

Technology library modeling for information-driven circuit
synthesis
Citation for published version (APA):
Jozwiak, L., & Bieganski, S. J. (2008). Technology library modeling for information-driven circuit synthesis. In
11th EUROMICRO Conference on Digital System Design Architectures, Methods and Tools, 2008. DSD '08, 3-5
September 2008, Parma (pp. 480-489). IEEE Computer Society. https://doi.org/10.1109/DSD.2008.13

DOI:
10.1109/DSD.2008.13

Document status and date:
Published: 01/01/2008

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 05. Oct. 2023

https://doi.org/10.1109/DSD.2008.13
https://doi.org/10.1109/DSD.2008.13
https://research.tue.nl/en/publications/a8784771-5570-4787-aa17-97ac7a2d473e

Technology Library Modelling for Information-driven Circuit Synthesis

Lech Jóźwiak and Szymon Biegański
Eindhoven University of Technology

L.Jozwiak@tue.nl

Abstract

Due to weaknesses in circuit synthesis methods used

in today’s CAD tools, the opportunities created by
modern microelectronic technology cannot effectively
be exploited. This paper considers major issues and
requirements of circuit synthesis for the nano CMOS
technologies, and discusses our new information-
driven circuit synthesis technology that satisfies these
requirements. It focuses on an adequate technology
library modelling for information-driven circuit
synthesis. The new circuit synthesis technology
considerably differs from all other known synthesis
methods and overcomes their main weaknesses. The
experimental results demonstrate that it is able to
produce very fast, compact and low-power circuits.

1. Introduction

This paper addresses the problem of an adequate
synthesis of digital circuits for the modern nano CMOS
circuit implementation technologies. It briefly
considers some major issues and requirements of
circuit synthesis for the nano CMOS technologies, and
discusses our new information-driven circuit synthesis
technology that satisfies these requirements. It focuses
on the issue of an adequate technology library
modelling for the purpose of information-driven circuit
synthesis.

Introduction of the nano CMOS technologies
created new opportunities, as well as unusual
complexity, and particularly: extremely high device
and interconnect densities, extremely small devices’
dimensions, and huge length of interconnects. Due to
this complexity, interconnect scalability problems,
power supply reduction and very high operating
frequencies, many previously ignorable phenomena
have now a great impact on the circuit correctness and
other quality aspects. This results in many new
difficult to solve issues, including: power and energy
crisis, increased leakage power, interconnect scalability
problems and dominating influence of interconnects on

major physical circuit characteristics (e.g. area, speed,
…), etc. [8]. Unfortunately, the available circuit
synthesis methods and tools do not well address the
needs of circuit synthesis for the modern technologies,
due to: not accounting for the recently changed
importance relationships among various circuit
characteristics, not explicitly account for timing and
power and using some proxy attributes for area that
often do not well correlate with the actual area, not
applying the now necessary multi-objective circuit
optimization and trade-off exploitation, and being not
effective for many classes of circuits due to making
many prior assumptions excluding many possible
circuit structures [1][2][5].

In result, the proxy synthesis targets of the
available logic synthesis methods and tools very much
differ from the actual synthesis targets of circuits
implemented in modern technologies. In consequence,
a substantial post synthesis technology mapping effort
is required. Unfortunately, the technology mapping can
not guarantee proper final results, because the initial
circuit synthesis is performed without close relation to
the actual synthesis target.
 From the above it should be clear that, for the
modern circuit implementation technologies, a new
much more adequate circuit synthesis technology is
needed that will enable the following:
- consideration of all possible circuit

implementation structures during the synthesis;
- direct synthesis into specific technology targets;
- synthesis of robust more regular circuits with

minimized interconnects;
- explicitly accounting for the actual area, timing

and power related information;
- performing the total multi-objective optimization

of the circuit’s quality and effective trade-off
exploitation among the different objectives.

According to our knowledge such a circuit synthesis
technology did not exist till now: none of the
commercial circuit synthesis tools or published
research tools has the above features. Therefore, we
developed a new information-driven circuit synthesis
technology that satisfies the above requirements. The

11th EUROMICRO CONFERENCE on DIGITAL SYSTEM DESIGN Architectures, Methods and Tools

978-0-7695-3277-6/08 $25.00 © 2008 IEEE

DOI 10.1109/DSD.2008.13

480

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on April 15, 2009 at 10:18 from IEEE Xplore. Restrictions apply.

main advantages of our new circuit synthesis
technology are the following:
- generality and high flexibility: accounting for all

possible circuit realization structures and trade-
offs among the circuit area, power consumption
and speed;

- direct synthesis into the technology primitives of a
given circuit implementation technology (e.g.
LUTs or gates);

- very effective and efficient processing of
incompletely specified functions;

- minimization of the number and length of
interconnections;

- simplicity and regularity of the circuit structures
synthesized;

- enhanced route-ability, low usage of resources,
high-speed and low power consumption resulting
from the circuits compactness, regularity, and
minimized interconnects;

- efficient direct collaboration with physical
synthesis, due to the natural ability to directly
account for the timing and/or power related
information from placement and/or routing.

