
 

Local dynamics and deformation of glass-forming polymers :
modelling and atomistic simulations
Citation for published version (APA):
Vorselaars, B. (2008). Local dynamics and deformation of glass-forming polymers : modelling and atomistic
simulations. [Phd Thesis 1 (Research TU/e / Graduation TU/e), Applied Physics and Science Education].
Technische Universiteit Eindhoven. https://doi.org/10.6100/IR633231

DOI:
10.6100/IR633231

Document status and date:
Published: 01/01/2008

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://doi.org/10.6100/IR633231
https://doi.org/10.6100/IR633231
https://research.tue.nl/en/publications/b85107d6-2aba-4f13-b141-e9e99c84da87


Local dynamics and deformation of

glass-forming polymers:

modelling and atomistic simulations

PROEFSCHRIFT

ter verkrijging van de graad van doctor

aan de Technische Universiteit Eindhoven,

op gezag van de Rector Magnificus,

prof.dr.ir. C.J. van Duijn,

voor een commissie aangewezen door het College

voor Promoties in het openbaar te verdedigen

op donderdag 20 maart 2008 om 16.00 uur

door

Bart Vorselaars

geboren te Goirle



Dit proefschrift is goedgekeurd door de promotor:

prof.dr. M.A.J. Michels

Copromotor:
dr. A.V. Lyulin

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Vorselaars, B.

Local dynamics and deformation of glass-forming polymers: modelling and atomistic
simulations
Technische Universiteit Eindhoven, Eindhoven, the Netherlands (2008) - Proefschrift.
ISBN 978-90-386-1224-9
NUR 925
Trefwoorden: glasachtige polymeren / glas / moleculaire dynamica / computersimulatie /
vervorming / polystyreen / mechanische eigenschappen
Subject headings: polymers / glass dynamics / molecular relaxation / glass transition /
strain hardening / deformation / polystyrene / polycarbonate / molecular dynamics
method / stress-strain relations

A full-colour electronic copy of this thesis is available at the website of the library of the
Technische Universiteit Eindhoven (www.tue.nl/en/services/library).

Voor het gebruik van supercomputerfaciliteiten bij dit onderzoek is subsidie verleend
door de Stichting Nationale Computer Faciliteiten (NCF), met financiële steun van de
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Chapter 1

General introduction

Window glass is often the first association people have when talking about glasses. It
is a hard brittle transparent material, of which the structure at a microscopic level is
disordered. The atoms are lined up in an irregular way, as opposed to, for example, a
regular chess-board pattern or tiling. Other materials do have a regular pattern and are
called crystalline. In physics the term glass serves to describe not only SiO2-based materials
(such as window glass), but disordered solids in general.

A specific class of glassy materials is the one made of polymers. Polymers are giant
molecules composed of many connected building blocks, monomers. For applications for
which transparency and toughness are required polymer glasses form a good alternative to
the SiO2-based materials; they are much lighter and less brittle. Products such as eyeglasses
and vandal-proof glazing are therefore nowadays made of polymeric glasses. Moreover,
they are applicable for many more products, in which flexibility, complex shapes and/or
biocompatibility are needed.

Despite the many applications, some physical mechanisms causing the toughness of poly-
meric materials are still a mystery. This lack of understanding prevents one from having a
clear design strategy in improving and optimizing toughness of polymer glasses to the one
of desire: polymer glasses with extreme ultimate properties.

Insufficient knowledge can also lead to disastrous effects upon the application of the ma-
terials. One striking example is the following. In the eighties the American space shuttle
Challenger exploded shortly after lift-off because a part of it turned into the glassy state
due to the cold environment. The part was a rubber O-ring (of the shape of a torus)
and served to join other material parts together, thereby preventing leakage of a liquid
or gas. Under normal circumstances a small dilatation of the surrounding material parts
will not result in leakage due to the expansion of the initially compressed resilient rubber.
Below the glass-transition temperature this changes; then the material is solid and to a
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great extent the resilience is lost. As a consequence, a flare from the rocket booster could
eventually reach the fuel tank, thereby causing the disaster.

Not only the mechanical properties of glassy polymers are poorly understood; also the
properties of simpler low-molecular weight glasses are badly comprehended. Upon vitri-
fication of a supercooled liquid into the glassy state its viscosity dramatically increases
without large changes in its local structure. How this can happen is still an open question.
Understanding the physics of the glassy state is considered one of biggest knowledge gaps
in science [1].

The aim of the research presented in this thesis is to contribute to the knowledge necessary
for solving these problems in the context of polymers. This is accomplished by the study of
local dynamics and deformation of glass-forming polymers, both by means of a modelling
approach and by atomistic simulations.

The goal of the present chapter is to give the necessary introduction into these fields: poly-
mers, glasses, mechanical properties and simulation methods. Furthermore, the present
chapter serves to enlighten some of the more specific subproblems these fields are coping
with. The chapter concludes with an outline of the remaining thesis.

1.1 Technological relevance of polymers

A polymer chain can be compared with a pearl necklace, a lengthy string of beads. Just as
a necklace, a polymer chain can be very flexible and fully extended or coiled up in a heap.
Another analogy of a polymer chain is that of spaghetti. A pan filled with (over)cooked
spaghetti is in some sense similar to an amorphous polymer melt; the strings are intertwined
and possibly entangled and the structure is aperiodic.

Polymers can be found in nature, but they can also be synthesized artificially. Examples of
natural polymers, so-called biopolymers, are natural rubber, DNA and spider silk. Typical
synthesized polymers are Bakelite (the first polymer ever synthesized, for which a patent
was granted in the year 1909), nylon, Teflon, polyethylene, polystyrene and polycarbonate.
However, more and more biopolymers can be synthesized nowadays as well.

Polymeric materials form a major part of nowadays products. What circumstances are
responsible for this? In contrast to steel, polymer thermoplastics melt already at quite
low temperatures, typically around 100 ◦C, as opposed to about 1500 ◦C for steel. It is
therefore much less demanding to process polymeric materials. They can be easily shaped
in various forms. There even exist 3D printers capable of producing three-dimensional
structures from polymeric materials. Another advantage is that they are relatively light-
weight. The density of typical polymers is about a factor of 5 lower than that of steel,
thereby reducing the overall weight of products with accompanying transport costs, etc.
Yet another usefulness of polymeric-based materials is that they can be adjusted in many
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ways: the type of monomer unit can be changed, the topology of the molecules is modifiable
(the size, the degree of crosslinking and branching), multi-components are possible to
synthesize (block copolymers, functionalized hyperbranched polymers). This adjustability
allows one to optimize the material for a wide number of applications. A polymer material
can be made very flexible, or very tough. Some polymeric materials have strengths per
unit of mass far exceeding that of steel. This makes them ideal materials for the aviation
industry, or for applications such as bullet-proof vests.

A polymeric glass is a very specific type of polymeric material. Polymer glasses such as
polycarbonate, poly(methyl methacrylate) and polystyrene have important applications in
situations where transparency is demanded. Glassy polymers are often used because they
have a high yield modulus in combination with some elasticity. Amorphous thermoplas-
tics are not chemically crosslinked, but only physically entangled or crosslinked and are
therefore both easy to process and easy to reuse.

1.2 Glasses and their dynamics

Many phenomena of glasses produced by the vitrification of a melt of polymer chains
are a result of the fact that they are glasses, irrespective of their long-chain connectivity.
Therefore the comprehension of glasses in itself is important and an introduction into this
class of material will be given in this section.

1.2.1 Definition and existence of glasses

So what exactly is a glass? It is an amorphous solid material, see also fig. 1.1. The idea of
a glass becomes more apparent if one compares it with other disordered material phases.
To differentiate a glass from a liquid the glass is often defined as having a viscosity larger
than about 1013 Pa s [18, 68]. This roughly corresponds to a relaxation time of 100 s.
So the state of a material changes into a glass when the internal relaxation time of the
material exceeds the typical time of a laboratory experiment. This state is usually reached
by cooling down a material from its liquid state. Another disordered material is a quasi-
crystal. Nevertheless, a quasi-crystal such as the Penrose tiling [135] can be obtained from
a lattice in a higher dimension and could be regarded as being in a (degenerate) ground
state. This is not the case for glasses. As time progresses, the glassy material ’ages’ and
a relevant energy usually decreases. A rubber, although disordered as well, also differs
from a glass. A rubber can be defined as a huge molecular network which is formed when
a polymeric liquid is irreversibly cross-linked by chemical bonds. Upon heating a rubber
the chain segments between the crosslink points will deteriorate as well. A glass, on the
contrary, has a reversible transition to the liquid state. Yet another amorphous system
is a gel. A gel, however, consists of a diluted solid part (although this solid part forms a
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Figure 1.1: An example of a part of a two-dimensional crystalline (left) and a glassy
(right) morphology.

percolating cluster throughout the whole system), while a glass consists of an undiluted
solid (possibly prepared from a melt at higher temperature).

How is a glass prepared? Next to the usual method of cooling down a material from
its liquid state, many other methods exist [7]. One example is to modify the pressure
or density. By compressing a liquid or a crystal one can induce the glass transition.
Decompressing a high-pressure stable crystal can induce the glass transition as well. In
addition, shock, irradiation or intense grinding of a crystal can transform the material
into a glassy state. The shear rate can be enhanced or reduced to vitrify a liquid into a
glass. The temperature can even be increased to force the material to be in a glassy state
[66, 201, 235].

What is the reason that a glass exists for a crystallisable material? Kauzmann’s paradox
[52] sheds light on this matter. A liquid can be cooled below the crystallization tempera-
ture without crystallizing, if the cooling happens fast enough. The reason for this is that a
free-energy barrier prevents spontaneous crystallization below the crystallization temper-
ature. In general, the liquid has a higher heat capacity cP than its crystalline counterpart,
which can be understood classically by the more degrees of freedom of the liquid. There-
fore the entropy S of the supercooled liquid decreases faster than that of the crystal with
decreasing temperature T (as cP = T

(

∂S
∂T

)

P
). Upon extrapolation towards lower temper-

atures the entropy of the supercooled liquid would eventually be below that of the solid.
The temperature at which the entropy of the two different states would cross each other
by means of linear extrapolation is called the Kauzmann temperature TK . Carrying out
this extrapolation suggest that for many glass-forming materials TK > 0 [52]. Thermody-
namically such a crossing at positive temperatures would not be a problem [52]. However,
upon linearly extrapolating the entropy of the undercooled liquid further towards T = 0
this would result in a lower value of the entropy of the supercooled liquid than that of the
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crystal. The entropy of the crystal at T = 0, if it is assumed to be perfect, would be zero.
This implies that the entropy of the undercooled liquid would be negative at T = 0, so that
it would violate Boltzmann’s formula of the entropy S = kB ln Ω (with Ω ≥ 1 the number
of quantum states corresponding to a certain energy, volume and mass). This is known as
Kauzmann’s paradox. A way to escape from this reasoning is that some degrees of freedom
have to freeze in, so that the heat capacity of the supercooled liquid decreases. In this
way the linear extrapolation fails and the entropy crisis can be circumvented. The point at
which the degrees of freedom freeze in can then be associated with the glass transition and
should be above TK . Another way, of course, is that the material undergoes spontaneous
crystallization. The ability of a material to form a glass is quantified by the critical cooling
rate. Below this cooling rate the material has enough time to crystallize.

1.2.2 Glassy materials and models

What kind of materials are glasses? Polymer glasses, of current interest, are well-known
glasses. They are widely used in for example DVD’s, coffee cups, contact lenses, vandal-
proof windows, toys, packaging and encapsulation parts such as computer housings. Partly
because of the complexity in the backbone structure of some polymers, the crystallization
of these polymers is easily prevented by moderate cooling rates. Even when crystallization
does occur, it is often only partial, while amorphous regions are still present. Another
possibility is that the polymer is intrinsically disordered (such as atactic chains, see also
chapter 2) so that a crystalline state does not exist. Other typical glassy substances are
ortho-terphenyl [100], metallic glasses [105] and SiO2 (i.e., window glass). However, almost
every material can turn into a glass, as long as the cooling rate is fast enough. Even water
can vitrify [185].

To acquire a more fundamental understanding of glasses, model systems are studied. One of
the simplest systems capable of vitrification is a monatomic system, consisting of spherical
particles. An example showing some glassy phenomena such as metastable states is the
five-disc-in-a-box [31] or even the two-disc-in-a-rhomboidal-box [243] system. A larger
two-dimensional system is a soft-disc liquid [127]. Three-dimensional examples are a hard-
sphere system [216] and a monatomic Lennard-Jones liquid [178, 195]. However, often these
systems tend to crystallize after some period of time. Binary liquids are often employed to
prevent this relatively fast crystallization; here the atomic radii and/or energy parameters
are chosen different from each other in such a way as to prevent crystallization. Examples
are a binary two-dimensional hard-disc system [84, 152] and a binary three-dimensional
Lennard-Jones liquid [150]. Another glass-forming system is a polydisperse liquid [57] of
which the polydispersity is accomplished by a variation in the radius among particles.
This variation in radius is now not bidisperse as in the binary-liquid case, but described
by a (piece-wise) continuous probability distribution function, so that the possible number
of different particles is infinite. Moreover, there is an ideal-gas model showing glassy
behaviour [264]. That system is made of infinitely thin Onsager-like crosses (a cross consists
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of three perpendicular line segments rigidly joined together at their midpoints), occupying
thus zero volume. Upon increasing the number density dynamic localization effects are
observed.

Yet a different class of glass-like systems is that of lattice glasses, such as spin glasses [26].
For a normal magnetic model system ’spins’ are placed on lattice sites. Usually each spin
will interact with neighbouring spins. The contribution to the total energy depends on the
relative orientation of a spin with its surroundings. One possibility is that if neighbouring
spins are parallel, then there is a negative contribution to the energy and opposite if they
are antiparallel. A variant of a magnetic system is one with random interactions, showing
thereby glassy behaviour. Here specific arrangements of spin orientations are favoured
randomly: Some spin pairs prefer a parallel arrangement, while other spin pairs prefer an
anti-parallel ordering. Due to this frozen-in disorder no long-range order is present.

An important group in spin-glass models is that consisting of kinetically constrained models
[218]. In this case the interactions are usually very simple, without any disorder. However,
for these kinetically constrained systems more attention is paid to the dynamics of the spins.
An example of a possible constraint is that a spin can only flip if a certain minimum number
of neighbours are in the upward state. It turns out that then the dynamics can become
highly non-trivial and cooperative. This cooperativity manifest itself in the temperature
dependence of some relaxation time: deviations from normal Arrhenius-like behaviour. As
we will see in §1.2.3, that behaviour is typical for supercooled liquids approaching the glass-
transition temperature from above. The benefit of some kinetically constrained models is
that this temperature-dependence can be obtained analytically. An example is the one-
dimensional East model [133, 218]. The relaxation time τ as a function of temperature T
for this model in the low-temperature limit shows marked non-Arrhenius behaviour: the
logarithm of the relaxation time is proportional to the square of the inverse temperature,
log10(τ) ∼ T−2 [26, 218].

1.2.3 Dynamical phenomena

Why are the dynamics of glasses interesting? To answer this, we should first answer
a related question: what are the key properties of glasses? Properties which are both of
technological and fundamental interest are optical properties (transparency, index of refrac-
tion, etc.), thermal expansion, conductivity, density and the glass-transition temperature.
In addition to this, mechanical properties are of major interest. It is these properties that
we focus on in the thesis. Many mechanical properties, such as the shear modulus, are
ultimately linked to various relaxation times. Understanding the relaxation processes in
the vicinity of the glass transition is thus of prime importance.

The dynamical phenomena present in glasses are linked to the motion of the constituent
particles. Studying the trajectory of particles will thus give more insight into this. A spe-
cific particle trajectory r(t) is afflicted with thermal noise. We therefore look at quantities
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averaged over many particles. For an isotropic sample the average displacement of particles
is zero. The first non-zero moment is the mean-square displacement (MSD)

〈∆r(t)2〉 = 〈|r(t0 + t) − r(t0)|2〉. (1.1)

Here 〈· · · 〉 denotes ensemble averaging.

Before we turn to the glassy dynamics, we first treat the ordinary classical simple gas. For
this situation the MSD has two distinct regimes. For times much smaller than the typical
time between collisions a particle move ballistically. Then the mean-square velocity of a

particle of mass m equals the thermal velocity vth =
√

dkBT
m

and 〈∆r(t)2〉 = v2
tht

2 [17].

Here d is the spatial dimension. The second regime is visible for times much larger than
the typical time between collisions. Then the motion of a particle can be regarded as a
random walk and becomes diffusive. In this case 〈∆r(t)2〉 = 2dDt with D the diffusion
coefficient.

Upon vitrification the dynamics of a glass former becomes extremely sluggish. This will
also show up in the MSD. In a glass a particle is surrounded by other particles. A collision
with a neighbour particle causes the direction of the particle to change. However, it will
collide again with other neighbour particles; the particle is therefore trapped within a cage
(see also fig. 1.1). Only after many collisions a rearrangement is able to occur. Such a
rearrangement is often of a collective nature involving the cooperative motion of many
particles. Stringlike motions in large clusters of mobile particles have been observed [62].
For a binary liquid the degree of cooperativity is found to increase upon approaching the
glass-transition temperature from above [21]. It was shown that this result also applies
to polymeric liquids [5]. After the rearrangement the particle has moved into a new cage.
The cage around the particle thus causes a temporal localization of the particle inside the
trap and is responsible for a dramatic decrease of the long-time diffusion coefficient. Due
to the localization a new regime in the MSD appears: a plateau is arising between the
small-time ballistic and the large-time diffusive region.

The dramatic decrease of the diffusion coefficient upon cooling down only a few degrees
is characteristic for glasses. The diffusion coefficient can be written as D = σ2

2dτ
with σ a

typical length scale such as the diameter of the particle and τ the time it takes to diffuse
the distance σ. So the decrease of the diffusion coefficient is accompanied by an increase
in a relaxation time and is ultimately linked to an increase in the viscosity η. So if this
dramatic increase lasts till η = 1013 Pa s, the material has by definition (§1.2.1) vitrified
into a glass.

A viewpoint which at first hand seems to be different from the MSD is to look at dynamic
density-density correlation functions, quantified by the Van Hove function [262]

G(r, t) =
1

ρ
〈ρ(r0 + r, t0 + t)ρ(r, t)〉. (1.2)

It is a measure for the correlation of the density ρ at the position r0 + r and time t0 + t
with the density ρ(r0, t0). For a disordered material no long-range order exists and the Van
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Hove function G(r, t) approaches ρ for |r| → ∞. It also approaches ρ for t → ∞ because
of relaxation processes such as diffusion.

The Van Hove function actually is related to the MSD. This can be seen from the following.
As in the current discussion we treat particles as point-like, an enhanced correlation in the
Van Hove function can arise either because the particle originally at r0 at t0 displaces
towards r0 + r at t0 + t (self correlation) or that a different particle appears at r0 + r at
t0 + t. From this it is clear that the Van Hove function can be partitioned in a self and a
distinct part

G(r, t) = Gs(r, t) + Gd(r, t) (1.3)

with the self part
Gs(r, t) = 〈δ (r − (ri(t0 + t) − ri(t0)))〉 (1.4)

and the distinct part

Gd(r, t) =
1

N

〈

N
∑

i=1

N
∑

j 6=i

δ (r − (rj(t0 + t) − ri(t0)))

〉

. (1.5)

Here N is the number of particles in the system. The self part of the Van Hove function
is a measure for the probability of a certain displacement r of a particle i after a time t.
The MSD is then just the second spatial moment of Gs(r, t).

A quantity related to G(r, t) is commonly measured in experiments: the dynamic structure
factor S(q, ω), depending on the wavevector q and frequency ω. This is the spatial as well
as temporal Fourier transform of the Van Hove function. As with the Van Hove function,
there is also a self part of the dynamic structure factor, called the incoherent dynamic
structure factor Sinc(q, ω). This can be determined by a spatio-temporal Fourier transform
of Gs(r, t) [110]. Both the dynamic structure factor and the incoherent dynamic structure
factor are measurable by neutron scattering, i.e., by bombarding neutrons onto the sample.

The intermediate scattering function Fq(t) is the density-density correlation function in
the reciprocal space

Fq(t) = N−1〈ρq(t)ρ−q(0)〉, (1.6)

and is determined alternatively by performing the temporal Fourier transform of S(q, ω)
or spatial Fourier transform of G(r, t). The Fourier component q of the density ρ as being
used in eq. 1.6 is given by

ρq =
N
∑

j=1

exp (−iq · rj) , (1.7)

with rj the position of particle j and i2 = −1.

Based on the intermediate scattering function we can construct a normalized function
Φq(t) = Fq(t)/Fq(0). It acts as a correlation function, as it measures the degree of cor-
relation of the material with itself but at some later time. For a liquid it decays to zero
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for t → ∞, as all memory will be lost. For a solid material in which the shape is fixed,
Φq(t) does not decay to zero, but towards a finite value fq. This value is also known as the
Debye-Waller factor. Φq(t) is a frequent object of study for some glass-transition theories,
as will be discussed in §1.2.4.

The study of these extra correlation functions reveals more information about glasses
than solely the second moment of the self part of the Van Hove function, the MSD. One
example is the observance of non-Gaussian displacements. Around the time at which the
localization-plateau regime as visible in the MSD ends, the functional form of Gs(r, t) shows
pronounced deviations from a Gaussian shape. The effect can be quantified by a single
characteristic, the non-Gaussian parameter. This non-Gaussian nature of displacements
is typical for glasses [140] and has been measured both by means of experiments and
simulations. A compelling theoretical explanation is still lacking. The focus point of
chapter 3 of this thesis will be these deviations from Gaussianity.

The normalized correlator Φq(t) also shows another characteristic of glass-forming materi-
als: heterogeneous dynamics. This is elucidated by the following. Just as with the MSD,
there is also a plateau present in the time dependence of Φq(t), reminiscent of temporary
localization within the cage. After this plateau regime the correlator Φq(t) of a vitrifying
material decays further again towards zero. This decay is called the main or α relaxation,
as all correlation is lost afterwards. The functional form of it is known to be closely de-
scribed by the Kohlrausch-Williams-Watts (KWW) law [26, 52, 273]. It is a stretched
exponential function

c exp

(

−
(

t

τ

)β
)

, (1.8)

with τ a typical time of relaxation, β a measure for the stretch and c a pre-factor. The
stretch parameter β for a glass-forming material is commonly between 0 and 1. It is a
generalization of normal, Debye-like relaxation, which is just single-exponential, i.e., β = 1.
An example of single-exponential behaviour is normal diffusion in the hydrodynamic limit
[17, 110], for which the self part of the density autocorrelation function is related to the
MSD

Fs,q(t) = exp

(

− 1

2d
〈∆r(t)2〉q2

)

= exp
(

−Dq2t
)

. (1.9)

The observation that the stretch parameter β is less than 1 has been associated with het-
erogeneous dynamics [215, 273]. It is observed that upon approaching the glass-transition
point from the supercooled liquid the relaxation becomes more wide, i.e., the stretch pa-
rameter β decreases. It has been put forward that two different scenarios could be the cause
of this [215]. One is that spatially separated subsystems all relax single-exponentially, but
with a spectrum of relaxation times τ . This makes the overall relaxation non-exponential.
Each of these subsystems is ought to be of a certain size. The second possibility is that
all subsystems relax in an intrinsically non-exponential matter, i.e., each bead, and hence
the self-part of the density autocorrelation function, relaxes non-exponentially. Examples
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of this intrinsic non-exponential decay are Rouse dynamics [56] and single-file diffusion
[214]. No general consensus has been made so far regarding the right scenario. Also other
issues related to the time and length scales of these heterogeneities are subject of much
discussions [67]. By using simple models some progress has been achieved [239], although
many controversies are still unresolved [239]. The focus of chapter 4 of this thesis will be
mainly on the matter of heterogeneous dynamics in vitrifiable forming systems.

Next to being heterogeneous this α-relaxation time shows a highly non-trivial temperature
dependence near the glass transition. Many thermally activated processes can be well
described by the Arrhenius law, stating that their relaxation time increases exponentially
with the inverse temperature [273, 282]

τ = τ0 exp

(

E

kBT

)

, (1.10)

with E the activation energy and τ0 a pre-factor that only weakly depends on tempera-
ture. However, for glassy materials this is generally not the case. Then the temperature
dependence of the α-relaxation time is usually super-Arrhenius, meaning that upon cooling
down the relaxation time increases faster than expected from the Arrhenius law.

A quite successful functional form of the temperature dependence of the α relaxation is
the Vogel-Fulcher-Tammann (VFT) law [52, 273]

τ = τ0 exp

(

A

kB(T − T0)

)

, (1.11)

with τ0, A and T0 fit parameters. Note that the relaxation time diverges for T approaching
T0 from above, T ↓ T0. In §1.2.4 it will be shown that one of the outcomes of some theories
of the glass transition is exactly the VFT law.

Another phenomenological law for the temperature dependence of a relaxation time is the
Ferry or Bässler form [26, 77, 273]

τ = τ0 exp

(

B

(kBT )2

)

, (1.12)

in which τ0 and B are fit constants. This exponential inverse temperature square (EITS)
law is noteworthy because it is the exact solution for a model glass in the low-temperature
limit: the one-dimensional kinetically constrained East model, as mentioned in §1.2.2.

The temperature dependence of the main relaxation time can act as a classification crite-
rion for glassy materials. To see this, we first extract an effective temperature-dependent
activation energy from the τ -T relation. One way is fitting the log10 τ vs. (kBT )−1 relation
with a tangent line. The accompanying slope is

E(T )/ ln (10) =
∂ log10 τ(T )

∂1/(kBT )
. (1.13)
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The so-determined effective activation energy E(T ) is at T = Tg related to the well-known
steepness or fragility index [28]

m =
E(Tg)

kBTg ln (10)
. (1.14)

And it is the fragility index that is used to classify glasses. For a pure Arrhenius-like
process the energy barrier is independent of temperature and we can make an estimation
of the value of m in this case. Assuming that τ0 = 0.1 ps [64] and τ = 100 s (the typical
relaxation time at the glass-transition point), then a process adhering to the Arrhenius law
would have an activation energy of E = 15kBTg ln (10), so that m = 15.

Materials having a low value of m are called strong glass formers (m ≈ 25), while materials
with a high value of m (m ≈ 150 [64]) are fragile. Very few glass formers have a fragility
index lower than 25. Examples of fragile materials are o-terphenyl, toluene, chlorobenzene
and to a lesser extent glycerol. Examples of strong glass-forming materials are the network
oxides SiO2 and GeO2 [52]. It is observed that for polymers the fragility index is usually
higher than for small molecules [41] and that the fragility index for longer chains is higher
than for shorter ones [224]. This last observation seems to be connected with the chain-
length dependence of the glass-transition temperature; shorter chains have a lower glass-
transition temperature because of a higher relative contribution of chain ends, which are
freer.

The fragility has been connected to the structure of a material. A fragile material looses its
structure more rapidly upon heating than a strong material. Recently it has been shown
that the fragility of a material is related to the Poisson ratio (which is a measure for the
ratio of instantaneous shear modulus G to bulk dilatation modulus B) [196]. Here it was
observed that the more fragile a material is, the smaller the ratio G

B
. This implies that the

structure of these materials is more vulnerable to shear deformation than to dilatation (as
compared to strong materials).

In general the relaxation of a fragile material is departing more from simple exponential
decay than that of a strong material [9, 41]. These materials with a high value of m have,
obviously, a high apparent activation energy. This energy can easily exceed the molecular
heat of vaporation (for o-terphenyl a factor of 5) implying that the viscous flow is highly
cooperative [8]. To sum up, by means of the fragility index a connection between the
dynamics and the structure of a glass-forming liquid can be made.

In addition to the main relaxation process (the α relaxation), numerous other processes
are frequently observed in glassy materials. For very high temperatures in the liquid phase
particles are flowing along each other and other local processes (such as a rotational motion
or a permutation of particles) have a negligible contribution to the overall relaxation.
Another possibility is that the local relaxation at high temperature is occurring so fast, that
it falls out of the experimentally measurable time window. However, as the α-relaxation
time increases in a super-Arrhenius way, local, more Arrhenius-like relaxation mechanisms
will be able to contribute to the overall relaxation. Many of these processes can be detected



12 Chapter 1

by experimental techniques such as dielectric spectroscopy or dynamic mechanical analysis.
In the last case these secondary relaxations show up as extra peaks in the frequency-
dependent shear loss modulus below some bifurcation temperature; they are called β,
γ, . . . relaxations in order of appearance after the α relaxation for increasing frequency
or decreasing temperature. The variation of the peak positions with temperature give
information about the activation energies of these secondary processes.

The relaxation times are ultimately linked to other intrinsic properties, such as the shear
modulus and viscosity [26, 182]. Although basic ’laws’ can be used to show this connection
for liquids, glasses often do not adhere to these laws. As an example we consider the
connection with viscosity η. According to Stokes’ law a non-slipping sphere of radius R
moving with velocity v in a viscous medium experiences a drag force F = 6πRηv, so
that the friction coefficient equals ζ = F

v
= 6πRη. Although Stokes’ law is derived from

macroscopic considerations, it also provides a good correlation of experimental data on
simple liquids [110]. According to the Einstein equation the friction coefficient, in turn, is
related to the diffusion coefficient D [56, 110]

Dζ = kBT, (1.15)

with T the temperature and kB the Boltzmann constant. Assuming that this diffusion
coefficient is the same as the self-diffusion coefficient, D can be determined by measuring
the averaged mean-square displacement of a particle D = limt→∞

1
6t
〈|r(t0 + t) − r(t0)|2〉.

As the diffusion coefficient can be written as D = L2

6τ
(with τ the time it takes to diffuse a

distance L) the connection between viscosity and τ is

η =
kBT

πRL2
τ, (1.16)

This result is derived from the combined Stokes-Einstein relation D = kBT
6πηR

[17]. However,
in glassy materials these basic laws do not suffice: the Stokes-Einstein relation is found to
be violated. In the glassy state particles are caged and an apparent activation energy is
needed for the particles to flow. It seems that below the glass-transition temperature the
activation energy of the process probed by the measurement of the single-particle diffusion
coefficient differs from the activation energy of the process probed by the measurement of
the viscosity constant. The inequality between those activation energies is likely causing
the breakdown of the Stokes-Einstein relation.

An important consequence of the increase in time scales upon cooling down is that even-
tually the system cannot relax within the time of observation. This is also qualified by the
Deborah number De = τ

t
, with τ a typical relaxation time and t the time of observation

[213]. If De ≫ 1 then relaxation cannot take place. Partly due to the disordered struc-
ture of the material, the ideal equilibrium structure is different at each temperature (if no
underlying crystal structure would be present). An example of a temperature-dependent
structural property can be found with atactic polystyrene (see next chapter); an atactic
polystyrene chain tends to be more stretched upon cooling down (see chapters 5 and 6).
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As the stretching of a polymer chain as a whole is associated with large relaxation times,
an out-of-equilibrium state easily occurs. In such a non-equilibrium situation the cooling
rate starts to play a role. Also structural properties will be dependent on the deviation
from equilibrium, so that aging effects can be observed. Mechanical properties can be very
susceptible to the age of a material, as we will see in §1.3.2.

1.2.4 Glass-transition theories

Various theories exist to explain the glassy phenomena discussed in §1.2.3 and the most
important ones will be discussed here. Although no well-accepted theory of the glass
transition is available at the moment, these important theories each have an important
physical picture accompanied with it and it is likely that the ultimate theory will contain
traces of each picture.

One of the first, and still a popular one, is the free-volume theory [26, 52, 273]. In its basic
form as developed by Cohen and Turnbull vitrification occurs when there is not enough
free volume Vf available for translational molecular motions. If there is no energy penalty
or correlation associated with the redistribution of free volume over particles, then after
maximizing the number of possible free-volume configurations the free-volume distribution
ρ(Vf ) is of Poisson form

ρ(Vf ) =
1

〈Vf〉
exp

(

− Vf

〈Vf〉

)

(1.17)

with 〈Vf〉 the average free volume. As assumed, diffusion can only occur if a minimum
amount of free volume Vf,min for a particle is available, so near the glassy state

D ∼ exp

(−Vf,min

〈Vf〉

)

. (1.18)

Upon supposing that the free volume is linearly dependent on temperature the VFT-
law for the temperature dependence of the viscosity near the glass-transition temperature
(eq. 1.11) is recovered. Although intuitively appealing, the free-volume theory is highly
disputed nowadays. One of the main criticisms is that the pressure dependence of the
glass-transition temperature is not well described by the free-volume theory [26, 52, 225].

Another approach is the Adam-Gibbs theory [3, 18, 26, 52]. It is based on the assumption
that many particles are involved for a non-trivial motion in the system. In order for such
motion to occur these particles need to move collectively; this cluster of moving particles
is called a cooperatively rearranging region (CRR). The entropy of the whole system is
partitioned in a vibrational and a configurational part. The configurational entropy for a
subsystem should be sufficiently large to allow for at least two configurations. Assuming
that the subsystems are statistically independent, the number of subsystems is equal to
the total number of particles divided by the (minimum) critical size of a CRR. The total
configurational entropy Sc is then of the order of the number of subsystems and thus
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inversely proportional to the critical size of a subsystem. It is also assumed that the
configurational entropy Sc vanishes at the Kauzmann temperature TK . The result of these
assumptions is that the VFT law (eq. 1.11, τ = τ0 exp(−A/(T − T0)) is recovered with
T0 = TK .

However, the predictions of the Adam-Gibbs theory sometimes fail. The stated equivalence
between T0 and TK is found to be invalid for some systems. The (extrapolated) Kauzmann
temperature TK is found to be lower than the (extrapolated) VFT temperature T0 [26, 52].
Also the definition of a CRR is not a stringent one, making it hard to identify CRRs in
experiments or simulations.

A dynamical viewpoint on glassy behaviour is the mode-coupling theory (MCT). It
describes the evolution of the normalized density-density correlation function Φq(t) =
Fq(t)/Fq(0) for supercooled atomic liquids. The basic form of MCT is described by an
integro-differential equation for Φq(t) [48, 50, 52, 101, 273]

Φ̈q(t) + ν0Φ̇q(t) + Ω2
q



Φq(t) +

t
∫

0

Γq(t − t′)Φ̇q(t
′)dt′



 = 0. (1.19)

Here ν0 is a damping constant, Ωq = (qvth)
2(Fq(0))−1 the vibration frequency of modes

with wavevector q (with the thermal velocity vth =
√

kBT
M

), M the mass of a molecule and

Γq(t) a memory function, determined by the equation

Γq(t) =

m0
∑

m=1

1

m!

∑

q1,...,qm

V (m)(q,q1, . . . ,qm)Φq1(t) · · ·Φqm
(t), (1.20)

where V (m) are the vertex functions or coupling constants depending on the static structure
factor Fq(0). The memory function generalizes the Newtonian friction coefficient to a
frequency-dependent function and couples different modes, hence the name of the theory.
The difficulty partly lies in the form of the vertex functions V (m) acting as a closure for
eq. 1.19. Various expressions for the vertex functions are in use. If chosen, the MCT thus
predicts the time evolution of Φq(t) with only the static structure factor and density at
given temperature as an input [52]. Next to the MCT for monatomic liquids, a version of
MCT has also been developed for dense polymeric systems assuming Gaussian chains [43].
In that version Rouse-like dynamics is resolved after the cage plateau.

The ideal MCT predicts a power-law divergence of the main relaxation time near the
critical MCT temperature Tc

τ = τ0(T/Tc − 1)−γ. (1.21)

Here τ0 is a prefactor and γ an exponent deducible from MCT. Measured values for the
exponent γ are typically within the range 1.5–2.5 for simple fluids [8], while for a couple
of glass-forming polymers higher values are found [177, 270]. Measured values of Tc gener-
ally are above the out-of-equilibrium temperature Tg, leading to an overestimation of the
relaxation times near Tc.
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Using the MCT proved to be successful in several cases. The mode-coupling theory de-
scribes the relaxation of the normalized density-density correlation function for a few sys-
tems qualitatively and sometimes even quantitatively [273]. Also MCT has predicted novel
relaxation patterns correctly (such as that the addition of an attractive part to the hard-
sphere potential could melt a hard-sphere glass [212]). MCT works better for fragile liquids
[273], probably because ideal MCT predicts a power-law divergence of the main relaxation
time near Tc and fragile glass-forming liquids are behaving in a super-Arrhenius way tend-
ing more to divergence-like behaviour than strong materials do.

Nevertheless, MCT also suffers from some serious flaws. A good description of relaxation
data is only obtained in a limited temperature range above Tg, as the predicted divergence
of time scales is not observed near the glass-transition temperature [27]. Due to this
limitation for the temperature range and time scale, ideal MCT is considered not to be
a theory of the glass transition [53]; additional relaxation mechanisms such as activated
hopping motions are neglected. Extended versions of the ’ideal’ MCT have been developed
in order to include such hopping mechanisms [52]. Nevertheless, the extended version
still does not perform well with characteristic glassy phenomena such as the non-Gaussian
behaviour of particle displacements [80].

