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Abstract 

 
Due to weaknesses in circuit synthesis methods used 

in today’s CAD tools, the opportunities created by 
modern microelectronic technology cannot effectively 
be exploited. This paper considers major issues and 
requirements of circuit synthesis for the nano CMOS 
technologies, and discusses our new information-
driven circuit synthesis technology that satisfies these 
requirements. It focuses on an adequate technology 
library modelling for information-driven circuit 
synthesis. The new circuit synthesis technology 
considerably differs from all other known synthesis 
methods and overcomes their main weaknesses. The 
experimental results demonstrate that it is able to 
produce very fast, compact and low-power circuits. 
 
1. Introduction 
 
This paper addresses the problem of an adequate 
synthesis of digital circuits for the modern nano CMOS 
circuit implementation technologies. It briefly 
considers some major issues and requirements of 
circuit synthesis for the nano CMOS technologies, and 
discusses our new information-driven circuit synthesis 
technology that satisfies these requirements. It focuses 
on the issue of an adequate technology library 
modelling for the purpose of information-driven circuit 
synthesis.  

Introduction of the nano CMOS technologies 
created new opportunities, as well as unusual 
complexity, and particularly: extremely high device 
and interconnect densities, extremely small devices’ 
dimensions, and huge length of interconnects. Due to 
this complexity, interconnect scalability problems, 
power supply reduction and very high operating 
frequencies, many previously ignorable phenomena 
have now a great impact on the circuit correctness and 
other quality aspects. This results in many new 
difficult to solve issues, including: power and energy 
crisis, increased leakage power, interconnect scalability 
problems and dominating influence of interconnects on 

major physical circuit characteristics (e.g. area, speed, 
…), etc. [8]. Unfortunately, the available circuit 
synthesis methods and tools do not well address the 
needs of circuit synthesis for the modern technologies, 
due to: not accounting for the recently changed 
importance relationships among various circuit 
characteristics, not explicitly account for timing and 
power and using some proxy attributes for area that 
often do not well correlate with the actual area, not 
applying the now necessary multi-objective circuit 
optimization and trade-off exploitation, and being not 
effective for many classes of circuits due to making 
many prior assumptions excluding many possible 
circuit structures [1][2][5]. 

In result, the proxy synthesis targets of the 
available logic synthesis methods and tools very much 
differ from the actual synthesis targets of circuits 
implemented in modern technologies. In consequence, 
a substantial post synthesis technology mapping effort 
is required. Unfortunately, the technology mapping can 
not guarantee proper final results, because the initial 
circuit synthesis is performed without close relation to 
the actual synthesis target. 
 From the above it should be clear that, for the 
modern circuit implementation technologies, a new 
much more adequate circuit synthesis technology is 
needed that will enable the following: 
- consideration of all possible circuit 

implementation structures during the synthesis; 
- direct synthesis into specific technology targets; 
- synthesis of robust more regular circuits with 

minimized interconnects; 
- explicitly accounting for the actual area, timing 

and power related information; 
- performing the total multi-objective optimization 

of the circuit’s quality and effective trade-off 
exploitation among the different objectives. 

According to our knowledge such a circuit synthesis 
technology did not exist till now: none of the 
commercial circuit synthesis tools or published 
research tools has the above features. Therefore, we 
developed a new information-driven circuit synthesis 
technology that satisfies the above requirements. The 
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main advantages of our new circuit synthesis 
technology are the following: 
- generality and high flexibility: accounting for all 

possible circuit realization structures and trade-
offs among the circuit area, power consumption 
and speed; 

- direct synthesis into the technology primitives of a 
given circuit implementation technology  (e.g. 
LUTs or gates); 

- very effective and efficient processing of 
incompletely specified functions; 

- minimization of the number and length of 
interconnections; 

- simplicity and regularity of the circuit structures 
synthesized; 

- enhanced route-ability, low usage of resources, 
high-speed and low power consumption resulting 
from the circuits compactness, regularity, and 
minimized interconnects; 

- efficient direct collaboration with physical 
synthesis, due to the natural ability to directly 
account for the timing and/or power related 
information from placement and/or routing. 

This all contributes to the superior result quality 
comparing to the traditional circuit synthesis 
technologies. 