This all contributes to the superior result quality
comparing to the traditional circuit synthesis
technologies.

2. Information-driven circuit synthesis

Our information-driven circuit synthesis is based
two theories:
- the theory of general decomposition of discrete

relation networks [2][3], and
- the theory of information relationships and

measures [4].
The information-driven circuit synthesis approach

relies on the analysis of the information flow structure
and relationships in the function to be implemented, as
well as, in the circuit under construction, and usage of
the results of this analysis to control the circuit
construction. Information flows in the circuit are
appropriately ordered, combined, compressed and kept
as local as possible. In this way both interconnections
and active elements are minimized. The information-
driven approach uses:
- general decomposition generator that is able to

generate all correct circuit structures for a given
function (no structures are excluded a priori);

- information relationships and measures to
control the generator in order to efficiently
construct only the most promising circuit
structures;

- timing, power and area related information
(e.g. physical gate characteristics, signal arrival

and required times, signal activity etc.) to control
the satisfaction of the optimization constraints
and objectives, and enable the multi-objective
optimization and trade-off exploitation.

The circuit synthesis is not divided into the technology
independent logic synthesis and technology mapping,
but is directly performed into the primitives of a given
implementation technology (e.g. gates of a given
technology library). The technology library description
is one of the input data to our synthesis tool. From this
description our tool automatically extracts all the
functional and physical information required for the
multi-objective circuit synthesis. Information
relationships and measures make it possible to control
the circuit convergence, compactness and
interconnections. Our approach minimizes both the
number and length of interconnections and explicitly
accounts for area, timing and power consumption.
Since in parallel to information relationships and
measures any sort of additional information can be
accounted for (as e.g. related to the signal timing or
activity), the timing and power driven synthesis, as
well as very flexible and precise delay, power and area
tradeoffs are possible. In consequence, the circuits
synthesized are small, ultra-fast and low-power at the
same time. This all together fulfils the requirements
of an adequate circuit synthesis for the modern nano
CMOS technologies as formulated in Section 1.

The apparatus of information relationships and
measures facilitates the analysis and quantitative
measurement of the information flows and their
relationships. Some main ideas of this apparatus are
briefly introduced below. Let us consider a finite set of
elements S, called symbols. Information about symbols
pertains to the ability to distinguish certain symbols
from other symbols. Table 1 shows the truth table of a
multi-output Boolean function. Each row of the truth
table (function’s product term) is represented by a
unique symbol from S. Through its two values 0 and 1,
variable x1 induces two compatibility classes on the
symbols (terms): B0={0,2,3,4} and B1={1,2,3,5}. x1 has
value 0 (1) for each symbol in class B0 (B1) (don’t care
‘-‘ means: 0 and 1). Variable x1 is not able to
distinguish between symbols 0, 2, 3, and 4, because
they belong to the same compatibility class. x1 is able
to distinguish between 4 and 5, because they are not
placed together in any compatibility class. In this way
information is modelled with set systems [3] [4].
Elementary information describes the ability to
distinguish a certain single symbol si from another
single symbol sj (si,sj∈S and si≠sj). Any set of such
atomic portions of information can be represented by
an information set IS defined on S × S as follows [4]:
IS = {{si, sj} | si is distinguished from sj in the

481

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on April 15, 2009 at 10:18 from IEEE Xplore. Restrictions apply.

Table 1. Example 3-input 2-output Boolean function f
S x1 x2 x3 f1 f2
0 0 0 0 0 0
1 1 1 1 0 0
2 - 0 1 0 1
3 - 1 0 0 1
4 0 1 1 1 1
5 1 0 0 1 1

information modelled}. For instance, information
given by set system πx1= }5,3,2,1;4,3,2,0{ induced by
x1, can be represented by information set IS(πx1)={0|1
0|5 1|4 4|5}. Information relationships between
variables or set systems representing various
information streams can be analyzed by considering
relationships between their corresponding information
sets. In particular, the relationship and relationship
measure expressing information similarity are defined
in [4] as follows:
• common information CI (i.e. information that is

present in both π1 and π2): CI(π1,π2) = IS(π1) ∩
IS(π2)

• information similarity (affinity) measure ISIM:
ISIM(π1, π2) = |CI(π1, π2)|

(e. g. CI(πf1,πx1) = {0|5 1|4}, ISIM((πf1,πx1) = 2).
In real applications, we use some more complex
normalized and weighted measures obtained through
associating an appropriate importance weight w(si|sj)
with each elementary information and combining
selected simple measures.