A framework different from MCT for studying the glass transition is the energy-landscape
picture [53, 273], which has been put forward by Goldstein [99] and popularized by Stillinger
[245]. Although no general theory has emerged from it, various glassy phenomena can be
understood within this picture such as the decoupling of the α and the β relaxation [53].
Some models are built from this picture, such as the trap model inside a random free-energy
landscape by Bouchaud [30] or the evolution of the energy-probability density function [65].
Concepts such as inherent dynamics in which the dynamics has been separated in vibrations
around inherent structures and transitions between inherent structures [246] also find their
origin in this framework, although similar nomenclature is also present in the Adam-Gibbs
point of view.

Many other theories exist, which are often a combination of the aforementioned theoretical
concepts with other approaches: free-volume theory in combination with percolation [170,
242], density-functional theory with the energy-landscape picture [146] or dynamic density-
functional theory in combination with the nonlinear feedback mechanism of MCT [85, 86].

Also much can be learned from models or theories which only describe some aspects of
the glass transition, such as those associated with aging and out-of-equilibrium phenom-
ena. Examples of this are the self-retarding model by Struik [248], the Kovacs-Aklonis-
Hutchinson-Ramos (KAHR) model [154] and the Tool-Narayanaswamy-Moynihan (TNM)
[189, 193, 258] model. These phenomenological models show that the state of the material
depends on the magnitude of the departure from equilibrium and on the sign of the depar-
ture [97]. They are used for describing the volume, stress or strain recovery phenomena as
a function of thermal history.

However up to now no comprehensive theory of the glass transition is accepted and one
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has to stick with phenomenological descriptions like the KWW and the VFT laws. As
will be described in more detail in §1.5, the goals of the first part of the current research
are connected with two types of badly understood glassy phenomena: the non-Gaussian
behaviour of glassy dynamics and the heterogeneous nature of relaxation processes.

1.3 Mechanical properties of vitrified polymers

Understanding the mechanical properties of glassy polymers is important for their appli-
cability. The unstressed glassy state already reveals much of the characteristics of glassy
polymers. However, as will be discussed, additional phenomena are revealed when the ma-
terial is subject to an imposed stress or strain. An introduction thereof will be presented
here. Two polymers are prototypical in this sense, as they show totally opposite mechani-
cal behaviour: polycarbonate (PC) is a very tough polymer, while atactic polystyrene (PS,
also depicted in fig. 1.4) is extremely brittle. In this section it will be explained what the
difference actually is and why such a difference is present, what kind of theories exist to
explain this difference and what shortcomings are present in these theories, which serve as
a basis for nowadays research.

1.3.1 Stress response

A uniaxial-compression test reveals much of the mechanical behaviour of a glassy polymer
material, see also figures 1.2 and 1.3. For small strains a linear viscoelastic response is
present, in which the force per unit area (the stress) needed to deform the material is
approximately linear with the strain. The equilibrium structure determines the properties
of this relatively well understood linear regime [76, 157]. It is followed by a nonlinear
elastic regime. Subsequently yielding takes place; a yield peak σpeak with associated drop
in stress till σmin is visible. The stress drop σdrop = σpeak − σmin is also called yield drop or
strain softening. For a more aged sample there is usually both an increase in σpeak and in
σdrop, while σmin remains approximately constant. The peak is visible as a small overshoot
in the stress and the effect is known as yield tooth or stress overshoot. After the drop in
stress, strain hardening sets in, meaning that the stress to deform increases again. Finally
fracture takes place, either due to the disentanglement of the chains or due to chain scission
[156].

A deformation experiment can be done in various ways. One possibility is to do a uniaxial-
stress compression test (with the two other axes of the stress free, i.e., at constant ambient
pressure). Another way is to apply compression along one axis, fix another and measure the
response of the third one (plane-strain compression). A shear experiment is also frequently
carried out. All these deformation modes give rise to different stress components, showing
that the tensorial behaviour of the stress is important and that one should consider the
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Figure 1.2: Uniaxial compression of a sample by applying an external force F . The
length and cross-section area of the sample are l and A, respectively. The subscript 0
refers to the state prior to deformation. The engineering and true strain are εeng = l

l0
− 1

and εtrue =
∫ l

l0
dl′

l′
= ln(l/l0), while the engineering (or nominal) stress and true stress are

σeng = F/A0 and σtrue = F/A. For small εeng, εeng ≈ εtrue and the symbol ε will be used
instead.
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strain hardening

elastic regime

yield peak
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Figure 1.3: Typical stress response of a polymer glass under a uniaxial-stress compression
test.
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stress tensor ¯̄σ of rank 2. In order to circumvent studying all stress components, the von
Mises stress σvM is often calculated, as it is apart from a constant factor equal to the second
invariant of the stress tensor [164]

σvM =

√

3

2
Tr(¯̄σd · ¯̄σd), (1.22)

in which ¯̄σd = ¯̄σ +P ¯̄I is the deviatoric part of the stress tensor ¯̄σ and Tr the trace. Here P
is the pressure. Other names for the von Mises stress (with sometimes a deviation in the
prefactor) are the octahedral [275] or deviatoric [226] stress. In the case of a symmetric
stress tensor and with cartesian coordinates, eq. 1.22 is equal to

σ2
vM =

1

2

(

(σx − σy)
2 + (σy − σz)

2 + (σz − σx)
2
)

+ 3(σ2
xy + σ2

yz + σ2
zx). (1.23)

Eq. 1.23 can be simplified further in the case of a uniaxial-stress extension test along the
x-axis (with σx = σ‖) with the stress along the two perpendicular axes equal to a constant
stress of −P⊥ < 0 and with zero off-diagonal elements of the stress tensor. Then the von
Mises stress equals

σvM = σ‖ + P⊥. (1.24)

The benefit of using the definition given by eq. 1.22 for the von Mises stress is that the
latter is then equal to the tensile stress under uniaxial-stress extension or compression if
the lateral sides are kept at zero stress.

1.3.2 Brittle vs. tough response

The interplay of the initial yield regime with the strain-hardening regime determines for
a large part what kind of mechanical response is expected: brittle or tough. In brittle
response the material already breaks within a few percent of extension [36]. A tough
material absorbs more energy before fracture and is accompanied with much larger values
of strain at failure. The difference between brittle and ductile behaviour can be explained
by the localization of stress σ = F

A0
(see fig. 1.2 and its caption text for nomenclature).

Assume that a small part of the material, the weakest link, yields first upon uniaxial-
stress extension. If the force F necessary to deform this part decreases upon further
straining (∂F

∂ε
< 0), the material at that point will be extended more, while the rest of

the material remains before the yield peak. The deformation can be assumed to occur
at approximately constant volume, therefore the cross-section of this weakest link will
decrease and the local true stress intensifies. If it remains the weakest link, the true stress
intensifies even further and localizes around this point up till fracture. This is called stress
localization, as stress localizes within a small part. This stress localization results in a
brittle fracture as only little energy is absorbed before breakage. If, on the other hand, the
force necessary to further extend the weakest link increases, other parts of the material will
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start to yield. Therefore stress spreads over the whole material; this behaviour is known
as stress delocalization and a tough response is expected.

So for a tough response to occur the true stress should increase sufficiently enough at
larger strains to compensate for the decrease in cross-section. This behaviour is illustrated
by means of the following stress-strain relation, which is known to often fit stress-strain
relations after yielding under uniaxial-stress extension or compression well [114] and is
inspired by rubber-elasticity theory (to be discussed in §1.3.3)

σtrue = σY + Gh

(

λ2 − λ−1
)

. (1.25)

Here σY is the offset yield value, Gh the strain-hardening modulus and λ = 1+εeng = l
l0

the
draw ratio. For simplicity a potential yield drop is neglected in this form of the stress-strain
relation. As discussed above a decrease in the engineering stress, ∂σeng

∂ε
< 0, causes stress

localization and necking. For small strains eq. 1.25 becomes σtrue = σY (1 + 3Gh

σY
ε +O(ε2)).

With the constant-volume assumption, the engineering stress equals σeng = σtrue/λ =
σY (1 + (3Gh

σY
− 1)ε + O(ε2)). We see that σeng increases for Gh > σY /3. This condition

equals Considère’s criterion for necking [114, 275]. The example thus illustrates that a
brittle response can be circumvented by having a high strain-hardening modulus Gh as
compared to the offset yield stress σY .

In reality this picture is somewhat oversimplified for several reasons. One is that partly due
to the stress drop necking occurs, making the problem multi-dimensional instead of one-
dimensional. Also the deformation can induce a local heating of the material, changing the
temperature-dependent material properties (such as yield stress). Nevertheless, Considère’s
construction gives a reasonable estimate of plastic instability [114]. This is illustrated by
the comparison of σpeak and Gh for polystyrene and polycarbonate. At room temperature
PS has both a higher yield peak (σpeak = 100 MPa vs. 70 MPa [103]) and a lower strain-
hardening modulus (9 MPa [267] vs. 26 MPa [254]) than PC, making it more likely that
PS breaks in a brittle manner (i.e., fractures within a few percent of length change during
uniaxial extension) and PC in a ductile matter (i.e., fractures after tens of percent of length
change). It is indeed observed that under uniaxial extension PS breaks at 2%, while PC
breaks at around 100% under normal loading conditions [266].

It was shown recently by van Melick et al. [268] that mechanical preconditioning can drasti-
cally alter the properties of the material. Due to a prerolling treatment, a sample of atactic
polystyrene was able to extend by 30%, an order of magnitude more than under normal
conditions. The rolling causes a decrease of the yield tooth, and thereby the diminishing of
stress localization. An appropriate thermal treatment can give similar results. Thermally
quenching a polymeric material results in a lower yield tooth as well [112]. So also here
the non-equilibrium nature of glassy materials plays a profound role.

Often one prefers the breakage of a material to occur in a ductile manner. This can
thus be achieved by a decrease of the yield stress or by an increase of the strain-hardening
modulus. Knowing the physical processes behind these values would allow one to tailor the
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ideal material in a much more goal-oriented way. Unfortunately there are no satisfactory
physical theories available at the moment to guide this. Questions such as why polystyrene
has a high yield tooth and why polycarbonate has not, and why polycarbonate hardens
much more severely compared to polystyrene, remain unanswered.

1.3.3 Theoretical considerations on yield and strain hardening

In predicting the properties of polymer glasses constitutive laws are used. These include
effects of external parameters such as temperature, pressure and strain rate on the mechan-
ical properties. Also polymer-specific relations are incorporated such as the chain-length
dependence of the glass-transition temperature (the Flory-Fox equation) or of the maximal
draw ratio λmax. These relations are often physically well-funded. However, problems arise
with the strain-hardening modulus. No compelling theory is available. Applying the theory
of rubber elasticity to glassy polymers is troublesome. As we will see in eq. 1.29 it predicts
an increase in the strain-hardening modulus with increasing temperature, in contradiction
to what is observed experimentally; there it is found to actually decrease with temperature
[102]. To shed more light on this matter we will first discuss the successful Eyring model
of yielding and then the poorly-applicable rubber-elasticity network theory of hardening.

In order to surpass the energy barriers for changing the microstate, deformation can be
thought of as a thermally activated process under the influence of a driving force. Then the
well-known and still used Eyring model is applicable [275]. It states that a potential-energy
barrier is present (of intra and/or intermolecular nature) for having a molecular event. In
equilibrium flow events in all directions are equally probable, resulting in no net flow. An
applied stress will result in a decrease of the effective energy barrier in the direction of
the flow and in an increase in the backward direction. Therefore a net flow in the forward
direction is present. If the strain rate ε̇ is assumed to be linear with the number of flow
events and if backward jumps are neglected, the temperature- and stress dependence of
the strain rate is

ε̇ = ε̇0 exp

(

−∆H − σV ′

kBT

)

. (1.26)

Here ∆H is the potential-energy barrier height, σ the applied stress, V ′ the so-called
activation volume and ε̇0 a constant pre-exponential factor.

Equation 1.26 is the basic form of Eyring’s model. Modifications of it are usually applied in
practice. It is found that an increase in hydrostatic pressure P results in a decrease of the
strain rate, so that σV ′ has to be replaced with σV ′ − PΩ with Ω the pressure activation
volume. As discussed in §1.2.3 more relaxation processes are usually present below the
glass transition; this requires a modification of eq. 1.26 by the inclusion of multiple energy
barriers with accompanying multiple activation energies. Recently aging mechanisms have
also been modelled within this framework [70] by using the TNM model [189, 193, 258],
§1.2.4.
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Figure 1.4: A polystyrene chain of 80 monomers (left) and a freely-jointed chain (right).
The polystyrene chain is visualized by showing the covalent bonds between united-atoms
as rods.

The polymer specifics are mostly visible in the phenomena associated with strain hard-
ening, which is absent in simple supercooled glasses. So what would be the cause of this
hardening? For temperatures well above the glass-transition temperature the theory of
rubber elasticity is applicable [260, 275]. Upon straining a rubber-like material such as
a chemically crosslinked polymer network or a highly entangled polymer melt the chains
will be forced to be in a stretched state. Under unstrained conditions this would be an
unlikely situation, as only a part of phase space corresponding to a stretched chain will
be sampled. As the Boltzmann entropy is proportional to the logarithm of the number of
available configurations Ω, this stretching leads to a decrease in entropy S. If it is assumed
that the internal energy does not change upon straining, then the Helmholtz free energy
A = U − TS will increase by −T∆S.

The number of available configurations can be calculated analytically for some simple
model chains. A particular one is the freely-jointed chain. Here rods (or bonds) of length
l are connected with each other at their end points in a linear way, forming a continuous
structure. An example together with a chemically realistic chain is depicted in fig. 1.4.
The angle between two consecutive bonds is taken randomly, so that the total chain of
N segments is analogous to a random walk of N steps. The end-to-end distance, a rough
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measure for the extent of the chain is thus in between 0 and Nl (for N > 1). In the limit
N → ∞ the distribution function of the end-to-end distances has a Gaussian shape, so
that in this limit this model is regarded as a Gaussian chain. The limit to the Gaussian
chain can also be achieved for other models, such as the freely rotating chain or the Rouse
model [55, 56].

For a Gaussian chain the increase in the Helmholtz free energy upon straining is

∆A = −T∆S =
NchkBT

2V

(

λ2
x + λ2

y + λ2
z − 3

)

, (1.27)

where λx is the draw ratio along the x-axis (similar for y and z), Nch the number of
subchains between junctions (or crosslinks) and V the volume. In case of a uniaxial-stress
extension test, in which volume changes can be neglected the resulting stress is

σ = GR

(

λ2 − λ−1
)

, (1.28)

with
GR = NchkBT/V = ρkBT/Mch (1.29)

the rubber modulus. Here ρ is the mass density and Mch is the mean molecular mass of
the chain segments between crosslinks or entanglements. Note that the rubber modulus
derived in this way is linear with temperature and thus purely of entropic nature. Various
extensions and refinements exist, such as taking into account a finite extensibility of a
chain, or incorporating dangling chain ends [275].

However, for temperatures below the glass transition the entropy-based picture of rub-
ber elasticity is not valid any more. Chains are frozen-in and the whole phase space
cannot be sampled within the experimental time scales. In the framework of the energy-
landscape picture (see §1.2.4) one could say that huge energy barriers separate the various
microstates. Therefore the entropy argument breaks down and the rubber theory of elastic-
ity is inapplicable; as mentioned before, it is indeed observed that below the glass-transition
temperature the strain-hardening modulus Gh for amorphous polymers is decreasing with
temperature [254, 266], instead of increasing as would be the case for a purely entropic
phenomenon.

Another effect is that of pressure. The modified Eyring model takes into account a pressure
effect in the yielding of a material; the yield stress increases under the influence of a high
external pressure. The Eyring model also takes into account the decrease in yield for higher
temperatures or for lower strain rates. These two last trends in the yield stress are also
visible for the strain-hardening modulus. If rubber-elasticity theory would be valid, there
would not be a direct influence of external pressure. Could the pressure have a similar
effect on the strain-hardening modulus as on the yield stress below the glass-transition
temperature?

From the above it is clear that a thermally and stress-activated approach should be ap-
plicable to the strain-hardening part as well. However, currently no theory of such exists
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yet. Another problem in the understanding of mechanical deformation of glassy polymers
is related to the strain softening part. As mentioned in §1.3.2 it is experimentally observed
that softening depends on both the mechanical and thermal history. Mechanical pre-rolling
or thermally quenching a glassy material can result in a lower yield peak and hence less
softening. Nevertheless, the exact microscopic origin of it in polymers such as polystyrene
or polycarbonate is still unclear. A related open question is why the effect is much more
visible in polystyrene.

For investigating mechanical properties a chemically-detailed simulation has proven to be
an excellent method and mechanical characteristics can be reproduced. A simulation of
mechanical deformation of a binary LJ glass by Utz et al. [261] demonstrated that aging and
rejuvenation phenomena can be probed. For polymeric materials the simulated yielding and
strain-hardening behaviour was also observed to act analogous to experimental behaviour;
for atactic polystyrene (the polymer of investigation in the present research project) this
was demonstrated by Lyulin et al. [176], although an insurmountable shift in time-scales
is present with the atomistic simulations.

Also simulations of model systems give more insight. In the rugged energy-landscape
model of Isner and Lacks [131] a yield tooth was observed and found to increase with more
aged samples, demonstrating that this phenomenon is very generic. It was also found that
deformation does not lead to the erasure of the thermal history; materials produced by
a different thermal history gave different end states after mechanical deformation. This
is also seen experimentally for polystyrene by means of positron-annihilation experiments
[37]. McKechnie et al. [184] simulated a model polyethylene melt and showed that the chain
conformation has a dramatic effect on the resulting strain-hardening modulus; artificially
increasing the persistence length leads to stiffer polymer chains.

These observations demonstrate that simulations can be very valuable. However results
are rather scarce as only recently enough computational power became available for the
demanding task of simulating chemically realistic polymers. As a consequence, a functional
theory about the strain hardening and the yield tooth has not arisen yet from these results.
The focus of chapters 5 and 6 will be on these aspects of mechanical phenomena of glassy
polymers. Next section deals with the role of simulation techniques and points out the
method of usage for most of the results presented in this thesis.

1.4 Simulation techniques

Modelling the behaviour of polymers is an extensive task. One of the reasons for this is that
there is a broad range in length scales, from smaller than the monomer unit to the whole
object. Accompanying relaxation times form a broad spectrum as well. The dynamical
properties of a polymer chain can therefore become quite elaborate. Moreover, a simple
glassy material on its own already shows rich behaviour.
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A successful approach for tackling this complexity is the usage of computer simulations.
These simulations are carried out at different scales and at a different level of faithfulness,
each with its own techniques. At the smallest scale quantum mechanics plays a role for
studying the interactions between different atoms. These are mediated via, e.g., electron-
electron interactions. Methods such as density-functional theory are used to determine the
effective forces between atoms for a specific spatial arrangement. From these calculations
a force field can be distilled taking into account the subatomic interactions. Subsequently
such a force field is used as an input for classical molecular dynamics (or Monte Carlo)
simulations, in which the electrons and the nucleus are combined into one particle, ac-
companied by effective interactions with other particles. In some circumstances groups of
atoms are coarse-grained even further to a larger single coarsened particle [19].

Apart from chemically realistic polymers, more fundamental toy models are also simulated
in polymer physics. These are similar to the more realistic systems, although now the
force field is greatly simplified to a basic form, but in such a way that the essential physical
phenomena one is interested in are still preserved. The omission of details will lead to faster
calculations and less distractions of irrelevant aspects, thereby generating the opportunity
to isolate the relevant characteristics for the property under study.

It is not necessary to adopt a coarse-grained description for all particles at the same
level. Hybrid techniques are also used, in which the component one is interested in is
explicitly simulated, while a much simpler description is adopted for the remaining parts.
An example for such an object-varying level of coarse-graining is to simulate the atoms of
a polymer chain explicitly, while modelling the solvent by random force kicks, as is done in
Brownian dynamics. Another method in which the solvent is implicitly taken into account
is dissipative particle dynamics [71, 120].

Next to the particles, the space and time can be coarse-grained as well. This is the case with
lattice models, in which the lattice is a discretized version of the normal space. An example
is the bond-fluctuation lattice model [40]. In this model each particle of the polymer chain
resided on a point of a predefined lattice. The length of the bond connecting neighbouring
beads is able to fluctuate between some discrete values. A similar strategy is employable for
the time dimension. For a lattice model such as the bond-fluctuation model this is common
practice, but also for continuum-space models exact dynamical particle trajectories are not
always necessary to know. In this situation so-called Monte Carlo algorithms are often
used. Then jumps in time or more generally in phase space can be achieved by performing
complicated trial moves. One example of such a move is to displace a group of particles in
a cooperative way. Another important example for simulating polymer chains is the class
of moves which change the chain connectivity [83]. Yet a different technique, often used to
study energy barriers, is energy minimization while constraining a certain coordinate [51].

At even larger scales continuum models are often used. Here the material is treated as
a continuum with intrinsic properties. These properties are needed as an input and are
parameters or functions such as the stress-strain relation. Usually these follow from exper-
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imental results. Theoretical models allow for powerful extrapolations. These continuum
models are fairly successful in predicting the mechanical behaviour of an end product,
as long as the relevant scales are not too small, although ongoing research is present to
include more effects in the models (see, e.g., Klompen et al. [148]). Naturally, such con-
tinuum models do not give any insight in how the stress-strain relation follows from the
chemical structure.

The interest of the current research is in dynamical and non-equilibrium phenomena (such
as mechanical deformation) of glassy polymers and in seeking generic behaviour among
chemically different polymer materials. The preferred simulation method is therefore the
molecular-dynamics simulation technique applied at an atomistic scale. This method will
be discussed in detail in chapter 2.

1.5 Research goals and outline

As can be concluded from the above discussions many aspects of the relaxational and
mechanical behaviour of glassy polymers are still poorly understood. This is mainly a
result of the absence of a well accepted theory of glasses in general and a theory of the
mechanical deformation of polymer glasses in particular. The scope of the present project
is on both parts. Here we will present in more detail what the research questions and goals
are, specified for each chapter. Details about the simulation method and the polymer
models used in those chapters will be presented first in chapter 2.

As discussed in §1.2.3 many glassy systems show non-Gaussian behaviour in the dynamics
of particle displacements. The origin of these non-Gaussian effects is still fuzzy. The first
goal is therefore to study the non-Gaussian behaviour of glassy dynamics, motivated by
the observation that no glass-transition theory is able to describe such behaviour. To
accomplish this, an effective one-particle diffusion model will be employed. The model and
simulation results will be discussed in chapter 3. It will be shown that the generic diffusion
model is capable of doing qualitative and sometimes even quantitative predictions about
this behaviour for systems of different architecture.

A concept connected to non-Gaussian dynamics is the presence of heterogeneous dynamics
in glasses, which is also an ill-understood problem. As stated before two different scenarios
are in circulation for explaining heterogeneous dynamics. The second goal is to see how
heterogeneous dynamics manifests itself in the polystyrene melt. A particular example of
heterogeneous dynamics, the rotational motion of a chemical group in a glassy polymer
melt (the phenyl ring in a melt of atactic polystyrene), is analyzed and discussed in terms
of an energy-landscape-like picture in chapter 4. This rotational motion in polystyrene has
been ascribed to the mechanical γ relaxation.

In §1.3.3 we saw that the strain-softening and hardening phenomena observed in strained
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polymer glasses are insufficiently understood. The goals related to these mechanical phe-
nomena are firstly to see if experimental characteristic regimes in the stress-strain curve can
be reproduced by appropriate simulations; secondly to determine in this way what kind of
interactions (intrachain or interchain) are responsible for each of these regimes, as it is very
hard to measure the separate interactions experimentally; and thirdly to see the influence
of thermal history and pressure, as these will have a profound influence on the mechanical
properties, yet are not taken into account by the theories as discussed in §1.3.3. To fulfil
these goals extensive molecular-dynamics simulations are carried out for polystyrene under
various conditions, and the measured stresses and energies are partitioned in intrachain
and interchain contributions. This is the subject of chapter 5.

By using the basic knowledge acquired from the previous parts, the final goal is to explore
the microscopic mechanisms behind the difference in strain hardening between PS and
PC. Strain hardening is one of the major ingredients for determining the toughness of a
material. Non-affine displacements of both polymers are being analyzed, together with the
accompanying change in internal structure of the chains. A possible explanation of this
strain-hardening difference is put forward in chapter 6.

The major conclusions resulting from the research presented in this thesis and an outlook
are given in chapter 7. The thesis ends with a summary (both in English and in Dutch),
list of publications, acknowledgements and a curriculum vitæ of the author.





Chapter 2

The molecular-dynamics simulation

method and polymer models under

study

The molecular-dynamics simulation method used in the subsequent chapters will be dis-
cussed. First the Newton equations of motion with accompanying types of forces and basic
methods of MD simulations including deformation protocols are presented. Next some
background information including the force field for both the two simulated polymers is
given: atactic polystyrene (PS) and bisphenol-A polycarbonate (PC). These two polymers
are typical in the sense that PS is a well characterized glass-forming polymer and is very
brittle. PC, on the other hand, is known to behave very differently than PS; it is a tough
and ductile material. Both these polymers have been successfully used for molecular sim-
ulations in the past [129, 187]. Finally, the sample-preparation and equilibration methods
are being elucidated.

2.1 Molecular-dynamics method

The method of molecular-dynamics simulations at an atomistic level is effective for study-
ing molecular processes of length and time scales up to about 100 nm and 1 µs [251],
respectively. It is widely applied for studying molecular dynamics of liquids, solids and
glassy materials. Many excellent textbooks are devoted to this method [6, 83, 108, 208].
In this section some of the basic ingredients of MD simulations will be discussed.

Classically the movement of particles is described by the equations of Newton. In its basic
form it states that the time derivative of the momentum of a particle i equals the total
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force Fi acting on it
dpi

dt
= Fi, (2.1)

with the momentum pi of a particle i equal to its mass mi times its velocity vi (relativistic
and quantum-mechanical effects can and will be neglected in our case). In our simulations
the forces are conservative (except for the baro- and thermostat, to be discussed below)
and thus follow from a (force field) potential Uff

Fi = −∇iUff . (2.2)

In §2.2 the various terms of the (force field) potential will be discussed.

In the present study a typical simulation consists of N = 5000–10000 particles. This means
solving 3N coupled second-order nonlinear differential equations, a task which cannot be
done analytically for a non-trivial case. Therefore these coupled equations are solved nu-
merically, by discretizing the differential equations using velocity Verlet as the integration
scheme [6]. The benefit of using a Verlet algorithm over a normal Taylor-like expansion
of the differential equation is that the Verlet algorithm is symmetric with respect to time
inversion. Therefore drifts in total energy are minimal. Simulations are carried out with
an integration time step of ∆t = 4 fs.

Periodic orthorhombic boundary conditions are used to remove any open boundary and to
mimic the bulk material of interest. Another way to look at these boundary conditions is
to interpret the geometry of the space as a three-dimensional torus.

Controlling the temperature is carried out by using the so-called collisional-dynamics
method. Details can be found in the article of Lemak and Balabaev [165], but a brief
description of the method is the following. The temperature is controlled by colliding
’virtual’ particles with a certain mass m0 with the ’normal’ particles during a simulation
run. Due to these collisions kinetic energy is redistributed. The velocity of each virtual
particle is taken randomly from a Maxwell-Boltzmann distribution with the prescribed
temperature. The time between subsequent collisions is also random and follows the Pois-
son distribution. The average collision frequency λ and the mass of the virtual particles are
chosen small enough in order to not disturb the trajectory of a particle too much, typically
m0 = 0.1 Da and λcoll = 1 ps−1.

The pressure is controlled by means of the Berendsen barostat [6, 22]. The variant we use is
based on rescaling the coordinates of all particles along each (µ) of the three primary axes
(x, y, z) if the pressure in that direction P µ deviates from the external pressure P µ

ext. The
correction is based on the difference P µ − P µ

ext. The three lengths Lµ of the orthorhombic
box are propagated in time by using

Lµ(t + ∆t) = Lµ(t)

(

1 +
∆tβ

3τP

(P µ(t) − P µ
ext) +

1

2

(

∆tβ

3τP

(P µ(t) − P µ
ext)

)2
)

, (2.3)
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in which ∆t is the time step of integration and β/τP mediates the strength of the correc-
tion. Here β is the isothermal compressibility and τP a time constant. A typical value
for this ratio in our simulations is τP /β = 0.011 Pa s. To give a feeling for the associ-
ated time scale, a value of the compressibility coefficient is needed. For polystyrene at the
glass-transition temperature (one of the polymers under current investigation) the com-
pressibility coefficient is 4.9× 10−5 bar−1 [181], corresponding to τP = 5.4 ps. For room or
for melt temperatures this coefficient changes by at most a factor of 2.

In using the Berendsen barostat, the instantaneous pressure needs to be determined. The
stress tensor τµν and pressure P µ = −τµµ (the Einstein summation convention should not
be applied here) can be calculated by using the virial theorem of Clausius. The result is
[255]

τµν =

〈

− 1

V

N
∑

i=1

(

pµ
i p

ν
i

mi

+ rµ
i F ν

i

)

〉

, (2.4)

where the summation is over all N particles, with momentum pν
i , mass mi, position rν

i and
total force F ν

i acting on the particle i. Here ensemble averaging is denoted by 〈· · · 〉 and
the total volume by V .

The MD method will also be used to carry out simulations of deformation, such as uniaxial-
stress compression (fig. 1.2) and extension. In these situations the strain in the uniaxial
direction (this direction is denoted by ‖) is imposed and can be accomplished by replacing
eq. 2.3 by a predetermined relation. In case of constant-velocity deformation this is

L‖(t) = L‖(0) + L̇‖t (2.5)

and for constant-rate deformation

L‖(t) = L‖(0) exp (t/τd) . (2.6)

In these equations L‖(0) stands for the initial box size in the axial direction and L̇‖ and τd

are the control parameters for adjusting the strain velocity and strain rate of the mechanical
deformation. Results of these simulations are presented in chapters 5 and 6.

2.2 Interaction types

The potential Uff defines the force in the Newton’s equation for a particle (eq. 2.1 and
eq. 2.2) and is equal to the sum of all interaction potentials of the particles. For the
models we will consider these are two-body, three-body and four-body interactions. The
interactions are split into bonded and nonbonded ones. Bonded interactions act only
between pre-selected particles (these particles are as a result close to each other), while
nonbonded interactions act between all particles (except between some particles which are
already bonded, as will be discussed later).
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Figure 2.1: Bonded coordinates: covalent bond length (left), valence bond angle (middle)
and torsion angle (right).

For the polymer models in use we have three types of bonded interactions, see also fig. 2.1:
covalent bonds, valence-angle bonds and torsion bonds. The covalent bond is the only
two-body bonded interaction. It arises from two neighbouring atoms i and j sharing their
valence electrons (electrons from the outermost unfilled shell of an atom)

Ul,ij = kl(rij − l0)
2, (2.7)

with rij the distance between the two particles, 2kl the spring constant of this interaction
and l0 the equilibrium length of the bond. This is also the stiffest bond of the three types.

If an atom shares its valence electrons with more atoms, as is the case for the carbon atom,
it has more covalent bonds. The valence angle θ between two covalent bonds (fig. 2.1) fluc-
tuates around an equilibrium angle θ0 with a certain stiffness represented by the constant
kθ. This can therefore be described by the following three-body interaction

Uθ,ijk = kθ(θijk − θ0)
2. (2.8)

The last bonded interaction included in the polymer force field is the four-body torsion
interaction. In its original form it describes the rotation around a covalent bond. For
polymers this rotation is not free, but hindered. The reason for this hinderance lies in the
combined effect of electron-electron repulsions, electrostatic repulsions between nuclei and
rotation-dependent polarization effects [81] and can be modelled by the following potential

Uϕ,ijkl = kϕ cos (nϕijkl) , (2.9)

with 2kϕ the energy barrier separating the minima. The torsion angle ϕijkl is defined as
the angle between two planes: that formed by the triplet ijk and that formed by the triplet
jkl, see fig. 2.1. So some torsion angles are more preferred than others. For example, in
the case of polyethylene (a linear polymer chain in which the backbone atoms are carbons
and side groups are absent), the favourable positions are ϕ = 0◦ (four subsequent carbon
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atoms lie in a plane and the first and last atom are on opposite side of the middle bond
and thus maximally separated) and ϕ = ±120◦. These three positions are named trans
and gauche±, respectively. The conformation ϕ = ±180◦ (all four atoms in a plane but
now the first and the last atom are on the same side of the bond and minimally separated)
is called cis and is the most unfavourable conformation for polyethylene.

This form of the potential is also used to describe so-called improper-torsion interactions.
They serve to keep an atom with its covalently bonded neighbours in a specific arrangement,
such as in a planar configuration, as we will see later on. It is called improper, as there is
no direct chemical (covalent) bond between the third (k) and fourth (l) atom defining the
torsion angle ϕijkl.

We have two types of nonbonded interactions, both of them of two-body type. They are
not taken into account for particles which are separated by one or two covalent bonds. The
first nonbonded interaction is of electrostatic nature, described by the Coulomb potential

UC,ij =
qiqj

4πǫ0rij

, (2.10)

with qi and qj the charges of particles i and j, rij the distance between them and ǫ0 the
permittivity in a vacuum. The other nonbonded interaction in use is due to the Lennard-
Jones (LJ) potential that models the induced-dipole–induced-dipole attraction at large
separations (van der Waals attraction) and the repulsive interaction due to the nonbonded
overlap of electron clouds at short separations

ULJ,ij = ǫij

[

(σij/rij)
12 − 2 (σij/rij)

6] . (2.11)

Here ǫij =
√

ǫiǫj is a measure for the strength of the interaction and σij = 1
2
(σi + σj) a

measure for the length scale of the interaction. Both are constants for a given type of
particle. The LJ potential has a minimum at rij = σij with energy at this well equal to
−ǫij. For large separations the potential decays much faster to zero than the electrostatic
one, as the leading term ∼ r−6 goes faster to zero than r−1 for r → ∞.

Because of the periodic boundary conditions a particle interacts with infinitely many other
particles for the non-bonded forces. To deal with this long-range effect two methods are
used. As stated before, the LJ interaction is relatively short-ranged. Common practice is
therefore to smoothly cut off the potential at a certain distance Roff . As long as the cutoff
distance is not too short, the dynamics will not be influenced much [6]. To accomplish this
we make use of a switching function [205]. The LJ potential ULJ,ij is then replaced by

U ′
LJ,ij = ULJ,ijWij (2.12)

with the switching function

Wij =
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2(R2
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ij)
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0 rij ≥ Roff .

(2.13)
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We use Ron = 2σij and Roff = 2.2σij. This is smaller than half the minimal length of the
orthorhombic box. Note that this switching function only operates for rij > Ron. The
smoothness of the function ensures that the first derivative is continuous so that it does
not create any jumps in the resulting force.

The electrostatic interactions are long-ranged. To cope with them in combination with
periodic boundary conditions, a so-called smooth particle mesh Ewald method is used
[6, 72], in order to take into account systems with periodic boundary conditions. In this
method a part of the Coulomb interaction is calculated in Fourier space in a form suitable
for fast Fourier transformations.

All types of bonded and nonbonded interactions have been given now. To simulate a
polymer system one just has to give the parameters of the interactions and pairs, triplets
and quartets forming bonded interactions. However, then still freedom of choice remains in
the configuration of some polymers, like polystyrene. Configurational isomers are molecules
which have the same chemical bonds, but differ only from each other in the arrangements
of their atoms and cannot be converted into each other by rotations around single bonds
[69]. For example, some molecules exist in both a left-handed form and a right-handed
one (just as one cannot rotate a left hand in three-dimensional space to let it superimpose
onto the right hand). As we will see in §2.3 this configurational isomerism is also occurring
with polystyrene.

Based on quantum-mechanical calculations it is known that cross terms (such as a potential
term depending on both the bond length and bond angle) are in principle present as well.
Also interaction which involves even more particles or more complicated expressions for the
current potentials should give a better description of the studied material. Of course this
is at the expense of computational power. However, the results acquired with the current
level of description give already satisfactory results, as has been demonstrated thoroughly
before in literature (and as we will see later on).

2.3 Polystyrene model

The monomer unit of polystyrene is depicted in fig. 2.2. It is made solely of carbon
and hydrogen atoms. We use a united-atom model, meaning that there are no explicit
hydrogen atoms present, but instead they are collapsed on the carbon atoms and treated
as an effective particle. The motivation for using this model for polystyrene is that the
speed-up of the calculations as compared to the all-atom model is a factor of about 10,
while structural information is reproduced within the error of experimental data [187].
The monomer unit consists of a backbone (-CH-CH2-) with a side group attached to it,
the phenyl ring (-C6H5).

The monomer unit is not enough to describe the configurational structure of polystyrene.
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Figure 2.2: Monomer unit of the polystyrene model with the naming convention of the
(united) atoms. Here o=ortho, m=meta and p=para [69]. The notation x -CH is used for
any of the three possible positions of the CH group in the phenyl ring.