 
2. Information-driven circuit synthesis 
 
Our information-driven circuit synthesis is based 
two theories: 
- the theory of general decomposition of discrete 

relation networks [2][3], and 
- the theory of information relationships and 

measures [4]. 
The information-driven circuit synthesis approach 

relies on the analysis of the information flow structure 
and relationships in the function to be implemented, as 
well as, in the circuit under construction, and usage of 
the results of this analysis to control the circuit 
construction. Information flows in the circuit are 
appropriately ordered, combined, compressed and kept 
as local as possible. In this way both interconnections 
and active elements are minimized. The information-
driven approach uses: 
- general decomposition generator that is able to 

generate all correct circuit structures for a given 
function (no structures are excluded a priori); 

- information relationships and measures to 
control the generator in order to efficiently 
construct only the most promising circuit 
structures; 

- timing, power and area related information 
(e.g. physical gate characteristics, signal arrival 

and required times, signal activity etc.) to control 
the satisfaction of the optimization constraints 
and objectives, and enable the multi-objective 
optimization and trade-off exploitation. 

The circuit synthesis is not divided into the technology 
independent logic synthesis and technology mapping, 
but is directly performed into the primitives of a given 
implementation technology (e.g. gates of a given 
technology library). The technology library description 
is one of the input data to our synthesis tool. From this 
description our tool automatically extracts all the 
functional and physical information required for the 
multi-objective circuit synthesis. Information 
relationships and measures make it possible to control 
the circuit convergence, compactness and 
interconnections. Our approach minimizes both the 
number and length of interconnections and explicitly 
accounts for area, timing and power consumption. 
Since in parallel to information relationships and 
measures any sort of additional information can be 
accounted for (as e.g. related to the signal timing or 
activity), the timing and power driven synthesis, as 
well as very flexible and precise delay, power and area 
tradeoffs are possible. In consequence, the circuits 
synthesized are small, ultra-fast and low-power at the 
same time. This all together fulfils the requirements 
of an adequate circuit synthesis for the modern nano 
CMOS technologies as formulated in Section 1. 

The apparatus of information relationships and 
measures facilitates the analysis and quantitative 
measurement of the information flows and their 
relationships. Some main ideas of this apparatus are 
briefly introduced below. Let us consider a finite set of 
elements S, called symbols. Information about symbols 
pertains to the ability to distinguish certain symbols 
from other symbols. Table 1 shows the truth table of a 
multi-output Boolean function. Each row of the truth 
table (function’s product term) is represented by a 
unique symbol from S. Through its two values 0 and 1, 
variable x1 induces two compatibility classes on the 
symbols (terms): B0={0,2,3,4} and B1={1,2,3,5}. x1 has 
value 0 (1) for each symbol in class B0 (B1) (don’t care 
‘-‘ means: 0 and 1). Variable x1 is not able to 
distinguish between symbols 0, 2, 3, and 4, because 
they belong to the same compatibility class. x1 is able 
to distinguish between 4 and 5, because they are not 
placed together in any compatibility class. In this way 
information is modelled with set systems [3] [4]. 
Elementary information describes the ability to 
distinguish a certain single symbol si from another 
single symbol sj (si,sj∈S and si≠sj). Any set of such 
atomic portions of information can be represented by 
an information set IS defined on S × S as follows [4]: 
IS = {{si, sj} | si is distinguished from sj in the 
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Table 1. Example 3-input 2-output Boolean function f 
S x1  x2  x3  f1   f2 
0   0 0 0  0 0 
1   1 1 1   0 0 
2   - 0 1  0 1 
3   - 1 0  0 1 
4   0 1 1  1 1 
5   1 0 0  1 1 

 

information modelled}. For instance, information 
given by set system πx1= }5,3,2,1;4,3,2,0{  induced by 
x1, can be represented by information set IS(πx1)={0|1 
0|5 1|4 4|5}. Information relationships between 
variables or set systems representing various 
information streams can be analyzed by considering 
relationships between their corresponding information 
sets. In particular, the relationship and relationship 
measure expressing information similarity are defined 
in [4] as follows:  
• common information CI (i.e. information that is 

present in both π1 and π2): CI(π1,π2) = IS(π1) ∩ 
IS(π2)  

• information similarity (affinity) measure ISIM: 
ISIM(π1, π2) = |CI(π1, π2)| 

(e. g. CI(πf1,πx1) = {0|5 1|4},  ISIM((πf1,πx1) = 2). 
In real applications, we use some more complex 
normalized and weighted measures obtained through 
associating an appropriate importance weight w(si|sj) 
with each elementary information and combining 
selected simple measures. 