In a single step of general functional
decomposition, function f being decomposed is split
into two sub-functions (see Fig. 1): predecessor sub-
function g and successor sub-function h. The input
support of f is divided into two subsets: bound-set U,
being the g’s input support, and free-set V, being a
partial input support of h. Outputs of g constitute the
remaining part of the h’s support. This single
decomposition step is recursively applied to both
predecessor and successor functions until each sub-
function in the network constructed this way can be
directly mapped onto gates in a given technology

library.
Our circuit synthesis constructs the circuit level by

level from its primary inputs to primary outputs
(bottom-up) through repeating the single
decomposition step (Fig. 2). The bottom-up synthesis
enables continuous precise control of timing, area and
power consumption during the synthesis. The
continuous availability of precise information on the
timing, area and power consumption of the already
synthesized bottom part of the circuit, as well as, on
the corresponding characteristics of support signals for
its upper (to synthesize) part enable very well informed
synthesis decisions and very precise trade-off
exploitation. At each level, the input support (primary
inputs and/or intermediate variables) of the not yet
synthesized part of a function being decomposed has to
provide all information necessary to compute the
function’s output values. However, information
necessary for computing the function’s values is
distributed across its support variables. These variables
also contain some redundant information. To
implement the function, the decomposition network
has to eliminate the redundant information, and
preserve and restructure the required information, to
finally represent the required information at the output
as demanded by the function. Consequently, each sub-
function g should eliminate some redundant
information and combine the required information
from its inputs, transfer the required information to its
output and represent it in an appropriate manner. The
bound-set U determines what information is delivered
to a certain sub-function g. The g’s output set system πg
determines what information is transferred by g. U and
πg together define the multi-valued function of g. In
order to implement this function in binary hardware, it
has to be transformed into a set of binary functions.
The g’s binary functions determine how the transferred
information is represented at the g‘s binary outputs [5].

The sub-function construction procedure is
composed of the following steps:
1. Construct a limited set of the most promising

bound-sets U and corresponding output set systems
πg.

2. Order the input supports U from the set constructed

Figure 1. Single step of the general functional
decomposition

Figure 2. Bottom-up functional decomposition

482

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on April 15, 2009 at 10:18 from IEEE Xplore. Restrictions apply.

in step 1 according to their quality.
3. Consider a limited set of the supports U in the order

of their quality, and for each support U construct a
set of the corresponding binary gate
implementations of the multi-valued sub-function
g.

4. From the set of implementations constructed in step
3, select the implementation that maximizes the
signal and/or information convergence of the sub-
function g and optimizes a given area/delay/power
trade-off.

5. Construct a new function h by expressing f in new
variables.
The first four steps are guided by analysis of the

information relationships, gate characteristics, area,
timing and power related information, and optimization
constraints and objectives. They were explained in our
previous publications [4][5]. The last step is
straightforward.

4. Requirements of library modelling for
information-driven circuit synthesis

In the traditional two-step circuit synthesis process
that involves the technology independent logic
synthesis and technology mapping, the initial synthesis
is often performed in wrong direction and the design
freedom is used on random instead of being carefully
exploited for the actual network optimization. This
results in inferior synthesis results. To eliminate this
problem, we proposed to replace the two-step synthesis
with a single-step direct circuit synthesis (direct
mapping) into the gates of a given technology library,
when directly accounting for the actual implementation
costs.

The single-step circuit synthesis process requires
availability of adequately complete and accurate
information on the logical and physical features of the
technology gates from the very beginning of the circuit
synthesis process, as well as an effective and efficient
usage of this information throughout the whole
process. The corresponding data structures must enable
an accurate modelling of this information, effective
search for gates during the sub-function construction
process, and efficient application of the selected gates
in the network under construction. In particular, the
single-step synthesis requires:
- an adequate characterization of gates’ logic features

and physical features related to area, timing and
power dissipation, and

- a methodology to efficiently provide
correspondence between the representations of
multi-valued sub-functions in the decomposition
and the functional representations used in the

characterization of physical gates from a given
technology library.
To guarantee the generality of application of our

information-driven circuit synthesis approach to every
gate-based technology and every library, the actual
circuit synthesis methods, algorithms and heuristics
have to be independent of any particular technology or
library – the technology or library specific features
have only to be used as data for the circuit synthesis
methods, algorithms and heuristics.

The gates’ functional representation of the library
model has to ensure the following:
- adequate modelling of each gate’s function from

the information viewpoint, to allow for an efficient
computation of the information relationships and
measures necessary for the information-driven
synthesis;

- efficient realization (compatibility) check between
the required and available functions,

- easy translation between the function’s term and
minterm representations.
While the execution-time efficiency is crucial,

because the above operations are performed multiple
times during the synthesis process, the memory
efficiency is not critical, due to the small sizes of the
input sets of typical gates (up to 4 or 5 inputs). Also
the input supports of sub-functions in general
decomposition that are not further decomposed, but
directly mapped into gates are not higher than 6, and
usually lower or equal to 4. The small input sizes allow
for an efficient representation and processing of
Boolean functions using minterms. For simplicity of
different function manipulations (such as: comparison,
etc.) a canonical minterm representation must be
developed and used. Such a representation has to
satisfy the following requirements:
- a function must be completely specified;
- every input combination has to represent a

minterm;
- the input combinations (minterms) have to be

ordered using an arbitrary ordering function, e.g.
sorted in the ascending (descending) numerical
order, when each input minterm is considered as a
binary number, and the correspondingly ordered
output values have to be stored in the form of a
vector of binary values;