This is because two different types of dyads (a dyad consists of two neighbour monomer
units) are possible: a meso and a racemic dyad. Both types are exemplified in fig. 2.3.
In a meso dyad a plane of symmetry is present in between the two phenyl rings, while in
a racemic dyad this mirror plane is absent. For an isotactic polystyrene chain only meso
dyads are present, while a syndiotactic polystyrene chain contains solely racemic dyads.
The system under present investigation consists of atactic chains, meaning that each chain
is composed of a random sequence of meso and racemic dyads. The ratio of the number of
meso to the number of racemic dyads is chosen to be near unity. Systems made of isotactic
or syndiotactic chains of polystyrene are able to crystallize. The frozen-in disorder of the
sequence of the dyads in atactic polystyrene prevents the system from crystallization.

The parameters for the currently used united-atom force field of polystyrene are based
on those given by Mondello et al. [187] and used before by Lyulin et al. [176]. Since it
has not documented in a complete form before, we will do so here. The force field of the
present study differs from Mondello et al. [187] in some parts, namely that the bonds and
the valence angles in the phenyl ring are now flexible, the planarity of the phenyl ring is
accomplished as is done by Han and Boyd [109] and the tacticity of the chain is maintained
by a different improper-torsion potential from that implemented by Mondello et al. [187].

The parameters for each type of atom are given in table 2.1. The parameters for the CH3

united atoms positioned at the chain ends are the same as for CH2. The mass m of each
(united) atom is calculated using mC = 12 Da and mH = 1 Da. In this table X stands for
the (united) atom having a chemical bond with the (united) atom next to it.

The improper torsion listed first in table 2.1 serves for keeping the o-CH, C and CH-group
in a plane. The second one is used for maintaining the tacticity of the chain. The four



36 Chapter 2

racemic

meso

Figure 2.3: (left) An example of a pair of neighbouring monomers in a racemic dyad (left
pair) and in a meso dyad (right pair) for a backbone in the planar trans state. (right) The
same chain segment but now in a random sequence of gauche± states.

consecutive (united) atoms defining the improper torsion are for the (united) atoms around
the CH-united atom (X–CH–X–X’): C–CH–CH2–CH2, CH2–CH–CH2–C and CH2–CH–C–
CH2; and for the united atoms around the C atom (X–C–X–X’): x -CH–C–x -CH–CH,
x -CH–C–CH–x -CH and CH–C–x -CH–x -CH.

2.4 Polycarbonate model

Polycarbonate (PC) is a prototypical material, in the sense that is the example of a very
tough and ductile amorphous polymer glass as compared to polystyrene. In a uniaxial-
stress elongation test PC breaks only after a 100% increase in length, while brittle PS
already breaks within a few percent of length increase [266]. However, the molecular
origin for this difference is still unknown. Polycarbonate is therefore the ideal material to
study, in order to compare it with the mechanically oppositely behaving material made of
polystyrene chains. The method of molecular-dynamics simulations is perfectly suited for
this, because it gives insight at an atomistic level. The polycarbonate under investigation
is a short name for bisphenol-A polycarbonate and its complete chemical name is 2,2-bis(4-
hydroxyphenyl)propane polycarbonate [256], or 4,4’-isopropylidenediphenol polycarbonate
[130]. Some commercial names are Makrolon (from Bayer) or Lexan (GE). Polycarbonate
is, in contrast to polystyrene, a heterochain polymer, meaning that the backbone consists
of multiple atom types. In the case of PC also oxygen atoms are present in the backbone.
The monomer unit is depicted in fig. 2.4.
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Table 2.1: The united-atom force field in use for atactic polystyrene. See text for details.

Force field
Non-bonded interactions (eq. 2.11)
ǫ = 0.377 kJmol−1, σ=4.153 Å for CH
ǫ = 0.502 kJmol−1, σ=4.321 Å for CH2

ǫ = 0.502 kJmol−1, σ=4.153 Å for C and x -CH
Bond stretching (eq. 2.7)
kl = 669 kJ mol−1 Å−2, l0 = 1.53 Å for CH2–CH
kl = 669 kJ mol−1 Å−2, l0 = 1.51 Å for CH–C
kl = 669 kJ mol−1 Å−2, l0 = 1.40 Å for C–x -CH
kl = 669 kJ mol−1 Å−2, l0 = 1.40 Å for x -CH–x -CH
Bond angle (eq. 2.8)
kθ = 251 kJ mol−1 rad−2, θ0 = 109.5◦ for X–CH–X
kθ = 264 kJ mol−1 rad−2, θ0 = 109.5◦ for X–CH2–X
kθ = 293 kJ mol−1 rad−2, θ0 = 120.0◦ for X–C–X and X–x -CH–X
Torsion (eq. 2.9)
kϕ = −2.93 kJmol−1, n = 3 for X–CH–CH2–X
kϕ = −2.09 kJmol−1, n = 2 for X–CH–C–X
kϕ = 27.2 kJmol−1, n = 2 for X–C–x -CH–X
kϕ = 54.4 kJmol−1, n = 2 for X–x -CH–x -CH–X
Improper torsion (eq. 2.9)
kϕ = 20.9 kJmol−1, n = 2 for X–C–X–X’
kϕ = 20.9 kJmol−1, n = 3 for X–CH–X–X’

The force field for polycarbonate is the same as was used by Lyulin et al. [177] and is
based on the force field by Hutnik et al. [128]. For the sake of completeness and because
it is not documented in a complete form before, we will give the details here. Parameters
are given in table 2.2. Differences from the force field by Hutnik et al. [128] are that the
bonds and the valence angles are now flexible, the torsions have simpler potentials and the
phenyl rings consist of united atoms. The covalent-bond force constants are equal to about
half the value of a ’pure’ C-C bond of the AMBER force field [278] (allowing for a larger
integration time step while the effect on dynamical properties such as on transition rates is
only small [119], and has been done before for other MD simulations of polymeric systems
as well). The bond length parameter l0 of the CH-united atom is as of Weiner et al. [278].
The same accounts for the valence angle force constant for O-CC=O-O [278] (the constant
for O-CC=O-OC=O is equal to this one). The valence angle force constant for X-CT-X is
the same as for CH2-CH2-CH2 as given by Weiner et al. [278]. The valence angle force
constants for the triplets X-C-X, X-C+-X and X-CH-X are the same as for CH-C-CH2 by
Weiner et al. [278]. The planarity of the phenyl ring is accomplished as is done by Han
and Boyd [109]. The mass m of each (united) atom is determined using mO = 16 Da,
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Figure 2.4: Monomer unit of the polycarbonate model with the naming convention of
the (united) atoms. The naming of CT is after the AMBER force field [278], CC=O and
OC=O for carbons having a double covalent bond and C+ to distinguish it from C, as C+

has a positive partial charge in this model (see table 2.2).

mC = 12 Da and mH = 1 Da. As with polystyrene the X stands for the (united) atom
having a chemical bond with the (united) atom next to it.

The parameters for the LJ diameters and energies are equal to those given by Hutnik
et al. [128], in which each LJ energy ǫi is calculated from the polarizability αi and effective
number of electrons Ne,i by using the Slater-Kirkwood equation for it. This equation reads

in atomic units ǫi =
3α2

i

8
√

αi/Ne,iσ6
[98]. The radius for the united-atom CH is the same as

used by Weiner et al. [278]. The values of the partial charges q′ as given in table 2.2 are
in units of the charge of one electron and are from Hutnik et al. [128] (the charge of CH is
taken to be the sum of its two constituents).

As with polystyrene every sequence of three covalent bonds has an associated torsion-
potential term. For example, around a specific C-CT bond six torsions are operational,
while around a CH-CH bond only one is operational.

The improper torsions present in polycarbonate only serve to keep a triple-bonded atom
with its three neighbours in a plane. These groups are the C atom with neighbours CH,
CH and CT; the C+ atom with neighbours CH, CH and O; and the CC=O atom with
neighbours O, O and OC=O. For each triple-bonded atom three torsion contributions are
present. The four consecutive (united) atoms defining the improper-torsion angle around
the C-united atom (X–C–X–X’) are: CH–C–CT–CH, CT–C–CH–CH and CH–C–CH–CT;
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Table 2.2: The united-atom force field in use for 4,4’- isopropylidenediphenol polycar-
bonate (bisphenol A polycarbonate). See text for details.

Force field
Nonbonded interactions (eqs 2.10 and 2.11)
ǫ = 0.748 kJmol−1, σ=3.40 Å, q′ = 0.5 for CC=O

ǫ = 0.492 kJmol−1, σ=3.40 Å, q′ = 0 for CT
ǫ = 0.784 kJmol−1, σ=3.80 Å, q′ = 0 for CH3

ǫ = 1.058 kJmol−1, σ=3.00 Å, q′ = −0.3 for OC=O

ǫ = 0.805 kJmol−1, σ=3.00 Å, q′ = −0.18 for O
ǫ = 0.450 kJmol−1, σ=3.70 Å, q′ = 0 for C and CH
ǫ = 0.450 kJmol−1, σ=3.70 Å, q′ = 0.08 for C+

Bond stretching (eq. 2.7)
kl = 669 kJ mol−1 Å−2, l0 = 1.53 Å for CH3–CT
kl = 669 kJ mol−1 Å−2, l0 = 1.54 Å for C–CT
kl = 669 kJ mol−1 Å−2, l0 = 1.40 Å for C–CH, C+–CH and CH–CH
kl = 669 kJ mol−1 Å−2, l0 = 1.41 Å for C+–O
kl = 669 kJ mol−1 Å−2, l0 = 1.33 Å for CC=O–O
kl = 669 kJ mol−1 Å−2, l0 = 1.21 Å for CC=O–OC=O

Bond angle (eq. 2.8)
kθ = 335 kJ mol−1 rad−2, θ0 = 125.5◦ for O–CC=O–OC=O

kθ = 335 kJ mol−1 rad−2, θ0 = 109.0◦ for O–CC=O–O
kθ = 264 kJ mol−1 rad−2, θ0 = 109.5◦ for X–CT–X
kθ = 293 kJ mol−1 rad−2, θ0 = 124.0◦ for X–O–X
kθ = 293 kJ mol−1 rad−2, θ0 = 120.0◦ for X–C–X, X–C+–X and X–CH–X
Torsion (eq. 2.9)
kϕ = 5.23 kJmol−1, n = 2 for X–CC=O–O–X
kϕ = 1.05 kJmol−1, n = 2 for X–C+–O–X
kϕ = −1.05 kJmol−1, n = 4 for X–C–CT–X
kϕ = 27.2 kJmol−1, n = 2 for X–C–CH–X and X–C+–CH–X
kϕ = 54.4 kJmol−1, n = 2 for X–CH–CH–X
Improper torsion (eq. 2.9)
kϕ = 20.9 kJmol−1, n = 2 for X–C–X–X’, X–C+–X–X’ and X–CC=O–X–X’

around the C+ atom (X–C+–X–X’): CH–C+–O–CH, O–C+–CH–CH and CH–C+–CH–O;
and around the CC=O atom (X–CC=O–X–X’): OC=O–CC=O–O–O, O–CC=O–O–OC=O and
O–CC=O–OC=O–O.

The ends of the chains are 2,2 diphenylpropane units. Other possibilities would be to end
with the diphenylcarbonate units, as is done in Hutnik et al. [128] or Leon et al. [166].
For long chains, however, the ending units will have only a minor influence on the overall
properties.
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2.5 Sample preparation

The polymer samples are prepared by a procedure similar to that of Lyulin and Michels
[171], starting with a one-chain system of the polymer chain in question (either a 80-
monomer chain for polystyrene or a 10-monomer chain for polycarbonate). After the
equilibration of this single chain, the orthorhombic box is doubled in all three directions in
the case of polystyrene and quadrupled in all three directions in the case of polycarbonate,
making the total number of chains per sample equal to 8 (PS) and 64 (PC). The resulting
sample is equilibrated further for about 10 ns at T = 540 K for PS and at T = 600 K for
PC. To correct for the potential cutoff and any other force-field deviations the pressure
has been adjusted so that the density at these high melt temperatures equals the exper-
imentally observed density at atmospheric pressure. For PS the experimental density at
T = 540 K is determined by a linear extrapolation from lower temperatures [293], making
the target density at this temperature equal to 0.916 g cm−3. For PC the target density
is 1.05 g cm−3 [166]. At these pressure offsets the samples are subsequently cooled to the
desired temperature, typically by 0.01 K ps−1. For both polymers this process is carried
out for five independent samples, in order to increase statistics.
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Non-Gaussian behaviour of glassy

dynamics by cage to cage motion

ABSTRACT

A model based on a single Brownian particle moving in a periodic effective
field is used to understand the non-Gaussian dynamics in glassy systems of cage
escape and subsequent recaging, often thought to be caused by a heterogeneous
glass structure. The results are compared to molecular-dynamics simulations
of systems with varying complexity: a quasi-two-dimensional colloid, atactic
polystyrene, and a dendritic glass. The model nicely describes generic features
of all three topologically different systems, in particular around the maximum
of the non-Gaussian parameter. This maximum is a measure for the average
distance between cages.

The contents of this chapter are for a large part published in Phys. Rev. E, 75, 011504 (2007).
Copyright 2007 by the American Physical Society.
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3.1 Introduction

The most striking feature of glass-forming liquids is a rapid increase of their viscosity
when temperature decreases. Usually, the glass-transition temperature is defined as the
temperature at which the viscosity reaches 1012 Pa s for simple liquids, or at which the
intrinsic relaxation time of the material exceeds the experimental time scale. Yet relaxation
in liquids and glasses is still an unresolved problem in soft-matter physics [68].

Extensive research has been carried out to study the dynamic heterogeneity of the glassy
state. Many interpretations exist for this concept of heterogeneous dynamics. A common
one is that heterogeneous dynamics is applicable when individual relaxing units have site-
specific relaxation times [215]. The size of a relaxing unit is typically a few nm for glasses
such as ortho-terphenyl [215]. A conventional way to quantify this type of heterogeneity is
the observation that the non-Gaussian parameter (NGP) [207]

α2(t) =
〈∆r(t)4〉

(1 + 2/d)〈∆r(t)2〉2 − 1 (3.1)

is nonzero. Here ∆r(t) = r(t0 + t) − r(t0) is the displacement of a particle after a time
interval t, d the spatial dimension and 〈· · · 〉 denotes ensemble averaging. For a system
of identical particles described by the diffusion equation, the mean-square translational
displacement (MSTD) of a particle increases linearly in time, and the Van Hove self-
correlation function 〈δ(R − ∆r(t))〉 [262] has a Gaussian shape. In this case the NGP is
zero. For an ensemble of identical particles in the ballistic regime with a velocity given
by the Maxwell-Boltzmann distribution the self part of the Van Hove function is also of a
Gaussian shape and the NGP equals zero as well.

It is indeed observed that many simulations of monatomic [127, 207, 291] and binary sys-
tems [80, 151], polydisperse liquids [58], metallic glasses [149], salts [132], small molecules
[236], glassy networks [121], and polymers [221] do show a non-zero value of the NGP. This
behaviour is also observed in experiments on colloidlike particles using confocal microscopy
[276] and on glassy polymer systems by means of neutron scattering [294]. A particular
result is that the NGP peaks at a time t∗, corresponding to the crossover between the
so-called cage regime and the diffusive regime of the MSTD. The cage escape is associated
with complex dynamic behaviour, involving complicated clusters in space and correlated
jumps in time. Typical values of the maximum of the NGP range from 0.1 to 10 but higher
or lower values have been observed as well.

Nevertheless, the relation between deviations from Gaussian behaviour and dynamic het-
erogeneity in the sense of different relaxation units is not obvious. First note that many
causes of non-Gaussian behaviour exist, also in glasses. A few possible sources are: av-
eraging over intrinsically different types of particles, crossover from ballistic to diffusive
motion [54], or anharmonic motion within a cage [294]. The focus of the present study is
on non-Gaussian behaviour (NGB) occurring close to the glass transition, and related to
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cage-escape dynamics. Various models are in use, to shed some light on this type of NGB.
One of the current models is the well-known mode-coupling theory (MCT) for the glass
transition [87, 143]. Yet it predicts a time dependence of α2(t) which differs significantly
from simulation results and, moreover, may strongly underestimate (by about one order
of magnitude) the deviations from Gaussian behaviour close to the glass transition [80].
The local-mobility model [127] connects the deviations from Gaussian behaviour with a
fluctuating diffusion coefficient. However, it has the disadvantage that a priori it is not
clear to what extent the concept of fluctuating mobilities is reasonable [58]. The trapping-
diffusion model of Odagaki and Hiwatari [198] captures the glassy heterogeneity in a broad
relaxation spectrum. It has some communalities with the model of the present study. How-
ever, as we will see, a major difference is that it is based on a totally different relaxation
spectrum and it predicts that the average relaxation time diverges at the glass transition
(as is also the case with the ideal MCT). This is usually not observed both in experiments
and in simulations [52]. Yet another model [11] tries to describe non-Gaussian behaviour
by assuming a wide distribution of jump lengths causing the heterogeneous dynamics. The
most probable jump distance is then interpreted as a localization length. Each of the last
three models assumes some distribution (either in time, jump lengths or diffusion coeffi-
cients) to capture a heterogeneous aspect and to explain the non-Gaussian behaviour. Still
no consensus exists which process is dominating for the non-Gaussian behaviour around
cage escape and how to quantify this.

The aim of the present study is to employ a simple model for capturing the main physical
mechanism underlying the non-Gaussianity of glassy dynamics. The purpose of the model
is not to express the glassy dynamics in its full detail (such as aging effects, backscattering,
heterogeneity), but only the part which we think is the most relevant for the description of
non-Gaussian behaviour. In particular it does not assume any heterogeneity in the sense
of site-specific relaxation times. The analytical low-temperature results are found to de-
scribe quantitatively important features of the NGP acquired by molecular dynamics (MD)
simulations of three different kinds of systems: a quasi-two-dimensional colloidlike system,
atactic polystyrene and a dentritic glass, thereby suggesting that the model describes the
main process creating non-Gaussian behaviour.

3.2 Model

A particle in a liquid is surrounded by neighbours which hinder its motion, and caging
occurs. For example, if the interaction between particles is soft repulsive, the hindered
particle needs to overcome an effective energy increase to get closer to the edge of the cage,
as it approaches the neighbours. Therefore it is trapped in a local energy minimum. The
flanking neighbour particles can lower the increase in energy by moving away and creating
more vacancy, or by some other sort of collective rearrangement. After passing the flanking
neighbours this particle is again in a local energy minimum if the particle previously at this
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Figure 3.1: Schematic view of the effective neighbourhood model, in which the particle
jumps from one cage to another.

position experiences a similar type of movement (thereby causing stringlike motion [62]),
or if another cooperative mechanism has created enough space. So the particle passed an
effective energetic barrier. In this new caged position the mechanism repeats itself.

This effect of caging and subsequent cage escape to a new cage can be modelled by the
motion of a single particle in an effective field describing the interactions with the neighbour
particles in the following way. The particle in question experiences frequent collisions with
its neighbours. As the surrounding particles have zero velocity on average, the collision
is harder if the velocity of the particle is higher. We describe these two effects by a
friction force and a stochastic force acting on the particle. The energy barrier to be
passed is modelled by an effective potential. This can be interpreted as a mean-field-
like potential. To keep the model simple we restrict ourselves for the moment to the
one-dimensional (periodic) sine function. Later on it will be shown that the resulting non-
Gaussian parameter does not depend much on the precise shape of this potential, nor on
its dimension.

Note that the actual potential is highly fluctuating in space and time, leading to strongly
correlated processes at the short time scale. One example of such correlation is that easy
local transitions are frequently reversed and repeated, leading to strong back-scattering se-
quences in the process. Such correlated processes can be resummed in a way as is done in
the multiple-scattering theory for transport in disordered media [188, 269]. In this picture
the atomistic diffusion process can be described quantitatively by a site-to-site hopping
process with a large spread in transition probabilities. The resulting mobility, which has
a similarity with the diffusion coefficient via the Einstein relation, can then be expressed
in terms of effective site-to-site propagation probabilities. These probabilities are then ex-
panded in a multiple-scattering perturbation series involving all other sites. To deal with
the correlations the perturbation series is reordered into a renormalized self-avoiding-path
expansion, in which closed-loop processes (in particular direct back-scattering events) are
fully summed first. After making a closure in the expansion by uncorrelating at a higher
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level of approximation (e.g., via a T-matrix approximation), one then arrives at a descrip-
tion of the diffusion process on a coarse-grained effective level. When considered at a
coarse-grained time scale, the diffusion coefficient contains the local correlated processes,
while the effective time constant has the meaning of a dwelling time, i.e., the time after
which the probability for a series of repeated local events equals the probability for an
escape over a hard local barrier. These hops over a hard barrier have a very small proba-
bility of reversal, so that for times above the time scales associated with this process the
dynamics can to a good approximation indeed be treated as uncorrelated. The present
study is restricted to such a coarse-grained picture, with strong back-scattering events re-
summed. The surrounding cage potential of the particle in question is then also averaged,
which justifies the use of the simple sinusoidal potential.

In the above picture, the dynamics of a particle inside an external field is captured in the
Langevin equation (fig. 3.1)

m
∂2x(t)

∂t2
+ ζ

∂x(t)

∂t
= −∂U(x)

∂x
+ ζf(t), (3.2)

with m the mass of the particle, ζ the friction constant, −∂U(x)
∂x

the force acting on the
particle due to the external potential U(x) = 1

2
Ub sin(2πx

L
) and ζf(t) a random force, of

which the first moment is zero and the second moment is 〈f(t)f(t′)〉 = 2D0δ(t − t′). Here
D0 = kBT

ζ
is the coarse-grained bare diffusion constant of the particle, Ub the height of the

energy barrier, L the (effective) distance between cages and kB Boltzmann’s constant. We
limit ourself to cases where the inertial term can be neglected, in which the long-time diffu-

sion coefficient of the particle in the sine potential is given by D = L2

2dτ
= D0

(

I0(
Ub

2kBT
)
)−2

[217], where I0 is the modified Bessel function of the first kind and τ is the average time to
travel a distance L under the influence of the potential; so τ is of the order of the dwelling
time as discussed above.

The non-Gaussian parameter for the dynamics of the particle under the influence of the ex-
ternal potential can be calculated analytically for a sufficiently low temperature-to-barrier
ratio, kBT

Ub
≪ 1. In this limit the minimum of the potential can be approximated by a

parabola. For very small times the particle is diffusing freely, 〈∆r(t)2〉 = 2dD0t. After
some time its dynamics is influenced by the potential and the particle becomes trapped;
the MSTD reaches a constant value of 〈∆r(t)2〉 = ∆2. Time scales up to the start of caging
at t = tc = ∆2/(2dD0) will be discarded in this calculation. For longer times the particle
mostly vibrates in a potential minimum n and due to thermal excitation it occasionally
jumps to neighbouring minima; the jumping part of the particle motion then obeys the
master equation [263]

∂Ψn(t)

∂t
=

D

L2
(Ψn−1(t) + Ψn+1(t) − 2Ψn(t)) , (3.3)

with Ψn(t) the probability that the particle is in a potential well n at time t. It is now
straightforward to generalize this one-dimensional random-walk master equation to higher
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(spatial) dimensions to afford a better comparison to simulation results. The assumption
that the MSTD inside a well is of Gaussian nature leads to (see Appendix 3.A)

〈∆r(t)2〉 = ∆2(1 + t/t∗) = ∆2 + 2dDt, (3.4)

and
〈∆r(t)4〉 = (1 + 2/d)〈∆r(t)2〉2 + 2dDtL2, (3.5)

with t∗ = ∆2/(2dD) and ∆2 the MSTD within the cage (the plateau value, due to the
rattling motion inside the cage). Substituting eqs 3.4 and 3.5 in eq. 3.1 yields the high-
effective-barrier result

α2(t) =
L2

(1 + 2/d)∆2

t/t∗

(1 + t/t∗)2

=
L2

(1 + 2/d)∆2

2dDt/∆2

(1 + 2dDt/∆2)2
, (3.6)

with d = 1 for the random walk described by eqs 3.2 and 3.3. Equation 3.6 in this exact
form is also valid for a broader class of random walks, which includes a random walk in
random directions, and on regular triangular and cubic lattices (this last case is considered
by Odagaki and Hiwatari [198]); also a distribution of jump lengths results in the same
expression (then L represents an effective jump length).

As an additional outcome of the model the fraction of particles which have jumped at least
once after some time t can be determined. In the high-effective-barrier limit this fraction
is given by φj(t) = 1 − exp(−2dDt

L2 ). At t∗ this is expressible in terms of the maximum

value of the NGP φ∗
j = 1−exp(−∆2

L2 ) = 1−exp(− (4(1 + 2/d)α∗
2)

−1). For a typical value of
α∗

2 = 2.0, we have φj ≈ 0.072, which can be interpreted as the fraction of mobile particles
at t = t∗.

We summarize our main claims as follows. First of all, a simple one-particle model is
suggested which allows an analytical solution for the NGP. In the low temperature-to-
barrier case the maximum of α2(t) is determined by the ratio of the squared jump distance
and the value of the MSTD in the cage,

α∗
2 = α2(t

∗) =
L2

4(1 + 2/d)∆2
. (3.7)

Finally, the time at which the NGP peaks, t = t∗, is when the rattling part of the MSTD
(∆2 in eq. 3.4) equals the diffusive part (2dDt∗ in eq. 3.4). For higher ratios of kBT

Ub
,

where the plateau region of the MSTD is not that pronounced (see fig. 3.2), eq. 3.6 is not
applicable. In this case the model can be solved numerically and it is still possible to define
the crossover time between caged motion and final diffusion as the point at which on a
log-log plot for the MSTD vs. time the two tangent lines (to the cage regime and to the
final diffusive regime) intersect. Again this time is close to t∗ (fig. 3.2).
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3.3 Comparison with simulation results

We compare the predictions of the model to results from simulations of three distinctly
different glassy systems. The quasi-two-dimensional colloidlike monatomic system simu-
lated by Zangi and Rice [291] shows NGB. Here particles of diameter σ are confined to
a slab with a width W = 1.2σ and interact with each other via a purely repulsive po-
tential. Simulation results of Zangi and Rice [291] for the in-plane MSTD and NGP are
fitted with the model for various number densities ρ in two ways. First we use eq. 3.6
and treat t∗ = ∆2/(2dD) and the ratio L2/∆2 as two adjustable parameters. In this case
the full shape of the NGP is reproduced remarkably well (see the full coloured lines vs.
black dotted lines in fig. 3.3), especially for high densities (i.e., high effective barriers).
Note that the analytical expression for the NGP, eq. 3.6, implies that its full width at
half maximum (FWHM) on a log scale is not adjustable but has the constant value of
w = log10(thigh/tlow) = log10(17 + 12

√
2) ≈ 1.53. Nevertheless it adequately describes the

simulation results, w = 1.43 and 1.48 at ρ = 0.900σ−2 and 0.910σ−2, respectively.

Alternatively, we can find the values of the model parameters for the NGP in an indepen-
dent way, namely from the MSTD together with an estimate of the cage to cage distance.
Fitting the simulated MSTD for the densities for which there exists a definite plateau
(〈∆r(t)2〉 ∼ t0) with eq. 3.4 renders the plateau value ∆2 and a prediction for t∗. To
determine the maximum value of the NGP, α∗

2, the effective jump length L is needed as
well. Presuming that it corresponds to the distance between the nearest neighbours, L
is calculated by assuming that the particles are placed on a triangular lattice, so that
L−2 =

√
3

2
ρ.

Two distinct aspects are observed when comparing this alternative fit to the simulation
results (compare solid vs. large-dotted coloured lines, fig. 3.3). First, it can be seen that
the cage-diffusion crossover time in the MSTD is equal to the time at which the NGP
peaks, t∗, in accordance with the prediction of the model. Second, this parameter-free fit
underestimates the maximum of the NGP by at most a factor of 2.

A higher peak value of the NGP can be interpreted as being due to a larger effective jump
length than the nearest-neighbour distance. This suggests that also next-nearest-neighbour
jumps as well as jumps of higher order could be important. It can be shown that when one
takes into account these multiple jump lengths, only the effective jump length L of eq. 3.6
changes, while the functional form of α2(t) remains invariant. Nevertheless, it seems that
for the highest density this multiple-jump-length effect vanishes and the accordance with
the model is better when assuming a single jump length.

In order to study polymer-specific effects of the non-Gaussian dynamics we have performed
molecular-dynamics simulations of a melt of atactic polystyrene (PS), one of the most
common polymer glass formers. Simulation details are the same as mentioned by Lyulin
et al. [174]. The glass-transition temperature Tg for the PS melt of eight chains of 80
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monomers each is around 370 K. The MSTD and the NGP, after averaging over all united
atoms, are shown in fig. 3.4.

Some generic features of the one-particle model can also be seen for this polymer system.
The peak time of the NGP, t∗ is also situated at the crossover from the cage regime to
Rouse-like diffusion. However, because of the different bonded interactions of the backbone
and the phenyl-ring atoms, the jump distances, the cage sizes and the mobilities of these
atoms are different as well. We therefore compare only the values of the MSTD and NGP
for atoms in the backbone (including the first atom of the phenyl ring and excluding chain
ends). We assume that the jump distance is now due to an internal torsion potential in
the polymer chain; this potential favours specific positions of the atoms, corresponding to
trans or gauche conformations. We also assume that these conformations are separated by
a distance L between them of about 2.5 Å. At T = 375 K the plateau value of the MSTD
is ∆2 ≈ 0.64 Å2. Using eq. 3.7 with these values of ∆2 and L gives then α∗

2 = 1.5, which
is remarkably close to the simulated value α∗

2 = 1.3.

The molecular-dynamics simulations also show that the shape of the NGP is similar to
but much wider than the prediction of the one-particle model. The FWHM in case of a
time-independent diffusion coefficient is shown in fig. 3.4 as a bar. This difference can be
partly explained by the anomalous (nonlinear in time) Rouse diffusion of the segments in
a polymer chain, 〈∆r(t)2〉 ∼ t1/2. Note that for a time-independent diffusion coefficient,
a result of the model is that the NGP increases linearly in time for tc < t < t∗, i.e.,
α2(t) ∼ t1 (eq. 3.6). A broader peak can be interpreted in terms of a lower effective scaling
exponent of the NGP for tc < t < t∗. Using the Rouse exponent 1/2 (so D ∼ t−1/2) in
eq. 3.6 indeed results in a broader peak. Still, this anomalous diffusion cannot fully explain
the broad shape of α2(t) occurring with polystyrene (fig. 3.4). It is possible that due to
disorder in the polymer structure close to the glass transition the packing is not ideal, and
a varying environment is present. As a result low-energy pathways are preferential and
single-file diffusion is enhanced. It is known that this type of diffusion is anomalous as
well, 〈∆r(t)2〉 ∼ t1/2 [214]. The combination of Rouse-like and single-file diffusion (giving
an effective exponent of 1/4 for t < t∗) could be the cause for this wider peak. Another
possible cause is that the various united atoms are not identical, due to the different bonded
interactions. This results in different dynamics and thereby promotes a wider relaxation
distribution.

Finally, molecular-dynamics simulations have been performed of a perfectly branched den-
dritic melt (see the article of Karatasos [141] for details). The atom connectivity of this
system has an even more complex structure than in the previous case. In the present
study we only show results for the fourth-generation dendrimer melt, for which the glass
transition occurs around Tg ≈ 550 K, although results for other generations are similar.
The MSTD and the NGP of the outer-generation atoms are given in fig. 3.5. As with the
PS glass, the same main features of the model are observed for this system. Following
the same analysis as for the polymer glass, the prediction of the model for T = 500 K
(assuming a trans-gauche distance of 2.5 Å as the most dominant jump length L and using
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the plateau value of the MSTD, ∆2 = 1.25 Å2) is α∗
2 = 0.75, compared to the simulation

result of α∗
2 = 0.92. This similarity appears to indicate that the model indeed captures the

dominant mechanism responsible for non-Gaussian behaviour. Similar to the PS case, the
simulated NGP is broader than the calculated one. We assume that a similar reasoning
as for the polystyrene system (Rouse-like and single-file dynamics) may be applied here as
well to account for the extra broadening.

3.4 Summary and conclusions

In short, we have shown that some universal aspects of the non-Gaussian dynamics (ob-
served for many systems [58, 80, 121, 127, 132, 149, 151, 221, 236, 276, 291, 294]) around
the cage-diffusion transition can well be explained by a simple model, which does not
assume a priori any heterogeneity of glassy dynamics (in the sense as mentioned in the
introduction). For this model the maximum of the NGP occurs at the crossover between
the caged plateau and the final diffusion, and the maximal height of the NGP is given by
eq. 3.7. These statements are confirmed even within fair quantitative detail by simulation
results for glass-forming systems with widely different topology — a quasi-two-dimensional
colloidlike low-molecular-weight glass former, linear polystyrene glass, and a glass of per-
fectly branched dendrimers. It is important to emphasize that this model considers the
motion at a coarse-grained time scale. It only assumes the existence of cages in which the
cage to cage motion results in non-Gaussian behaviour. No further details of any explicit
collective or heterogeneous glassy dynamics are required to understand the non-Gaussian
behaviour in this sense.

In contrast to the low-molecular-weight liquids, additional intrachain (torsion) interactions
in polymer melts make multiple jumps very unlikely, and the predictions of the model
regarding the maximum of the NGP are found to be closer to the simulated results. On
the other hand, the polymer connectivity introduces more complicated anomalous diffusion
effects, which effectively broadens the simulated NGP peak.

3.A Random walk

We will show in this Appendix how one can determine the expressions for the mean-square
translational displacement and the mean quartic translational displacement for a certain
class of random walks (i.e., eqs. 3.4 and 3.5). First we will look at a discrete random
walk, in which the particle makes a jump after each step i in some direction xi with a
certain probability distribution for the step vector ρ(xi). Later on the time dependency is
introduced.

We only consider random walks for which the probability distribution for a step lj fulfils



54 Chapter 3

ρ(L) = ρ(−L), i.e., a walk of Pólya type [126, §I.3.3]. Then the MSTD for a n-step random
walk is 〈∆r(n)2〉 = nL2, with ∆r(n) =

∑n
i=1 xi, L2 = 〈xi ·xi〉 = 〈x2

i 〉 [126, §I.2.1] and 〈· · · 〉
denoting averaging over all possible step vectors.

The discrete mean quartic translational displacement (MQTD) is then

〈∆r(n)4〉 =
∑

i

∑

j

∑

k

∑

l

〈(xi · xj)(xk · xl)〉 (3.8)

One can easily see that the only terms in the right hand side of eq. 3.8 which do not
cancel to zero when averaging over all possible steps L are when i = j = k = l (n terms),
i = j 6= k = l, i = k 6= j = l and i = l 6= j = k (all n(n− 1) terms). Therefore the discrete
MQTD is

〈∆r(n)4〉 = n〈x4
i 〉 + n(n − 1)L4 + 2n(n − 1)〈(xi · xj)

2〉. (3.9)

The time-dependent MSTD (and MQTD) is then acquired by observing that the chance for

n jumps at time t is described by the Poisson distribution ρn(t) = exp(−t/τ) (t/τ)n

n!
. Here

τ is the average time it takes to make a jump. It is assumed that non-jumped particles
already have a constant value of the MSTD ∆2 within the cage. Then the time-dependent
MSTD is

〈∆r(t)2〉 = ∆2 + exp(−t/τ)
∞
∑

n=0

(t/τ)n

n!
〈∆r(n)2〉

= ∆2 + L2t/τ. (3.10)

We will further limit ourselves to random walks in which all steps are of equal length
|xi| = L (so 〈x4

i 〉 = L4), and obey 〈(xi · xj)
2〉 = L4/d. Random walks for which the steps

adhere these two conditions are, for example, a d-dimensional isotropic random flight, or
random walks on lattices such as on a two-dimensional triangular, on a three-dimensional
body-centred cubic, and on a three-dimensional face-centred-cubic lattice. These relations
can be checked for each type of random walk by straightforward calculations (i.e., averaging
over all possible step vectors). Repeating the calculation for the time-dependent MQTD
and assuming that the displacement within the cage obeys Gaussian statistics (i.e., ∆4 =
(1 + 2/d)(∆2)2) results in

〈∆r(t)4〉 = (1 + 2/d)〈∆r(t)2〉2 + L4t/τ, (3.11)

which completes the determination of the two moments.
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Development of heterogeneity near

the glass transition:

Phenyl-ring-flip motions in

polystyrene

ABSTRACT

Molecular-dynamics simulations are employed to study the phenyl-ring flip in
polystyrene, thought to be the molecular origin of the γ relaxation. The results
show that upon cooling the system towards the glass transition the motion
of the phenyl ring becomes more heterogeneous, which seems to result from
a distribution of local energy barriers in combination with slower transitions
between states with these local energy barriers. The growing of the heterogene-
ity affects the determination of the effective energy barrier. In particular, the
’static’ energy barrier (as determined from the distribution of the orientation
of the phenyl ring with respect to the backbone) is found to be different from
the ’dynamic’ energy barrier, as determined from the temperature dependence
of some relaxation time (i.e., the activation energy). However, below the glass-
transition temperature it appears that the two methods render the same value
for the height of the energy barrier, although the time scales differ approxi-
mately by a constant factor. It is shown that another relaxation time can be
determined to characterize the ring-flip process, which seems not to be affected
by the growth of heterogeneity and which closely follows the ’static’ energy

The contents of this chapter are for a large part published in Macromolecules 40, 6001 (2007). Repro-
duced in part with permission. Copyright 2007 American Chemical Society
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barrier. The effective barrier as determined in this way by the simulations is
in fair agreement with experimental values for the γ relaxation.
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4.1 Introduction

The mechanical properties of glassy polymers are complex functions of temperature and
experimental time scales. Various relaxation processes determine the precise viscoelastic
behaviour of a polymer glass, such as chain relaxation, segmental relaxation within a
chain, and conformational transitions. The complex microstructure of a polymer material
is responsible for the nature and time scales of these relaxation processes. Yet, some
generic features are present, related to the physics of the glass transition. The main
relaxation process, the α process, freezes in at the glass-transition temperature Tg. In
general, the α process is a very collective process [52], which shows strongly non-Arrhenius
behaviour. Below Tg only local rearrangements of chain segments within their cages formed
by neighbouring segments are possible. In order of freezing-in upon cooling these sub-Tg

processes are called β, γ, . . . . These faster processes are more Arrhenius-like and less
collective in the glassy regime [52].

