
with windowflow control confirms that the new architecture, unlike rearrangeable non-
blocking (i.e. Benes) architecture, can operate with low latency and high throughput
with a very large amount of input/output ports.

Introduction

The next generation High Performance Computer Systems and data-centers require
PetaFlop/s processing speed and Petabyte storage capacity [1] with thousands of low-
latency short link interconnections between computers nodes [2]. Switch matrices that
operate transparently in the optical domain are a potential way to efficiently
interconnect 1000’s of inputs/outputs, complying the harsh transmission quality
requirements (BER< 1 0~ 1 after retransmission and FEC) and the end-to-end latency (—~

1 ~ts including encoding/decoding and processing time) of these systems [3].
We consider the general system depicted in Fig. 1 a. It consists of an electronically
controlled optical switch matrix interconnecting a large number of ingress and egress
nodes. Typical switch architectures that are used in such system are rearrangeable non-
blocking architectures (Benes, Banyan, Omega, etc...). Figure lb shows the time it
takes to reconfigure such switch matrices expressed in clock-cycles for several routing
algorithms [4]. Assuming that a clock cycle takes one ns, it is visible that the fastest
algorithm is the looping algorithm (which scales as Nlog2(N), N being the numbers of
nodes), it follows that latency requirements cannot be met. During this time, the switch
is not able to handle data, thus incoming packets are either lost or need to be stored in
electronic buffers, limiting the maximum load of the system. A part from that, the
switches matrices discussed above allow data packets to be simultaneously routed to the
same output port. This leads to packet collisions that degrade the system performance.
In this paper we investigate the load and the latency for systems as shown in Fig. la.
We firstly compute the load and latency for a Benes architecture and show that there is
little potential to scale such architecture to a large number of nodes. We present an
alternative architecture that has distributed control. The architecture we present has as
an advantage that the control time is independent of the number of nodes and therefore
the architecture has an advantage that latency can be very small while operated at high
number of nodes.
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Fig, 1: (a) abstract system under investigation and (b) matrix reconfiguration time according to different algorithms.

Switch architecture with distributed control and contention resolution

Fig. 2 shows the OPS architecture with distributed control to interconnect the
input/output nodes. Window flow control is commonly used to govern the data
transmission. In a system with window flow control copies of the transmitted packets
are stored in electronic input buffers until they are acknowledged. New traffic is refused
when a certain number of packets in the node is unacknowledged, the upper bound of
unacknowledged packets is called Window Size (WS). Thus we deal with packet
contention by simply retransmitting of data.
In order to minimize the latency and to maximize the load of the system, queues at the
input buffers should be as small as possible. In such system queues at the electronic
buffers are related to three factors: the Round Trip Time(RTT), the contention
probability and the reconfiguration time of the switch. While RTT is determined by the
physical link, contention probability and reconfiguration time depend on the
architecture and on the amount of input/output ports of the switch. Considering a short
link (50 m), in long links the latency associated with the RTT is simply not acceptable,
and rearrangeable non-blocking architectures, like Benes, the reconfiguration time of
the switch is the predominant term and limits the scalability.
The proposed new switch is a strictly non-blocking architecture based on parallel 1 xN
optical switches and Contention Resolution Blocks (CBRs) as shown in Fig. 2. This
architecture is self-configured. Each lxN switch can manage the forwarding of the
packets with a control that is independent of the other lxN switches. This results in a
highly parallel and distributed control. The only latency introduced to reconfigure the
switching matrix is the time to process the packet labels.
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Fig. 2: New OPS architecture with highly distributed control and contention resolution,