- a (decimal or hexadecimal) integer translation of
the basic binary representation may also be used,
and a human readable form, if convenient.
We use a canonical compact minterm

representation being a simple implementation of the
function’s signature. Any Boolean function, for which
the order of its minterms is fixed (e.g. ascending
numerical order), is unambiguously defined through
the corresponding vector of its output values, referred

483

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on April 15, 2009 at 10:18 from IEEE Xplore. Restrictions apply.

to as the function signature or label. We implemented
the signature as a bit vector whose successive values
correspond to the function’s values. For a Boolean
function of n inputs, the length of a bit vector
representing its signature is equal to the number of all
unique input minterms, i.e. k = 2n. For a modern 32-bit
architecture computer, it gives the size of 5 inputs to
fill its arithmetic logic unit completely. For wider
supports, the signature processing has to be performed
in parts. Thus, for modern processors, the performance
of the signature processing algorithms is high and
constant for functions of up to 5 inputs, and it drops
exponentially with every additional function’s input.
Consequently, the compact minterm representation can
not be used for large functions. To overcome this
problem, the Boolean functions are required to be
efficiently translated back and forth between the
general-term and minterm representations.

Since each physical gate implements a
corresponding completely specified function, the
output set system of a physical gate is actually a bi-
partition. One block of the output set system
corresponds to the ON set of the compact minterm
representation and the other to the OFF set. The
translation between the signature, set system, and
information set representation of each gate’s function
is thus quite straightforward.

5. Library pre-characterisation

We developed a library modelling method and
corresponding tool that automatically constructs
technology library models satisfying the above
requirements. To guarantee the generality of
application of our information-driven circuit synthesis
approach to every gate-based technology and every
library, the technology or library specific information
is used as data for the circuit synthesis methods,
algorithms and heuristics, and is this way exploited
during the synthesis process to optimize the circuit
under construction. Not a single feature related to a
specific technology library is hard-coded into any of
the algorithms or heuristics of the actual circuit
synthesis method. To insulate the actual synthesis
process from a specific technology library and to
facilitate the actual synthesis, the library is pre-
characterized during the initialisation phase of the
synthesis tool. The initialization phase has to be
performed once for each different library, before the
actual synthesis can start.

The original target technology library description
given in the form of an ASCII file is parsed and
converted into an internal library model, suitable for an
efficient library search with our multi-valued sub-

function construction procedures. The library pre-
characterisation process prepares and fills the data
structures containing all and only the information about
each gate of a given technology library that is
necessary for an effective circuit synthesis performed
through the information-driven general decomposition.
To facilitate the library search and function matching
during the multi-valued sub-function construction, a
homogeneous gate instance library is constructed,
where each physical gate is represented by its all
actually distinct application instances, expressed using
the same uniform efficient data structures throughout
the whole gate instance library. This homogenous
instance library forms a homogenous search space for
the sub-function construction algorithms, what
simplifies the algorithms and enhances their efficiency.

Each gate has at most n! different applications,
expressed with its different representatives, i.e. non-
equivalent, distinct functions realized by the gate for its
all possible input permutations. Each gate
representative is characterized by its input permutation,
and corresponding Boolean function it implements for
this input permutation.

During the matching phase of the sub-function
construction process, a (not) completely specified
Boolean sub-function required to be realized is
matched against the list of candidate gate
representatives in the homogenous gate instance
library. To significantly enlarge the number of possible
direct applications of each physical gate, we use the
definition of Boolean matching for circuit synthesis
extended as follows. Two single-output combinational
functions f(x) and g(x) (with the same number of
input variables) match when they are NPN-
equivalent. Here, the Boolean functions that are
equivalent under negation of inputs form an N-
equivalence class, under permutation of inputs a P-
equivalence class, and under negation of inputs,
permutation of inputs, or negation of outputs, an NPN-
equivalence class. Thus, a set of Boolean functions is
considered to be NPN-equivalent if and only if there is
a variant of the NPN transformations, so that after
applying them these functions become functionally
equivalent. The extended Boolean matching implies
resolving if two Boolean functions are the same under
negation of inputs, permutation of inputs, and/or
negation of outputs. Its goal is to explore in the
network under construction the modifications related to
the De Morgan’s laws and simple polarisation
transformations on the gates’ inputs and/or outputs.
The NPN transformations used determine the way
particular selected gate is connected in the network
under construction, i.e.:
- which inputs must be inverted using the input

inverters and which must be directly connected,

484

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on April 15, 2009 at 10:18 from IEEE Xplore. Restrictions apply.