An attractive prototype glassy polymer to study experimentally and theoretically is atactic
polystyrene (PS). The major reasons for this are that its properties are well documented,
it is a common plastic, and its mechanical behaviour is still poorly understood, despite
the extensive studies of the relaxation processes of PS. The temperature at which the
α relaxation reaches 100 s (which can be used as the definition of the glass-transition
temperature [52]) is Tg ≈ 374 K; the exact value depends on cooling rate and molecular-
weight distribution [232].

The β process (not to be confused with the β relaxation in the mode-coupling theory (MCT)
of the glass transition, of which the time scale diverges near the critical temperature in the
ideal-MCT framework [52]) appears for atactic polystyrene around a frequency of 110 Hz
at T = 320 K; it has an activation energy of about 1.3 × 102 kJ mol−1 [287]. At high
frequencies the peak of the β process will merge with the α-relaxation peak [287]. It is
believed that the β process in PS originates from a local oscillation mode of the backbone
chain [287]. If annealing conditions are varied, the barrier will also vary between ∼ 90 and
∼ 170 kJmol−1 [272].

The γ process has a smaller activation energy and has been associated with a phenyl-
ring flip. The activation energy obtained by mechanical experiments is 34–38 kJ mol−1

[104, 287]. Other experimental studies [211] lead to energy-barrier heights in the range
21–29 kJ mol−1; in these studies the energy barrier was determined by a fit based on a
rotator model, leading to a lower energy value than obtained from an Arrhenius fit.

As the ascribed molecular origin of the γ relaxation is conceptually simple, it has been
subject of many theoretical studies. Early estimates for the energy barrier of a phenyl-ring
flip are based on taking into account only intrachain interactions [107, 144, 211, 252, 257]. It
was found that the potential-energy barrier depends on the conformation of the backbone
chain and on tacticity [107, 252, 257]. The energy barrier is lower when the backbone
torsions operate cooperatively with the phenyl-ring motion [144, 252].
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However, in a melt the backbone dihedral angles cannot rotate freely, without hindering
other chains as well. When other chains are also included (i.e., a phenyl-ring flip in its glassy
neighbourhood), the mean energy-barrier height determined by an energy-minimization
method turns out to be 116 kJ mol−1 [210]. The actual distribution of barrier heights
was found to be very broad, in the range of 0.96–1115 kJmol−1 (for the cases in which the
energetic barrier was positive). Another study [145] also uses a form of energy minimization
to determine energy barriers in the glassy structure. The result ranges from 19.2 to 133 kJ
mol−1 for 10 different measurements of a phenyl-ring rotation (in which rotations in both
directions have been considered, viz. clockwise and counterclockwise). These results show
that the glassy structure has a tremendous effect on the actual barrier of the phenyl-ring
flip. So the relaxation of the surrounding polymer matrix should be taken into account for
studying the dynamical behaviour of the phenyl ring. Variations in molecular packing can
cause a distribution of relaxation times, which in turn can cause heterogeneous dynamics
[239].

The usage of molecular dynamics (MD) simulations is an effective method to study the
dynamics of transitions of small chemical groups near the glass transition. The results of
previous MD simulations for melts of other polymer systems have shown that there is a
distribution of transition rates for the rotation of a side group (such as for the rotation of
the methyl group in poly(methyl methacrylate) [194], in poly(vinyl methyl ether) (PVME)
[230], and in polyisobutylene [142]) or for conformational transitions [136]. Also, a distri-
bution of energy-barrier heights has been found for CH3 rotations in PVME [24], or for con-
formational transitions [136]. MD simulations have been carried out before for polystyrene
as well [14, 73, 88, 109, 111, 118, 153, 171, 172, 174, 175, 177, 187, 197, 222, 223, 249],
and some of these simulation results have been used to look at typical relaxation times in
the vicinity of the glassy state [118, 172, 174, 222]. However, no emphasis was given to the
motion of a phenyl ring.

The aim of the present chapter is to study the flip of the side-group phenyl ring in a melt
of atactic polystyrene and determine the accompanying energy-barrier landscape, typical
relaxation time scales, and the Arrhenius activation energy by means of different methods.
A special point of focus is to look at the influence of the glassy dynamics on the dynamical
properties of this ring, which effectively makes the ring flip very heterogeneous (in terms
of a wide distribution of relaxation times).

The current chapter is organized as follows. In the next section the polystyrene model is
described and simulation details are explained. From MD simulation data the free-energy
barrier for the phenyl-ring flip is then determined, by means of the distribution function
of the orientation of the phenyl ring with respect to the backbone. Next the temperature
dependencies of the relaxation times of autocorrelation functions are studied to yield a value
for the activation energy. Van Hove functions are analyzed for studying the heterogeneity
in the dynamical behaviour of the phenyl ring, leading to a kinetic model for ring flipping.
Finally, some conclusions are stated.
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4.2 System description and simulation details

The atactic-polystyrene melt in the simulation consists of eight chains of 80 monomers
each. In the left panel of fig. 4.1 a monomer unit of polystyrene is depicted together
with the nomenclature of the (united) atoms. The united-atom force field is described in
table 2.1. Simulations are carried out in the constant-NPT ensemble (constant number
of particles N , pressure P and temperature T ), using velocity Verlet as the numerical
integration scheme for the Newtonian equations of motion (with an integration time step
of 4 fs), the Berendsen barostat (τP = 10 ps [6]), and the collisional-dynamics method [165]
as a thermostat (λcoll = 1 ps−1, m0 = 0.1 Da). Strictly speaking, when using the Berendsen
barostat, the constant-NPT ensemble is not probed [6], but this effect is assumed to be of
minor significance for the present study.

The sample is prepared by a procedure similar to that of Lyulin and Michels [171], starting
with a one-chain melt of polystyrene. After the equilibration of this single chain, the
orthorhombic box is doubled in all three directions, and the resulting sample is equilibrated
further for another 10 ns at T = 540 K. To correct for the potential cutoff and any other
force-field deviations, the pressure has been adjusted so that the density at T = 540 K
equals the experimentally observed density at this temperature and at atmospheric pressure
[293]. The sample is subsequently cooled to the desired temperature by 0.01 Kps−1. This
process is done for five independent samples in order to increase statistics. For testing
the proper temperature behaviour of some of the data, the temperature of one sample
(first equilibrated at T = 540 K) has been set to 1000 K, followed by an additional 4 ns
equilibration with an integration time step of 2 fs. To see what the influence of the glassy
state is compared with the gas phase, another simulation has been carried out, in which
only one chain has been simulated. This atactic polystyrene chain consists of 15 monomer
units and is placed in a vacuum.

The glass-transition temperature Tg of this 8-chain model for atactic polystyrene is deter-
mined by plotting the specific volume vs. temperature and applying a linear fit to both low
and high temperatures. The crossing point of these linear fits is then taken as the definition
of the glass-transition temperature, with the result Tg = 388 K [175]. This is somewhat
higher than the experimentally determined glass-transition temperature for approximately
the same molecular weight, Tg = 361–363 K [232, 293]. The difference becomes smaller
upon extrapolating the observed glass-transition temperature towards experimental cooling
rates [175].

As the present study is mainly concerned with the rotational dynamics of the phenyl ring,
the angle χ between the phenyl ring and the backbone is defined here in detail (see fig.
4.1). It is slightly different from that as given in Abe et al. [2], as now it is not assumed
that the phenyl ring is strictly planar (in the case of an all-atom model of polystyrene a
different convention is possible [219]). The plane P is defined by the normal vector C–CH
connecting the phenyl ring to the backbone. The vector vph pointing from one o-CH to
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Figure 4.1: (left) Monomer unit of the polystyrene model with the naming convention of
the (united) atoms. Here o=ortho, m=meta and p=para. The notation x -CH is used for
any of the three possible positions of the CH group in the phenyl ring. (right) Illustration
with the definition of the angle χ between the phenyl ring and the backbone. See text for
details.

the other o-CH and the vector vbb pointing from one CH2 to the other CH2 (two chemical
bonds away) are projected onto this plane P . Then the angle χ is defined as the angle
between these two projected vectors minus π/2. In this way the equilibrium position of
the phenyl ring with respect to the backbone is around χ = 0 and around χ = π.

4.3 Results and discussion

The rotational dynamics of the phenyl ring can be studied in various ways. First the
free-energy barrier height for rotation is determined from the probability distribution of
χ (a measure for the orientation of the phenyl ring with respect to the backbone). As a
second method, the time dependence of some autocorrelation functions associated with the
phenyl ring is investigated; from this an activation energy can be distilled. The concept of
heterogeneity is used to explain the difference between the two energies thus determined.
To acquire more evidence for heterogeneous dynamics, some typical trajectories of the
phenyl-ring angle with respect to the backbone are displayed, and the self-part of the Van
Hove function is calculated. Based on this, a two-state model (χ around 0 vs. χ around π)
is used to calculate in yet another way an activation energy. The various results give clear
evidence for heterogeneity in the glassy dynamics.
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Figure 4.2: Free energy G for two different temperatures (around Tg and well above it)
as a function of the angle χ of the phenyl ring with respect to the backbone, as calculated
using eq. 4.1. Solid lines are fits to the simulation data (crosses and pluses) with the cosine
function eq. 4.2.

4.3.1 Free-energy barrier

To see what energy barrier is associated with a phenyl flip in our constant-NPT simulation
run, the distribution function ρ(χ) has been measured. From this the (Gibbs) free energy
G(χ) can be calculated by using the Boltzmann distribution law [42]

ρ(χ) = ρ(χmin) exp

[

−G(χ) − G(χmin)

kBT

]

, (4.1)

with kB Boltzmann’s constant. The reference value χmin is taken to be the value of χ at
which the free energy is at its minimum. A similar analysis has also been carried out in
Berthet et al. [24]. The result is shown in fig. 4.2 for two different temperatures. Data for
other temperatures are similar. The shape of this effective potential (potential of mean
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Figure 4.3: Free-energy barrier height as a function of the temperature, extracted from
the distribution function of χ, eq. 4.1. Solid line is a fit to the simulation data (crosses)
with eq. 4.3.
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force) is well described by a simple cosine function

G(χ) − G(χmin) =
1

2
∆Gmax(1 − cos(χ)), (4.2)

with ∆Gmax the free-energy barrier height. This barrier height ∆Gmax as acquired by
fitting G(χ) − G(χmin) by eq. 4.2 is plotted in fig. 4.3 as a function of temperature.

The entropic part of the free-energy barrier height can be determined by fitting the data
with the linear relation

∆Gmax(T ) = ∆Hmax − T∆Smax, (4.3)

when one assumes that the enthalpy difference ∆Hmax and the entropy difference ∆Smax are
independent of temperature. The contribution P∆Vmax to the free-energy barrier could
also be determined by varying the pressure, but it is assumed that this contribution is
temperature-independent as well and therefore it is discarded in this study. In this way
∆Hmax could be interpreted as some kind of activation enthalpy, in the case of a single
barrier (see, e.g., Witten and Pincus [282]). The outcome of the fit is ∆Hmax = 26 kJ
mol−1 and ∆Smax = −0.024 kJmol−1 K−1 (fig. 4.3). The free-energy barrier height is seen
to increase with increasing temperature. This could be interpreted that it is entropically
unfavourable to be at the unstable maximum position (χmax = π/2), compared to the
stable minimum position (χmin = 0).

The entropic contribution to the free-energy barrier height is higher than found from an
energy-minimization technique [145]. From our simulation results the contribution T∆Smax

to the free-energy barrier at T = 300 K is estimated to be about 20%. The contribution
T∆Smax obtained from the energy minimization, in which the entropy is acquired by ap-
plying a quadratic approximation for the potential-energy surface near the transition state
for a phenyl-ring flip, was less than 10% [145].

Another way to determine the energetic barrier is by looking at the temperature dependence
of the relaxation times. In the next section relaxation times associated with a phenyl-ring
flip are calculated; afterwards activation energies corresponding to some of these times are
determined.

4.3.2 Time correlation functions

The dynamics of the phenyl ring is examined by looking at the vector connecting the two
united carbon atoms in the ortho position, o-CH (see fig. 4.1). The rotational behaviour
of this vector vph can be studied by considering ensemble-averaged Legendre polynomials
Pl(x) of the inner product of the unit vector v̂ph ≡ vph/|vph| at time t0 with itself at time
t0 + t, i.e., the autocorrelation function

Cl(t) = 〈Pl [v̂ph(t0) · v̂ph(t0 + t)]〉. (4.4)
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One of the reasons to look at this quantity is that some of these autocorrelation functions
can be measured experimentally. In particular, when instead a C−H-vector is considered,
then the correlation time (also called an average relaxation time [52])

τc ≡
∫ ∞

0

ACF (t)dt (4.5)

is measurable by NMR experiments, if ACF (t) = C2(t). Reasonable agreement was ob-
served when comparing the result of this kind of NMR experiments to the results of MD
simulations [118].

It is quite common when studying glassy materials to fit such autocorrelation functions by
a Kohlrausch-Williams-Watts (KWW) stretched-exponential function [52]

A exp
[

−(t/τKWW)β
]

(4.6)

in which τKWW is a typical time scale of relaxation, β the stretch exponent, and A a pre-
exponential factor to account for other relaxation processes at shorter time scales (such
as librating motion, which usually occurs at time scales below 4 ps, the interval at which
trajectories are saved in this study). Integrating eq. 4.6 [169] then results in the correlation
time τc (eq. 4.5)

τc =
τKWW

β
Γ(β−1), (4.7)

with Γ(x) the (complete) gamma function. So for 1 ≥ β ≥ 1/2 the correlation time τc is
at most a factor of 2 larger than τKWW. The KWW function can be considered as arising
from a specific superposition of exponentials

exp
[

−(t/τKWW)β
]

=

∫ ∞

0

ρKWW(τ) exp

(

− t

τ

)

dτ (4.8)

with the KWW distribution function ρKWW(τ). The width of ρKWW(τ) is then determined
by the exponent β, a lower value of β meaning a wider distribution [169].

One should be cautious in interpreting the fitting parameters of the KWW function. A
limited time window for the relaxation function (due to limitations in simulation time) can
result in a lower value for the fitted τKWW [241]. Also, in the case of glasses the interference
of the start of the α relaxation with the end of the cage plateau can result in lower values
of β [167].

The results for
C1(t) = 〈v̂ph(t0) · v̂ph(t0 + t)〉 (4.9)

and

C2(t) =
3

2
〈[v̂ph(t0) · v̂ph(t0 + t)]2〉 − 1

2
(4.10)

describing the reorientation of the normalized o-CH–o-CH vector are shown in fig. 4.4. It
is seen that the three-parameter KWW function is able to describe the data well.
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Figure 4.4: C1(t) and C2(t) for the vector vph pointing from one o-CH-atom to the other
one within a phenyl ring for various temperatures. Solid lines are fits to the simulation data
by a stretched exponential, eq. 4.6. Arrows point towards relaxation curves of decreasing
temperature.
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Figure 4.5: Correlation relaxation times as a function of temperature for the vector
within the phenyl ring (τC1 (pluses) as determined by fitting C1(t) and τC2 (crosses) by
fitting C2(t) depicted in fig. 4.4 by eq. 4.6) and for the χ-angle (τCχ

(circles) by fitting
Cχ(t) (eq. 4.11) by eq. 4.6). All KWW times are rewritten in correlation times by using
eq. 4.7. Solid lines serve as a guide to the eye.
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Some important differences can be observed when comparing the C1(t) and C2(t) auto-
correlation functions for the o-CH–o-CH phenyl vector. In fig. 4.5 the correlation time
(deduced from eqs 4.6 and 4.7) is plotted as a function of temperature. The relaxation
time of C2(t), τC2 , rises more quickly than that of C1(t), τC1 , upon decreasing temperature.
This is because C2(t) is invariant under a phenyl-ring flip. So a flip contributes to the
relaxation of C1(t), but not of C2(t). Nevertheless, C2(t) still relaxes at low temperatures.
This means that main-chain reorientation and/or the flapping motion of the phenyl ring
around the backbone still are active relaxation modes at low temperatures, although much
slower than the motion of the phenyl-ring flip itself.

To isolate the pure effect of the phenyl-ring reorientation with respect to the backbone we
consider the relaxation of the autocorrelation function of the cosine of the accompanying
angle χ (fig. 4.1)

Cχ(t) = 〈cos[χ(t) − χ(0)]〉. (4.11)

This autocorrelation function would be identical to C1(t) (eq. 4.9), if the backbone would
be frozen and the phenyl ring could only move by rotating around the chemical bond joining
it to the backbone. It turns out that this is almost the case for low temperatures, where the
two autocorrelation functions are close to each other. The time dependence of Cχ(t) is also
well-described by a stretched-exponential function, eq. 4.6. The temperature dependence
of the corresponding correlation time τCχ

is shown in fig. 4.5. At high temperature this
relaxation is rather slow, slower than both C1(t) and C2(t). This is because both C1(t)
and C2(t) are able to relax by the motion of the backbone, while Cχ(t) can only relax
via the relative motion of the phenyl ring with respect to the backbone. However, upon
decreasing the temperature, this behaviour changes. The flip-relaxation channel becomes
the dominant one for temperatures of about 440 K and lower, as then the relaxation time
of C1(t) almost equals that of Cχ(t), τCχ

. So the difference between C1(t) and C2(t) is due
to the (obvious) anisotropy of the relaxation; for low temperatures it is for example easier
for the phenyl ring to make a π-flip motion around its axis, than to end up with a π/2
rotation around the same axis (not rotation invariant in χ), or to rotate around a different
axis (anisotropic in the orientation of the axis). Anisotropic relaxations have been studied
before for other polymer systems as well [49, 89].

Despite the dominance of the flip-relaxation channel at lower temperatures, it seems that
for temperatures below about 420 K the three different relaxation times show approxi-
mately the same temperature dependence (see fig. 4.5). This observation could be an in-
dication of a coupling between the backbone conformation and the rotation of the phenyl
ring. An analogous coupling was also found for a different polymer system [142]. Tonelli
[257] showed that the energy barrier for a phenyl-ring flip can exceed 400 kJ mol−1 for
some accompanying backbone conformations. A change to a new backbone conformation
with a lower energy barrier for the phenyl-ring flip would allow these phenyl rings to flip
much earlier. As C2(t) is invariant under a phenyl-ring flip, its long-time behaviour is
mostly sensitive to backbone relaxations. Therefore, a plausible explanation for the obser-
vation that the temperature dependencies of the different relaxations times are about equal
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for low temperatures is that the relaxation of the phenyl rings which have a high-barrier
conformation for a flip have to wait for the relaxation of the backbone.

4.3.3 Activation energy from relaxation times

In section 4.3.1 the free-energy barrier height for a phenyl-ring flip was determined by con-
sidering the distribution function of the angle χ, fig. 4.3. Alternatively, one can determine
the activation barrier (i.e., the barrier to activate the motion of the process), by assuming
that the relaxation time of Cχ(t) follows activated kinetics (Arrhenius-like behaviour)

τ = τ0 exp

(

∆H

kBT

)

(4.12)

in which the inverse of the pre-exponential factor τ−1
0 is a measure for the attempt rate [282]

and ∆H is the activation enthalpy. The choice of activated behaviour might be motivated
by the experimental observation that secondary relaxations are usually well described by
such a law [52], including the γ relaxation of polystyrene [287]. This in contrast with
the main α relaxation, which is usually described by the Vogel-Fulcher-Tammann-equation
[52]. The Arrhenius fit of the relaxation times of Cχ(t) results in an activation enthalpy of
50 kJ mol−1 for the temperature range of 375–540 K. However, fitting the results for the
temperature range below the glass-transition temperature, 300–375 K, results in a lower
activation enthalpy, 35 kJmol−1.

So the activation enthalpy as acquired by an Arrhenius plot of τCχ
for T in the range

375–540 K is almost twice the enthalpy-barrier height as determined from the distribution
function ρ(χ), which was ∆Hmax = 26 kJmol−1. From one point of view a different value is
what one would expect. The decorrelation of Cχ(t) is described by a stretched-exponential
fit, with the temperature-dependent KWW exponent βCχ

found to be smaller than 1. As
discussed, this implies a distribution of relaxation times ρ(τ) ≈ ρKWW(τ) rather than a
single transition time. Another way of interpreting this is that there exists a distribution of
energy-barrier heights, which obviously determines the average energy barrier. One reason
for this fluctuating barrier height could be the cooperative nature of the flip transition,
as shown by energy-minimization methods [144, 145, 252]. The energy barriers for some
conformations are much lower than for other ones. Also, the local barrier heavily depends
on the nonbonded local environment, i.e., on the interchain interactions [145, 210].

In fig. 4.6 the KWW exponent β of various autocorrelation functions is plotted as a function
of temperature. At relatively high temperatures βCχ

≈ 1. This is what one would expect
for a relaxation mechanism which only involves a single energy barrier. So this indicates
that at these temperatures the phenyl-ring flip might be approximately described by a
single barrier, too.

At lower temperatures βCχ
decreases. One way of interpreting this is that the distribution

of energy barriers becomes broader upon lowering the temperature. However, then the
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question remains regarding the origin of the broadening of this distribution. A more
appealing interpretation is that a set of states with a diversity in energy barriers exists
both at low and at high temperatures. Only now the difference is that upon lowering the
temperature the residence time at each state (with accompanying energy barrier) increases,
making it harder to find the lowest energy barrier within the typical time of a transition.
This state is likely to be largely characterized by the backbone conformation, which mainly
determines the potential-energy barrier of a phenyl-ring flip (as is discussed before). The
relaxation of the backbone is then indicative of the residence time at each state. This
interpretation is supported by the simulation result of the atactic chain of polystyrene in a
vacuum at T = 375 K. For this simulation we find that βCχ

= 1 (compared to βCχ
= 0.7 for

the glassy system at the same temperature). In a vacuum conformational transitions are
not hindered by the presence of other chains, leading (in this picture) to faster transitions
between the various local energy barriers, and thereby the phenyl ring with its surroundings
(apparently) finds the lower energy barrier within the transition time accompanied by this
energy barrier.

A decrease of the stretch parameter β for decreasing temperature has been observed for
other glassy materials as well, such as for the autocorrelation function of the torsion angle
in polyethylene [137].

In contrast to βCχ
, βC2 is approximately independent of temperature (although a small drift

towards higher values upon cooling is visible, which possibly originates from the limited
time window available for fitting; it is known that in some situations this could lead to
an increase in the fitted stretch parameter β [47]) and approximately equal to 0.4–0.6.
This value is typical for simulation results of polymers. It has been observed in other MD
simulations of polystyrene [118], and also for other polymers, such as poly(ethylene oxide)
[89].

4.3.4 Heterogeneity

A distribution of energy-barrier heights generally would imply heterogeneous dynamics.
This can indeed be seen from trajectories of the χ-angle. Some typical trajectories are
shown in fig. 4.7. For T = 300 K it is observed that out of a total number of 560 phenyl
rings (the five phenyl rings near each chain end are discarded in view of the known increase
in mobility around the ends of a polymer chain [55, 171]) 548 phenyl rings (98%) did not
flip at all during a 24 ns simulation run. However it turns out that of the remaining phenyl
rings eight flipped once, two flipped twice and two flipped more than 10 times, illustrating
the nonhomogeneous dynamics during this time window.

It is also observed that, while the averaged equilibrium position of the χ angle is at 0 (and at
π), some phenyl rings seem to prefer other (temporarily) quasi-equilibrium positions (such
as seen in fig. 4.7b and fig. 4.7c) and that infrequent transitions are possible between these
quasi-equilibrium positions (fig. 4.7c). Note also that a phenyl-ring flip not necessarily
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Figure 4.7: Typical trajectories for the χ angle at T = 300 K during a 24 ns simulation
run. χ-values are plotted every 12 ps. (a) no jumps, (b) two jumps, (c) jump within cage
around 5 ns, (d) many jumps. Solid lines denote the equilibrium values χmin = 0, π.
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forces the quasi-equilibrium position to change (fig. 4.7b). So next to the heterogeneity in
energy-barrier heights, there also exists heterogeneity in the value of χmin, i.e., in the angle
χ at which the energy is at its minimum. Yet another type of heterogeneity is in the width
of the energy minimum. The fluctuations around the local minimum in fig. 4.7(b) are
significantly larger than for example those in fig. 4.7(a). These small-scale heterogeneities
can be seen more quantitatively by looking at the Van Hove function, which is carried out
in the next section.

As was concluded from the behaviour of the time correlation functions, the reason for these
heterogeneities must be sought in a combination of inter- and intrachain interactions. For
example, a shift of the equilibrium position to a new quasi-equilibrium position could arise
because of these interactions, which could effectively hinder the phenyl ring to be around
the usual equilibrium position, as has been illustrated in Bicerano [25]. Of course, some
types of heterogeneities already exists in the sample. The polystyrene chains are atactic;
three different triads for a phenyl ring are present in the simulation run (meso, racemic,
and hetero). Also, the presence of chain ends near a phenyl ring could be a reason for a
variation in the environment. The two most active phenyl rings in this particular trajectory
(which turn out to be well separated from each other, namely about 30 Å) are in a different
type of triad, and the closest chain ends have a minimal separation of about 3.2 and 7.5 Å
for these phenyl rings. Moreover, all three types of triads are among the phenyl rings which
flip two or more times. On the basis of these results, no definite conclusions can be drawn
whether or not the dynamical heterogeneities of the phenyl-ring flip are mainly caused by
the presence of chain ends or due to variations in tacticity.

As mentioned before, a plausible cause of the heterogeneity is that below the glass-
transition temperature the motion of the main chain is nearly frozen in, so is the backbone
conformation near a phenyl ring. It has been shown [107, 252, 257] that some backbone
conformations (depending on the type of triad) result in a lower energy barrier for the
phenyl-ring flip than other backbone conformations. At sufficiently low temperature some
phenyl rings can therefore be stuck in these low-energy-barrier conformations, while others
are stuck in the high-energy-barrier conformations. From this one could conclude that the
length scale associated with the most active phenyl rings is limited to one phenyl ring only,
as each phenyl ring is surrounded by its own backbone conformation. It would be interest-
ing to have a future study investigating the correlations between active phenyl rings and
specific backbone conformations by means of molecular-dynamics simulations, as is, e.g.,
done in the study of methyl-group rotations in polyisobutylene [142].

4.3.5 Van Hove function

The self-part of the Van Hove function [110] can be examined to give more insight into the
distribution of angular displacements over a time interval t of the angle χi describing the
orientation of a phenyl ring i with respect to the backbone. As χ is a periodic coordinate,
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Figure 4.8: Self part of the Van Hove function Gs(∆χ, t) (eq. 4.13) for the absolute value
of the boxed angular displacement ∆χ for various instances of time at T = 300 K. Arrows
point towards increasing time.

the periodic, ’boxed’ Van Hove function

Gs(∆χ, t) ≡ 〈δ {∆χ − |f [χi(t0 + t) − χi(t0)]|}〉 (4.13)

is calculated. Here the averaging 〈· · · 〉 is done over every phenyl ring i as well as over all
available time origins t0. To handle the periodicity of the χ angle, the difference χi(t0+t)−
χi(t0) is first boxed (as is also common in calculations of spatial coordinates in combination
with periodic boundary conditions [6]), by using the function f(χ) ≡ χ − 2π · anint( 1

2π
χ),

in which the function anint(x) rounds x towards the nearest integer. The absolute value
symbols, | · · · |, serve to acquire only positive displacements. So the self-part of the Van
Hove function Gs(∆χ, t) is a measure for the probability of a certain angular displacement
∆χ after a period of time t.

The simulation data of Gs(∆χ, t) for T = 300 K are displayed in fig. 4.8. The first bump
at angle differences smaller than about π/2 is relatively constant over the investigated
time interval. This means that the surrounding of the local minimum is already mostly
explored within 12 ps. Nevertheless, there is a small increase in the displacement up until
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about ∆χ = π/2. Probably this has its origin in processes responsible for the small-scale
heterogeneity in the value of χmin and in the magnitude of fluctuations around this value.
If a phenyl ring makes for example a small-scale jump to a new quasi-equilibrium position
(such as the one visible in the trajectory displayed in fig. 4.7c), then the effective angular
displacement within the first cage will increase.

The second bump is representative for the fraction of phenyl rings which made a flip motion.
Note that it is steadily increasing in time. The next section will be devoted to the time
dependence of this fraction.

4.3.6 Two-state analysis

To isolate the fraction of jumped phenyl rings in a more quantitative way, we divide the
phenyl rings into two states, ↑ and ↓, in which the boundary between the two states is
taken to be at χ = 90 degrees. If a π flip occurs, the phenyl ring will go from one to the
other state. A similar analysis for transitions between the trans, gauche+, and gauche−

conformations has been carried out before [33, 230].

The ↑ state is defined so that at t = 0 all phenyl rings are in this state. The fraction
of phenyl rings at time t in the ↑ state is denoted by φ↑(t). The initial conditions are
φ↑(0) = 1 and φ↓(0) = 0, and it is expected that limt→∞ φ↑(t) = limt→∞ φ↓(t) = φeq = 1

2
,

since the two states are completely symmetric. If there would be only one energy barrier
and if inertial effects can be neglected, then at sufficiently low temperatures this process
can be modelled by a simple master equation [217]

φ̇↑(t) = −kφ↑(t) + kφ↓(t)

φ̇↓(t) = −kφ↓(t) + kφ↑(t), (4.14)

with the solution

φ↑(t) =
1

2
(1 + e−2kt)

φ↓(t) =
1

2
(1 − e−2kt), (4.15)

with k the transition rate, and with the dot denoting differentiation with respect to time.
As the two fractions are simply related via φ↑(t) + φ↓(t) = 1, we will from now on only
focus on the fraction of jumped particles φE(t) = φ↓(t), with E ≡ −kBT ln(k/k0) and k0 a
measure for the attempt rate. Here the subscript E stands for the activation energy of the
process and has been added to differentiate φE(t) from the jump fraction φ(t) as measured
during the MD simulation (as φ(t) does not necessarily stem from one energy barrier).

From the fraction of jumped particles we can construct the normalized autocorrelation
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function [56]

Cφ(t) =
〈∆φ(t)∆φ(0)〉
〈∆φ(0)∆φ(0)〉

=
〈[φi(t) − φeq] [φi(0) − φeq]〉
〈[φi(0) − φeq] [φi(0) − φeq]〉

= 1 − 2〈φi(t)〉
= 1 − 2φ(t), (4.16)

in which the equalities φeq = 1
2

and φ(0) = 0 have been used. The average 〈· · · 〉 is taken
over all phenyl rings i. So in the case of a single transition rate eq. 4.16 simplifies to
Cφ(t) = CφE

(t) = e−t/τ , with τ = 1
2k

.

Note that Cφ(t) is very similar to Cχ(t). In fact, if the librating motion within the local
minimum would be negligible and all rings would be either at the position χ = π or χ = 0,
then cos [∆χ(t)] = −1 if the phenyl ring has flipped and cos [∆χ(t)] = 1 if it did not
flip. In this case φ(t) = 1

2
〈1 − cos [∆χ(t)]〉 and hence Cχ(t) = Cφ(t). The simulation

results indicate that these two functions indeed show approximately the same long-time
behaviour. Fitting both Cχ(t) and Cφ(t) by a stretched exponential (eq. 4.6) results in
almost the same values for β and τc; the difference is less than 3% for β and 9% for τc for
T > Tg. However, the short-time behaviour is very different, because in this regime the
librating motion cannot be neglected for Cχ(t). As is shown below, the short-time response
of Cφ(t) is interesting to study in more detail.

On the basis of the non-exponential decay of Cχ(t), we expect to have a distribution of
local free-energy barriers E with a distribution function g(E). Therefore the expression
for CφE

(t) needs to be averaged over all possible energy barriers, i.e.

Cφ(t) = 〈CφE
(t)〉 =

∫

CφE
(t)g(E)dE. (4.17)

It is now easy to see that in general 〈CφE
(t)〉 is not a single-exponential function. By Taylor

expansion the average of CφE
(t) = exp(−t/τE) over the energy distribution function, Cφ(t)

can be written as a linear combination of negative moments 〈τ−n〉 of the distribution
function of relaxation times ρ(τ) (this distribution follows from g(E) via τE = 1

2kE
). It

would be much more desirable to use a simpler invariant of the energy distribution function,
such as a single moment of ρ(τ). This can be done by concentrating on the short-time
behaviour of φ(t) = 1

2
[1 − Cφ(t)] and the associated first moment 〈τ−1〉 by only taking the

leading part of the Taylor expansion

φ(t) = 〈φE(t)〉 =
1

2
t〈1/τ〉 + 〈O(t/τ)2〉. (4.18)

In fig. 4.9 the simulation results for φ(t) are shown for various temperatures. For sufficiently
high temperatures we indeed see that φ(t) saturates towards the expected equilibrium value
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Figure 4.9: Fraction of phenyl rings that flipped with respect to the initial (t = 0)
orientation. Solid lines are linear fits to the short-time behaviour of the simulation data
(crosses). The long-time equilibrium value φeq = 1

2
is shown as a dashed line. The in-

set shows Cφ(t) = 1 − 2φ(t), with solid lines fits to the simulation data by a stretched
exponential, eq. 4.6, with A = 1. The arrows point towards decreasing temperature.
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φeq = 1
2

for high values of t. For small time scales φ(t) is fitted by the linear function t
2τ

.
One can observe that the deviation from linearity is only small for these time scales,
suggesting that we indeed mostly probe the moment 〈τ−1〉.

Plotting τ−1 ≡ 〈τ−1〉−1 as a function of inverse temperature results in fig. 4.10. Also
shown are the correlation relaxation times of Cφ(t), τCφ

(as determined by fitting Cφ(t) by
a stretched exponential, eq. 4.6, but now with the prefactor fixed to A = 1). From the
differences between the curves it is clear that the method of determining the relaxation time
is very important for the exact temperature dependence of this time. For T ≈ 540 K the
two times as determined from the two different methods are about the same. However, for
lower temperatures they start to deviate significantly from each other. A similar splitting
of relaxation times upon cooling down has also been found experimentally (see, e.g., the
review [67] for a discussion on this splitting for the small molecule o-terphenyl). For these
low temperatures in which the two time scales differ significantly from each other, the
relaxation time of C2(t) becomes larger than either τ−1 or τCφ

(see fig. 4.5). Since C2(t) is
insensitive to a phenyl-ring flip, τC2 can be regarded as a measure for the time it takes for
the phenyl ring to change to a new environment. So it appears that the dynamics of the
phenyl-ring flip become heterogeneous because this time τC2 exceeds the typical transition
time of a phenyl-ring flip. Around Tg the relaxation times τ−1 and τCφ

differ from each
other by almost 1 order of magnitude. Despite this difference, they show approximately
the same temperature dependence below Tg.

The observation that τ−1 ≤ τCφ
can also be rationalized from the existence of a distribution

of energy barriers. Phenyl rings having a low local free-energy barrier will relax first (i.e.,
at short times), and the phenyl rings with a higher local free-energy barrier will relax later.
The short-time behaviour of Cφ(t) (as measured by τ−1) is therefore representative for these
low-energy barriers, while the long-time behaviour (as measured by τCφ

, arising from the
stretched-exponential-function fit of Cφ(t)) is more sensitive to the higher energy barriers.
So the splitting of the two relaxation times upon cooling down can also be interpreted as a
slowing down of transitions between states of different energy barriers, thereby promoting
heterogeneous dynamics.

Fitting the relaxation times τ−1 by an Arrhenius law results in an activation enthalpy of
∆Hτ−1 = 27 kJmol−1. Note that this enthalpy ∆Hτ−1 is much lower than the value acquired
by fitting the relaxation times of Cφ(t), 47 kJ mol−1 (in which the temperature range for
the fit was 375–540 K), but it is remarkably close to the enthalpy barrier as determined
from the temperature dependence of the distribution function of χ, viz. ∆Hmax = 26 kJ
mol−1(fig. 4.3). Note also that the activation enthalpy for Cφ(t) for temperatures below
the glass-transition temperature (i.e., 300–375 K), ∆HCφ

= 25 kJmol−1, is close as well to
the enthalpy barrier ∆Hmax.