In a single step of general functional 
decomposition, function f being decomposed is split 
into two sub-functions (see Fig. 1): predecessor sub-
function g and successor sub-function h. The input 
support of f is divided into two subsets: bound-set U, 
being the g’s input support, and free-set V, being a 
partial input support of h. Outputs of g constitute the 
remaining part of the h’s support. This single 
decomposition step is recursively applied to both 
predecessor and successor functions until each sub-
function in the network constructed this way can be 
directly mapped onto gates in a given technology 

library. 
Our circuit synthesis constructs the circuit level by 

level from its primary inputs to primary outputs 
(bottom-up) through repeating the single 
decomposition step (Fig. 2). The bottom-up synthesis 
enables continuous precise control of timing, area and 
power consumption during the synthesis. The 
continuous availability of precise information on the 
timing, area and power consumption of the already 
synthesized bottom part of the circuit, as well as, on 
the corresponding characteristics of support signals for 
its upper (to synthesize) part enable very well informed 
synthesis decisions and very precise trade-off 
exploitation.  At each level, the input support (primary 
inputs and/or intermediate variables) of the not yet 
synthesized part of a function being decomposed has to 
provide all information necessary to compute the 
function’s output values. However, information 
necessary for computing the function’s values is 
distributed across its support variables. These variables 
also contain some redundant information. To 
implement the function, the decomposition network 
has to eliminate the redundant information, and 
preserve and restructure the required information, to 
finally represent the required information at the output 
as demanded by the function. Consequently, each sub-
function g should eliminate some redundant 
information and combine the required information 
from its inputs, transfer the required information to its 
output and represent it in an appropriate manner. The 
bound-set U determines what information is delivered 
to a certain sub-function g. The g’s output set system πg 
determines what information is transferred by g. U and 
πg together define the multi-valued function of g. In 
order to implement this function in binary hardware, it 
has to be transformed into a set of binary functions. 
The g’s binary functions determine how the transferred 
information is represented at the g‘s binary outputs [5]. 

The sub-function construction procedure is 
composed of the following steps: 
1. Construct a limited set of the most promising 

bound-sets U and corresponding output set systems 
πg. 

2. Order the input supports U from the set constructed 

 
Figure 1. Single step of the general functional 
decomposition 

 
Figure 2. Bottom-up functional decomposition 
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in step 1 according to their quality. 
3. Consider a limited set of the supports U in the order 

of their quality, and for each support U construct a 
set of the corresponding binary gate 
implementations of the multi-valued sub-function 
g. 

4. From the set of implementations constructed in step 
3, select the implementation that maximizes the 
signal and/or information convergence of the sub-
function g and optimizes a given area/delay/power 
trade-off. 

5. Construct a new function h by expressing f in new 
variables. 
The first four steps are guided by analysis of the 

information relationships, gate characteristics, area, 
timing and power related information, and optimization 
constraints and objectives. They were explained in our 
previous publications [4][5]. The last step is 
straightforward. 
 
4. Requirements of library modelling for 
information-driven circuit synthesis 
 

In the traditional two-step circuit synthesis process 
that involves the technology independent logic 
synthesis and technology mapping, the initial synthesis 
is often performed in wrong direction and the design 
freedom is used on random instead of being carefully 
exploited for the actual network optimization. This 
results in inferior synthesis results. To eliminate this 
problem, we proposed to replace the two-step synthesis 
with a single-step direct circuit synthesis (direct 
mapping) into the gates of a given technology library, 
when directly accounting for the actual implementation 
costs. 

The single-step circuit synthesis process requires 
availability of adequately complete and accurate 
information on the logical and physical features of the 
technology gates from the very beginning of the circuit 
synthesis process, as well as an effective and efficient 
usage of this information throughout the whole 
process. The corresponding data structures must enable 
an accurate modelling of this information, effective 
search for gates during the sub-function construction 
process, and efficient application of the selected gates 
in the network under construction. In particular, the 
single-step synthesis requires: 
- an adequate characterization of gates’ logic features 

and physical features related to area, timing and 
power dissipation, and 

- a methodology to efficiently provide 
correspondence between the representations of 
multi-valued sub-functions in the decomposition 
and the functional representations used in the 

characterization of physical gates from a given 
technology library. 
To guarantee the generality of application of our 

information-driven circuit synthesis approach to every 
gate-based technology and every library, the actual 
circuit synthesis methods, algorithms and heuristics 
have to be independent of any particular technology or 
library – the technology or library specific features 
have only to be used as data for the circuit synthesis 
methods, algorithms and heuristics. 