- which external inputs must be connected to which
gate inputs, and

- whether the output requires an output inverter.
During the circuit synthesis, P transformation is

realized through an appropriate permutation of the
actual gate inputs and connection of the corresponding
input signals to the inputs of a particular gate, to
implement its corresponding application in the network
under construction. Thus, the implementation of this
transformation does not result in any substantial cost
change of the resulting network. N transformation
changes the polarisation of the input and/or output
signals. The change of polarisation is simply realised
through the insertion of an inverter. The costs of N
transformation are thus low and defined by the inverter
costs in a given technology. An inverter may add a
small extra area, delay or power consumption.
However, many of the input inverters can be later
eliminated, when connected an inverted gate input to
an inverted output of a gate already present in the
circuit under construction or during the circuit post
processing. Only the inverters directly placed by the
primary inputs (the first circuit level) cannot be later
simply removed, and therefore, it is not desired to use
gates with inverted inputs at the first circuit level. The
post-processing removes the inverters placed inside the
network, when a gate that drives a given input inverter
of the next gate has its complementary equivalent in
the representative library. In this case, the output
inverter of the driving gate connected to the input
inverter of the driven gate result in double inversion,
i.e. in a direct interconnection of the driving gate
output with the driven gate input. To have adequate
information for the inverter elimination, all pairs of
mutual complementary gates present in the library are
detected, and with each such gate information is
associated denoting the complementarity, and pointing
to the complementary gate. The complementarity
feature is exploited in the post-processing, as well as in
the main decomposition process. Since the
complementary gates are equivalent in relation to the
information processing, a better of them from the

physical viewpoint is selected and used.
Moreover, during the uniform instance library

creation, all possible gate instance replicas (i.e.
instances that realize the same function) found in the
library are compared, and only the non-dominated of
them (e.g. smaller footprint area or faster) are kept. We
also introduced special “don’t care” (DC) inputs to
represent the extra inputs of a gate that actually has
fewer inputs, in order to use the gate for the sub-
functions with wider input supports. The DC inputs are
denoted in the corresponding formula as Boolean
alternative of a positive and inverted input.

Exploration of the gate input permutations during
the matching phase requires an efficient data structure
for representation of input permutations. The aim of
the permutation data structure is to efficiently represent
all possible applications of a particular gate for its
different fixed input orders. A pair: (input permutation,
the gate’s Boolean function corresponding to the input
permutation) defines a particular gate application. The
permutation data structure acts as a “patch panel” or
input “switch board”, and allows us to denote each
possible connection of the m external signals to n gate
inputs, where m and n are not necessarily equal. For
example, the permutation of the basic ascending input
order: 0, 1, 2, 3, 4 into the order: 1, 3, 0, 4, 2 is
graphically represented in Fig. 3. Observe that each
permutation is unambiguously defined through the
vector of position shifts of each input variable index in
relation to the index position in the basic ascending
input order. For example, the input permutation from
Fig. 3 is given in the shift notation in Fig. 4. To
represent the lack of permutation, one must perform no
shifts in the basic permutation. In this case, the vector
of shifts consists of zeros in all its positions. To further
simplify the permutation data structure, we proposed to
denote the shift values in modulo (n) notation, where n
is the number of gate inputs. The example from Fig 3
and 4 is given in modulo(n) notation in Fig. 5. Due to
the simplicity of the permutation data structure and
small size of the typically considered input supports,
the operations on this data structure are very efficient.
When a certain gate representative is being used during
the decomposition process to construct a circuit
implementing a given sub-function, all the internal
inputs of a physical gate have to be connected
according to the input permutation of the gate
representative to the particular corresponding external
inputs. This is performed in a straightforward way
through transforming the permutation vector into the
corresponding form of the actual input switch board.

Due to symmetries, the number of representatives
corresponding to a particular gate can often be
substantially reduced. For the symmetric gates (i.e.
implementing the symmetric functions as AND, OR,

Figure 3. Permutation representation

Figure 4. Permutation from Fig. 2
represented in shift notation

485

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on April 15, 2009 at 10:18 from IEEE Xplore. Restrictions apply.

EXOR, etc.) the input permutation does not influence
the logic function implemented by the gate. For the
partially symmetric gates, the input permutations
inside the symmetric input subsets do not influence the
function. Thus, for a certain gate, we have only to
consider all possible input permutations that result in
actually different functions, and can avoid
permutations among symmetric inputs.

An example of a Boolean function with an input
symmetry, DC input and potential input inverter is the
following:
F(A,B,C,D) = (A+A’)*(B+C+D’),
where inputs B and C form a two-input symmetry
group (BC), input A is a DC input, and input D is
negated. We consider the simple input symmetries, as
well as, the rotational and group symmetries. An
example of a Boolean function with rotational
symmetry is the following:
F(A,B,C) = (A+B)*(B+C)*(A+C),
where shifting all three input variables at once does not
change the logic function. An example of a Boolean
function with higher order group symmetry is the
following:
F(A,B,C,D) = (A+B)*(C+D),
where exchanging pairs of input variables ((A,B) with
(C,D)) does not change the logic function.