The observed similarity between ∆Hτ−1 and ∆Hmax can also be explained by assuming
a distribution of energy barriers. The free-energy barrier height as determined from
the distribution function is calculated using the ratio ρ(χmax)/ρ(χmin), i.e., ∆Gmax =
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Figure 4.10: Typical time scales of a phenyl-ring flip as a function of the inverse temper-
ature. +: determined from the initial time behaviour of the fraction of flipped phenyl rings
φ(t). ◦: determined from the correlation time of the autocorrelation function Cφ(t) (by
fitting it with a stretched exponential, eq. 4.6). The solid vertical line indicates Tg = 388 K.
The three other solid straight lines are Arrhenius fits (eq. 4.12); the resulting activation
enthalpies are 47 kJ mol−1 (◦, T ≥ 375 K), 25 kJ mol−1 (◦, T ≤ 375 K) and 27 kJ mol−1

(+). The remaining solid lines are a guide to the eye. The splitting of the two time scales
τ−1 and τCφ

for lower temperatures is indicative of the broadening of the distribution of
relaxation times.
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−kBT ln
[

ρ(χmax)
ρ(χmin)

]

. What is measured during a simulation run is the number of phenyl

rings n(χ) which have an angle between χ and χ + dχ. Call the total number of phenyl
rings N . With n(χ) = 1

N
ρ(χ)dχ it follows that n(χ) = 〈nE(χ)〉 = N〈ρE(χ)〉dχ = Nρ(χ)dχ.

For χmax we can write

ρ(χmax) = 〈ρE(χmax)〉

=

〈

ρ(χmin)e
−E(χmax)−E(χmin)

kBT

〉

= ρ(χmin)

〈

e
−E(χmax)−E(χmin)

kBT

〉

(4.19)

in which it has been assumed that ρ(χmin) is approximately independent of the local energy
barrier. Therefore

∆Gmax = −kBT ln

(〈

e
−E(χmax)−E(χmin)

kBT

〉)

. (4.20)

Similarly, averaging the inverse transition time (given by eq. 4.12) over the distribution of

energy barriers, while assuming that τ ′
0 = τ0 exp

(

∆Smax

kB

)

is approximately independent of

the local energy barrier, gives

〈

τ−1
〉

=
〈

τ ′−1
0 e

− ∆E
kBT

〉

= τ ′−1
0

〈

e
−E(χmax)−E(χmin)

kBT

〉

. (4.21)

In other words, if the assumptions are met, 〈τ−1〉 and ∆Gmax (and therefore also ∆Hmax,
by the usage of eq. 4.3) probe the same invariant of the energy distribution function, and
as a result they yield the same enthalpy-barrier height.

The correspondence between ∆HCφ
and ∆Hmax for T < Tg could be due to the supposed

fact that the width of the distribution of energy barriers is not changing much anymore
in this temperature range. A similar result has been observed before by MD simulations
[230], in which the spread of activation energies for a methyl-group rotation in poly(vinyl
methyl ether) remains constant below the glass-transition temperature; this was also seen in
experimental data on the same system. However, another reason could be the limited time
window of the autocorrelation function Cφ(t). Fitting this with a stretched exponential
function then effectively favours the short time scales over the long time scales, so that
it becomes more sensitive to the lower energy barriers. Upon cooling further, this effect
becomes even stronger.

The method of determining the time scale by means of the fraction of escaped particles at
short times gives thus a relaxation time of about 30 ns at T = 375 K. This is consistent
with NMR experiments [244], which find that the correlation time of the π jump is in the
range of 10–100 ns at T = 373 K.
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4.4 Summary, conclusions, and outlook

It has been shown that the effective energy barrier associated with a phenyl-ring flip of
polystyrene is very dependent on the physical quantity under study. This is a result of the
growth of dynamical heterogeneity upon cooling down, as confirmed by various methods.
For relatively high temperatures the effect is small, but close to the glass transition het-
erogeneity plays an important role. For temperatures just above the glass transition the
activation enthalpy of one relaxation time of the phenyl-ring flip (probing the long-time
behaviour) is almost a factor of 2 higher than that of another relaxation time of the same
process (but probing the short-time behaviour), as is shown in fig. 4.10. Nevertheless,
the fraction of flipped phenyl rings for very small times gives an estimate for the average
transition rate, and it turns out that the temperature dependence of this transition rate
is similar to one that would be expected from the effective energy barrier based on the
probability distribution function of the orientation of the phenyl ring, despite the presence
of heterogeneous dynamics.

A possible reason for the observed apparent widening of the distribution of local energy
barriers upon cooling down could be given by the following picture. It is known that
the effective phenyl-ring barrier depends on the local environment, in particular on the
backbone conformation. The flip barrier associated with some conformations can easily
exceed the α-relaxation time. A phenyl ring in such a state will be able to flip faster by
changing its state (by means of a change in the nearby backbone conformation) to another
one with a low flip barrier. So the total time it takes to flip for such phenyl rings is on the
scale of the sum of the relaxation time of the environment and the low-barrier flip time. For
high temperatures the local environment relaxes much faster than the low-barrier flip time.
In this case the flip time for the phenyl rings with a high flip barrier is almost the same as
the flip time for phenyl rings with a low flip barrier, so that the heterogeneity in the flipping
dynamics is practically absent. However, for lower temperatures the environment of the
phenyl rings becomes more sluggish, and eventually the relaxation time of the environment
will be much larger than the low-barrier flip time. In this case the phenyl rings with a high
flip barrier will flip on a much slower time scale than the low-barrier phenyl rings. This
encompasses a spread in relaxation times and therefore heterogeneous dynamics.

In contrast to temperatures above the glass transition, it turns out that for the sub-Tg

regime the two different definitions of relaxation time (from a KWW fit and from the
short-time analysis) render about the same effective energy barrier. This could be either
due to the limited time window of the relaxation function (so that one effectively only
probes these short-time scales) or because of that the width of the energy distribution
stays approximately constant. This energy barrier for the phenyl-ring flip is shown to be
in accordance with the energy barrier for the γ relaxation as is deduced from experimental
results. Of course, this does not rigorously imply that the γ relaxation is the result of
the phenyl-ring flip. It is also possible that the phenyl-ring flip acts as an indicator for
the γ relaxation, but that it does not participate in the mechanical relaxation, as is also
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speculated for the π-flip in polycarbonate [277]. Another possibility is that the γ relaxation
is due to the backbone relaxation, as preliminary results show that the free energy barrier
between some conformations is of about the same magnitude as the free-energy barrier of
a phenyl-ring flip. A more stringent test would be to carry out a simulation in which the
γ relaxation is identified, such as with an oscillatory shear experiment. The persistence or
disappearance of the γ relaxation upon artificially increasing the phenyl-ring-flip barrier
would then show whether this is the true molecular origin of the γ relaxation.
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Deformation of polystyrene:

atomistic simulations

ABSTRACT

To gain more insight at an atomistic level into yielding, strain softening and
strain hardening in glassy polymers, molecular-dynamics simulations of atactic
polystyrene under the influence of active deformation have been carried out.
In these simulations it is observed that the yield peak is mainly connected
with interchain and the strain hardening mainly with intrachain interactions.
The deformation does not lead to complete erasure of the thermal history.
The strain-hardening modulus increases with increasing external pressure, an
observation that can not be explained by the entanglement picture.
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5.1 Introduction

Glassy polymeric materials show a rich behaviour under deformation. During a compres-
sion test an initial elastic regime is followed by yield after which the material softens
(strain softening, with a noticeable drop in stress). Upon compressing even further the
strain-hardening regime is entered; then the stress needed to deform the material grows.
This is quantified by the strain hardening modulus, defined as the slope of the stress as
function of Gaussian strain [114].

The relative magnitudes of these regimes have a dramatic effect on the resulting mechanical
behaviour of the polymer during a tensile test. For example, if the yield drop is high and the
strain hardening is low, the material will be very brittle during uniaxial-stress extension.
This is the case for the well-known atactic polystyrene glass. Here stress localization
plays a role. If the weakest link of a material with a high yield drop yields, the stress
necessary to strain that part further will be lower than the stress to yield other parts of
the material. Therefore, the weakest link will be strained further. If the strain hardening
is insufficient to strengthen the weakest link this will ultimately break. As in this case
the strain is limited to only a small part of the material the macroscopic sample shows an
almost instantaneous fracture (i.e., within a few percent of extension). However, a minor
change in the mechanical characteristics results in a totally different behaviour. A slight
decrease in yield drop or more strain hardening can result in a material which can easily
be extended by one order of magnitude more before breakage.

The toughness is a variable which depends both on the polymer structure and on the com-
bined thermal and mechanical history of the polymer material. Glassy polymers such as
polyvinylchloride, polycarbonate and polymethyl-methacrylate [102, 114] are more tough
than polystyrene, because they have a higher strain-hardening modulus. Brittle poly-
styrene itself can also be made tougher, as was shown recently by Govaert et al. [103].
Such toughening can be reached by mechanical preconditioning or by thermal quenching
of a polymer glass.

The thermal and mechanical history is therefore of prime importance in predicting the
mechanical behaviour of the polymer glass. Unfortunately a satisfying theory about the
stress drop and the strain hardening of polymeric glasses is lacking. It is unknown what
the exact reason is for the high yield tooth (peak and subsequential drop of the stress)
observed in polystyrene. The other serious knowledge gap is the physical original of strain
hardening. Rubber-elasticity theory, based on the entropic picture of a polymer chain,
predicts a strain-hardening modulus two orders of magnitude lower than what is measured
experimentally [155, 266].

Understanding what is happening at the microscopic scale would be useful for developing
new theories. Despite the vast literature of experimental results on the mechanical proper-
ties of polystyrene [20, 35, 37, 59, 61, 96, 103, 106, 112, 114, 147, 159, 160, 186, 199, 202–
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204, 238, 240, 266–268, 279, 285], studies at the molecular level are rather scarce as it is
experimentally very hard to measure changes at this level.

The method of molecular-dynamics simulations has proven to be a successful alternative to
study the mechanical properties of glassy polymers as various parameters can be changed
rather easily and physical details of all atoms are available. Numerous studies applied
this method before on various polymer models, such as on bead-spring models [91–94,
226, 227, 229, 274] and on bead-spring with bond-angle-potential models [90, 123–125].
More chemically realistic MD simulations of polymers have been carried out on amorphous
polyethylene [34, 38, 39, 46, 184, 286], polystyrene [173, 176, 177, 237] and polycarbonate
[82, 173, 177, 237]. Also other simulation techniques are applied to study the deformation
of polymers, such as Monte Carlo algorithms or energy-minimization-alike methods for
polypropylene [12, 13], PMMA [44], poly(oxypropylene) [134], polycarbonate [74, 75, 130]
and polyethylene [168, 191].

These simulations show that trends seen in experimental studies on mechanical properties
as a function of external parameters are reproducible. Examples are the behaviour of the
Young modulus, the yield peak and the strain-hardening modulus as a function of control
parameters such as temperature and strain rate. As the simulation studies are limited to
only small time and length scales, numerical agreement is often only possible by means of
extrapolation over orders of magnitude. The importance of mechanical history is recently
also observed in simulations.

Despite all these findings no new theory has emerged and the two questions raised above
about the physical origins of strain hardening and the yield tooth are still open.

The goal of the current chapter is to acquire more physical insight in these two phenomena
of deformation of glassy polymers. This is done by looking at the partitioning of energy
and stress to see which interactions are dominant for the yield and the strain-hardening
regime. The simulations are on a chemically realistic atactic-polystyrene melt under various
conditions: extension vs. compression, quenched vs. annealed, and as a function of external
pressure. A chemically realistic model allows one to compare the simulation results with
experiments, although extrapolations are necessary. Before showing the results, the details
of the simulation method are explained first.

5.2 Simulation details

Simulations are carried out by using the molecular-dynamics program puma developed by
Balabaev [15] and Mazo [183]. Variants of this program have been used before [165]. The
program has been modified slightly to distinguish intrachain Lennard-Jones (LJ) interac-
tions from interchain LJ interactions.

The used force field for atactic polystyrene can be found in [271] and chapter 2. The
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density of the sample is set to the experimental density at T = 540 K and atmospheric
pressure. As no data were available at this temperature and pressure, the density at this
point is determined by a linear extrapolation from lower temperatures [293] at atmospheric
pressure, with the result 0.916 g cm−3. After an equilibration of several ns, the internal
pressure at this density is measured and is found to be equal to 42 MPa. A possible
reason for this deviation from atmospheric pressure could be deviations in the force field;
an example is that the LJ potentials have a finite cut off. As the experimentally observed
bulk compression modulus of polystyrene is about 3 GPa at room temperature [181], the
pressure offset of 42 MPa roughly corresponds to a small volume decrease of 1.4%. Unless
stated otherwise, simulations are carried out at this pressure. The influence of a pressure
change on the mechanical moduli is also subject of study in the present chapter.

Five independent samples are prepared at T = 540 K by the procedure as is described in
§2.5. To study the effect of cooling rate these samples are cooled to T = 300 K by two
velocities: 0.01 K ps−1 (’slowly’ cooled or computationally annealed) and 0.1 K ps−1 (’fast’
cooled or computationally quenched). If not specified, results are for the slowly cooled
samples.

The simulations are carried out at uniaxial-stress extension or uniaxial-stress compres-
sion. The strain in the active deformation direction is changed by resizing the periodic
orthorhombic box in that direction. The lateral sides are kept at a constant stress value by
using the Berendsen barostat [6] with a ratio of the time constant to the compressibility
τP /β = 0.011 Pa s. Temperature is controlled by using the so-called collisional-dynamics
method [165], in which the particles collide with ’virtual’ particles of mass m0 = 0.1 Da
and with times between collisions described by a Poisson process with average frequency
λcoll = 20 ps−1.

To increase statistics the deformation is carried out three times for each sample (along each
axis once), making the total number of runs equal to 15 for each set of external conditions
(if unspecified).

Some simulations are carried out at T = 300 K, but at pressures different from the offset
value. This is established by taking the slowly cooled samples at 300 K and setting the
external pressure to the desired value. This is followed by an equilibration of 0.5 ns.
These samples then either serve as an input for the deformation run or for the unstrained
production run.

The initial box sizes are around L(0) = 50 Å. The coordinate system is taken in such a
way, so that active extension or compression is in the x-direction. The engineering strain
is then εeng = Lx(t)−Lx(0)

Lx(0)
. Other symbols which will be used throughout this chapter are

the true strain, εtrue = ln(1 + εeng) and the draw ratio, λ = 1 + εeng. For small strains
εeng ≈ εtrue and then the strain is simply written as ε.

All uniaxial-stress extension simulations are carried out at a constant velocity of
0.01 Å ps−1, corresponding to a deformation rate of ε̇eng ≈ 2 × 108 s−1 (here the dot
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means differentiation with respect to time). The compression simulations are done at a
constant deformation rate of ε̇true = −108 s−1. Some constant-rate extension simulations
with ε̇true = 108 s−1 are also realized. However, a direct comparison with the constant-
velocity extension simulations shows that the difference in the resulting stress-strain rela-
tion is below the statistical fluctuations and therefore we restrict ourselves from now one
to the extension results with constant velocity.

In the current study relatively short chains are used; the number of monomers per chain
equals 80. This is below the monomer entanglement length Ne of polystyrene (Ne = 83
[249, simulations, T = 450 K], Ne = 128 [78, experiments, T = 413 K], Ne = 139 [79,
experiments, T = 490 K], determined via Me = 4

5
ρRT/GN , with Me the molecular weight

between entanglements, R the universal gas constant and GN the rubber-plateau modulus).
Usually deformation would be affine for large length scales; for very long chains the ends
do not feel immediately the connectivity constraint of each other as they are separated by
many segments. For short chains this is not the case, and deformation becomes more non-
affine; the end-to-end distance does not change in the same way as the box sizes. This could
have an effect on the determination of the strain hardening. However, even short chains
of length equal to about Ne show strain-hardening moduli comparable to longer chains
for the typical strain rates in use up till about 100% extension [177]. Other evidence for
substantial strain hardening for short chains was given by Hoy and Robbins [124]. Their
study showed that the change in the end-to-end distance for a (short) chain of length
N ≈ Ne was more than 80% of the affine value (here 0% is taken to be if the chains do
not change in size at all) at |λ2 − λ−1| = 2.6 (|εtrue| ≈ 1) under uniaxial compression, and
that the resulting strain-hardening modulus for these short chains was nearly the same as
for the much longer chains. In summary, we feel that the present short-chain simulations
should give relevant insight into strain hardening in general.

5.3 Results and discussion

This result section is divided in three parts. First, the global stress-strain relation will be
presented for various conditions: extension vs. compression, for different thermal histories,
and as a function of external pressure. In the second part the results will be analyzed
in terms of energetic contributions. This comprises the work, energy partitioning, the
effect of thermal history and a connection with density and cage escape. In the third part
the different contributions to the total stress are analyzed for the various situations. The
consistent picture arising from these results is given in the conclusion section at the end of
this chapter.
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5.3.1 Stress development during deformation

In this part of the results section we will look at the stress development of polystyrene dur-
ing deformation under various conditions. At first, we compare compression and extension
simulations with each other and with the literature, in order to see if the simulations show
some resemblance with experimental results.

The second condition to vary is the thermal history, as it is known that the yield tooth
is highly influenced by this. It therefore gives more insight in this phenomenon. The
final external factor of interest is the pressure, which greatly affects the strain-hardening
modulus.

Compression and extension

During uniaxial-stress extension and compression tests the stress tensor is monitored. In-
stead of looking at all components of the stress tensor it is customary to study the von
Mises equivalent true stress [164], which is a measure of the second invariant of the stress
tensor (see also §1.3.1). The measured von Mises stress as a function of the applied strain
during a uniaxial-stress extension and a uniaxial-stress compression simulation is depicted
in fig. 5.1. Results are very similar if the true stress in the axial direction is plotted instead
of the von Mises true stress (not shown). Each marker in fig. 5.1 represents an average of
the measured stress during a period of time corresponding to the separation between two
subsequent markers. In addition to this, the stress is averaged over 15 runs. The standard
deviation of the average stress near the yield peak is about 4 MPa and increases slightly
for larger strains (near |εtrue| = 0.7 it is about 7 MPa).

It can be seen in fig. 5.1 that the stress both at the yield peak and near the yield drop
after the peak are higher under compression than under tension. For extension the maximal
stress value near initial yield is σpeak = 117 MPa and for compression σpeak = 143 MPa. The
reason for the higher yield stresses under compression is that in this case the hydrostatic
pressure is higher than under tension, and it is known that the stress for yielding amorphous
polymers usually increases with increasing pressure [275, §11.5.3]. Molecular-mechanics
simulations of a different polymer, atactic poly(oxypropylene) [134], also show that the
yield stress under compression is higher than under extension.

Experimental values at room temperature are σpeak = 100 MPa [103, ε̇true = −10−2 s−1],
σpeak = 87 MPa [267, ε̇true = −10−3 s−1], σpeak = 72 MPa [112, ε̇true = −10−3 s−1,
’quenched’], σpeak = 92 MPa [112, ε̇true = −10−3 s−1, annealed, cooling velocity in the
order of mK s−1]. The experimental values of σpeak are all under uniaxial-stress compression
and are a bit lower than in our simulations. The reason for this is that the deformation
conditions are not the same. The experiments have a much slower strain rate (thereby
lowering the yield stress; experimentally it is observed that the yield stress has a logarithmic
dependence on the strain rate [267]), slower cooling rate (resulting in a higher yield stress
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Figure 5.1: Von Mises true stress vs. absolute true strain for atactic polystyrene during
extension (ε̇eng = 2×108 s−1, ’ext’) and compression (ε̇true = −108 s−1, ’com’). Inset shows
the von Mises stress as a function of |λ2 − λ−1|, thereby showing a wider range for the
compression data. Fitting the data in the inset by eq. 5.1 in the range |εtrue| = 0.2–0.6
gives for extension σY = 86 MPa and Gh = 11 MPa, and for compression σY = 114 MPa
and Gh = 11 MPa.
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[112]), and longer chain lengths (increasing the yield stress due to the slower relaxation
of the middle of the chain compared to the chain ends [285]). Nevertheless, despite these
differences, the results show qualitatively the same behaviour.

A simple constitutive relation between the (true) stress σ and the strain after yielding is
the Gaussian-based equation [115, 117, §5.6.1]

σ = σY + Gh(λ
2 − λ−1) (5.1)

with Gh the strain-hardening modulus, and σY the offset yield stress (which is lower than
the yield peak value, σpeak).

To determine the strain-hardening modulus the stress-strain curves in fig. 5.1 are fitted
with eq. 5.1. For extensions the fit range is |εtrue| = 0.25–0.6 (as for εtrue > 0.6 samples
break) and to allow for a better comparison the fit range for compression is restricted
to the same range in terms of the absolute value of the true engineering strain. The so-
determined mechanical moduli are Gh = 11 MPa for extension, with an offset yield value
of σY = 86 MPa and Gh = 11 MPa for compression, with σY = 114 MPa. In eq. 5.1 the
stress is linear with the Gaussian strain λ2 − λ−1, both for extension and for compression.
To check this, the stress is also plotted as a function of the absolute value of the Gaussian
strain, see inset in fig. 5.1. The tension test shows indeed a linear regime after initial
yield. The compression data deviate from this fit for large strains; extending the fit range
to include all data points at large strains would result in a much larger apparent strain-
hardening modulus, Gh = 37 MPa. We will come back to this point later on in this
chapter in §5.3.3, as there the stress will be partitioned into smaller parts to isolate which
interaction is responsible for this effect.

The experimental values for the strain-hardening modulus for room-temperature poly-
styrene under compression are around the values as found by the present compression
and extension simulations; Gh = 9 MPa [279, ε̇true = −10−3 s−1], Gh = 11 MPa [267,
ε̇true = −10−3 s−1], Gh = 13 MPa [266, ε̇true = −10−2 s−1]. During an extension ex-
periment it is difficult to measure the strain-hardening modulus as then a polystyrene
sample usually breaks. However, a study of crazes of polystyrene under extension [113]
gave Gh = 2.2 MPa.

It is known that the strain-hardening modulus of polymeric materials increases with in-
creasing strain rate; examples are high-density polyethylene [113], and polyurea [233].
However, for other polymers the increase is very small or nearly absent, such as for poly-
carbonate [192]. It could very well be the case that the strain-hardening modulus of poly-
styrene also hardly changes with strain rate. This could explain the observed quantitative
similarity between the simulation and the experimental results.

In spite of the obvious differences in deformation conditions, we can conclude that the simu-
lated polymer system shows the same qualitative behaviour as polymers do in experimental
studies. Hence the polystyrene model in use is quite realistic in terms of reproducing some
mechanical properties.
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Figure 5.2: Von Mises equivalent true stress vs. strain for atactic polystyrene for two
different cooling rates. Solid lines are fits of eq. 5.1. There is no difference for the strain-
hardening modulus and the extrapolated yield value: for both Gh = 11 MPa and σY =
86 MPa. However, the initial yield peak is higher for the slowly cooled sample (σpeak =
117 MPa vs. σpeak = 104 MPa). Also there is a small difference in the strain at which the
yield peak occurs: εeng = 9% (slow) vs. εeng = 12% (fast).

Quenched vs. annealed samples

The properties of a glassy material are much affected by the thermal history of the sample,
i.e., the initial thermal treatment before deformation starts. In particular is the mechanical
behaviour affected, as can be seen in the two simulated stress-strain curves in fig. 5.2. Two
different scenarios are compared: samples cooled down by 0.1 K ps−1 (’fast’ cooled) and
samples cooled down by 0.01 K ps−1 (’slowly’ cooled).

Observe that for the faster-cooled sample (more quenched) the yield peak is lower than
for the slower-cooled sample, 104 ± 4 vs. 117 ± 4 MPa. As discussed this tendency is
confirmed by experimental results on polystyrene under compression; σpeak = 72 MPa
[112, ε̇true = −10−3 s−1, ’fast’ cooled], σpeak = 92 MPa [112, ε̇true = −10−3 s−1, ’slowly’
cooled, cooling velocity in the order of mK s−1].

The strain at the yield peak is around 9% for the slowly cooled sample, and 12% for the
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Figure 5.3: Von Mises stress vs. strain during uniaxial-stress extension for different ex-
ternal pressures at T = 300 K. Solid lines are fits to the simulation data as is done in
fig. 5.1. Observe that both the yield peak and the strain-hardening modulus turn out to
increase with increasing external pressure.

faster-cooled sample. Experimental results show a smaller strain value at yield (7%, Hasan
and Boyce [112]). However, the trend is the same; also experimentally the quenched sample
has a slightly higher strain value at yield as compared to the annealed sample [112].

Within statistical error the strain-hardening modulus is not altered by a different thermal
history, the strain-hardening modulus is Gh = 11 MPa for both cooling scenarios.

Influence of external pressure

The behaviour of σY as a function of external factors such as temperature T and pressure
P is relatively well known. The effects of these external factors are described by the
Eyring equation [275]. Even so, much less understanding is available for Gh. If rubber
theory [117, 259] would be valid for glassy polymers, Gh equals kBTρ

Me
. Here ρ is the mass

density and Me the molecular weight between entanglements. Note that the predicted
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strain-hardening modulus does not depend explicitly on external pressure and it increases
linearly with temperature. Experimentally the trend is, however, opposite; it is found that
the strain-hardening modulus is decreasing with temperature (see for example Tervoort
and Govaert [254]).

A different way of reasoning is that the strain-hardening modulus actually depends in
the same way as the yield stress on external factors such as temperature and strain rate.
Regarding the temperature dependence it indeed has been found experimentally that the
ratio σY /Gh is fairly constant over a range of temperatures [114, 117]. Simulations have
shown that also the dependence on strain rate is about the same for both σY and Gh [123].

What about the influence of external pressure? Based on the observed communalities
between yielding and strain hardening with respect to temperature and strain rate, one
would expect that pressure would also play a role during strain hardening. It is known
that the yield stress rises with increasing pressure. Would the same be true for the strain-
hardening modulus?

Simulations have been carried out at various external pressures to test this. In fig. 5.3
the von Mises stress is plotted as a function of strain for six imposed lateral pressures
(number of simulation runs per pressure point is at least 10). Conform experimental data
the simulation results show that the yield stress increases with external pressure. Note
that the strain-hardening modulus also increases with increasing external pressure. As
just stated, this is in contrast to what one would expect on the basis of the rubber theory
[117], in which the strain-hardening modulus Gh = kBTρ

Me
does not explicitly depend on the

external pressure.

First we will study the pressure dependence of the yield stress, see fig. 5.4. Both the von
Mises yield stress σvM,Y and the yield stress in the extension direction σ‖,Y are plotted in
this figure. That σ‖,Y is decreasing with external pressure is because it is taken as the
absolute stress and not as the deviatoric stress.

These yield stresses are determined by fitting eq. 5.1 to the accompanying stress-strain
curves. For the abscissa the pressure near the start of yielding, PY = 2

3
P⊥− 1

3
σ‖,Y , is used.

Various other definitions of a yield stress exist [275], but the currently used one is chosen
as it is not so susceptible to noise.

The data in fig. 5.4 are fitted by the straight lines

σ‖,Y (P ) = σ‖,Y,PY =0 + µ′
Y PY (5.2)

and
σvM,Y (P ) = σvM,Y,PY =0 +

√
3µY PY . (5.3)

Here σ‖,Y,PY =0, σvM,Y,PY =0, µ′
Y and µY are fit coefficients. µY is known as the pressure

coefficient for yielding a material (the same convention has been adopted as by, e.g., van
Melick et al. [267], hence the factor

√
3). The constant µY can be interpreted as some
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Figure 5.4: True yield stress in the extension direction and von Mises true yield stress
vs. pressure near the yield point. Lines are fits to eqs 5.2 and 5.3.

kind of internal friction coefficient [226], in analogy with the proportionality constant in
the Amontons-Coulomb law, which relates the friction force to the normal force for sliding
two materials over each other under the influence of this normal force [164].

A least-squares fit results in σvM,Y,PY =0 = 86 MPa and µY = 0.17; σ‖,Y,PY =0 = 59 MPa
and µ′

Y = −0.80. The parameters for σ‖,Y (P ) and σvM,Y (P ) are obviously related and
this can be used as a consistency check. If off-diagonal elements of the stress tensor are
zero and a uniaxial-stress extension in the x-direction σx = σ‖ is applied in which the
perpendicular directions are kept at a constant stress of −P⊥ < 0, then the von Mises
stress equals σvM,Y = σ‖ + P⊥. Combining this expression with eqs 5.2 and 5.3 gives

σ‖,Y,PY =0 = 2
3
σvM,Y,PY =0 and µ′

Y = 2
3

√
3µY − 1. A manual check shows indeed that the fit

values fulfil these relations between the two set of coefficients present in eqs 5.2 and 5.3
well.

The experimental values for µY of atactic polystyrene are around the simulation results;
µY = 0.14 [267], and µY = 0.22 [204]. The value depends on the exact method of extracting
a yield-stress value [226].

As is common for the pressure dependence of the von Mises yield stress, one can also try
to use a similar ’law’ for the pressure dependence of the strain-hardening modulus Gh

Gh = Gh,PY =0 + µhPY , (5.4)
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Figure 5.5: Strain-hardening modulus vs. pressure near yield.

with Gh,PY =0 the strain-hardening modulus for the case that the pressure at yield is equal
to zero and µh the pressure-dependency-factor of the strain-hardening modulus. We find
µh = 0.045 and Gh,PY =0 = 8.6 MPa.

In literature it has been proposed that σY and Gh are coupled, i.e., eq. 5.1 is written as
(see Hoy and Robbins [123])

σ = σY (T, P, ε̇)F (λ) (5.5)

in which only σY is influenced by temperature, pressure and deformation rate, while F (λ) =
(

1 + Gh

σY
(λ2 − λ−1)

)

and thus Gh

σY
depends on other intrinsic polymer-specific properties.

Our simulation results with various values of the external pressure do not exclude this
multiplicative form of the stress-strain relation, see fig. 5.6. In fact, it favours this type of
stress-strain-relation over the type in which the strain-hardening modulus is independent
of the external pressure.

One could think that the material becomes tougher upon an increase in the strain-
hardening modulus. However, according to Considère’s construction it is the ratio Gh/σY

which determines the toughness of the material [114]. Therefore, the Considère limit for
necking Gh/σY = 1

3
is also shown in fig. 5.6. So despite the increase in the strain-hardening

modulus, the polymer will not become much tougher upon applying an external pressure.
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Figure 5.6: The ratio of strain-hardening modulus to von Mises true yield stress vs. yield
pressure. For comparison, Considère’s limit for necking, Gh/σY = 1/3, is also shown.

5.3.2 Energetics

Work and dissipation

Work is needed to stress a sample. Part of this energy is stored in the material (elastic
response) and another part will be dissipated (viscous response). In what way is this energy
stored? And how much of the energy is dissipated? To answer these questions we first
look at the evolution of the work and total internal energy and then look at the further
partitioning of this internal energy into smaller components.

The amount of work W done on the sample is determined by calculating the product of the
net force on a side of the orthorhombic box and the displacement of that side for all three
perpendicular directions of the box during deformation [206], as the off-diagonal elements
of the strain tensor are zero for the chosen coordinate system [161]

dW = FxdLx + FydLy + FzdLz

= σxLyLzdLx + σyLzLxdLy + σzLxLydLz

= V (σxdεx + σydεy + σzdεz), (5.6)

where εx equals 1
Lx

dLx, σx the true-stress component along the x-axis, and similar for the y
and z components. The total work done onto the sample during deformation is the integral
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Figure 5.7: Applied work W and increase in internal energy ∆Uint vs. strain.

W =
∫ ε

0
dW where the integration has to be carried out from the initial undeformed state

to the final deformed state.

The work done on the polystyrene sample and the increase of the internal energy ∆Uint

as a function of engineering strain εeng is shown in fig. 5.7. Up to about 15% strain all
work done on the sample is converted into internal energy. The internal energy even rises
faster than the amount of work done on the sample. This is a well-known effect under
small extensions (see, e.g., Haward and Young [117] or Haward [116]). Under these small
extensions the temperature of the material usually drops: the Joule-Thomson effect. But
as our sample is immersed in a heat bath (the thermostat), there is a net heat flow into
the sample, nullifying the temperature drop.

For larger strains the internal energy keeps increasing, but most of the work is now con-
verted into heat. This means that during the flow of the material almost all energy is dissi-
pated. Only a fraction of the work is converted into internal energy. This is in accordance
with experimental results for polystyrene; the percentage of work which is converted into
internal energy decreases after the initial yielding [238]. An MD simulation of a toy-model
polymer [124] renders similar results. Also here most of the work in the strain-hardening
regime is converted into heat (but there it was expressed in terms of the dissipative stress).
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Internal-energy partitioning

To see where this extra internal energy is stored, the components of it are monitored
during deformation, see fig. 5.8. The internal energy Uint is composed of a kinetic part
Ukin and a potential part Upot. The potential energy is further partitioned into interchain
energy ULJ,inter and intrachain energy ULJ,intra+12+13+14. The interchain energy consists
only of LJ interactions and the intrachain energy ULJ,intra+12+13+14 is made of intrachain
LJ, 2-particle covalent-bond (12), 3-particle covalent-angle (13) and 4-particle torsion (14)
interactions. Up to about 10% extension the main increase is in the interchain Lennard-
Jones interactions. After initial yielding only the intrachain energy contribution continues
to rise, while the interchain contributions saturate to a value of almost 10 J g−1. The
kinetic-energy term stays approximately constant (due to the thermostat).

Possible causes of the increase in intrachain energy could be the following. Upon extending
the sample the chains become more extended as well. The covalent bonds will be extended
first. However, as they impose an opposite force they will drag other particles along with it
to relax the stress. Then other mechanisms for making the chain more extended will become
active (such as bending the valence angles and changing conformations from gauche to trans
states). Nevertheless, the opposite force of the covalent bond will increase the energetic
contribution of that interaction. So is the case for other interactions, such as for bond-
angle bending interactions and torsion interactions. Also the energy from the intrachain
LJ interactions is likely to increase, for the following reason. In a trans configuration the
two phenyl rings of a meso dyad repel each other because of their close distance; they feel
a repulsive LJ interaction. An extended chain has more trans configurations and therefore
this could lead to an increase in the intrachain LJ energy.

The reason for the initial increase in interchain LJ energy and saturation afterwards can
be understood from the breaking of LJ bonds upon flowing. With a LJ bond between
two particles it is understood that the separation between the particles is small enough so
that the energy necessary to separate the two particles is more than about 10% of the well
depth of the LJ interaction. The breaking of LJ bonds upon flowing will be treated later
on in more detail when the samples of different thermal history will be discussed.

Similar trends in energy contributions have been found in a Monte Carlo simulation of a
uniaxially compressed network [44]. Also here the intermolecular potential energy increases
a lot up to yield and hardly increases after yield. Furthermore, the intramolecular energies
continue to increase as well after yield. This suggests that the observed behaviour is rather
general.

In molecular-mechanics simulations of atactic poly(oxypropylene) [134] the dominant
change in the energy near the initial yield point was also ascribed to the van der Waals
energy, although no distinction was made between intrachain and interchain energy.

Results of the simulation of amorphous polyethylene [288] differ from the present work;
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the change in intermolecular energy is almost negligible as compared to changes in the
other energetic contributions. A possible reason for this difference could be that there the
deformation rate is 5 × 1011 s−1, i.e., 2500 times faster than the present deformation rate
near ε = 0. As is discussed by Rottler and Robbins [228] it could be that for such high
deformation rates a different (deformation) regime is entered. Another reason could be
that the equilibration time for their structure is relatively short, 3 ps (opposed to more
than 10 ns for our simulation), so that the sample does not have enough time to form
Lennard-Jones bonds.

Influence of thermal history

We saw in fig. 5.2 that the thermal history has a large effect on the yield peak. Contrary to
this is the behaviour of the strain-hardening modulus. This is not affected by the cooling
rate: both cooling scenarios gave the same value of Gh = 11 MPa. Here we want to
focus on two questions. The first question is what interaction types are responsible for the
difference in yield peak. The second question is related to mechanical rejuvenation. From
the identical behaviour of the two thermally different materials after yield it was proposed
that the aging history is erased completely from this point [117] and that deformed annealed
samples are behaving similar as quenched samples (hence the term mechanically-induced
rejuvenation). However, only one property has been compared, the stress. Are other
properties of the material also equivalent after initial yielding?

Let us take a look again at the development of energy upon deformation for samples with
different cooling history. As was shown, the potential energy Upot plays a large role for
initial yield. The difference between the fast and the slower-cooled sample in terms of this
energy is depicted in fig. 5.9.

Prior to deformation Upot is lower for the slower-cooled sample, as is typical for glassy
materials [273], and is understandable by the following argument. Upon cooling down the
polymer melt vitrifies and falls out of equilibrium. The slower-cooled sample, however,
has more time to equilibrate and falls out of equilibrium at a lower temperature. It is
therefore closer to the equilibrium state, of lower energy. Another useful picture of un-
derstanding this is that the slower-cooled sample has more time to find deeper minima of
the energy landscape. The decrease in energy towards the equilibrium value is sometimes
also interpreted as an increase in local ordering, as then the difference from the underlying
crystalline structure (if any) is smaller (in terms of the total energy).