The gates’ functional representation of the library 
model has to ensure the following: 
- adequate modelling of each gate’s function from 

the information viewpoint, to allow for an efficient 
computation of the information relationships and 
measures necessary for the information-driven 
synthesis; 

- efficient realization (compatibility) check between 
the required and available functions, 

- easy translation between the function’s term and 
minterm representations. 
While the execution-time efficiency is crucial, 

because the above operations are performed multiple 
times during the synthesis process, the memory 
efficiency is not critical, due to the small sizes of the 
input sets of typical gates (up to 4 or 5 inputs). Also 
the input supports of sub-functions in general 
decomposition that are not further decomposed, but 
directly mapped into gates are not higher than 6, and 
usually lower or equal to 4. The small input sizes allow 
for an efficient representation and processing of 
Boolean functions using minterms. For simplicity of 
different function manipulations (such as: comparison, 
etc.) a canonical minterm representation must be 
developed and used. Such a representation has to 
satisfy the following requirements: 
- a function must be completely specified; 
- every input combination has to represent a 

minterm; 
- the input combinations (minterms) have to be 

ordered using an arbitrary ordering function, e.g. 
sorted in the ascending (descending) numerical 
order, when each input minterm is considered as a 
binary number, and the correspondingly ordered 
output values have to be stored in the form of a  
vector of binary values; 

- a (decimal or hexadecimal) integer translation of 
the basic binary representation may also be used, 
and a human readable form, if convenient. 
We use a canonical compact minterm 

representation being a simple implementation of the 
function’s signature. Any Boolean function, for which 
the order of its minterms is fixed (e.g. ascending 
numerical order), is unambiguously defined through 
the corresponding vector of its output values, referred 
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to as the function signature or label. We implemented 
the signature as a bit vector whose successive values 
correspond to the function’s values. For a Boolean 
function of n inputs, the length of a bit vector 
representing its signature is equal to the number of all 
unique input minterms, i.e. k = 2n. For a modern 32-bit 
architecture computer, it gives the size of 5 inputs to 
fill its arithmetic logic unit completely. For wider 
supports, the signature processing has to be performed 
in parts. Thus, for modern processors, the performance 
of the signature processing algorithms is high and 
constant for functions of up to 5 inputs, and it drops 
exponentially with every additional function’s input. 
Consequently, the compact minterm representation can 
not be used for large functions. To overcome this 
problem, the Boolean functions are required to be 
efficiently translated back and forth between the 
general-term and minterm representations.  

Since each physical gate implements a 
corresponding completely specified function, the 
output set system of a physical gate is actually a bi-
partition. One block of the output set system 
corresponds to the ON set of the compact minterm 
representation and the other to the OFF set. The 
translation between the signature, set system, and 
information set representation of each gate’s function 
is thus quite straightforward. 
 
5. Library pre-characterisation 
 
We developed a library modelling method and 
corresponding tool that automatically constructs 
technology library models satisfying the above 
requirements. To guarantee the generality of 
application of our information-driven circuit synthesis 
approach to every gate-based technology and every 
library, the technology or library specific information 
is used as data for the circuit synthesis methods, 
algorithms and heuristics, and is this way exploited 
during the synthesis process to optimize the circuit 
under construction. Not a single feature related to a 
specific technology library is hard-coded into any of 
the algorithms or heuristics of the actual circuit 
synthesis method. To insulate the actual synthesis 
process from a specific technology library and to 
facilitate the actual synthesis, the library is pre-
characterized during the initialisation phase of the 
synthesis tool. The initialization phase has to be 
performed once for each different library, before the 
actual synthesis can start. 

The original target technology library description 
given in the form of an ASCII file is parsed and 
converted into an internal library model, suitable for an 
efficient library search with our multi-valued sub-

function construction procedures. The library pre-
characterisation process prepares and fills the data 
structures containing all and only the information about 
each gate of a given technology library that is 
necessary for an effective circuit synthesis performed 
through the information-driven general decomposition. 
To facilitate the library search and function matching 
during the multi-valued sub-function construction, a 
homogeneous gate instance library is constructed, 
where each physical gate is represented by its all 
actually distinct application instances, expressed using 
the same uniform efficient data structures throughout 
the whole gate instance library. This homogenous 
instance library forms a homogenous search space for 
the sub-function construction algorithms, what 
simplifies the algorithms and enhances their efficiency. 

Each gate has at most n! different applications, 
expressed with its different representatives, i.e. non-
equivalent, distinct functions realized by the gate for its 
all possible input permutations. Each gate 
representative is characterized by its input permutation, 
and corresponding Boolean function it implements for 
this input permutation. 