Each library gate is analyzed in terms of its input
symmetries. The input symmetries found are exploited
to reduce the size of the uniform instance library.
Having information about the symmetric and DC
inputs, we can limit the total number of distinct input
permutations that have to be considered to describe all
possible ways of use of a gate for circuit construction,
when preserving one permutation of positive/inverted
inputs (one representative) of a gate for each distinct
Boolean function. For every possible input permutation
that results in an actually different function, the truth
table of the corresponding function is computed.
Subsequently, the input combinations in the truth table
are sorted as ascending binary numbers, and the
corresponding signature, output set-system and
information set representing the function are
constructed. In our information-driven decomposition
approach, the binary gate implementation of a given
(multi-valued) sub-function requires covering of the set
of the elementary information items of a given (multi-
valued) sub-function by the information set computed
by a particular gate or combination of several gates.
The related comparisons of the required and delivered

information sets are performed multiple times during
the decomposition process. In consequence, the
optimisation of the information set representation has a
significant impact on the performance of the entire
synthesis process.

For example, for the three-input gate that
implements the totally asymmetric function:
f(A,B,C)=(A+A’)*(B+C’), all distinct input
permutations must be considered, because for an
asymmetric function there are no symmetric inputs
subsets. For each distinct input permutation, the
corresponding truth table is computed with input
combinations as ascending binary numbers. For
instance, the input permutation (BCA) results in the
following truth table:

symbol inputs output

B C A
0 0 0 0 1
1 0 0 1 1
2 0 1 0 0
3 0 1 1 0
4 1 0 0 1
5 1 0 1 1
6 1 1 0 1
7 1 1 1 1

The output set-system (bi-partition) corresponding to

this truth table: πf= }7,6,5,4,1,0;3,2{ , together with
its corresponding information set IS(πf), the input
order (permutation) (BCA) and cell reference are
stored in the list of the gates instances. During the
decomposition process, to find a gate that implements a
required sub-function given through its information set
IS, such a set-system πf (information set IS(πf)) must
be found in the list of the gate instances that its
information IS(πf) covers IS, i.e. IS⊆IS(πf).

 The representative set size reduction due to input
symmetries depends on a particular library. The more
symmetric or partially symmetric gates a given library
contains, the greater its corresponding representative
set size reduction. Typical libraries contain a lot of
completely or partially symmetric gates and this
represents a significant reduction potential that can be
as high as several times. Therefore, it makes much
sense to adequately explore and exploit this potential.

The gate physical feature modelling is much more
straightforward than an adequate logic feature
modelling, and consists of a direct extraction from the
original library description in ASCII form of the values
of the physical parameters that are required to be
considered during the single step-circuit synthesis. Due

Figure 5. Permutation from Fig. 2 and 3
represented in modulo(n) notation

486

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on April 15, 2009 at 10:18 from IEEE Xplore. Restrictions apply.

to the bottom-up synthesis approach and availability of
the information on the gates’ physical features, a very
precise control of the circuit physical features is
possible during the information-driven circuit
synthesis. At each step of the decomposition process,
the consequences of a particular gate application for
the area, delay and power consumption are analysed,
and the results of this analysis are used to select the
most promising binary gate realization of the multi-
valued sub-function. Also, the area, delay and power
related information is re-computed for the already
synthesized part of a circuit under construction.

The gate instance data structure of the library
model includes the following:
• logic features:
– logic function realized in several representations that
are used to different purposes:

- the Boolean function in the formulae format,
- the Boolean function signature being a compact

minterm representation/the function’s set system
representation,

- the function’s information set;
– input support size;
– input permutation vector;
– bitmask representing the DC-inputs (if any);
– bitmask representing the inverted inputs and/or the
inverted output (if any);
– cross references to:

- the corresponding gate implementing the
complementary Boolean function/output phase (if
any),

- the corresponding gate implementing the same
Boolean function, but without inverted

- inputs (if any);
– symmetric inputs of group, hierarchical and
rotational symmetries (if any);
• physical features:
– gate foot-print area;
– gate delay, (separately) for every arc (input pin):

- intrinsic delay:
· rise,
· fall,

- output driver:
· rise (pull-up) strength,
· fall (pull-down) strength,

– power related parameters.
In result of the above described gates’ logic and

physical feature modelling, a library model is
constructed that can efficiently be used in the single-
step information-driven circuit synthesis.