During deformation the difference in potential energy between the two samples of varying
cooling scenario changes. For strains up to about 10% the potential-energy difference
decreases and for larger strains the difference saturates to an approximately constant value.
Note that the energy difference does not vanish entirely, illustrating that the deformation of
a sample does not completely erase the aging history. A similar observation has been made
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Figure 5.9: Total potential energy vs. engineering strain for atactic polystyrene produced
with two different cooling rates. Inset shows the difference. The initial difference in
potential energy does not vanish entirely upon deformation. The main decrease occurs up
till shortly after the yield point (εeng ≈ 0.1). In the strain-hardening regime the difference
stays approximately the same.
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Figure 5.10: Total interchain energy vs. strain for atactic polystyrene for two different
cooling rates, both in units of J g−1 and ǫLJ (see text). Inset shows the difference. The
initial difference in potential energy does not vanish entirely upon deformation. The main
decrease occurs after initial yield. In the strain-hardening regime the difference stays the
same.

before for smaller strain values [173]. Despite this incomplete erasure, the strain-hardening
modulus is apparently not affected (fig. 5.2).

Most of the difference in potential energy between the two cooling scenarios can be ascribed
to the interchain Lennard-Jones energy, being recognized by comparison of the insets in
fig. 5.10 and fig. 5.9. We could also expect this, as the slowly and faster-cooled samples dif-
fer mainly in the initial yield region, and the main contribution to the increase in potential
energy near initial yield is due to interchain interactions.

In a prior study of atactic polystyrene [173] it was seen that the difference between quenched
and annealed samples was more evenly distributed among the various interactions (bond
stretching, bond bending, torsion and total LJ energy). However, in the present study
we partition the LJ energy further into an intrachain and an interchain part. These two
observations can be reconciled, because it turns out that the intrachain LJ energy for the
faster-cooled sample is even lower than for the slower cooled one, thereby making the total
contribution of the LJ energy less significant. An explanation for the observed increase
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in intrachain LJ energy for the older sample will be given in §5.3.3, when the stress is
partitioned as well.

The interchain energy shown in fig. 5.10 is displayed both in units of J g−1 and in units of
ǫLJ, where ǫLJ equals the minimal energy of the LJ potential of all united atoms except the
CH atoms, which is smaller by a fraction of 0.75. Here one can see that before deformation a
united atom has on average about −3.85ǫLJ interchain energy for the slowly cooled sample.
As this is smaller than the minimum of the LJ potential, each united atom has on average
multiple interchain bonds (i.e., a LJ-bond coordination number which is at least larger
than 3). A plausible cause could be phenyl-phenyl ring interactions.

The difference between the slower and the faster-cooled sample is that the interchain energy
per united-atom particle is on average approximately 0.1ǫLJ lower for the slower-cooled
sample prior to deformation. During deformation the difference does not vanish entirely;
a plausible reason for this observation will be given on page 107.

To yield the slowly cooled sample an increase in the interchain LJ energy is necessary: On
average 0.2ǫLJ per (united atom) particle. For the faster-cooled sample the binding energy
is less, so also less bonds need to be broken to yield the material, suggesting that this is
the reason that less force is needed to yield the younger material. The same effect could
explain mechanical rejuvenation; if weak LJ bonds are already broken in the mechanical
pretreatment by for example rolling [267], then these bonds need not to be broken in the
tension test and it would be likely that the resulting stress-strain curve would then show
a much less pronounced or even absent yield tooth. Note that it takes time to reform and
equilibrate the broken LJ bonds; as a consequence the total interchain LJ energy effectively
becomes less negative during the initial straining region of net bond breaking.

Connection with density

So we saw that for the more aged sample more interchain LJ bonds are present and that
it is therefore logical that this leads to an increase in a yield-tooth stress. In this part this
view is further supported by the evolution of density.

The evolution of the density during deformation (fig. 5.11) is similar to the evolution of
the interchain LJ energy (fig. 5.10). Upon straining the density quickly decreases. This
dilation is quantified by the Poisson ratio, the ratio of the strain in one of the perpendicular
directions ε⊥ to the strain in the extension direction ε‖ in the limit of infinitely small strain
ν = − limε→0

ε⊥
ε‖

. Experimental values for polystyrene are ν = 0.33 [36], ν = 0.37–0.38

[265]. These values are in accordance with the values of the present and previous [176]
simulation results of ν = 0.35 ± 0.02. Another way of expressing this is that the Young
modulus E is not negligible with respect to the bulk modulus K, as ν = 3K−E

6K
[265].

This was also observed in a simulation of a polyethylene-like model [34]. For larger strains
(εeng > 0.1), the density decreases only weakly and the difference between the annealed
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Figure 5.11: Density vs. strain for atactic polystyrene for two different cooling rates
during uniaxial-stress extension. Inset shows the difference. The initial difference in density
disappears after yield.
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and the quenched samples has disappeared. To sum up, the quenched and the annealed
samples show next to a similar stress response also a similar density response for large
strains.

The relation with out-of-cage escape

We found that under deformation yielding is associated with breaking of LJ bonds. This
means that particles are forced to depart from their original cages. In chapter 3 we have
shown that the cage in an undeformed glassy substance manifests itself in the root-mean-
square translational displacement (RMSTD) of particles as a plateau. After the plateau
there is an increase in the RMSTD associated with cage escape. Deformation should
therefore lead to an early increase in the RMSTD. Would the effect of thermal history or
varying pressure also be visible in the RMSTD?

This is indeed so. In fig. 5.12 the RMSTD 〈∆r(t)2〉1/2 = 〈(r(t0+t)−r(t0))
2〉1/2 of all united-

atom particles in polystyrene is plotted as a function of time t both for the deformed and
the undeformed case. For the deformed case the trivial convective velocity is removed as
described in more detail by Lyulin et al. [177] and in chapter 6. The resulting RMSTD will
be also called the root-mean-square non-affine displacement or simply non-affine displace-
ment. In the case of deformation there is no translational invariance in time present and
we therefore take t0 as the time when the sample is unstrained, i.e., at ε = 0. Later times
t0 + t will correspond to a strained sample at a strain value as given by the additional axis
in fig. 5.12. The results are plotted for three situations: the annealed sample, the quenched
sample and the sample under a high external pressure (P⊥ = 628 MPa).

The RMSTD is associated with two basic phenomena: the temporary localization plateau
and the cage to cage motion. The first thing we study is the plateau. The value of the
localization plateau of the RMSTD is, as shown in chapter 3, a measure for the space
within the cage. If particles are closer to each other, we expect that the space within
the cage is smaller. A higher density therefore implies a lower plateau value. Prior to
deformation the fast-cooled sample has ρ = 1.001 g cm−3 (fig. 5.11, the slowly cooled
sample ρ = 1.006 g cm−3 and the high-pressure sample ρ = 1.11 g cm−3. This order in
density is consistent with the observed order in plateau values in fig. 5.12.

Note that an aging effect is also visible in the high-pressure plateau. When preparing
the high-pressure sample a 0.5 ns equilibration at that pressure preceded the unstrained,
isotropic production run (as mentioned in §5.2). This equilibration time is even visible in
the RMSTD plateau: while the two other samples (slowly and fast cooled) show a minor
steady increase for the plateau value for larger time scales, the high-pressure sample shows
a slight step near 0.5 ns, reminiscent of the continuing aging.

The second point to observe in fig. 5.12 is the early cage escape during deformation. This
looks quite similar for all three different situations. Only there seems to be a trend that
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Figure 5.12: Root-mean-square displacement of all particles for the slowly cooled, fast-
cooled and high-pressure (P = 628 MPa) samples in the undeformed (’iso’, closed markers)
and the deformed (’def’, open markers) cases as a function of strain (for the deformed
samples) and time.

the more bound cases (i.e., the cases with the lowest RMSTD plateau values) also have
a smaller non-affine displacement after cage escape. This could be simply caused by the
following. Assume that the position of a particle r(εeng) at εeng = 0 can be written as
r(0) = rmin(0) + ∆rrat, in which rmin(0) is the quasi-equilibrium position of the particle in
the unstrained glass, along where rattling takes place in the direction ∆rrat. Then

〈(r(εeng) − r(0))2〉 = 〈(r(εeng) − rmin(0))2〉 + 〈∆r2
rat〉 + 〈(r(εeng) − rmin(0))(∆rrat)〉. (5.7)

Assuming that the rattling motion is uncorrelated with r(εeng) − rmin(0), the last term in
eq. 5.7 vanishes. Therefore the more bound states (i.e., with a lower 〈∆r2

rat〉) have a lower
total RMSTD 〈(r(εeng) − r(0))2〉1/2.

Mechanical erasure?

Although some properties become independent of the thermal history after straining, dif-
ferences still last for other properties. From our point of view this behaviour is to be
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expected. A small strain will obviously change the local structure. However, the erasing
effect on much larger scales will be much less. For example, the end-to-end distance of
a long polymer chain will approximately be transformed affinely for such small strains.
The characteristic ratio, a measure for the end-to-end distance, is temperature dependent
for polystyrene [209], and as it has a very long relaxation time, it will vary between the
two differently cooled samples (as both samples fall out of equilibrium in a different way).
Therefore, this difference in characteristic ratio and hence in the end-to-end distance will
not be erased after initial yielding. We think that this even applies for experimental results,
as in a glass phase the relaxation time of chain diffusion can easily exceed the duration of
a typical experiment.

This temperature dependence of the chain structure can also explain the lasting difference
in inter-chain energy between the two samples. As the characteristic ratio for polystyrene
increases with lowering temperature (directly [290], and indirectly, see also §6.3.2) it is
likely that the characteristic ratio of the slower-cooled sample has a higher value (as it had
more time to adjust at a certain temperature). It turns out that this is indeed the case
in our simulation results. This means that the ’older’ chain is more extended (and thus
penetrating more in overlap regions with other chains). Hence it is more likely that the
annealed chain has more LJ interactions with other chains. This argument explains why
the slowly cooled sample has a lower total interchain LJ energy, even after yielding, as was
shown in fig. 5.10.

Note that this is not in contradiction with the simulation of a binary LJ glass, in which the
deformation did induce complete erasure [261]. In this simple glass the structure at scales
larger than about two atom diameters looked identical in terms of the pair distribution
function g(r) for samples of different thermal history, so that the no thermal-history-
dependent ordening was visible for large length scales.

The chain shape depends on its conformation, such as the trans and gauche parameters,
and these probabilities are temperature dependent. Moreover, the chain has a spectrum
of length scales with accompanying relaxation times. Depending on the exact thermal
history, each length scale can fall out-of-equilibrium at a different temperature. Therefore,
many ordening parameters describing the non-equilibrium state of polystyrene would be
necessary (in the language of the Kovacs-Aklonis-Hutchinson-Ramos (KAHR) model [154]).

Our observed discrepancy from mechanical erasure of the thermal history is in line with
other results. In the random-landscape model by Isner and Lacks [131], in which the state
of the material is given by a position in this energy landscape and strain is simply asso-
ciated with a displacement in the energy landscape, the non-equilibrium state is also not
only defined by one thermal and/or mechanical history-dependent variable and therefore
also needs more ordening parameters. It seems thus that it has some long-range struc-
ture, too. Experimental studies of polystyrene by means of positron-annihilation lifetime
spectroscopy [37] revealed as well that mechanical rejuvenation is a too simple picture.
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Figure 5.13: True stress in the extension direction vs. strain during uniaxial-stress ex-
tension, for different stress contributions. The hardening is mainly due to intrachain inter-
actions. Interchain stress decreases after the yield peak, likely caused by the simultaneous
decrease in density after yield. The yield tooth (peak and further softening) is caused by
a combination of intrachain and interchain interactions.

5.3.3 Stress partitioning

From the study of the changes in energetic contributions during uniaxial extension defor-
mation it was observed that interchain interactions were most prominent near yield, while
intrachain interactions dominate the strain-hardening regime. In this part we want to see
if this is consistent with the stress interactions. Again we will use partitioning. First we
focus on the unstrained, isotropic situation (ε = 0). Although the total stress is simply
connected to the pressure, the values of the various stress contributions are not. This anal-
ysis is followed by a discussion around the yield point for the deforming polymer. Finally,
the stress partitioning in the strain-hardening regime is discussed. The stress-partitioning
in this last regime gives more insight in the observed difference between compression and
extension (fig. 5.1).

Undeformed state

We first concentrate on the undeformed case, ε = 0. In fig. 5.13 the absolute true stresses
along the uniaxial-stress extension direction are plotted as a function of (future) strain. The
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total stress has been partitioned into several terms: the kinetic stress σkin, the intrachain
stress σintra = σLJ,intra+12+13+14 (using the same notation as for the energy partitioning),
and the interchain stress σLJ,inter.

The kinetic stress is σkin = −Pkin = −ρNkBT ≈ −200 MPa with ρN the (united atom)
particle density. For the normal pressure simulations the imposed pressure is the offset
pressure P⊥ = 42 MPa (due to the density correction, §5.2), which is lower than Pkin.
The negative kinetic stress term, naturally, is an expanding term to the total stress (i.e.,
due to the kinetic term particles repel each other). It is counterbalanced by the positive
interchain and intrachain stress terms, which lead to contracting contributions. At ε = 0
the intrachain stress and the interchain stress are of the same magnitude.

In contrast to the present results a negative total LJ stress was found in a polymeric
network [44]. However, in that work this total LJ stress was not split into a intrachain
and interchain contribution. Then the LJ interaction present between atoms separated
by minimally three covalent bonds within the chain is also part of this total LJ stress.
The LJ interactions between atoms that are separated by exactly three covalent bonds
could cause repulsion. An example is the conformation for which equilibrium values for
the bond length and valence angle are taken and where the torsion is in the gauche state,
φ = 120 degrees. Then the separation of these two atoms is smaller than the distance
at which the LJ interaction is at its minimum for their used LJ parameters [44]. Upon
lowering the ratio of the LJ radius to the covalent-bond length the LJ stress did become
less negative; however, it stayed negative [44].

Nevertheless, a similar result (i.e., a negative LJ stress) is present in our simulations. We
can see this if the intrachain stress is partitioned further. This intrachain stress is composed
of the stress due to covalent bonds σ12, the stress due to the valence-angle interaction σ13,
the stress due to both the proper and improper-torsion interactions σ14, and the stress due
to intrachain LJ interactions σLJ,intra. The σLJ,intra of polystyrene turns out to be negative
as well and the effect is even stronger than for the polyethylene model: at ε = 0 the stress
σLJ,intra is approximately equal to −4 GPa, about one order of magnitude larger than for the
polyethylene-like network model [44]. This can be understood by the following argument.
Different from a linear united-atom polyethylene chain, polystyrene has side groups. In case
of an all-trans configuration, the two C atoms of a meso dyad would be very close to each
other (see fig. 2.3), well below the distance at which the LJ potential is at its minimum.
As they are separated by four chemical bonds they will exert in the currently adopted
force field a LJ interaction, which would be very repulsive in this situation, making the
associated σLJ,intra negative. As a reaction, the bonds in between will be extended, causing
an attractive stress contribution (i.e., the bond wants to contract). From the simulation
results it follows that there is indeed a big attractive intrachain stress contribution; also
σ12 has a very large value at ε = 0, over 4 GPa. As expected, these high intrachain stress
values almost cancel each other; the sum of σ12 and σLJ,intra is less than 100 MPa.
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Yield regime

Now let us take a closer look in what way these stress contributions in fig. 5.13 change
upon straining the material. We concentrate first on the regime near the yield point.
The polystyrene yield peak present in the true stress is caused both by intrachain and
interchain contributions. Each shows a yield tooth (peak with subsequent drop) in the
stress, at around 5–10% extension, although that of interchain nature occurs at a slightly
smaller strain value.

The dominant contribution to the total increase in the true stress from ε = 0 till yield
can be ascribed to the intrachain stress, in contrast to what was found for a melt of a
freely-rotating chain, in which the interchain nonbonded-stress difference is the dominant
contribution [92]. It is not clear what the reason is for this difference, although the force
fields differ a lot from each other.

It is instructive to also compare the stress partitioning of the two samples with different
thermal histories, because we observed that the slower-cooled sample has a higher yield
peak than the faster-cooled sample (fig. 5.2). Both intrachain and interchain stresses are
responsible for this difference in yield peak, see fig. 5.14.

Can we understand these observations and are they reconcilable with the energy-
partitioning results? Yes. The outcome of the energy-partitioning examination was that
the main difference between the two samples lies in the interchain energy. For the slower-
cooled sample the interchain LJ interactions have a lower energy, i.e., a strong bond. To
break this LJ bond a larger force is thus needed. If certain particles are dragged out of the
LJ well, then neighbouring covalently bonded particles will be moved along. Therefore,
both the stress associated with the covalent bond and the stress associated with the LJ
interaction need to be higher for the slower-cooled sample, in agreement with the present
simulation results.

Strain-hardening regime

In the strain-hardening regime two facts are apparent from the stress partitioning (fig. 5.13).
First, the intrachain interactions give rise to a positive contribution to the strain-hardening
modulus. Second, the interchain interactions lead to a negative contribution.

A probable cause of the latter is that there is a simultaneous decrease in density in this
region (fig. 5.11), making it likely that interchain LJ bonds become weaker or are even
broken. The total stress support that all interchain bonds can sustain obviously decreases
or vanishes (in case they are broken) during extension. The value of σkin also increases
slightly due to the decrease in density upon the uniaxial-stress extension. Under compres-
sion, however, there is no decrease in density after yield. We indeed find that in this case
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Figure 5.14: True stress in the direction of uniaxial extension vs. strain for different
stress contributions for the slowly (with markers, upper curve near yield) and the fast-
cooled (without markers, lower curve near yield) sample. The stress at ε = 0 is subtracted
and a separation of 50 MPa between the different contributions is added for clarity. One
can see that both the interchain and intrachain stress is higher for the slowly cooled sample.
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the interchain stress does not decrease upon compression, see the results of partitioning
the stress in case of a uniaxial-stress compression simulation in fig. 5.15.

The first observation, meaning that the positiveness of the strain-hardening modulus stems
from intrachain interactions implies that the strain hardening is mainly carried by intra-
chain stresses. From one point of view this behaviour seems logical, as the interchain
bonds are broken during yielding (apart from entanglements), while the intrachain bonds
are much stiffer and can withstand more stress before breaking (in our simulations the
covalent bonds are even not allowed to break).

Can we also understand the observed difference in the strain-hardening modulus between
the compression and the extension result for large strains (fig. 5.1)? The reason that
we would expect similar moduli stems from assuming a simple strain-energy function U
of quadratic form U(λ1, λ2, λ3) = C(λ2

1 + λ2
2 + λ2

3 − 3) (with C a positive constant and
λ1, λ2 and λ3 the chain stretches along the three principal axes [275]), so that the state
of minimal energy is the unstrained chain. If the material behaves incompressible, then
the outcome of such a strain-energy function is that the strain-hardening modulus under
compression is the same as under extension. The density is, as just discussed, not constant
but decreasing during extension. One consequence of this density decrease is that it is
accompanied by a net breaking of interchain LJ bonds. If we exclude this interchain LJ
stress but only take into account the intrachain stress, and fit σintra by eq. 5.1, then the
result is Gh = 26 MPa for compression and 17 MPa for extension, fig. 5.16. Note that these
values are much closer to each other than when the strain-hardening moduli are determined
by fitting the total stress (compression: Gh = 37, extension: Gh = 11 MPa, fig. 5.1). Still
a difference remains between the compression and the extension data, possibly caused by
other consequences of the decrease in density during extension and the slight increase in
density during compression. To sum up, the observed difference in strain hardening moduli
is mainly due to the decrease in interchain stress for large strains under extension.

5.4 Conclusions and outlook

The major difference between polystyrene chains with a different thermal history lies in
the interchain LJ energy. A more annealed sample has more effective LJ bonds, which
should be broken in order to yield the material. Therefore, the yield stress is higher for the
more aged sample. After some LJ bonds have been broken, the stress needed to deform
decreases (strain softening). This breaking of bonds disturbs the thermal history at local
scales and therefore both quenched and annealed samples soften to approximately the same
yield minimum. However, differences in structure at large scales persist. Upon straining
further the major contribution to final hardening is due to intrachain interactions. This
conclusion is valid for uniaxial-stress compression as well as extension.

There is also an influence of pressure on the behaviour at large strains. It is seen that the
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Figure 5.15: True stress in the active direction vs. absolute Gaussian strain |λ2 − λ−1|
for different stress contributions under compression (with markers) and extension (without
markers). The stress at ε = 0 is subtracted and an offset of 50 MPa between the curves
is added for the sake of clarity. For compression the stresses have been multiplied by −1
to allow for a better comparison with extension. While for extension the interchain stress
decreases after initial yielding, it is for compression fairly constant in the displayed range
after initial yielding.
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Figure 5.16: True intrachain stress in the active direction vs. absolute true strain for (△)
compression and (×) extension. The stress at ε = 0 is subtracted. For compression the
stresses have been multiplied by −1 to allow for a better comparison with extension. Inset
shows the same as a function of |λ2 − λ−1|. Results of fitting the data by the Gaussian-
based constitutive equation 5.1 are that Gh = 26 MPa (compression) and Gh = 17 MPa
(extension).
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strain-hardening modulus increases with increasing pressure, which is in contradiction to
the classical entropy-based rubber-elasticity picture. In the strain-hardening regime most
of the applied work is dissipated. As the yield stress also increases with increasing external
pressure, and the toughness of the material is characterized by the ratio of the strain-
hardening modulus to the yield stress (according to Considère’s construction), a higher
external pressure does not lead to a significant increase in toughness.

A real understanding of the origin of strain hardening needs more insight at the microscopic
level. Therefore, the focus of the next chapter is at that level.





Chapter 6

Microscopic mechanisms of strain

hardening in glassy polymers

ABSTRACT

The mechanisms underlying the increase in stress for large mechanical strains,
quantified by the strain-hardening modulus, are still poorly understood. In
this chapter molecular-dynamics simulations of two polymers with very differ-
ent strain-hardening moduli (polycarbonate and polystyrene) have been carried
out. It is seen that the amount of non-affine displacement increases faster for
polycarbonate, which has the higher strain-hardening modulus. This is con-
nected to the observation that also more non-affine chain stretching is present
for polycarbonate. The inner distances of a deformed chain can be well de-
scribed by the inner distances of the worm-like chain, but with an increase of
the effective stiffness length (equal to the Kuhn length for an infinite worm-like
chain) during deformation. In this way the increase in non-affine displacement
can be understood as resulting from an increase in the effective stiffness length
of the perturbed chain during deformation, so that at larger strains more plas-
tic flow in terms of non-affine displacement is necessary, causing in turn the
strain hardening.
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6.1 Introduction

Glassy polymeric materials harden for large strains, i.e., the stress needed to deform the
material increases upon straining at large deformations. This is quantified by the strain-
hardening modulus, which is the gradient of the line describing the relation between the
stress and the Gaussian strain [117]. If the strain-hardening effect is large enough, it
can lead to a tough response of the polymeric material; the material breaks only after
a significant plastic strain, as is the case for polycarbonate. For polystyrene, the strain-
hardening effect is usually too weak and consequently it breaks within a few percent of
extension. Understanding the origin of the strain-hardening effect provides a strategy for
tailor-made polymeric materials.

Unfortunately no well-accepted theory is available for the strain-hardening effect in the
glassy state. The entropy-based rubber theory of elasticity does describe some features of
the strain-hardening effect (such as the functional dependence on strain), but drastically
fails in predicting the absolute magnitude. For example, its prediction for polystyrene is
short by two orders of magnitude [155, 266].

The failure of rubber-elasticity theory is caused by the following difference between a rubber
and a glassy state. In a rubbery material the various conformations of a polymer-chain
part between cross-link points are easily accessible. These cross-link points can be either of
a chemical nature (such as covalent bonds) or a physical nature (such as entanglements).
In a glassy material, in contrast, a chain is surrounded by a glassy matrix and has a
frozen-in conformation, because of energetic barriers between the various states. At rest
it is trapped in a local energy minimum and when the sample is stretched and released
afterwards the strained state will not immediately relax towards the equilibrium state.
Moreover, to deform the glassy material the energetic barriers need to be surpassed and
energy dissipation takes place. The work needed for this irreversible energy dissipation
is delivered by a dissipative stress. This stress of dissipative nature is not present in the
rubber-elasticity theory.

The dissipative nature of deforming a glassy polymer is confirmed by experiments and
simulations. Experimentally it is found that for large strains (> 15% for polycarbonate and
> 30% for polystyrene [117, 199, 231]) more work is converted into heat (i.e., dissipated)
than into internal energy. Recent simulations of polymer toy models confirmed that most
of the stress at large strains is due to dissipation [124, 125].

One way of dealing with the dissipative nature of the deformation is to model the stress-
strain relation in the strain-hardening regime by two contributions. The first part is a
constant dissipative stress σY , due to the presence of energy barriers. The second is the
strain-dependent part, which is thought to be described by rubber-elasticity theory and
represents the strain-hardening effect. In this description the strain-hardening modulus is
not affected by thermally activated processes.
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However, experiments demonstrate that such a description for the strain-hardening part
is invalid; also the strain-hardening modulus has characteristics of a thermally-activated
process. One observation is that the strain-hardening modulus decreases for higher tem-
peratures [102]. This is in line with what one would expect for thermal activation. Another
observation is that a higher strain rate leads to an increase in the strain-hardening modulus
[233], although for some polymers the dependency on strain rate is almost absent [32]. Also
this can be interpreted within the barrier-crossing picture. For higher deformation rates
less particles are able to overtake energetic barriers by a sufficient thermal fluctuation and
therefore more particles need to be mechanically forced for crossing their barrier. Next to
temperature and strain rate, the external pressure affects the strain-hardening modulus as
well. A higher external pressure can lead to an increase in the strain-hardening modulus
(see previous chapter). Again, this behaviour is typical for thermally-activated processes.
All these three observations on the strain-hardening modulus are not present within the
classical rubber theory.

The increase in stress for larger strains in combination with the dissipative nature of the
stress in the strain-hardening regime suggest that there is an increase in the rate of energy
dissipation, i.e., more energy per unit of strain is needed for more stretched samples.
This picture is confirmed by Hoy and Robbins [124] in a simulation study of a polymeric
material. They observed that the dissipative stress increases with larger strain and that at
zero temperature the stress was directly correlated to the rate of changes in Lennard-Jones
(LJ) binding.

What is the polymer-specific part of the strain-hardening modulus? Experiments [266] and
simulations [123] show that this modulus is positively correlated with the entanglement
density, and polymers with a larger Kuhn or persistence length often have a higher strain-
hardening modulus [114]. It was even shown by molecular-dynamics (MD) simulations that
if the persistence length of a polyethylene-like polymer is artificially increased by changing
the trans-to-gauche ratio, the strain-hardening modulus of the resulting material increases
as well [184]. That example illustrates that the strain-hardening modulus depends on the
conformation of the chain, which is frozen in the glassy state.

Strain-hardening effects are already visible for relatively short chains. Although MD sim-
ulations are usually carried out at much higher deformation rates than experimental ones,
the observed strain-hardening phenomena are similar to experimental results. In previ-
ous MD simulations of polystyrene [177] strain hardening was already observed for chain
lengths of 80 monomers, below the experimentally observed entanglement length of about
128–139 monomers [78, 79]. Simulations of a toy-polymer glass [124] demonstrated that
there is a gradual increase in the strain-hardening modulus as a function of chain length
for chains up to about the entanglement length. For longer chains saturation occurs in
the modulus. In this last study it was also observed that the strain hardening is more
correlated with the change in the end-to-end distance of the polymer chains than with the
change in the global sample size [124]. For example, if the sample size is decreasing while
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the end-to-end distance does not, then the stress does not increase as well. Nevertheless,
the same is probably also true for physically entangled rubbers.

Despite these findings, there is not a definite answer on the question why the energy-
dissipation rate is increasing with increasing strain (leading ultimately to an increase in
the strain-hardening modulus). In this chapter the aim is to shed light on this problem, by
simulating two glassy polymers, viz. polycarbonate (PC) and polystyrene (PS), and study-
ing their behaviour. These two polymers vary greatly in their strain-hardening moduli;
that of polycarbonate is more than a factor of two higher than that of polystyrene [267].
Previous molecular-dynamics simulations [176, 177] have reproduced these experimental
findings qualitatively, with a strain-hardening modulus of polystyrene that is much lower
than that of polycarbonate. Such simulations open ways to look at the molecular level
beyond the limitations of the currently available experimental techniques.

Next to benefits of using MD simulations, one should also bear in mind the limitations
of it. An obvious but important one is the limited range of length and time scales. For
this reason equilibration times, cooling times, deformation times and chain lengths are all
relatively short. A consequence of those short times is that motions appear to be frozen on
the time scale accessible for simulations. However, in the present chapter we are dealing
with polymers at room temperature, which is well below their experimental glass-transition
temperature (PS: 373 K; PC: 423 K [181]). Segmental relaxation times for these polymers
are around 100 s at the glass-transition temperature [10] and increasing for even lower
temperature. Motions at these length scales and above till the scale of a whole chain
appear to be frozen as well in common experimental circumstances at room temperature.
Therefore, many non-equilibrium phenomena associated with the glassy state present in
simulations can also be observed in experiments (and vice versa).

The next sections of this chapter are organized in the following manner. Details of the
simulations are given in §6.2. This is followed by a discussion of the structural properties
of the polymer chains (PS and PC) in terms of characteristic ratio and Kuhn length (§6.3),
with three main purposes: to check the simulation models, to compare PS with PC, and
to use this information later on for understanding the deformation process. In §6.4 the
stress-strain relation for both polymers is presented and a difference in strain-hardening
effect is observed, the effect being larger for PC. In §6.5 the role of non-affinity is discussed.
It is shown in §6.5.2 that also the average non-affine particle displacement, a measure for
the amount of plasticity, is larger for PC. However, more evidence is needed to ascribe
strain hardening to it. This is done in §6.5.3, where the rate of non-affine displacements
is calculated. It is found that this rate increases with larger strain, and that the increase
is larger for PC. The non-affine displacements of particles are due to restrictions and
hindrances, in particular from covalent and steric interactions. It is demonstrated in §6.5.4
that, along with non-affine self displacements of particles, the inner length scales of a chain
also change in a non-affine way. This is because at the scale of the Kuhn length a chain
cannot be stretched any further. However, due to the stretching of the chain at larger
strains, the effective stiffness length of a perturbed chain increases, §6.5.5. As a result,
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the rate of non-affine particle displacement increases at larger strains, causing more energy
dissipation and hence a larger stress, i.e., strain hardening. The conclusions based on these
results are given in §6.6.

6.2 Simulation details

The united-atom force fields in use for the two polymers under investigation, polystyrene
(PS) and polycarbonate (PC), are given in chapter 2 and have been used before in previous
studies [177]. The systems consist of 8 chains of 80 monomers each for polystyrene and
64 chains of 10 monomers each for polycarbonate. The total amount of united atoms per
sample is therefore 5128 for polystyrene and 11904 for polycarbonate. The equilibration
procedure for the two polymer melts is described in chapter 2. The results to be presented
for polystyrene are based on samples which are cooled from T = 540 K with a velocity
of −0.01 K ps−1 till about room temperature, T = 300 K. Apart from the initial yield
peak (see chapter 5) the results based on these samples are very similar to those of the
samples cooled with a temperature ramp of −0.1 K ps−1. The polycarbonate samples
have been cooled towards T = 300 K with a velocity of −0.05 K ps−1. Initial densities
at T = 300 K prior to deformation are 1.01 g cm−3 for polystyrene and 1.36 g cm−3 for
polycarbonate. The deformation protocol is the same as in chapter 5. Here we study only
the uniaxial-stress extension simulations, in which the boxsize in the extension direction
increases with a velocity of L̇‖ = 0.01 Å/ps. Simulations with a constant deformation rate
of 108 s−1 have been carried out as well, but they do not lead to different conclusions and
are not presented in this chapter. The stress in the two other directions are controlled
by the Berendsen barostat, in which the ratio of the relaxation time to the isothermal
compressibility is taken to be τP /β = 0.011 Pa s.

For the simulated atactic-polystyrene system the glass-transition temperature is found to
be around 380 K and for polycarbonate around 433 K [177], so that both polymer systems
are deep in the glassy state around room temperature. The results presented in this chapter
are averaged over 15 samples for polystyrene and 5 samples for polycarbonate.

6.3 Chain structure

First we will study the inner length scales of the two chemically-detailed model polymers
of PS and PC. We will do this for two situations; for a polymer chain in the melt and for an
extended polymer chain. The purpose of this is to check the quality of our simulations for
these polymers; to determine the stiffness or the extensibility of a polymer chain, which will
turn out to be an important characteristic during deformation; and to be able to compare
polystyrene to polycarbonate.
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Many methods exist to determine the chain stiffness. One of these methods, fitting the
root-mean-square end-to-end distance by the worm-like chain model (to be discussed in
§6.3.2), requires information about the extended state. We will first determine this state.

6.3.1 Fully extended chain

Two methods will be employed to determine the state in which the chain is fully extended.
The first one is to give a rough estimate of it by a simple calculation based on an all-trans
configuration. In the second method the chain is forced to an extended state by means of
molecular-dynamics simulations. This will serve as a check for the calculations.

Fully-extended all-trans chain

For polystyrene we can estimate the maximal extension by the following. The length of
a backbone bond vector is on average approximately lbb = lCH2−CH = 1.53 Å and the
angle between subsequent backbone vectors equals θv = 180◦ − θCH−CH2−CH = 180◦ −
θCH2−CH−CH2 = 70.5◦ [187]. Hence the distance between two neighbouring backbone CH
units is 2lbb cos(θv/2) = 2.5 Å. If we assume that all backbone torsion angles are in the
trans state (i.e., three subsequent bond vectors lie in a plane and are maximally separated),
then rn,max,PS = 1.25n Å (for an even number of backbone bonds n). However, this is only
an approximation, as due to the phenyl-ring side group the stable trans state deviates from
a planar configuration of three subsequent backbone bond vectors. The exact value of the
trans state also depends on the type of dyad. These considerations render the maximally
extended state slightly smaller in reality.

For polycarbonate a similar calculation for the length of the maximally extended chain can
be carried out. If the carbonate group is in the (extended) trans state, then the monomer
unit can be regarded as consisting of one long virtual bond of length lvb = 12.63 Å [250].
The accompanying angle between two subsequent virtual-bond vectors is θv = 24.5◦. This
makes the length of the cord vector connecting the centres of two adjacent virtual bonds
equal to lvb cos(θv/2) = 12.3 Å. Since a virtual bond consists of 12 backbone bonds, the
maximal distance between two segments separated by n backbone bonds equals rn,max,PC =
1.03n Å (for an even number of virtual bond vectors, i.e., if the number of backbone bonds
n is a multiple of 24).

Fully-extended chain produced by simulations

To check these all-trans-based model calculations, MD simulations are applied for deter-
mining the maximal extension of the polymer chains. We realize this by adding a very weak
spring between the first and the last atom of a single polymer chain, with an equilibrium
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distance which is somewhat larger than the maximally extended state of the chain. Then
the force constant of this extension spring is increased to drive the chain to its extended
state. As the covalent bonds in the chain are modelled by stiff harmonic springs, their
lengths are not constant and the chain could in principle be infinitely extended. In order
to still be able to define a reasonable maximally extended state, an extra criterion is added,
namely that the length of the covalent backbone bond should not increase more than 1/3
of the average fluctuation around the equilibrium value.

To accomplish this a single chain is placed in a vacuum at T = 300 K. Then the new
extension spring is added, which acts between the first and the last united atom of the
chain. The accompanying interaction term is Ul = kl

2
(l − l0)

2. Here l is the instant end-to-
end distance of the chain and l0 is set to a value somewhat larger than what is expected from
the above calculations for the maximal extension of the chain. Hereafter MD simulations
are carried out. During this process the force constant kl is stepwise increased to ’slowly’
force the chain in an extended conformation.

For the polystyrene chain this procedure is carried out using l0 equal to 1.25n Å, as the real
extended dimension is anticipated to be less than this. Subsequently the force constant
of the extension spring is increased till kl = 17 kJ mol−1 Å−2 (and equilibrated shortly
afterwards for about 50 ps), as at this value the average length of the backbone bond is
increased by 1%. This corresponds to about 1/3 of the relative fluctuation in the bond
length 1

〈l〉
√

〈∆l2〉 for the undeformed polymer chain in the glassy state at T = 300 K.

For the 10-monomer polycarbonate chain the same procedure is carried out. To achieve a
similar relative extension of a similar backbone bond (the backbone bond between C and
CT, see also chapter 2), the value of l0 was set to 124 Å. Also for this chain the increase in
the backbone bond (1%) is about 1/3 of the relative fluctuation of the same bond length
for the isotropic case.