The system in Fig. 2 operates as follows. Each of the N input buffers consists of W
queues. Packets can leave the input buffers using any of the W available wavelength
channels. Up to W packets can leave each input buffer in a single time slot if they are
addressed to different egress nodes; in case that two or more packets have the same
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destination, one or more packets need to be stored and forwarded in next time slots. The
W signals, indicated by ?~ to 2~w, are then multiplexed and represent one of the N input
of the switch. Thus, the total number of logical inputs/outputs is NW.
At each switch input, packets at different wavelengths are demultiplexed and fed into
lxN optical switches. The packets consists of the payload and in-band labels that
identify the destination. Fig. 3a shows the packets with the labelling scheme in both
time (left) and spectral (right) domains [5]. The lxN switch with fast label processor is
depicted in Fig. 3b. Such switch has been implemented in [5]. Labels can be extracted
by using a passive filter (demux in Fig. 3b). Key is the fact that the extracted parallel
labels, once opto-electrically converted, can be parallel processed by the control logic
with very low latency (< 3 ns) regardless the number of input/output ports. The outputs
of the control logic drive the lxN space switch to forward the packet to the right
destination. An integrated electro-optical lxN switch that can support the architecture is
described in [6].

label

label

hi-sd 19’~
payload _________________
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Fig. 3; (a) packets with two encoded labels in time (left) and spectral (right) domains; (b) lxN switch with parallel labels processor.

Packets at the output of lxN switches are fed in the CRB. The purpose of this block is
to perform contention resolution by using the wavelength domain, employing Fixed
Wavelength Converters (FWCs). Packets coming from different input fibers are
converted into different wavelengths by the FWCs in order to solve contentions. The
CRB is then always able to solve contentions between different input fibers.

Performance of the new architecture and comparison with Benes
We investigated the performance of the new architecture by queueing node analysis of
input buffers in a 40 Gb/s link. In the numerical analysis packet duration was 1500 bits
(37.5 ns, 40 ns including 2.5 ns guard band between packets). The link length was
assumed to be 50 m. We followed the mean values analysis described in [7].
Throughput and latency can be computed recursively with the starting condition that
there are no packets in the buffers and increasing the number of packets in the system
from OtoWS.
We compared NxN Benes and new NWxNW architectures (N, NW=2, 4, ..., 1024). It is
important to say that the new OPS is better suited for WDM applications, anyway we
considered also the case with W=1 to highlight the differences in performance with the
Benes architecture. From the analysis is clear that in Benes architecture the delay
associated with the configuration time of the switch limits the throughput of the switch
and it is the dominant factor for the latency of the system. Thanks to the highly
distributed control this factor is negligible in the new architecture and it is reduced to
few nanoseconds (3 ns in our model) regardless the number of input/output ports. In
Fig. 4 (a, b) are depicted the results of the queueing node analysis, it’s evident that only
the new architecture can operate with a large amount of inputs/outputs with high
throughput and low latency (its behavior is independent of ports count and almost
constant).

II
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Fig. 4: (a) throughput and (b) latency of Benes (dashed lines) and architecture with distributed control (N=1024, W=l) (solidlines).

In Tab. 1 are reported the throughput and the latency of a 1024x1024 (NWxNW) OPS
for different values of the number of input fibers N and of the number of channels per
fiber W. In the configuration with N=16 and W=64, the probability of contention is
much higher than in the other cases considered, thus the delay related to it becomes the
dominant factor for the latency of the switch and limits the throughput of the system.

1024x1024 Throughput Latency [us]
N~l024, W=l 0,9928 0,5645
N~32, W~32 0,9933 0,5637
N=16, W=64 0,0928 6,0351

Tab. 1: Throughput and latency of a I 024x 1024 OPS based on the architecture with distributed control in three configurations.

Conclusion
We presented a novel OPS architecture with highly distributed control. The advantage
of this strictly non blocking architecture is that the control time of the switch matrix
does not depend on the number of input/output ports. This leads to great scalability in
tenns of port count of the architecture.
Mean values analysis of queues at ingress buffers confinns that the distributed control
allows the architecture to meet the latency requirements of computer communication
networks (< 1 is) also operated at large number of ingress and egress nodes (> 1000).
Instead classical rearrangeable switch architectures, as Benes, with centralized control
already cannot meet these latency requirements when the number of ports exceeds 32.
The latency and the throughput of the architecture are strictly related to the ratio N/W.
In computer communication networks scenario, where the number of nodes N is close
to the number of wavelengths per node W, the throughput of the architecture with
distributed control is close to 100%.
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