During the matching phase of the sub-function 
construction process, a (not) completely specified 
Boolean sub-function required to be realized is 
matched against the list of candidate gate 
representatives in the homogenous gate instance 
library. To significantly enlarge the number of possible 
direct applications of each physical gate, we use the 
definition of Boolean matching for circuit synthesis 
extended as follows. Two single-output combinational 
functions f(x) and g(x) (with the same number of 
input variables) match when they are NPN-
equivalent. Here, the Boolean functions that are 
equivalent under negation of inputs form an N-
equivalence class, under permutation of inputs a P-
equivalence class, and under negation of inputs, 
permutation of inputs, or negation of outputs, an NPN-
equivalence class. Thus, a set of Boolean functions is 
considered to be NPN-equivalent if and only if there is 
a variant of the NPN transformations, so that after 
applying them these functions become functionally 
equivalent. The extended Boolean matching implies 
resolving if two Boolean functions are the same under 
negation of inputs, permutation of inputs, and/or 
negation of outputs. Its goal is to explore in the 
network under construction the modifications related to 
the De Morgan’s laws and simple polarisation 
transformations on the gates’ inputs and/or outputs. 
The NPN transformations used determine the way 
particular selected gate is connected in the network 
under construction, i.e.: 
- which inputs must be inverted using the input 

inverters and which must be directly connected, 
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- which external inputs must be connected to which 
gate inputs, and 

- whether the output requires an output inverter. 
During the circuit synthesis, P transformation is 

realized through an appropriate permutation of the 
actual gate inputs and connection of the corresponding 
input signals to the inputs of a particular gate, to 
implement its corresponding application in the network 
under construction. Thus, the implementation of this 
transformation does not result in any substantial cost 
change of the resulting network. N transformation 
changes the polarisation of the input and/or output 
signals. The change of polarisation is simply realised 
through the insertion of an inverter. The costs of N 
transformation are thus low and defined by the inverter 
costs in a given technology. An inverter may add a 
small extra area, delay or power consumption. 
However, many of the input inverters can be later 
eliminated, when connected an inverted gate input to 
an inverted output of a gate already present in the 
circuit under construction or during the circuit post 
processing. Only the inverters directly placed by the 
primary inputs (the first circuit level) cannot be later 
simply removed, and therefore, it is not desired to use 
gates with inverted inputs at the first circuit level. The 
post-processing removes the inverters placed inside the 
network, when a gate that drives a given input inverter 
of the next gate has its complementary equivalent in 
the representative library. In this case, the output 
inverter of the driving gate connected to the input 
inverter of the driven gate result in double inversion, 
i.e. in a direct interconnection of the driving gate 
output with the driven gate input. To have adequate 
information for the inverter elimination, all pairs of 
mutual complementary gates present in the library are 
detected, and with each such gate information is 
associated denoting the complementarity, and pointing 
to the complementary gate. The complementarity 
feature is exploited in the post-processing, as well as in 
the main decomposition process. Since the 
complementary gates are equivalent in relation to the 
information processing, a better of them from the 

physical viewpoint is selected and used. 
Moreover, during the uniform instance library 

creation, all possible gate instance replicas (i.e. 
instances that realize the same function) found in the 
library are compared, and only the non-dominated of 
them (e.g. smaller footprint area or faster) are kept. We 
also introduced special “don’t care” (DC) inputs to 
represent the extra inputs of a gate that actually has 
fewer inputs, in order to use the gate for the sub-
functions with wider input supports. The DC inputs are 
denoted in the corresponding formula as Boolean 
alternative of a positive and inverted input. 

Exploration of the gate input permutations during 
the matching phase requires an efficient data structure 
for representation of input permutations. The aim of 
the permutation data structure is to efficiently represent 
all possible applications of a particular gate for its 
different fixed input orders. A pair: (input permutation, 
the gate’s Boolean function corresponding to the input 
permutation) defines a particular gate application. The 
permutation data structure acts as a “patch panel” or 
input “switch board”, and allows us to denote each 
possible connection of the m external signals to n gate 
inputs, where m and n are not necessarily equal. For 
example, the permutation of the basic ascending input 
order: 0, 1, 2, 3, 4 into the order: 1, 3, 0, 4, 2 is 
graphically represented in Fig. 3. Observe that each 
permutation is unambiguously defined through the 
vector of position shifts of each input variable index in 
relation to the index position in the basic ascending 
input order. For example, the input permutation from 
Fig. 3 is given in the shift notation in Fig. 4. To 
represent the lack of permutation, one must perform no 
shifts in the basic permutation. In this case, the vector 
of shifts consists of zeros in all its positions. To further 
simplify the permutation data structure, we proposed to 
denote the shift values in modulo (n) notation, where n 
is the number of gate inputs. The example from Fig 3 
and 4 is given in modulo(n) notation in Fig. 5. Due to 
the simplicity of the permutation data structure and 
small size of the typically considered input supports, 
the operations on this data structure are very efficient. 
When a certain gate representative is being used during 
the decomposition process to construct a circuit 
implementing a given sub-function, all the internal 
inputs of a physical gate have to be connected 
according to the input permutation of the gate 
representative to the particular corresponding external 
inputs. This is performed in a straightforward way 
through transforming the permutation vector into the 
corresponding form of the actual input switch board. 