Conclusion

The end-to-end distance for the extended chain determined by the simulation method
differs from the calculation by 2% for polycarbonate and less than 1% for polystyrene.
This shows that despite the assumptions made in the calculations the final result is still
reasonably accurate. Further on, however, the simulation result will be used, as for shorter
distances larger deviations do occur between the two methods.
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6.3.2 Intrachain length scales of vitrified polymer chains

The stiffness of a chain can be characterized by the characteristic ratio C∞, the Kuhn
length lK or the persistence length lp of a chain. The characteristic ratio is defined as

Cn =
〈|rn|2〉

nl2b
. (6.1)

Here |rn| is the distance between two segments separated by n bonds, and lb is the bond
length [81]. Sometimes Cn is only defined for the end-to-end vector of a chain, so that |rn|
is equal to the distance between the first and the last segment. We will adopt the common
extended definition in which it is applicable for two segments within the chain as well. The
average is then also taken over all possible segment separations. For a freely-jointed chain,
a random walk of n steps each of length lb, Cn equals 1 for all n. The characteristic ratio
can therefore be interpreted as a measure for the deviation from an ideal random walk.

The persistence length lp can be defined as the integral of the the bond correlation function
Kb(∆l) [247]. That function is defined as the average of the inner product of the unit
vector along the contour of the chain at a curvilinear distance l, e(l), with the unit vector
a curvilinear distance ∆l further, e(l + ∆l), i.e., Kb(∆l) = 〈e(l) · e(l + ∆l)〉. So lp =
∫∞
0

Kb(∆l)d∆l. In the limit of infinitely long chains the persistence length is related to the
characteristic ratio of the chain as lp = 1

2
(C∞ + 1)lb [81]. In the current chapter we will

adopt this last equality for determining lp.

Another way to determine the stiffness of the chain is to measure the Kuhn length lK . This
length is defined as [56, 247]

lK = lim
n→∞

(〈|rn|2〉
rn,max

)

, (6.2)

where rn,max is the maximum length of the end-to-end distance. The Kuhn length can
be interpreted as the bond length of an equivalent freely-jointed chain, which has the
same maximal extension rn,max and the same root-mean-square (RMS) end-to-end distance
〈|rn(εeng)|2〉1/2 as the real chain in the limit of n → ∞ [81, 247].

We are dealing with relatively short chains, i.e., finite n, and some extrapolation method
should be used to determine the long-chain limit. For determining the long-chain limit of
the characteristic ratio, C∞, we apply two fits. The first one is

Cn = C∞(1 − α/n). (6.3)

The functional form of this fit is based on the lowest-order correction (O(n−1)) from C∞,
which is valid for model chains such as a chain with fixed bond angles and independent
bond-rotational potentials [81] and is commonly used in other studies as well (see, e.g.,
Han and Boyd [109]). Recently Wittmer et al. [283] have shown that due to long-range
interactions in dense polymer systems the first-order correction to the ideal-chain limit is
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of O(n−1/2) in the melt. We therefore also fit the internal distances by

Cn = C∞(1 − α′n−1/2). (6.4)

In the determination of the Kuhn length deviations also occur for relatively short chains
when using the definition of lK [81]. Therefore, we will map the results on the worm-like
chain (WLC), also known as the Porod-Kratky chain [56, 63, 81]. The mean square end-
to-end distance for the Porod-Kratky chain with contour length Lc and stiffness length ls
is [56, 63, 81]

〈|r(Lc)|2〉 = ls

(

Lc +
ls
2

(

exp

(

−2Lc

ls

)

− 1

))

. (6.5)

In the limit of a very large contour length, i.e. Lc/ls ≫ 1 this equation reduces to
〈|r(Lc)|2〉 = lsLc (1 + O(ls/Lc)) and the stiffness length is therefore equal to the Kuhn
length, ls = lK . It can also be shown that the persistence length for the WLC obeys
lp = lK/2 = ls/2 [81]. The reason why we use the stiffness length as a parameter, instead
of the Kuhn length becomes clear when we look at deformed chains later in this chapter.
Note also that in principle eq. 6.5 would change if a melt of chains is considered instead
of an ideal worm-like chain, just as the extrapolation formula for the characteristic ratio
changes from eq. 6.3 to eq. 6.4. However, this is beyond the scope of the present chapter.

In the definition of the characteristic ratio a bond length lb is needed. In case of polystyrene
lb is taken to be the equilibrium length of a backbone C-C bond, lb,PS = 1.53 Å [290]. In
the case of polycarbonate the monomer unit consists of different types of covalent backbone
bonds, each with their own length. Nevertheless, for this polymer the monomer unit can
be regarded as a rigid object. Hence instead of equalling lb to an average covalent bond
length, a longer virtual bond [81] is used. The length of the virtual bond is not unique
and different conventions are in use: lb,PC = 12.63 Å for one virtual bond per monomer
[250], lb,PC = 8.65 Å [4] or lb,PC = 7.0 Å [280] for two virtual bonds per monomer. We will
adopt lb,PC = 12.63 Å. A property related to Cn for describing the extent of the polymer,
but which has the additional benefit of not depending on the choice of the (virtual) bond
length, is 〈|rn|2〉/Mn, with Mn the molecular weight of n segments.

The quantity 〈|rn|2〉 bears some analogy with the mean-square displacement 〈|r(t)|2〉 of
a Brownian particle that still experiences inertial effects. Here r(t) is the particle dis-
placement after a period of time t and it is in this analogy equivalent to the distance rn

between two segments separated by n bonds. In the case of a Brownian particle a ballis-
tic regime is present at short time scales (in which the particle remembers its direction,
and 〈|r(t)|2〉 ∼ t2). At somewhat larger time scales there is a cross-over to the diffusive
regime, 〈|r(t)|2〉 ∼ t. As Cn is equal to 〈|rn|2〉/l2b normalized by n this would correspond
to a levelling-off of Cn for n → ∞ and the characteristic ratio Cn of a chain has therefore
analogy to the diffusion coefficient D(t) = 1

6t
〈|r(t)|2〉 of a Brownian particle.
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Characteristic ratio of polystyrene

The simulation results for the characteristic ratio for polystyrene together with the fits by
eqs 6.3 and 6.4 are seen in fig. 6.1(a). The values for 〈|rn|2〉/Mn are calculated by using
Mn = n

nch
Mch, where nch and Mch are the total number of skeleton bonds and the total

mass of a chain, respectively.

A few findings are apparent. The first observation to discuss is the long-chain limit. For
our simulated polystyrene we get C∞ = 6.4 at T = 300 K by using eq. 6.3 as a fit and
lb,PS = 1.53 Å. This value is comparable to, but lower than experimental values C∞ = 8.7–
9.6 from small-angle neutron scattering of a melt of polystyrene [29, T = 390–520 K] and
C∞ = 9.9–10.2, resulting from viscosity measurements around 308 K for various solvents
[81]. Other simulation results for polystyrene are C∞ = 11.0 [209], C∞ = 10.2 [109], and
C80 = 6.5 [249, T = 450 K]. However, when using eq. 6.4 for determining the long-chain
limit we acquire C∞ = 8.2, which is still lower but much closer to the experimental results.

The second observation is the functional behaviour of the characteristic ratio. For short
separations (small n) the characteristic ratio rises with increasing n, implying that the
internal distance increases more than what is expected for a freely-jointed chain of lb =
lb,PS, meaning, in turn, that it is stiffer than such a chain. Near n = 25 the measured
characteristic ratio Cn is found to be at its maximum. For larger n it seems to decrease
again and we will discuss this in more detail later on.

We start with discussing in more detail the first observation. Several reasons could be at
hand for the difference in C∞ between the simulation and the experimental results. Firstly
it could be the case that chains are not perfectly equilibrated at high temperatures. A
more advanced equilibration method for PS is currently implemented in our group [190],
which is based on the end-bridging Monte-Carlo technique. This equilibration technique
has been successfully used before for other polymers [200].

A second reason could be that our chains are relatively short. We already saw that the
exact extrapolation procedure has a large effect on determining C∞. The ideal-chain
extrapolation, eq. 6.3, discards excluded volume interactions present in the melt and leads
to a different lowest-order correction in C∞ than when these interactions are taken into
account, e.g. by eq. 6.4. The difference between these extrapolation formulas is especially
large for short chains. Moreover, our used extrapolation formulas (eqs 6.3 and 6.4) are
only first-order approximations and could therefore lead to deviations for relatively short
chains. It has also been shown theoretically that the stiffness near the ends of a chain can
be much lower than in the middle of a chain [234].

A third reason could be that small deviations are present in the force field. An atactic-
polystyrene chain used in experiments has more racemic dyads than meso dyads [138],
leading to an increase in the characteristic ratio [290]. In our currently used model a 50%-
50% division is present, as has been used before in other studies of atactic polystyrene
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Figure 6.1: The characteristic ratio Cn at T = 300 K as a function of the inverse of the
number of skeleton bonds for (a) PS and (b) PC. Circles are simulation results, solid line
fit by eq. 6.3 and crosses fit by eq. 6.4. Ideal-chain fit results are for PS: C∞ = 6.4 and
〈|r|2〉/M = 0.29 Å2g−1mol; and for PC: C∞ = 1.3 (for lb,PC = 12.63 Å) and 〈|r|2〉/M =
0.80 Å2g−1mol. Melt-chain fit results are for PS: C∞ = 8.2 and 〈|r|2〉/M = 0.37 Å2g−1mol;
and for PC: C∞ = 1.7 (again for lb,PC = 12.63 Å) and 〈|r|2〉/M = 1.1 Å2g−1mol.
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[220]. Changing it to a 30%-70% division would lead to an increase of the characteristic
ratio by about 20%, according to the two-state rotational scheme of Yoon et al. [290].
Calculations [281] imply that radically polymerized atactic polystyrene at 413 K contains
about 43% of meso dyads, so that this effect would be somewhat smaller. The refinement
of the force field, although an important task, is not the objective of the present study.

A fourth reason is that our samples are cooled down with a cooling rate that is higher than
experimental ones. This causes a deviation from the experimentally observed characteristic
ratio in two ways. The first one is related to the temperature dependence of the character-
istic ratio; it is known that C∞ increases with decreasing temperature [290]. It has been
found experimentally that d ln C∞

dT
= −0.1×10−3 K−1 [158], although a rotationally isomeric-

state scheme gives a substantially larger temperature dependence, d ln C∞

dT
= −1.6×10−3 K−1

[209]. If cooling is occurring fast, the end-to-end distance has not relaxed yet to the more
extended state at lower temperature, leading to an underestimation of the characteristic
ratio as compared to normal cooling rates. The second way enhances the deviation because
of the temperature dependence of density. The inverse, the specific volume, decreases by
about 10% when cooling from the initial high-temperature liquid state to the glassy state
at T = 300 K [177]. If cooling happens fast enough, the end-to-end distance will trans-
form approximately affinely and will therefore decrease simultaneously. As a consequence
the value of C∞ decreases accordingly for lower temperatures. If, on the other hand, the
cooling rate is much lower, the polystyrene chains have more time to adjust to the equi-
librium value. In experiments cooling velocities are typically about a Kelvin per second,
so that the equilibrium value of C∞ is approached more closely. Nevertheless, an out-
of-equilibrium situation will ultimately occur also with experimental studies, because the
huge chain-relaxation time will exceed experimental time scales below Tg.

The second observation, the decrease in characteristic ratio after n = 25 (fig. 6.1), is not
to be expected for ideal chains. The cause of could be an incomplete relaxation. Next to
non-perfect equilibration at high temperatures, chain retraction could play a role. As the
characteristic ratio for polystyrene increases for lower temperature [290], the chain first
extends on a local scale upon cooling down. As the contour length is constant, the local-
scale extension happens at the expense of retracting at larger scales by means of reptation.
Additional equilibration is then needed to also reach equilibrium at large scales. For long
entangled chains the equilibration time is of the order of the disengagement time, i.e., the
time needed for the chain to disengage from its initial confining tube [56]. Since the de-
formation will take place below the glass-transition temperature, where the disengagement
time exceeds the time scale of the experiment, an out-of equilibrium situation will occur
(also experimentally). Such a decline has been observed before in a similar situation, for a
toy model polymer [122]. They observed that if the equilibration time of a polymer melt
was on the order of the Rouse time, the short length-scale structure (i.e., for small values
of n) Cn was equal to the equilibrium value, Ceq

n , but that for large n the observed Cn was
smaller than the equilibrium value. Both theirs and ours observations could be explained
by the same argument (i.e., equilibration of short scales at the expense of large scales).
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Nevertheless, in other studies of relatively short chains [284] a non-monotonic increase
in Cn was found in an equilibrated melt. The decline is therefore not always caused
by non-equilibrium issues, but has some other physical origin. One reason could be the
stiffness-variation along the chain in a polymer melt [234], as mentioned before.

To sum up, the characteristic ratio of the simulated polystyrene is slightly lower than
experimental values at larger scales (mainly because of non-ideal equilibration at high
temperatures and higher cooling rates in the simulations), but we think that the short
length scales are not so affected as they have a shorter relaxation time.

Characteristic ratio of polycarbonate

The characteristic ratio is also calculated for the polycarbonate chains, see fig. 6.1(b).
Adoption of the convention lb,PC = 12.63 Å and extrapolation of n towards infinity
(analogous to polystyrene) gives in case of the ideal-chain fit C∞ = 1.4 and 〈|r|2〉/M =
0.80 Å2g−1mol and in case of the melt-chain fit C∞ = 1.7 and 〈|r|2〉/M = 1.1 Å2g−1mol.
The experimental value of polycarbonate in a θ-solvent in which the intrinsic viscosity was
converted to 〈|r|2〉/M [81, 280] is 〈|r|2〉/M = 0.87 Å2g−1mol. A configuration analysis gave
〈|r|2〉/M = 0.85 Å2g−1mol [280]. However, more recent results from small-angle neutron
scattering experiments on polycarbonate melts gave 〈|r|2〉/M=1.2–1.3 Å2g−1mol [16, 95]
and from other configurational analysis models gave 〈|r|2〉/M = 1.1 Å2g−1mol [162, 289]
and 〈|r|2〉/M = 1.0 Å2g−1mol [128, 163]. These results show that by making use of the
melt-chain fit the experimentally measured melt-chain dimensions are reproduced in the
case of polycarbonate.

Kuhn lengths of PS and PC

Another way to compare the simulation results to the experimental values is to determine
the stiffness length by mapping the results of 〈|r(Lc)|2〉 on the worm-like chain (eq. 6.5). For
an infinity long worm-like chain the stiffness length would then equal the Kuhn length. In
order to map the two studied polymers on the worm-like chain the contour length is needed.
As a contour length we could take the length in the maximally extended state. To correct
for any errors in this length we assume that Lc,n = αrn,max with α a free fit parameter.

A fit of 〈|rn|2〉
Lc,n

vs. Lc,n for the two studied polymers onto the analogous expression for the

worm-like chain (determined by eq. 6.5) renders correction factor values α of around 1.05,
i.e., the fitted contour length is about 5% larger than the maximal extension. The fitted
values of the so-determined stiffness lengths are ls,PS = 12 Å and ls,PC = 21 Å if we confine
the fit to the range n =1–40.

Literature values for the Kuhn length are for polystyrene lK = 17 Å and polycarbonate
lK = 29 Å [4]. In that reference these values were calculated by using the relation lK =
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lb(1+C∞). Upon interpreting our simulation values of the stiffness length as a Kuhn length
we see that it is lower than these literature values. It is likely that the main reason for this is
the relatively short chains we study. Also with the ideal-chain fit results of the characteristic
ratio we found values lower than the literature values. Although we use the worm-like chain
fit to have a better approximation for the Kuhn length, it still underestimates the real Kuhn
length for relatively short chains. Other simulation results also demonstrate this, such as of
some polyesters [139] and of the bond-fluctuation model [45]). However, the Kuhn length
is just as the characteristic ratio a measure of chain stiffness. We indeed find very similar
relative deviations from literature values, for both the characteristic ratio and the Kuhn
length. Therefore, the discussion of the characteristic ratio could be applied here as well
to explain the observed differences in Kuhn length between the simulation results and the
experimental results. Although our measured stiffness lengths are lower, they are so in a
persistent way. Therefore the worm-like-chain fit is still valuable in studying changes in
the stiffness length. Later on we will apply the WLC method for determining the stiffness
length of the chains in the deformed samples.

Conclusions

By means of MD simulations it is found that PC has a larger Kuhn length than PS, thereby
confirming the same trend in literature data. This is primarily caused by the phenyl rings
within the backbone and the rigid backbone carbon in the propane group of PC. In this
respect PC can be considered to be stiffer than PS [16]. Nevertheless, PC is is often
considered to be a very flexible polymer [23, 280]. This is because polycarbonate can be
regarded as a nearly freely rotating chain albeit with a relatively large segment length.
So with respect to the large virtual-bond length the chain is very flexible, as we found
C∞ = 1.3 (compared to PS, C∞ = 6.4). With respect to a typical backbone-bond length,
such as the length between two carbon atoms, the characteristic ratio is higher, making it
a stiffer chain.

6.4 Deformation and strain hardening

During constant-velocity uniaxial-stress extension simulations of PS and PC at T = 300 K
the von Mises equivalent true stress is measured as a function of engineering strain εeng =
L‖(t1)−L‖(t0)

L‖(t0)
. The result is shown in fig. 6.2 and is fitted by the Gaussian-based stress-strain

relation
σ = σY + Gh

(

λ2 − λ−1
)

(6.6)

with the draw ratio λ = 1 + εeng. Here the two fit parameters Gh and σY are the strain-
hardening modulus and the offset yield value, respectively.

From the figure it can be seen that the strain-hardening modulus of PC is 19 MPa, almost
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twice the PS value, 11 MPa, while the offset yield values are very similar (PC: 88 MPa;
PS: 86 MPa). Experimental strain-hardening moduli are relatively close to these results,
Gh = 9–13 MPa for polystyrene [266, 267, 279] and Gh = 23–29 MPa for polycarbonate
[102, 254, 267].

So what would be the reason for the high strain-hardening modulus of polycarbonate over
polystyrene? The entanglement picture from rubber-elasticity theory predicts that the
strain-hardening modulus equals Gh = ρkBT/Me [275]. Here ρ is the mass density, and Me

is the mean molecular mass of the chain segments between entanglement points. Although
this formula gives for polystyrene an estimation which is smaller by a factor of about
100 compared to experimental results [155, 266], it does imply that the strain-hardening
modulus of PS is lower than that of PC. This is primarily because the molecular weight
between entanglements in polystyrene is higher than in polycarbonate (PS, T = 490 K:
Me = 18 kDa; PC, T = 298 K: Me = 1.6 kDa [79]). Here we want to take a different route
in shedding more light on the difference in strain-hardening moduli and look at non-affine
responses.

6.5 The role of non-affinity

6.5.1 Principle of non-affine displacements

If a macroscopic sample is stretched in one direction (‖) by say 100%, the distance between
the two ends of the sample is doubled. If the stretching occurs purely affinely, then this
is also valid for every two points on the stretching axis. This means that the initial
separation between any two points on this axis doubles. However, at a microscopic level
this affine response breaks down due to particle-particle interactions such as connectivity
and excluded-volume interactions. For example, it is highly improbable that a stiff covalent
bond will be doubled in size. A more likely scenario is that the covalent bond retains its
length and that particles tend to slip or slide along each other. Slippage causes friction and
hence energy dissipation. One of the causes of friction is that Lennard-Jones bonds are
broken and reformed. Another source are conformational transitions. These, however, will
be discarded in this chapter. A further study could also take into account such a friction
effect. As long as the sample deforms approximately homogeneously, the deviations from
the affine response are a measure for the friction and therefore a rough estimate of the
dissipated energy, and a measure of the plastic response and experienced stress of the
material.

The assumption of homogeneous deformation can be made if no localization takes place.
In our simulation method we are capable of applying an affine rescaling deformation (with
possible non-affine response), so that localization is tempered and it is possible to measure
the intrinsic stress-strain relation. However, at large strains localization does happen,
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because of fracture. Nevertheless, the first fractured sample for the studied polystyrene
glasses does not occur for εeng < 0.8. Also for polycarbonate large cavities start to form
only after this strain value. Therefore, we assume that the deformation is approximately
homogeneous till εeng = 0.8.

In view of the suggested connection between the plastic stress and the non-affine displace-
ment we will calculate this non-affine displacement. This is realized by subtracting the
local convective velocity arising from the global stretch. As the perpendicular directions
(⊥1 and ⊥2) are also affected by the deformation we do this for all three axes. Denote the
component along one axis by µ, for µ = x, y, z. Upon fixing the origin, the convective
velocity at a certain position rµ at time t is (without applying the Einstein summation
convention)

vµ
conv(t) =

rµ(t)

Lµ(t)

(

Lµ(t + ∆t) − Lµ(t)

∆t

)

(6.7)

in the limit of ∆t → 0. Here Lµ(t) is the time-dependent length of the box along one
axis represented by µ. The affine part is removed by constructing a ’corrected’ particle
trajectory rc(t) from the original one ro(t) by subtracting the convective velocity vconv(t)
at the position ro(t)

∆rc(t) = ∆ro(t) − vconv(t)∆t. (6.8)

Here ∆r(t) = r(t + ∆t) − r(t). The initial condition rc(t0) is irrelevant for the resulting
mean-square displacement, but can be taken to be equal to ro(t0), if you like. The calcula-
tion of the non-affine part of the particle’s trajectory is carried out on the stored trajectory
file, in which snapshots are saved every 8 ps. In principle eq. 6.8 is valid for ∆t → 0. How-
ever, artificially increasing the timestep between frames by only processing the odd frames
does not lead to any significant difference in the final acquired corrected trajectory. Note
that the result of this method, apart from a constant term, is independent of the choice
of the origin t0. Note also that in case of a constant-volume simulation without deforma-
tion the convective velocity equals zero making the corrected particle trajectory equal to
the original particle trajectory. In this situation the mean-square non-affine displacement
〈∆r(t)2〉 = 〈(rc(t0 + t) − rc(t0))

2〉 obviously equals the normal mean-square displacement.

The just described method is also used in our previous work [177] and other simula-
tion studies [253]. Other methods of measuring the non-affine displacement include the
comparison of the actual coordinate r(t0 + t) with the affinely transformed coordinate
at some initial time t0 at zero strain, ¯̄Faff · r(t0) [123]. Here ¯̄Faff is the macroscopic
deformation tensor [179]. Then one can construct a different non-affine displacement

Dna(t)
2 = 〈

(

r(t0 + t) − ¯̄Faff · r(t0)
)2

〉. The reason that we prefer the method as just de-

scribed is illustrated by the following example. Assume that a particle is initially situated
in the origin at t0 and that afterwards uniaxial extension starts. Assume further that it
makes only one non-affine jump from the origin to a new position in the extension direc-
tion, say at t1, and moves affinely afterwards. The non-affine displacement of this particle
therefore only takes place at t1. Nevertheless, Dna(t)

2 keeps increasing for this particle
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even for times larger than t1. The reason is that the non-affine displacement is enlarged
affinely after the jump at t1 due to the ongoing extension of the sample. In the method
currently in use, the mean-square non-affine displacement 〈(rc(t0 + t) − rc(t0))

2〉 will not
increase further and therefore plastic events occurring in the initial stages of deformation
will not be blown up.

6.5.2 Isotropic vs. deformed non-affine bead displacements

The root-mean-square non-affine displacement will be calculated between two states,
strained at εeng,2 and εeng,1

〈∆r(εeng,21)
2〉1/2 = 〈(rc(εeng,2) − rc(εeng,1))

2〉1/2. (6.9)
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First we focus on the situation in which one state is the unstrained state, i.e.

〈∆r(εeng,10)
2〉1/2 = 〈(rc(εeng) − rc(0))2〉1/2. (6.10)

Here εeng,10 = εeng,1 − εeng,0 = εeng − 0 = εeng. The subscript zero is included explicitly
to indicate that 〈∆r(εeng,10)

2〉1/2 also depends on the unstrained state. The result of both
polymers during uniaxial extension is shown in fig. 6.3. Also shown in fig. 6.3 is the root-
mean-square translational displacement for the undeformed case at the same temperature
(denoted by ’iso’), by plotting the data at equal time separation t1 − t0 = t10 = τdefεeng,10.
Here τdef is the time it takes to deform the material to a 100% strain increment. Notice that
after initial yield the deformed samples have a large increase in non-affine displacement
as compared to the isotropic case. The mean-square displacement for the isotropic case
hardly rises in this region, a consequence of the caging of the particles deep in the glassy
state (see also chapters 3 and 5).

When comparing polycarbonate to polystyrene the following is visible. Up to about 40%
deformation the non-affine displacement of all (united) atoms of polystyrene is about equal
to that of polycarbonate. Afterwards the non-affine displacement of polystyrene diminishes
as compared to polycarbonate. Also apparent is the difference between the movement of all
atoms and the movement of only a subset of atoms (the less mobile backbone atoms). For
polycarbonate the difference is small; the average displacement of all atoms does not differ
much from the average non-affine displacement of only the CC=O and the CT atoms (the
two least mobile backbone atoms in the isotropic state, with CC=O in the carbonate group
and CT the middle carbon of the propane part, see fig. 2.4). For polystyrene, however, a
huge difference is present between the movement of all atoms and that of the subset (the
backbone united atoms CH, CH2 and CH3, see fig. 2.2). An interpretation of this is that
the side-group phenyl rings in polystyrene dominate the generation of initial plastic flow.
However, these side-group phenyl rings can relatively easily turn in the plane perpendicular
to the backbone vector pointing from one monomer to its neighbour, without disturbing
the conformation of the backbone too much; therefore the phenyl rings will not drag along
the backbone for all non-affine displacements. This could also explain the relatively large
difference between the non-affine displacement of all atoms and the non-affine displacement
of the backbone in PS. As we will see later on in this chapter, it is just the backbone that
causes the strain-hardening effect. As the contribution of the backbone to the total non-
affine displacement is only minor in PS, the resulting overall plasticity is less affected by
the backbone. In polycarbonate, in contrast, no real side groups are present, and the
available phenyl rings are within the backbone; therefore any motion of those rings (apart
from rotation around their own axes) will lead to backbone motion and any increase in the
backbone plasticity will also lead to a large increase in the overal plasticity.
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Figure 6.4: The RMS non-affine displacement as a function of relative extension (true-
strain difference εtrue,21) for various values of the origin εeng for (a) PS and (b) PC. At a
later stage more non-affine displacement is necessary to deform the material. This effect
is stronger for polycarbonate, being illustrated by the length of the arrows pointing from
εeng ≈ 0.15 to εeng ≈ 0.45.
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6.5.3 Non-affine bead displacements for various strains

The non-affine displacement as shown in fig. 6.3 and just discussed is calculated by com-
paring a sample at a strained state with respect to the state at zero strain. This non-affine
displacement is increasing with increasing strain. However, for a non-polymeric glassy
material this is also what one would expect, despite the absence of any polymeric strain
hardening. See, e.g., Tanguy et al. [253], where the non-affine displacement for an atomic
LJ glass increases in a diffusion-like matter under the influence of shear.

Yet another effect is that of thermal motion. As the deformation is at a constant strain
velocity, strain differences correspond to time differences. Non-affine displacements can
therefore also be regarded as being a function of time. In the undeformed, isotropic case
the convective velocity is zero so that the non-affine RMS displacement is equal to the
normal RMS displacement. And this normal RMS displacement simply increases due to
thermally activated motion. So even for the undeformed, isotropic case the root-mean-
square non-affine displacement is increasing with time.

To see evidence for a connection between the rate of energy dissipation and non-affine
displacement, we need to look instead at the plasticity rate (i.e., the rate of non-affine
displacement). So how can we see if this rate increases with increasing strain?

The solution for this is to compare the non-affine displacement at different origins, in which
each origin corresponds to a different strained state rather than only the undeformed state.
The non-affine displacement is then a function of both the origin εeng = λ1 − 1 and the
relative separation εtrue,21 = εtrue,2 − εtrue,1 = ln(λ2/λ1)

〈∆r(εeng, εtrue,21)
2〉1/2 = 〈(rc(λ2) − rc(λ1))

2〉1/2. (6.11)

The non-affine displacement is taken as a function of the relative increase in strain εtrue,21 =

ln(λ2/λ1) = ln
(

L‖(t2)

L‖(t1)

)

instead of a function of the difference in engineering strain εeng,21 =

εeng,2 − εeng,1 = λ2 − λ1 =
L‖(t2)−L‖(t1)

L‖(t0)
, to compare relative extensions instead of absolute

ones at an equal footing.

Eq. 6.11 also corresponds to looking at the non-affine MSD for various time origins, because,
again, differences in strain correspond to differences in time. In the equilibrium isotropic
case the normal RMS displacement (and hence the RMS non-affine displacement) would be
independent of the time origin, so that by looking at different origins any possible increase
would be solely due to the increase in plasticity, and not an effect of thermal motion.

The RMS non-affine displacement r(εeng, εtrue,21)
2〉1/2 is a two-dimensional function. We

therefore plot it both as a function of the relative extension εtrue,21 for various values of
the origin εeng (fig. 6.4) and as a function of εeng for various values of εtrue,21 (fig. 6.5).
The motive is that some observations turn out to be more clearly visible in one of the two
representations. However, in plotting the RMS non-affine displacement as a function of
εeng for various values of εtrue,21 one point should be addressed. The saved trajectory file
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has a finite time step between frames, so that there is not always a pair of two frames
available for a given value of εtrue,21. As the first frame is already determined by εeng, the
second frame is chosen as that which renders the closest value of the required εtrue,21. If
the εtrue,21 from this pair of frames deviates by more than 5% from the requested εtrue,21

the point is discarded.

A few observations are visible when looking at the non-affine displacement as a function
of εtrue,21 and εeng for both polymers in figs 6.4 and 6.5. We first focus on the initial
yield regime. It clearly has a large effect on the increase in non-affine displacement. The
non-affine displacement at small relative strains εtrue,21 increases a lot as a function of εeng

during the first few percents of deformation, i.e., up to the initial yield point. For εeng

beyond the initial yield region the relative increase is much lower. Also the increase in the
non-affine displacement as a function of εtrue,21 for values of εtrue,21 smaller than about 0.05
is more steep for larger εeng.

These observations near yield can be understood by the following picture. Straining the
unstrained sample is initially mostly elastic. This is supported by the observation in
chapter 5 that most of the initial applied work is converted into internal energy. This
elastic response causes only a small deviation from the affine response as no significant
structural rearrangements occur. After initial yielding rearrangements do occur and the
mobility of atoms is at an enhanced level; the fluctuations around the affine trajectory are
in this case larger than in the undeformed case. As the average RMS difference between
two very fluctuating signals (i.e., between two strained samples) is larger than the average
RMS difference between a very fluctuating signal and a less fluctuating signal (i.e., between
the unstrained and the strained sample), the non-affine displacement for small values of
εtrue,21 is expected to be larger after yield.

The second focus is on the strain-hardening regime. Here the first and most important
observation is that at larger values of εeng more non-affine displacement is indeed needed
to establish the same relative extension. As an example, consider the data of polystyrene
in fig. 6.4. In order to stretch the sample by 22% (ln(λ2/λ1) = 0.2) about 3.2 Å of non-
affine displacement is necessary if the initial state is the unstrained one. However, if the
initial state equals εeng = 0.15, then about 3.8 Å of non-affine displacement is needed to
increase the sample in the extension direction by the same relative amount. This value of
non-affine displacement keeps on increasing in the strain-hardening region. The particles
are moving more non-affinely at larger strains, implying that larger detours or deviations
around the affine response are unavoidable at larger strains. This relative increase in non-
affine displacement with increasing strain is larger for polycarbonate than for polystyrene.
This can be judged by the difference in magnitude of the arrows present in fig. 6.4, showing
the increase in non-affine displacement from εeng = 0.15 to εeng = 0.45 and by the difference
in slope of the curves in fig. 6.5. The polymer structure apparently imposes the magnitude
of detours from affinity.

Another observation in the strain-hardening regime is that the slope of the curves in fig. 6.5
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increases with εtrue,21. Apart from the absolute value, the slope of the curve normalized
by the RMS non-affine displacement at a fixed value of εeng is also increasing (not shown).
The origin could be the influence of thermal motion. Small strain differences correspond
to small time scales. However, for these small time scales non-affine displacements in
the stressed state are comparable to the normal thermally activated displacements in the
undeformed case. In this case the pure non-affine increase is somewhat overshadowed by
thermal motion. At larger strain differences εtrue,21 the relative contribution of the thermal
motion is smaller, resulting in a more pure non-affine increase. A similar situation is
present when one considers a vector in space. If one component of the vector is increasing
and other components are constant and nonzero, the relative increase in the length of that
vector is less than the increase in the component. If, on the other hand, other components
are negligible, the relative increase in the length of the vector is equal to that of the
component. Therefore, one expects that for larger strain differences of εtrue,21, in which the
relative contribution of the thermal motion is smaller, the resulting slope is higher.

The current results regarding the increase in the rate of non-affine displacement for the two
polymers in the strain-hardening regime are in accordance with two previous studies on
polymers where also an increase in a mobility-related rate is observed during deformation.
In a polyethylene-like model polymer [38, 39] a steady increase in the torsion transition
rate can be seen in the post-yield regime (the strain-hardening region). A study on a
toy-polymer model at zero temperature [124, 125] revealed that the rate of changes in LJ
binding is also increasing in the strain-hardening regime and, moreover, that it is directly
correlated with the dissipative stress. These observations suggest that such rate increase
during deformation is quite universal in polymer glasses.

6.5.4 Non-affine deformation of polymer-chain shape

So why is there an increase in the rate of non-affine displacement for the polymer glass?
One reason for the non-affine displacement is that covalent bonds prevent the separation
of the bonded particles. If particles would displace affinely, then the equilibrium value
of this chemical bond would be excessively disturbed. To circumvent this bond stretch,
the particles forming the covalent bond will rather move non-affinely at these small scales.
The largest scale of the polymer chain, the end-to-end distance, is much less disturbed.
For a long chain the internal conformation can be adjusted, while still having an affine
displacement of the end-to-end distance. The affine displacement at large scales is a result
of the glassy state of the polymer samples. As mentioned in §6.1 the relaxation time of
spontaneous rearrangements at the scale of the whole chain greatly exceeds experimental
and simulation time scales in the glassy state. Therefore, the end-to-end distance cannot
adjust back towards the equilibrium value by means of spontaneous relaxations.

To see this in a more quantitative way we study the evolution of the internal distances of
the polymer chain during deformation. It is compared both to the undeformed case and
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Figure 6.5: The non-affine displacement as a function of strain εeng at various separation
strains εtrue,21 for (a) polystyrene and (b) polycarbonate.
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to the evolution if the response would be purely affine. This is realized by examining the
evolution of the characteristic ratio during deformation normalized by the isotropic case

C ′
n(εeng) = Cn(εeng)/Cn(0) = 〈|rn(εeng)|2〉/〈|rn(0)|2〉. (6.12)

Here the dependence of C ′
n on the unstrained state is not shown in the argument for the

sake of a shorter notation.

Results for polystyrene and polycarbonate are plotted as a function of εeng in fig. 6.6, closed
symbols.

To see the deviations of the stretching at various scales from the affine response, this
response is also included in the figure. The affine response is calculated in two ways. The
first way is to affinely transform the coordinates of all particles at εeng = 0 according to
the relative change in box sizes, meaning that for the x-components of the coordinates

xn,aff(εeng) = λxxn(0), (6.13)

with λx = Lx(t)/Lx(0). The coordinates in the direction of the two other axes (y and
z) are rescaled likewise. Afterwards, the characteristic ratio of the affine coordinates is
calculated, see open symbols in fig. 6.6. The second way assumes that the initial sample
is isotropic in the sense that 1

3
〈|rn|2〉 = 〈|xn|2〉 = 〈|yn|2〉 = 〈|zn|2〉. The affine response for

the squared intrachain length scales including this isotropy condition equals

〈|rn,aff(εeng)|2〉 =
1

3

(

λ2
x + λ2

y + λ2
z

)

〈|rn(0)|2〉. (6.14)

Hence C ′
aff(εeng) = 1

3

(

λ2
x + λ2

y + λ2
z

)

. This affine response is shown as a solid line in fig. 6.6.
Note that the two ways of calculating the affine response are close to each other, meaning
that the samples can be regarded as being isotropic (in this sense). For large n less data
points are available (poorer statistics) and the two ways of calculating the affine response
deviate more from each other.

The following observations are apparent from fig. 6.6. As is expected, C1 is almost un-
changed with increasing extension, for polystyrene as well as for polycarbonate. This is
due to the very rigid covalent bond. For somewhat larger separations the internal distance
is able to increase, although the response is sub-affine, see, e.g., the evolution of C ′

30. For
even larger separations an almost affine response is present, see, e.g., C ′

100. This inter-
nal distance responds affinely up to about 15% for both polystyrene and polycarbonate.
However, for larger strains the relative deviation from affinity for C ′

100 becomes larger.

We can conclude that upon deforming further, larger and larger segments move in a non-
affine way. This is in accordance with what was found in §6.5.3 for the increase in non-
affine displacement of beads upon straining. As discussed earlier, the non-affine bead
displacement at a fixed relative strain is also at a higher level at larger strain origins. It is
therefore plausible that the increase in the relative non-affine bead displacement at larger
strains is caused by the fact that at larger strains larger chain segments move non-affinely.
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Figure 6.6: The normalized characteristic ratio C ′
n(εeng) = Cn(εeng)/Cn(0) as a function

of strain for (a) PS and (b) PC. Solid lines with filled symbols are simulation results, while
open symbols are results as if the sample would deform in an affine way. The black curve
is the affine approximation, eq. 6.14.
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So a connection can be made between strain hardening, non-affine displacement of particles,
and non-affine stretching of intrachain distances. If larger chain parts reshape non-affinely,
then the accompanying beads of the chain parts move more non-affinely as well. A larger
force is needed to move particles more non-affinely, so that this leads to an increase in
the stress. So strain hardening is caused by the more non-affine reshaping of the internal
distances of a chain.