6. Virtual gates

In a typical modern gate library, all 2-input binary
functions have their direct gate representation and can
directly be mapped onto corresponding gates. Also,
most of the 3-input functions have their direct gate
representations, but only 10-15% of all possible 4-
input functions and a very small fraction of functions
with more inputs can directly be mapped onto
corresponding library gates. Although the introduction
of the gate input and output inverters and related NPN-
equivalent matching greatly increases the direct
mapping ability, a majority of functions of, for
instance, up to 4-inputs is anyway not covered. Thus, a
much more sophisticated sub-function construction
procedure is required for the synthesis of gate-based
circuits than for LUT-based FPGA circuits, where each
k-input binary function can be directly mapped onto a
k-input LUT, slice or CLB. Moreover, the
implementation costs of different k-input functions in
an FPGA technology are the same while in a gate
library based technology are in general different, due to
different area, delay and power characteristics of
different gates.

To facilitate an accurate assessment of the area,
timing and power dissipation costs during the
decomposition process, we decided to create an
extended gate library consisting of the actual physical
gates of a given technology library and additional
virtual gates. The virtual gates represent optimal
complete decompositions into physical gates of the
single-output Boolean functions of up to n-inputs that
are not directly implemented with the actual physical
library gates. This way, the extended gate library
includes implementations of all single-output Boolean
functions of up to n inputs. It is practical to limit such
an extended library to gates of maximally n inputs,
considered as a feasible or practical input support size
for the synthesis algorithms executed on a particular
computer. For the contemporary personal computers
the practical input support size seems to be n <= 8,
while the computation time for n=4 is substantially
lower than for the higher values of n. The practical
input support size will slowly (logarithmically)
increase with the increase of the computation strengths
of computers.

It is possible (but not necessary) to build all the
virtual gates and the maximal functionally complete
extended library of gates of up to n-inputs in advance,
before starting to use our synthesis tool to the actual
circuit synthesis. However, the extended library can
also be build stepwise, on-the-fly, and according to the
actual needs during the decomposition process of
functions that require for their realization particular

487

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on April 15, 2009 at 10:18 from IEEE Xplore. Restrictions apply.

binary sub-functions of up to n inputs that are not yet
implemented with the physical gates or earlier
constructed virtual gates. Both on-the-fly or in
advance, our synthesis tool constructs a corresponding
optimal circuit for every (required) single-output
Boolean function that is not yet included in the
extended library, and includes it as a virtual gate into
the extended library to enable a fast direct function
mapping on the newly created gate and facilitate the
accurate computation of the area, delay and power
consumption costs. In the case of the on-the-fly
computation, the newly constructed virtual gate is also
directly considered for its use in the circuit under
construction. The internal structure of a virtual gate
being an optimal multi-level and multi-gate realisation
of a particular Boolean function, together with the
models of gates involved in the virtual gate, give a
quite complete and accurate information for
construction of a complete virtual gate’s model,
involving the logic and physical parameters as
specified in the previous section. In particular, the area,
delay and power characteristics of each virtual gate can
be quite accurately computed. The virtual gates can
also be pre-synthesized to get more precise values of
their physical characteristic from their post-layout
analysis, if necessary.

The library model containing all the actually
distinct instances of gates from a given technology
library and extended with the virtual gates is used as a
homogenous Boolean function realization library
during the information-driven general decomposition
process. In this library all the (required) single-output
Boolean functions of up to n inputs have their
corresponding physical or virtual gate realizations that
are adequately characterized from the logical and
physical viewpoint. The Boolean function realization
library is implemented using the earlier described
efficient data structures, and enables an effective and
efficient multi-valued sub-function construction in the

information-driven circuit synthesis, as well as multi-
objective circuit optimisation and effective trade-off
exploitation among the area, delay and power
consumption.

7. Experimental results

To experimentally verify our proposed library
modelling process and related library parsing and
modelling tool, we modelled among others the MCNC,
STDcell and AMS c35b3 libraries, and used the
models to synthesize several thousands various
circuits. The results of these experiments demonstrated
that the proposed library modelling process, as well as
library parsing and modelling tool work correctly, and
are adequate for the single-step information-driven
synthesis. The information-driven circuit synthesis
process using the library models is a separate issue and
its more precise discussion will be a subject of a
separate paper. Nevertheless, the complete circuit
construction method briefly discussed in the previous
sections has been implemented in our information-
driven circuit synthesis tool IRMA2GATES. Since this
paper is not devoted to the experimental analysis of the
circuit synthesis algorithms implemented in
IRMA2GATES, but to the issue of an adequate
technology library modelling for the purpose of single-
step information-driven synthesis, only a brief
impression of the synthesis result quality delivered by
our method is presented below.