Due to symmetries, the number of representatives 
corresponding to a particular gate can often be 
substantially reduced. For the symmetric gates (i.e. 
implementing the symmetric functions as AND, OR, 

 
Figure 3. Permutation representation 

 
Figure 4. Permutation from Fig. 2 
represented in shift notation 
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EXOR, etc.) the input permutation does not influence 
the logic function implemented by the gate. For the 
partially symmetric gates, the input permutations 
inside the symmetric input subsets do not influence the 
function. Thus, for a certain gate, we have only to 
consider all possible input permutations that result in 
actually different functions, and can avoid 
permutations among symmetric inputs. 

An example of a Boolean function with an input 
symmetry, DC input and potential input inverter is the 
following: 
F(A,B,C,D) = (A+A’)*(B+C+D’), 
where inputs B and C form a two-input symmetry 
group (BC), input A is a DC input, and input D is 
negated. We consider the simple input symmetries, as 
well as, the rotational and group symmetries. An 
example of a Boolean function with rotational 
symmetry is the following: 
F(A,B,C) = (A+B)*(B+C)*(A+C), 
where shifting all three input variables at once does not 
change the logic function. An example of a Boolean 
function with higher order group symmetry is the 
following: 
F(A,B,C,D) = (A+B)*(C+D), 
where exchanging pairs of input variables ((A,B) with 
(C,D)) does not change the logic function. 

Each library gate is analyzed in terms of its input 
symmetries. The input symmetries found are exploited 
to reduce the size of the uniform instance library. 
Having information about the symmetric and DC 
inputs, we can limit the total number of distinct input 
permutations that have to be considered to describe all 
possible ways of use of a gate for circuit construction, 
when preserving one permutation of positive/inverted 
inputs (one representative) of a gate for each distinct 
Boolean function. For every possible input permutation 
that results in an actually different function, the truth 
table of the corresponding function is computed. 
Subsequently, the input combinations in the truth table 
are sorted as ascending binary numbers, and the 
corresponding signature, output set-system and 
information set representing the function are 
constructed. In our information-driven decomposition 
approach, the binary gate implementation of a given 
(multi-valued) sub-function requires covering of the set 
of the elementary information items of a given (multi-
valued) sub-function by the information set computed 
by a particular gate or combination of several gates. 
The related comparisons of the required and delivered 

information sets are performed multiple times during 
the decomposition process. In consequence, the 
optimisation of the information set representation has a 
significant impact on the performance of the entire 
synthesis process. 

For example, for the three-input gate that 
implements the totally asymmetric function: 
f(A,B,C)=(A+A’)*(B+C’), all distinct input 
permutations must be considered, because for an 
asymmetric function there are no symmetric inputs 
subsets. For each distinct input permutation, the 
corresponding truth table is computed with input 
combinations as ascending binary numbers. For 
instance, the input permutation (BCA) results in the 
following truth table: 

 
symbol inputs output 

B C A 
0 0 0 0 1 
1 0 0 1 1 
2 0 1 0 0 
3 0 1 1 0 
4 1 0 0 1 
5 1 0 1 1 
6 1 1 0 1 
7 1 1 1 1 

 
The output set-system (bi-partition) corresponding to 

this truth table: πf= }7,6,5,4,1,0;3,2{ , together with 
its corresponding information set IS(πf), the input 
order (permutation) (BCA) and cell reference are 
stored in the list of the gates instances. During the 
decomposition process, to find a gate that implements a 
required sub-function given through its information set 
IS, such a  set-system πf (information set IS(πf)) must 
be found in the list of the gate instances that its 
information IS(πf) covers IS, i.e. IS⊆IS(πf). 

 The representative set size reduction due to input 
symmetries depends on a particular library. The more 
symmetric or partially symmetric gates a given library 
contains, the greater its corresponding representative 
set size reduction. Typical libraries contain a lot of 
completely or partially symmetric gates and this 
represents a significant reduction potential that can be 
as high as several times. Therefore, it makes much 
sense to adequately explore and exploit this potential. 

The gate physical feature modelling is much more 
straightforward than an adequate logic feature 
modelling, and consists of a direct extraction from the 
original library description in ASCII form of the values 
of the physical parameters that are required to be 
considered during the single step-circuit synthesis. Due 

 
Figure 5. Permutation from Fig. 2 and 3 
represented in modulo(n) notation 
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to the bottom-up synthesis approach and availability of 
the information on the gates’ physical features, a very 
precise control of the circuit physical features is 
possible during the information-driven circuit 
synthesis. At each step of the decomposition process, 
the consequences of a particular gate application for 
the area, delay and power consumption are analysed, 
and the results of this analysis are used to select the 
most promising binary gate realization of the multi-
valued sub-function. Also, the area, delay and power 
related information is re-computed for the already 
synthesized part of a circuit under construction. 