Differences between PS and PC

For both PS and PC larger segments move non-affinely at larger inner length scales. How-
ever, a difference between PS and PC is the magnitude of the effect. This is exemplified
by the stretch of the internal distance corresponding to n = 30 at εeng = 0.5. For polycar-
bonate C ′

30(0.5) is almost 30% of the affine value, C ′
aff(0.5), see fig. 6.6(b). For polystyrene

the response is more affine for n = 30; in this case 50% of the affine value is reached at
εeng = 0.5, fig. 6.6(a).

One could argue that the deviation from affine response should be compared at equal
contour lengths instead of equal number of backbone bonds. Nevertheless, this does not
change the conclusion if we define the contour length as the total length via covalent
backbone bonds. This is justified by the fact that the RMS backbone bond length 〈l2bb,i〉1/2

is in fact very similar for both polymers. For PS 〈l2bb,i〉1/2 = 1.53 Å. To determine the
backbone bonds for PC we take one of the shortest pathways via covalent bonds from the
start of one monomer to the start of the subsequent monomer. In this way we encounter
2lO−CB, 2lCG−CG, 2lO−C, 2lCG−CT and 4lCB−CG (see the force-field details in chapter 2),
making 〈l2bb,i〉1/2 = 1.42 Å. The difference between the PS and PC RMS backbone bond
lengths is thus less than 10%, so that also for equal contour lengths the non-affine response
is larger for PC.

This behaviour of a more non-affine chain-shape response for polycarbonate as opposed
to polystyrene can be connected to the previous finding regarding the root-mean-square
non-affine bead displacement. Also in terms of the bead displacements PC behaves more
non-affinely than PS: the non-affine displacement at a certain value of εtrue,21 increases
more with increasing strain for PC than for PS (compare fig. 6.4(a) with 6.4(b)).

6.5.5 Effective chain stiffness during deformation

So what would be the reason for the difference in increase in the non-affine response of the
inner chain dimensions between polystyrene and polycarbonate? To answer this question
we again take a closer look at the internal distances of the chain. As was discussed, a huge
force is needed to increase the bond length significantly upon straining. A more probable
reaction path is therefore that the bond will slip. For very large scales the behaviour is
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Figure 6.7: Simulation results of the maximal extensibility λn,max for PS (filled symbols)
and PC (open symbols) as a function of the maximal extension rn,max for different values
of strain εeng.

also evident: if the maximal extensibility of the chain is much higher than the draw ratio
and the relaxation time exceeds the time scale of deformation (as is the case for the glassy
state), the displacement at these scales will be approximately affine. For particles within
a chain which are separated by several bonds the situation is within these two limits, i.e.,
between pure affine deformation and pure slip and depends on the maximal extensibility
of the chain.

At the scale of the Kuhn length the chain cannot be extended any further and a non-affine
stretching of this length cannot be circumvented. The maximal (reasonable) extensibility
at any internal distance n as a function of strain is the ratio of the end-to-end distance of
the fully extended chain to the random-coil conformation of the chain

λn,max(εeng) =
√

Cn,max/Cn(εeng) =
rn,max

〈|rn(εeng)|2〉1/2
. (6.15)
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Figure 6.8: Illustration showing that a chain which has a larger Kuhn length (upper left
chain, which has a pivoting point every fourth particle, indicated by the lighter particle)
needs more non-affine displacement to stretch further than a chain with a smaller Kuhn
length (upper right chain, which has a pivoting point every second particle). The dotted
arrows indicate the amount of vertical non-affine displacement necessary for each particle
in the two upper chains if the two end atoms of each chain are displaced from each other
by the same amount in the horizontal direction, i.e., horizontal extension. So the total
vertical non-affine displacement per particle of the stiffer chain on the left side is twice
that of the more flexible chain on the right side.

For the two simulated polymers the maximal draw ratio λn,max is plotted in fig. 6.7 as a
function of the maximal extension rn,max for a certain number of backbone bonds n and
for various values of εeng. If we do not use rn,max for the horizontal axis, but the number of
backbone atoms n, or the average backbone length times the number of backbone atoms
〈l2bb,i〉1/2n, then still fig. 6.7 hardly changes.

In fig. 6.7 we observe that an atactic polystyrene chain is able to extend much more than
a polycarbonate chain for a certain fixed distance along the chain, reminiscent of the
observation that the Kuhn length of PS is much lower than that of PC. This implies that
during a uniaxial-stress extension experiment, the polystyrene chain is able to move more
affinely, as is illustrated in fig. 6.8.

Also noticeable in fig. 6.7 is that during deformation the maximal extensibility λn,max(εeng)
decreases for larger scales. This has direct consequences for the non-affine displacement.
More and more segments are moving non-affinely upon straining, thereby generating more
plastic flow. It is therefore reasonable to assume that this also causes the hardening in
the stress upon straining. Obviously the decrease of the maximal extensibility is caused
by the stretching of the chains. Can we understand in which way this extensibility, and
accompanied with it the intrachain distances, change upon straining?

The decrease in maximal extensibility during deformation can easily be seen by mapping
the strained chain on an effective worm-like chain or on a freely-jointed chain (as both
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models have the same limit). The large-scale internal-chain distances deform nearly affinely,
in a way given by eq. 6.14. In this case, however, the effective stiffness of the chain increases,
as can be concluded from the following discussion.

First we consider an ideal unperturbed chain C(0) in a one dimensional space. If such a
chain would be stretched, so that the end points transform affinely by a factor λ = 1+ εeng

(but do not exceed the contour length Lc), then one can map the resulting deformed chain
C(εeng) on an effective isotropic, undeformed freely-jointed chain Ceff but with the same
contour length and average end-to-end distance as the deformed chain C(εeng). This effec-
tive FJC Ceff has a Kuhn length which is different from the Kuhn length of the unperturbed
one-dimensional chain prior to deformation C(0), as the end-to-end distance of the effec-
tive chain Ceff is larger than the end-to-end distance of the unperturbed chain C(0). We
will now define the effective Kuhn length of the deformed chain C(εeng) as being equal
to the Kuhn length of the effective chain Ceff . To avoid any confusion with the intrinsic
Kuhn length of the unperturbed chain C(0), we will call the effective Kuhn length of a
deformed chain C(εeng) the effective stiffness length ls(εeng). In this one-dimensional case
the effective stiffness length during deformation would be equal to ls,aff(εeng) = λ2ls(0). So
upon stretching the chain, the effective perturbed-chain stiffness length starts to deviate
from the unperturbed-chain stiffness length.

In three dimensions we can do a similar calculation. Now we will map the deformed chain
on an effective worm-like chain, as the intrachain distances of our polymers under study
are better described by the WLC. Another point to mention is that now the chain shape
will deform in an anisotropic way. Therefore it is expected that the internal distances
of the effective chain Ceff will deviate from the internal distances of the deformed chain.
Nevertheless, we can still define an effective stiffness length of the deformed chain. If
the end points of the deformed chain transform affinely, the effective stiffness length as a
function of strain equals

ls,aff(εeng) = ls(0)
1

3

(

λ2
x + λ2

y + λ2
z

)

. (6.16)

So during deformation the effective stiffness length increases. As the non-affine particle
displacements during deformation increase with increasing stiffness length (or Kuhn length,
see fig. 6.8 where this is illustrated) it is natural to expect that the rate of non-affine
displacement of the backbone increases with strain in a way similar to the increase in
effective stiffness length.

As our chain lengths are rather limited, we can not determine the long-chain stiffness
length by using eq. 6.2. Instead, we want to use the worm-like chain expression, eq. 6.5 for
determining the effective stiffness length. However, the deformed chains are in generally
anisotropic and therefore it is likely that the functional dependence of the intrachain dis-
tances would deviate from the WLC result. A possible direction of improvement would be
to replace the WLC model by a distribution of internal distances that has more parameters
and that takes the anisotropy of the deformed chain explicitly into account.
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Nevertheless, on the basis of our simulation data we can conclude that mapping the de-
formed chain back onto an isotropic WLC albeit with an increase in the effective stiffness
length does suffice. This evidence is presented in fig. 6.9, where the normalized squared
intrachain length scales 〈|r|2〉/(Lcls) as a function of the normalized chain contour length
Lc/ls is displayed. If the normalization is carried out by using the stiffness length of the
unperturbed chain the intrachain lengths increase with strain, as expected. If, on the
other hand, we fit the deformed intrachain lengths as a function of contour length by the
intrachain lengths according to the isotropic WLC model, eq. 6.5, to determine the effec-
tive stiffness length and use this effective stiffness length to normalize the intrachain and
the contour lengths, we see that the intrachain lengths do remain approximately invariant
under the influence of deformation (both for PS and PC, see fig. 6.9). As we did also
with the fit for the characteristic ratio, the fit for determining the effective stiffness length
is confined to contour lengths smaller than 3 stiffness lengths, because the chains under
consideration are not perfectly ideal for large scales (the decline in the characteristic ratio,
fig. 6.1, as we saw before). To sum up, the effect of deformation on the intrachain distances
can be interpreted simply as an increase in the effective stiffness length of an equivalent
WLC.

What are the consequences of this interpretation for the resulting stress-strain relation? In
a simple glassy system consisting of small molecules no polymeric strain hardening takes
place, but straining occurs at an approximately constant yield stress (apart from yield-peak
effects at small strains), also seen in simulations [253]. Hence, if the stiffness length of the
unperturbed polymer chain is of the order of the scale of the small molecules, then the
increase in the effective stiffness length has not much effect on the total stress as this effect
is overwhelmed by the background yield stress of the equivalent small-molecule system. As
the stiffness length of unperturbed polystyrene is relatively small, it is plausible that this
mechanism is at hand with polystyrene. The dominant initial non-affine displacement is
due to the phenyl ring side groups (conform fig. 6.3); the non-affine displacement of the
backbone is much less. The increase in the effective stiffness length of the backbone will
therefore not directly lead to much increase in total non-affine displacement; consequently
a small strain-hardening effect would be present.

If the stiffness length for the undeformed chain is, on the other hand, much larger, and the
non-affine displacements of the backbone atoms form a substantial part of the total non-
affine displacement, then the increase in the effective stiffness length does have an effect on
the total non-affine displacement. As a result, the stress will significantly increase at larger
strains. If the stiffness length of the undeformed chain is so large that it is not much smaller
than the entanglement length, the additional constraint from the entanglements could lead
to an enhanced stiffening, an enhanced increase in non-affine displacements and therefore
to a larger strain-hardening modulus. However, it is not likely that this enhanced increase
is applicable for PS, since the contour length between entanglements is about 400 Å for
this polymer [60], substantially larger than the Kuhn length.

The picture of stiffening for a higher effective stiffness length is in accordance with some
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Figure 6.9: The normalized squared intrachain length 〈|r|2〉/(Lcls) as a function of the
normalized chain contour length Lc/ls for (a) PS and (b) PC. When normalized by the
effective stiffness length ls(εeng) during deformation instead of the stiffness length of the
unperturbed chain ls(0), the curve at a strained state turns out to be almost superimposable
on the unstrained curve.
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findings from literature. Stress-strain relations of preoriented samples [117, §5.2.7] show
a higher slope after initial yield than unoriented samples. Also in this case the maximal
remaining extensibility is lower for the preoriented samples. It was also observed experi-
mentally that polymers with a high Kuhn length tend to have a high value of Gh [114].

6.6 Conclusions

For polycarbonate there is a pronounced increase in stress for large strains (strain hard-
ening). For polystyrene, on the other hand, this effect is much less prominent; the strain-
hardening modulus of PS as simulated by the molecular-dynamics method is about half
the value of that of polycarbonate. Our simulations thereby support the experimental re-
sults in which also a huge difference in the strain-hardening moduli is present. It is shown
that an increase in the amount of non-affine displacement is needed to strain the material
further. It was demonstrated earlier by Hoy and Robbins [124] that the rate of changes
in Lennard-Jones binding was linearly correlated with the stress. If one assumes that the
amount of non-affine displacement needed to strain the sample further increases if the rate
of changes in LJ binding is higher (as a larger detour around the affine particle trajectory
and thus more non-affine displacement implies that more LJ bonds need to be broken to
be able to make this detour), the conclusion must be that strain hardening is due to this
increase in non-affine displacement. This increase occurs because upon stretching the sam-
ple local chain parts (like covalent bonds and longer distances) approach their maximal
reasonable extensibility, requiring that larger length scales need to move non-affinely for
larger strains. It is shown that the non-affine response of the intrachain length scales can
be understood in the picture that the effective stiffness length (here the stiffness length is
determined by fitting the internal distances of the chain by the worm-like chain results; in
the limit of an infinite chain the stiffness length coincides with the Kuhn length) of the
perturbed chain increases with increasing strain. As the Kuhn length of polycarbonate is
already larger than that of PS and the total non-affine displacement of PC is to a large
extent determined by the backbone atoms, the increase in the effective stiffness length
leads to an increase in non-affine displacement, more energy dissipation and hence a higher
strain-hardening effect. For polystyrene the Kuhn length is small and the major part of
non-affine displacement is not caused by the backbone. Hence the expected increase in
the effective stiffness length during deformation does not lead to a substantial increase in
plastic flow, so that at moderate strains PS behaves more like a simple glass without strain
hardening, as opposed to polycarbonate.
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Conclusions and outlook

One of the most striking features of glass-forming liquids, either simple or polymeric liquids,
is the slowing down of their dynamics and a rapid increase in their viscosity. Understanding
the mechanisms at work on a molecular scale is one of the most important challenges of
condensed-matter physics. The dynamical properties of glasses are very heterogeneous; the
displacement of the constituent particles shows strong non-Gaussian effects. Both of these
phenomena are poorly understood theoretically. A strained polymer glass shows typical
mechanical characteristics which can vary greatly between different types of polymers, but
of which the origin is still unclear.

Our main goals are to acquire a better understanding at the molecular scale of heteroge-
neous and non-Gaussian dynamics and mechanical deformation of glassy polymers and to
differentiate chemistry-specific from more physical universal properties hereof. By means
of molecular-dynamics simulations in combination with analytical tools we study these
subjects. In the next sections a short description will be given of the problems addressed
together with the most important conclusions that have followed from the research.

Non-Gaussian displacements, chapter 3

Non-Gaussian particle displacements are often observed in glassy systems. They are usually
interpreted as the sign of heterogeneous dynamics and many models incorporate hetero-
geneity to explain non-Gaussian dynamics. We have shown that even a simple model can be
employed, which already shows non-Gaussian dynamics, but has no built-in heterogeneity.
The model shows more communalities with simulation and experimental results:

• The global behaviour of the non-Gaussian parameter in vitrified systems (the max-
imum value and the time at which this maximum value occurs) is not a result of
heterogeneous dynamics, but merely the signature of hopping processes.
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• Heterogeneity reveals itself only in finer details, such as the time dependence of the
non-Gaussian parameter.

• By means of the model quantitative statements, within fair detail, can be made
about the maximum value of the non-Gaussian parameter and the position of this
maximum as a function of time — in particular this is demonstrated for systems
with widely different topologies: a quasi-two-dimensional colloidlike system, a glass
of linear polystyrene, and a glass of branched dendrimers.

• The effective particle jump length as a function of density in a colloidlike system
shows a maximum, which is situated just above the freezing density.

Heterogeneous dynamics, chapter 4

To acquire more evidence for heterogeneity in glassy polymer systems the motion of the side
group of polystyrene, the phenyl ring, has been investigated by means of MD simulations.
Heterogeneity is clearly observed in this study.

• The presence or non-presence of heterogeneous dynamics with the flipping motion
of the phenyl ring depends on the following. If the relaxation time of a backbone
vector is faster than the typical inverse short-time transition rate of a flip of the
phenyl ring, no heterogeneous dynamics is present (in the sense that the relaxation is
nearly exponential). In case the backbone relaxation is much slower, the phenyl ring
is trapped in a local conformation. As the energy barrier of a flip is conformation-
dependent and the time to change conformation is larger than the transition time for
the most ideal conformation (i.e., the conformation that leads to the lowest energy
barrier), then within the time of a conformational change the phenyl rings cannot
reach this ideal conformation. Hence heterogeneous dynamics is present.

• There is a direct connection between the conformation and the dynamics of the phenyl
ring, even in the presence of heterogeneity: within statistical error the enthalpy bar-
rier as determined by the temperature dependence of the probability density function
of the phenyl-ring conformation and the activation enthalpy determined by the tem-
perature dependence of the short-time behaviour of the flipping motion of the phenyl
ring are equal.

• The following can be concluded about the length scale of the heterogeneity associated
with the flipping motion of the phenyl ring. As the local conformation is different for
every phenyl ring, neighbouring phenyl rings are trapped differently and therefore
the length scale of this heterogeneity (in the sense of clusters of very mobile ring
flips) is restricted to one phenyl ring. The heterogeneity of other motions could act
at larger length scales.
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• Only based on the energy barrier associated with the phenyl-ring flip one cannot
conclude that the experimentally observed γ relaxation in atactic polystyrene should
be ascribed to the phenyl-ring flip. From the present MD simulations it follows
that also the value of some torsion-energy barriers are approximately equal to the
experimentally measured activation energy for what is termed the γ relaxation in the
dynamic mechanical analysis of polystyrene.

Stress-strain behaviour of polystyrene, chapter 5

The mechanical behaviour of polymer glasses is still poorly understood. Especially the
origin of the yield tooth and strain hardening is unclear. By means of MD simulations
of polystyrene the interactions responsible for these phenomena have been identified and
analyzed.

• The main difference in energy between a computationally annealed and a quenched
polystyrene sample lies in the interchain interactions. During uniaxial extension this
difference decreases up to just after the yield tooth. Near the yield tooth more
interchain LJ bonds need to be broken for the more aged sample, which causes the
higher yield tooth for the aged sample.

• The difference in interchain LJ energy between the two samples of different thermal
history does not vanish after yielding, showing that mechanical deformation does
not lead to complete erasure of this thermal history. One cause for this effect is
that the large-scale structure of the chain (measured by the characteristic ratio) is
temperature dependent and this structure is not rejuvenated by up to at least 100%
strain.

• The strain-hardening modulus increases with pressure in a way similar to the yield
value.

• The stress contribution to the strain-hardening modulus in the simulated polystyrene
glass is mainly of intrachain nature.

• In the strain-hardening regime it is observed that only a small portion of the applied
work is converted into internal energy. Most of the remaining part is dissipated.

Strain-hardening mechanisms, chapter 6

Although it has been observed that the strain hardening is mainly associated with an
increase in dissipation, the reason for this increase is not clear. A comparison of polystyrene
and polycarbonate in terms of deviations from affine deformation has been performed to
give more insight in this matter.
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• For both polymers the rate of non-affine displacement increases in the strain-
hardening regime, likely to be the main cause for the increase in the rate of energy
dissipation.

• Accompanied with this there is a non-affine chain stretch, occurring at larger scales
for larger strains.

• This implies that the main mechanism behind strain hardening observed in polymer
glasses is the following. On the scale of the Kuhn length (the stiffness length in
case of a worm-like chain) chain parts cannot locally displace affinely, due to the
connectivity constraint. Upon straining in the strain-hardening regime there is an
increase in the stiffness length of the chain, so that larger segments need to move
non-affinely at larger strains, causing an increase in the non-affine displacement rate
and hence an increase in the dissipation rate.

• In polystyrene the side groups can move to some extent independently of the back-
bone. From the simulations it follows that the initial post-yield plasticity of poly-
styrene (in terms of non-affine displacements) is mainly caused by these side groups.
Therefore the effective stiffening of the backbone does not immediately lead to a large
increase in plasticity. In polycarbonate the backbone atoms do have a substantial
contribution to the plasticity, so that the effective stiffening of the backbone does
have a large effect on the stress-strain relation. Related to this is that the effective
stiffness length (which equals the Kuhn length in case of a worm-like chain in the
long chain limit) increase of PS occurs at too small scales as compared to PC. These
effects are likely contributing to the observed difference in strain-hardening modulus
between the two polymers.

Outlook

In this section we want to propose research directions for future studies. As can be judged
from the conclusions, more insight is gained by means of molecular-dynamics simulations in
combination with analytical modelling. The model employed for the study of non-Gaussian
displacements is able to describe some features of the non-Gaussian parameter. To describe
the width of the peak observed in the non-Gaussian parameter of glassy systems more
realistically, one could extend the model by incorporating a fluctuating energy minimum
or maximum or both. A fluctuating energy maximum will lead to correlations around the
cage escape, and to more sub-diffusive motion, although it will probably be harder to get
analytical results. The same description including the extension can also be used to model
yielding and thermal-history effects observed in a simple glass.

Most of the correlation functions studied in this thesis are one- or two-point correlations.
In order to see more evidence of cooperative motion near the glass transition temperature
for the two studied polymers, as predicted by glass-transition theories such as that of



Conclusions and outlook 155

Adam and Gibbs, one could study multiple-point correlation functions. In this way the
behaviour of clusters of particles can be measured and one can test theories that describe
the glass transition by percolation of immobile domains, or study the yield and flow from
the perspective of self-organized criticality [180, 292].

Polystyrene has a relatively high yield peak. From the uniaxial-extension simulations it
seems that this is mainly the result of interchain interactions, as the main increase in energy
is of interchain nature. A deeper analysis can be carried out by looking which pairwise
interchain interactions are mainly responsible; for example, one can test if the energetic
contributions from phenyl-phenyl interactions dominate near the yield peak.

Regarding the strain-hardening effect, it is proposed that not entanglements dominate this
effect, but that it is mainly caused by chain stretching at a local scale; hence the effective
stiffness length increases and therefore more dragging motion occurs. This will lead to an
increase in friction and an increase in stress. However, only relatively short chains have
been used in this study. Systems of longer chains should be equilibrated (to be checked
with the characteristic ratio) and deformed afterwards. Then one can verify if the affine
rescaling limit for long chains is visible for these systems. One is then also able to test if
the strain-hardening modulus increases due to chain entanglements.
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Summary

Local dynamics and deformation of glass-forming polymers:

modelling and atomistic simulations

The research described in the present thesis is about glassy phenomena and mechanical
properties in vitrifiable polymer materials. Glasses are solid materials, but, in contrast
to crystals, the structure is disordered. Polymers are macromolecular chains formed by
covalently linking a very large number of repeating molecular building blocks or monomers.
Polymeric materials are easy to reshape and reuse. Also they are lightweight and often
transparent. These characteristics make them ideal materials for commodity products such
as compact discs, safety helmets, or vandal-proof glazing. Some glassy polymers are also
biocompatible, so that they can be used in medical applications.

For a successful usage of polymer glasses it is necessary to understand and predict their
behaviour under various circumstances. Although many new insights have been acquired
over the last decades still a lot of questions remain open. Upon vitrifying a polymer
melt the relaxation times and the viscosity increase dramatically. Accompanied with this
increase various glassy phenomena are observed — in particular dynamical heterogeneities
and non-Gaussian displacements of particles. The comprehension of the striking viscosity
increase and the two phenomena mentioned above is still far from complete.

During the straining of a polymer glass typical mechanical characteristics are observed, of
which the magnitude can vary enormously between different types of polymers. A well-
known example of a polymer glass is atactic polystyrene. In its glassy state polystyrene is
usually found to be very brittle. Within a few percent of elongation the material breaks.
This behaviour is caused by a relatively high yield tooth in combination with a relatively
low strain-hardening modulus. Other polymers, such as bisphenol-A polycarbonate, show
a tough response; a test bar can easily be extended to twice its original length. In spite
of much study, the physical (molecular) origin of this difference in mechanical behaviour
is still not clear. Below the glass transition rubber-elasticity theory appears to be invalid,
as it fails to explain the observation that the strain-hardening modulus of polystyrene in
its glassy phase is about two orders of magnitude higher than its modulus in the rubbery
state.
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Our main goals are to acquire a better understanding at the molecular scale of hetero-
geneous and non-Gaussian dynamics and mechanical deformation of glassy polymers and
to differentiate chemistry-specific from more universal physical properties. These goals
are achieved by carrying out molecular-dynamics simulations on glass-forming systems. In
addition, the results are elucidated by the usage of simple physical models.

The simulations consist of solving the equations of Newton, a coupled set of differential
equations with a given force field and initial conditions. The force field describes the
interactions between the various particles. As the main interest is in glassy polymers,
most simulations are done for a united-atom model of polystyrene.

In the simulation run several characteristics of the glass transition are identified. As is
typical for other vitreous systems as well, anomalous, non-Gaussian displacements play an
important role near the glass transition for polystyrene; the same observation has been
made for a dendritic melt and a colloid-like system. For all these systems of different
architecture we have described some essential features of this non-Gaussian behaviour
with a simple one-particle model in an effective field. The non-Gaussian behaviour is
mainly caused by the cage-to-cage motion of the constituent particles, whereby the cage
is formed by interactions with neighbouring particles. By means of the model the height
of the so-called non-Gaussian parameter can be interpreted as a measure for the ratio of
the root-mean-square displacement within the cage and the effective jump length between
cages, without the assumption of any heterogeneity of glassy dynamics in the sense of site-
specific relaxation times. The maximum of the non-Gaussian parameter occurs in each
case at the crossover from the cage regime to the (sub)diffusive regime and is connected
to the cage-escape time. For the colloid-like system also the shape of the time-dependent
non-Gaussian parameter is described well by the model (chapter 3).

Dynamical heterogeneity, a phenomenon observed in many experiments on glasses, is also
found in the simulation result of the polystyrene phenyl-ring-flip movement (to which the
mechanical gamma relaxation is ascribed). This means that some phenyl rings behave
very differently than others within a typical simulation run. Different relaxation times
and activation enthalpies associated with the flip are determined using various methods.
A particular result of the study of the phenyl flip is that an enthalpy barrier determined
solely from structural properties is in accordance with an activation enthalpy acquired by
analyzing the dynamics of the phenyl rings, even in the presence of dynamical heterogeneity.
The heterogeneity arises because of the following mechanism. The conformation of the
backbone determines to a large extent the barrier of the phenyl-ring flip. Eventually the
relaxation of the backbone is becoming so slow upon cooling down that the phenyl ring is
unable to access the conformation-dependent state with the lowest flip barrier within the
corresponding barrier-jump time. The phenyl rings are trapped instead in various other
states with accompanying different energy barriers. These states are available because of
the disordered nature of the material. The mechanism just described for the heterogeneous
dynamics in the phenyl-ring flip movement becomes stronger upon cooling down towards
the glass transition; eventually the relaxation becomes more Arrhenius-like below the glass-



Summary 185

transition temperature because only the fastest phenyl flips occur within the accessible
observation time (chapter 4).

By doing uniaxial-stress extension and compression simulations the stress-strain relation
of polystyrene has been measured under various conditions. Although the cooling and
deformation velocities in the simulations differ many orders of magnitude from their values
in usual experiments, the characteristic features of the experimental stress-strain relation
are well reproduced, which allows one to study the origin of the yield tooth and strain
hardening. It is observed that the strain-hardening modulus increases with increasing
pressure, an effect not described by rubber-elasticity theory. Also it is observed that
the thermal history is not completely erased by the mechanical deformation. The picture
arising from this study is that the yield peak in polystyrene is mostly mediated by interchain
energetic interactions. A net debonding of these interactions is likely causing this yield peak
and the subsequent strain softening. The positiveness of the strain-hardening modulus in
polystyrene is mainly due to intrachain interactions (chapter 5).

From our comparative study of polystyrene and polycarbonate it can be concluded that
strain hardening in polymer glasses such as these two polymers is likely caused mainly by
the following mechanism. During uniaxial extension a glassy chain adopts a more stretched
and hence more inflexible state, also at a local scale. Due to interactions with other particles
non-affine displacements take place. The non-affine response is stronger at shorter length
scales, but as the deformation proceeds and the effective flexibility decreases also longer
length scales are affected. This is accompanied with more bond-altering processes and
implies an increase in the rate of energy dissipation, causing in turn an increase in stress
upon straining the polymer material further (chapter 6).

All these results show that simple physical models supported and tested by results of
molecular-dynamics simulations (in which typical physical phenomena observed in real
experiments can be reproduced) provide a fruitful approach in understanding glassy ma-
terials.





Samenvatting

Moleculaire dynamica en vervorming van verglaasbare polymeren:

modellering en atomistische simulaties

Het onderzoek dat in dit proefschrift is beschreven betreft de studie van glasachtige feno-
menen en mechanische eigenschappen van verglaasbare polymeren. Een glas is een vaste
stof, maar in tegenstelling tot een kristal is de structuur ervan ongeordend. Polymeren
zijn macromoleculaire ketens, gevormd door het aan elkaar koppelen van een groot aantal
moleculaire bouwstenen of monomeren. Het voordeel van polymere materialen is dat ze ge-
makkelijk zijn om te vormen. Ook zijn ze licht en vaak transparant. Hierdoor zijn polymere
materialen geschikt voor producten zoals CD’s, veiligheidshelmen of vandalisme-ongevoelig
glaswerk. Een aantal glasachtige polymeren hebben ook een uitstekende biocompatibiliteit
en kunnen daarom gebruikt worden in medische toepassingen.

Het begrijpen en het voorspellen van het gedrag van polymeerglazen zal bijdragen tot
een beter gebruik van deze materialen. Hoewel tijdens de laatste decennia er veel nieuwe
inzichten zijn verworven, zijn er ook nog steeds veel open vragen. De relaxatietijden en
de viscositeit van een polymeersmelt nemen drastisch toe tijdens de verglazing. Dit gaat
gepaard met verscheidene glasachtige fenomenen — in het bijzonder dynamische hetero-
geniteiten en niet-Gaussische deeltjesverplaatsingen. Het begrip van de uitermate snelle
viscositeitstoename en deze twee fenomenen is verre van volledig.

Tijdens het rekken van een polymeerglas zijn mechanische karakteristieken te zien, waarvan
de grootte sterk kan variëren tussen verschillende type polymeren. Een bekend polymeer-
glas is atactisch polystyreen, dat normaal erg bros is. Als dit materiaal uitgerekt wordt, zal
het binnen een paar procent al breken. Dit gedrag wordt veroorzaakt door een relatief hoge
vloeigrens in combinatie met substantiële rekverzwakking. Polymeren zoals polycarbonaat
vertonen taai gedrag; een trekstaafje kan makkelijk worden uitgerekt tot twee maal zijn
oorspronkelijke lengte. Ondanks vele studies is de oorzaak van dit gedrag nog niet helemaal
begrepen. In de glastoestand kan rubber-elasticiteitstheorie niet worden toegepast. Een
voorbeeld hiervan is polystyreen; in de glasfase is de mate van rekversteviging een factor
100 groter dan men zou verwachten op de mate van rekversteviging in de rubberfase.

Ons doel is om een beter microscopisch begrip te verkrijgen van heterogene en niet-
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Gaussische dynamica, van het mechanisch vervormen van glasachtige polymeren en om
de universele eigenschappen te kunnen scheiden van chemische details. Met behulp van
moleculaire-dynamica simulaties van verglaasbare polymeren en het ontwikkelen en gebruik
van fysische modellen proberen we dit doel te bereiken.

In de simulaties zien we verscheidene fenomenen van de glasovergang terug. Nabij de
glasovergang spelen niet-Gaussische, anomale, verplaatsingen van deeltjes een belangrijke
rol, zo ook voor polystyreen. We zien hetzelfde gedrag bij een smelt van dendrimeren en
een collöıdaal systeem. Een model van een deeltje in een effectieve potentiaal is opgesteld,
dat essentiële kenmerken van dit niet-Gaussisch gedrag kan beschrijven. Dit niet-Gaussisch
gedrag wordt voornamelijk veroorzaakt door de kooi-naar-kooi–beweging van de deeltjes.
Deze kooi wordt gevormd door interacties met omliggende deeltjes. M.b.v. het model kan
de hoogte van de zogenoemde niet-Gaussische parameter gëınterpreteerd worden als een
maat voor de verhouding van de effectieve kwadratische spronglengte tussen kooien en
de gemiddelde kwadratische verplaatsing binnen een kooi. Hierbij hoeft men niet aan te
nemen dat er dynamische heterogeniteiten in de zin van plaatsafhankelijke relaxatietijden
zijn. Voor alle drie systemen ligt het maximum van de niet-Gaussische parameter op
de grens tussen het gebied waar het deeltje gekooid is en het gebied waar (sub)diffusie
optreedt. De tijd waarbij dit optreedt is een maat voor de ontsnappingstijd uit de kooi.
Het model is bijzonder goed in het beschrijven van de tijdafhankelijkheid van de niet-
Gaussische parameter van het collöıdale systeem (hoofdstuk 3).

Ook zien we dynamische heterogeniteiten in onze simulaties van polystyreen voorkomen,
in het bijzonder bij de omdraaiing van de fenylzijgroep. De mechanische gamma-relaxatie
wordt toegeschreven aan deze rotatie. De heterogeniteiten houden in dat tijdens een si-
mulatie sommige fenylgroepen zich veel anders dan andere gedragen. Dit komt door het
volgende mechanisme. De omgeving van de fenylgroep en in het bijzonder de chemische
conformatie van de hoofdketen bepalen de omdraaiingsenergiebarrière van de fenylgroep.
Bij een hoge temperatuur zal de relaxatie van de hoofdketen voldoende snel zijn, zodat de
ketenconformatie met de laagste omdraaiingsbarrière binnen de typische omdraaiingstijd
behorende bij deze barrière kan worden gevonden. In dit geval zullen alle fenylgroepen
ongeveer dezelfde omdraaiingstijd hebben. Als men de glasovergang nadert vanuit de
vloeistoffase, zal de relaxatie van de hoofdketen zeer traag worden en zullen conformatie-
veranderingen niet meer zo snel optreden. Uiteindelijk worden deze veranderingen zelfs
langzamer dan de omdraaiingstijd van de fenylgroep in de meest gunstige ketenconfor-
matie. Hierdoor worden de fenylgroepen gevangen in verschillende ketenconformaties met
bijbehorende energiebarrières, met als gevolg dat de omdraaiing dynamisch heterogeen
wordt. Sommige barrières zijn zo hoog, dat de bijbehorende fenylgroepen niet meer rote-
ren binnen de tijd van een typisch experiment. Onder de glasovergang zal de relaxatie dan
ook meer Arrheniusachtig gedrag vertonen, daar alleen de fenylgroepen met een gunstige
ketenconformatie binnen de observatietijd kunnen draaien (hoofdstuk 4).

Het spannings-rek gedrag van polystyreen is m.b.v. moleculaire-dynamica simulaties be-
paald, zowel onder extensie als onder compressie en onder verschillende condities. Hoe-
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wel de koel- en vervormingssnelheid van de simulaties veel hoger liggen dan in typische
experimenten, kunnen de mechanische karakteristieken zoals ze in experimenten te zien
zijn toch kwalitatief gereproduceerd worden. Hiermee kunnen we de piek nabij de vloei-
grens en de rekversteviging nader onderzoeken. Het blijkt dat de mate van rekversteviging
toeneemt met toenemende druk, een effect dat niet verklaard kan worden met rubber-
elasticiteitstheorie. We zien ook dat de thermische geschiedenis van ons polymeersysteem
niet geheel verdwijnt tijdens mechanische vervorming. De dominerende energetische inter-
actie bij de piek rond de vloeispanning in polystyreen is die van de interketen (Lennard-
Jones) interactie. Deze piek (vloeispanning gevolgd door rekverzwakking) wordt waar-
schijnlijk veroorzaakt doordat er netto meer interketenbindingen worden verbroken dan
worden gevormd tijdens de initiële rek. Dat er positieve rekversteviging is, komt voorna-
melijk door intraketen interacties (hoofdstuk 5).

Onze vergelijkende simulatiestudie van polystyreen en polycarbonaat laat zien dat het
plausibel is dat rekversteviging bij polymeerglazen zoals bij deze twee polymeren mede
veroorzaakt vooral door het volgende mechanisme. Tijdens het uitrekken zal een glasachti-
ge keten een meer gestrekte toestand verkrijgen, in het bijzonder op lokaal nivo. Hierdoor
zal de effectieve ketenflexibiliteit afnemen. Door restricties zoals covalente bindingen en
verhinderingen met andere deeltjes zullen de verplaatsingen van de deeltjes niet affien met
de vervorming van het polymeersysteem meebewegen. Deze niet-affine verplaatsingen vin-
den initieel vooral op korte ketenlengteschalen plaats. Maar omdat de effectieve flexibiliteit
van de keten afneemt, zal de beweging ook op grotere lengteschalen meer niet-affien zijn.
Dit impliceert een toename van het Lennard-Jones-bindingsveranderingstempo en daar-
om een toename van de energiedissipatiesnelheid. Dit heeft als gevolg dat de spanning
toeneemt tijdens verdere rek (hoofdstuk 6).
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