In Fig. 6 the synthesis results from our
IRMA2GATES are compared to the results from the
well known UC Berkeley’s tool SIS 1.3 [6] regarding
the area, gate-count and number of gate levels on the
critical path (delay) for several MCNC benchmarks [7]
and other popular functions. The results from
IRMA2GATES are on average 64% better regarding
area, 81% better regarding the number of gates, and
35% regarding the number of gate levels than from
SIS. Moreover, we compared IRMA2GATES to SIS
using more than 30 generated symmetric and quasi-
symmetric Boolean functions (Fig. 7). We generated a
set of 10-input completely specified symmetric
functions, and then, mutated the basic functions, by
replacing 20%, 50% and 70% of their 1 or 0 output
entries with “don’t cares” in each completely specified
function. The circuits produced by IRMA2GATES are
on average almost 3 times smaller and 25% faster than
the circuits synthesized by SIS. These results
demonstrate that IRMA2GATES is especially effective
for the symmetric, quasi-symmetric and incompletely
specified functions. More information on the
benchmarks used and experimental results from our

1 8 1 %
1 6 4 %

1 3 5 %

0 %

5 0 %

1 0 0 %

1 5 0 %

2 0 0 %

a re a le ve ls g a te c o u n t

IRMA2GATESIRMA2GATES
Figure 6. Synthesis result comparison from
IRMA2GATES to SIS 1.3 on MCNC benchmarks
for the STDcell library [6]

488

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on April 15, 2009 at 10:18 from IEEE Xplore. Restrictions apply.

tool can be found in our other paper [5] devoted to
different aspects of the method than this paper.

8. Conclusion

We developed a new effective, efficient and very
flexible circuit synthesis technology adequate for the
modern synthesis targets. The technology implements
our original information-driven approach to circuit
synthesis. It replaces the traditional dual-step process
of technology independent logic synthesis and
technology mapping with a single-step direct circuit
synthesis (direct mapping) into the gates of a given
technology library, when directly accounting for the
actual implementation costs. The single-step circuit
synthesis process requires availability of adequately
complete and accurate information on the logical and
physical features of the technology gates from the very
beginning of the circuit synthesis process, as well as an
effective and efficient usage of this information
throughout the whole process. To satisfy these
requirements, we developed a new library modelling
method and implemented it in the form of a library
parsing and modelling tool that automatically creates
an adequate library model in the form of a homogenous
Boolean function realization library, through
constructing efficient data structures and filling them
with the required information on the gates’ logic and
physical features. This library model enables an
effective and efficient multi-valued sub-function
construction in the information-driven decomposition
process, as well as, the multi-objective circuit
optimisation and effective trade-off exploitation among
its area, delay and power consumption. The
experimental results demonstrate a high quality of our
single-step information-driven circuit synthesis
approach. Our tools construct substantially smaller and
faster circuits than other tools, and enable a multi-
objective circuit optimization, trade-off exploitation
and very flexible circuit structuring and re-structuring.

9. References

[1] J. Cong and K. Minkovich: Optimality Study of Logic
Synthesis for LUT-Based FPGAs, FPGA’06, February
22-24, 2006, Monterey, California, USA, ACM, pp.
33-40.

[2] L. Jóźwiak: General Decomposition and Its Use in
Digital Circuit Synthesis, VLSI Design: An
International Journal of Custom Chip Design
Simulation and Testing, vol.3, No 3-4, 1995.

[3] L. Jóźwiak, A. Ślusarczyk: General Decomposition of
Incompletely Specified Sequential Machines with
Multi-State Behaviour Realisation, Journal of Systems
Architecture, Vol. 50, December 2003, pp. 445-492.

[4] L. Jóźwiak: Information Relationships and Measures -
An Analysis Apparatus for Efficient Information
System Synthesis, 23rd EUROMICRO Conference,
Budapest, Hungary, September 1-4, 1997, IEEE
Computer Society Press, pp. 13-23.

[5] L. Jóźwiak, S. Biegański, A. Chojnacki: Information-
driven Circuit Synthesis with the Pre-characterized
Gate Libraries, Journal of Systems Architecture,
Elsevier Science, Amsterdam, The Netherlands, Vol.
51, No 6-7, June-July 2005, pp. 405-423.

[6] E. M. Sentovich, K. Singth, L. J., Lavagno, C. Moon,
R. Murgai, A. Saldanha, H. Savoj, P. R. Stephan, R. K.
Brayton, A. Sangiovanni-Vincentelli, SIS: A system
for sequential circuit synthesis, Memorandum No.
UCB/ERL M92/41, Electronic Research Laboratory,
University of California, Berkeley.
ftp://ic.eecs.berkeley.edu/pub/Sis/Sis-paper.ps.Z

[7] Collaborative Benchmarking Laboratory, Department
of Computer Science at North Carolina State
University, http://www.cbl.ncsu.edu/

[8] The 2005 International Technology Roadmap for
Semiconductors, SIA, San Jose, CA, USA, 2005,
http://www.itrs.net/Links/2005ITRS/Home2005.htm

303.7 %

125.3 %

276.7 %

0%
50%

100%
150%
200%
250%
300%
350%

area levels gate count

303.7 %

125.3 %

276.7 %

0%
50%

100%
150%
200%
250%
300%
350%

area levels gate count

IRMA2GATESIRMA2GATES
Figure 7. Synthesis result comparison from
IRMA2GATES to SIS 1.3 on generated symmetric
and quasi-symmetric functions

489

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on April 15, 2009 at 10:18 from IEEE Xplore. Restrictions apply.