The gate instance data structure of the library 
model includes the following: 
• logic features: 
– logic function realized in several representations that 
are used to different purposes: 

- the Boolean function in the formulae format, 
- the Boolean function signature being a compact 

minterm representation/the function’s set system 
representation, 

- the function’s information set; 
– input support size; 
– input permutation vector; 
– bitmask representing the DC-inputs (if any); 
– bitmask representing the inverted inputs and/or the 
inverted output (if any); 
– cross references to: 

- the corresponding gate implementing the 
complementary Boolean function/output phase (if 
any), 

- the corresponding gate implementing the same 
Boolean function, but without inverted 

- inputs (if any); 
– symmetric inputs of group, hierarchical and 
rotational symmetries (if any); 
• physical features: 
– gate foot-print area; 
– gate delay, (separately) for every arc (input pin): 

- intrinsic delay: 
· rise, 
· fall, 

- output driver: 
· rise (pull-up) strength, 
· fall (pull-down) strength, 

– power related parameters. 
In result of the above described gates’ logic and 

physical feature modelling, a library model is 
constructed that can efficiently be used in the single-
step information-driven circuit synthesis. 
 
 
 

6. Virtual gates 
 
In a typical modern gate library, all 2-input binary 
functions have their direct gate representation and can 
directly be mapped onto corresponding gates. Also, 
most of the 3-input functions have their direct gate 
representations, but only 10-15% of all possible 4-
input functions and a very small fraction of functions 
with more inputs can directly be mapped onto 
corresponding library gates. Although the introduction 
of the gate input and output inverters and related NPN-
equivalent matching greatly increases the direct 
mapping ability, a majority of functions of, for 
instance, up to 4-inputs is anyway not covered. Thus, a 
much more sophisticated sub-function construction 
procedure is required for the synthesis of gate-based 
circuits than for LUT-based FPGA circuits, where each 
k-input binary function can be directly mapped onto a 
k-input LUT, slice or CLB. Moreover, the 
implementation costs of different k-input functions in 
an FPGA technology are the same while in a gate 
library based technology are in general different, due to 
different area, delay and power characteristics of 
different gates. 

To facilitate an accurate assessment of the area, 
timing and power dissipation costs during the 
decomposition process, we decided to create an 
extended gate library consisting of the actual physical 
gates of a given technology library and additional 
virtual gates. The virtual gates represent optimal 
complete decompositions into physical gates of the 
single-output Boolean functions of up to n-inputs that 
are not directly implemented with the actual physical 
library gates. This way, the extended gate library 
includes implementations of all single-output Boolean 
functions of up to n inputs. It is practical to limit such 
an extended library to gates of maximally n inputs, 
considered as a feasible or practical input support size 
for the synthesis algorithms executed on a particular 
computer. For the contemporary personal computers 
the practical input support size seems to be n <= 8, 
while the computation time for n=4 is substantially 
lower than for the higher values of n. The practical 
input support size will slowly (logarithmically) 
increase with the increase of the computation strengths 
of computers. 

It is possible (but not necessary) to build all the 
virtual gates and the maximal functionally complete 
extended library of gates of up to n-inputs in advance, 
before starting to use our synthesis tool to the actual 
circuit synthesis. However, the extended library can 
also be build stepwise, on-the-fly, and according to the 
actual needs during the decomposition process of 
functions that require for their realization particular 
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binary sub-functions of up to n inputs that are not yet 
implemented with the physical gates or earlier 
constructed virtual gates. Both on-the-fly or in 
advance, our synthesis tool constructs a corresponding 
optimal circuit for every (required) single-output 
Boolean function that is not yet included in the 
extended library, and includes it as a virtual gate into 
the extended library to enable a fast direct function 
mapping on the newly created gate and facilitate the 
accurate computation of the area, delay and power 
consumption costs. In the case of the on-the-fly 
computation, the newly constructed virtual gate is also 
directly considered for its use in the circuit under 
construction. The internal structure of a virtual gate 
being an optimal multi-level and multi-gate realisation 
of a particular Boolean function, together with the 
models of gates involved in the virtual gate, give a 
quite complete and accurate information for 
construction of a complete virtual gate’s model, 
involving the logic and physical parameters as 
specified in the previous section. In particular, the area, 
delay and power characteristics of each virtual gate can 
be quite accurately computed. The virtual gates can 
also be pre-synthesized to get more precise values of 
their physical characteristic from their post-layout 
analysis, if necessary. 

The library model containing all the actually 
distinct instances of gates from a given technology 
library and extended with the virtual gates is used as a 
homogenous Boolean function realization library 
during the information-driven general decomposition 
process. In this library all the (required) single-output 
Boolean functions of up to n inputs have their 
corresponding physical or virtual gate realizations that 
are adequately characterized from the logical and 
physical viewpoint. The Boolean function realization 
library is implemented using the earlier described 
efficient data structures, and enables an effective and 
efficient multi-valued sub-function construction in the 

information-driven circuit synthesis, as well as multi-
objective circuit optimisation and effective trade-off 
exploitation among the area, delay and power 
consumption. 

 
7. Experimental results 
 
To experimentally verify our proposed library 
modelling process and related library parsing and 
modelling tool, we modelled among others the MCNC, 
STDcell and AMS c35b3 libraries, and used the 
models to synthesize several thousands various 
circuits. The results of these experiments demonstrated 
that the proposed library modelling process, as well as 
library parsing and modelling tool work correctly, and 
are adequate for the single-step information-driven 
synthesis. The information-driven circuit synthesis 
process using the library models is a separate issue and 
its more precise discussion will be a subject of a 
separate paper. Nevertheless, the complete circuit 
construction method briefly discussed in the previous 
sections has been implemented in our information-
driven circuit synthesis tool IRMA2GATES. Since this 
paper is not devoted to the experimental analysis of the 
circuit synthesis algorithms implemented in 
IRMA2GATES, but to the issue of an adequate 
technology library modelling for the purpose of single-
step information-driven synthesis, only a brief 
impression of the synthesis result quality delivered by 
our method is presented below. 

In Fig. 6 the synthesis results from our 
IRMA2GATES are compared to the results from the 
well known UC Berkeley’s tool SIS 1.3 [6] regarding 
the area, gate-count and number of gate levels on the 
critical path (delay) for several MCNC benchmarks [7] 
and other popular functions. The results from 
IRMA2GATES are on average 64% better regarding 
area, 81% better regarding the number of gates, and 
35% regarding the number of gate levels than from 
SIS. Moreover, we compared IRMA2GATES to SIS 
using more than 30 generated symmetric and quasi-
symmetric Boolean functions (Fig. 7). We generated a 
set of 10-input completely specified symmetric 
functions, and then, mutated the basic functions, by 
replacing 20%, 50% and 70% of their 1 or 0 output 
entries with “don’t cares” in each completely specified 
function. The circuits produced by IRMA2GATES are 
on average almost 3 times smaller and 25% faster than 
the circuits synthesized by SIS. These results 
demonstrate that IRMA2GATES is especially effective 
for the symmetric, quasi-symmetric and incompletely 
specified functions. More information on the 
benchmarks used and experimental results from our 

1 8 1 %
1 6 4 %

1 3 5 %

0 %

5 0 %

1 0 0 %

1 5 0 %

2 0 0 %

a re a le ve ls g a te  c o u n t
 

IRMA2GATESIRMA2GATES  
Figure 6. Synthesis result comparison from 
IRMA2GATES to SIS 1.3 on MCNC benchmarks 
for the STDcell library [6] 
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tool can be found in our other paper [5] devoted to 
different aspects of the method than this paper. 
 
8. Conclusion 
 
We developed a new effective, efficient and very 
flexible circuit synthesis technology adequate for the 
modern synthesis targets. The technology implements 
our original information-driven approach to circuit 
synthesis. It replaces the traditional dual-step process 
of technology independent logic synthesis and 
technology mapping with a single-step direct circuit 
synthesis (direct mapping) into the gates of a given 
technology library, when directly accounting for the 
actual implementation costs. The single-step circuit 
synthesis process requires availability of adequately 
complete and accurate information on the logical and 
physical features of the technology gates from the very 
beginning of the circuit synthesis process, as well as an 
effective and efficient usage of this information 
throughout the whole process. To satisfy these 
requirements, we developed a new library modelling 
method and implemented it in the form of a library 
parsing and modelling tool that automatically creates 
an adequate library model in the form of a homogenous 
Boolean function realization library, through 
constructing efficient data structures and filling them 
with the required information on the gates’ logic and 
physical features. This library model enables an 
effective and efficient multi-valued sub-function 
construction in the information-driven decomposition 
process, as well as, the multi-objective circuit 
optimisation and effective trade-off exploitation among 
its area, delay and power consumption. The 
experimental results demonstrate a high quality of our 
single-step information-driven circuit synthesis 
approach. Our tools construct substantially smaller and 
faster circuits than other tools, and enable a multi-
objective circuit optimization, trade-off exploitation 
and very flexible circuit structuring and re-structuring. 
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Figure 7. Synthesis result comparison from 
IRMA2GATES to SIS 1.3 on generated symmetric 
and quasi-symmetric functions 
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