

Opportunism is required to meet software demand

Citation for published version (APA):
Genuchten, van, M. J. I. M. (2008). Opportunism is required to meet software demand. IEEE Software, 25(6),
80-83. https://doi.org/10.1109/MS.2008.154

DOI:
10.1109/MS.2008.154

Document status and date:
Published: 01/01/2008

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.1109/MS.2008.154
https://doi.org/10.1109/MS.2008.154
https://research.tue.nl/en/publications/25288b31-55de-4e76-8887-e6dfa202054a

80	 I E E E S o f t w a r e P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y � 0 74 0 - 74 5 9 / 0 8 / $ 2 5 . 0 0 © 2 0 0 8 I E E E

Opportunism Is Required
to Meet Software Demand
Michiel van Genuchten, Eindhoven University of Technology

Companies can’t
develop from scratch

all the software
that products and
applications will

need over the next
few years.

T
he amount of software in many products
and applications is rapidly increasing. For
example, the software in a mobile phone
is expected to grow from 2 million lines
of code in 2008 to 10 million in 2010.
A car will contain 100 million LOC in

2010 (R.N. Charrette, “Why Software Fails,”
IEEE Spectrum, Sept. 2005). For reference,
Windows Vista is approximately 50 million
LOC. It’s not possible or economically viable
for original equipment manufacturers (OEMs)
to develop and supply all this software. Indus-
tries can’t afford to be too selective in collect-
ing parts of their software stacks from various
sources. They’ll have to employ combinations
of embedded software, commercial off-the-shelf
software, and open source software to meet the
demand. They’ll also have to apply multiple de-
velopment approaches, one of which will be op-
portunistic software development.

Some, like me, have applied opportunistic
development without knowing the term. Over
the past five years, I was part of the manage-
ment of a business that earmarked software
stacks, released them from their embedded ar-
chitectures, and offered them as open system
software on various platforms, such as mobile
phones and personal computers (M.v. Genu-
chten, “The Impact of Software Growth on the
Electronics Industry,” Computer, Jan. 2007).
Two examples:

Video players originally developed for PC
platforms now run on hundreds of millions
of phones.

■

Video-enhancement algorithms originally
developed for embedded architectures for
televisions are now deployed on PC x86
architectures.

We’ve been accused of junkyard develop-
ment: get software for free and sell it on another
platform in another industry without doing any
real engineering ourselves. It’s clear that starting
with a working application does help. However,
making the software perform within a soft-
ware architecture and on a hardware platform
for which it wasn’t intended is real engineering
work. Creating and sustaining a profitable busi-
ness in terms of business development and mar-
keting is still more work.

The main question is, to what extent can
opportunistic software development help
meet the increasing need for software? In my
opinion, opportunistic software development
isn’t about forgetting all the good engineering
practices put into place over the past decades.
Calling it opportunistic won’t make bugs dis-
appear. Victor Basili and Dieter Rombach dis-
tinguished between construction and analysis
of software (“The TAME Project: Towards
Improvement-Oriented Software Environ-
ments,” IEEE Trans. Software Eng., vol. 14,
no. 6, 1988). If we want to reuse opportunisti-
cally, we must be able to quickly analyze mas-
sive amounts of software. We can benefit from
better methods and tools for software analysis.
Software metrics, reviews, static code analy-

■

point

Continued on page 82

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on November 20, 2008 at 06:00 from IEEE Xplore. Restrictions apply.

0 74 0 - 74 5 9 / 0 8 / $ 2 5 . 0 0 © 2 0 0 8 I E E E 	 November/December 2008 I E E E S o f t w a r e � 81

The Case
for Planned Reuse
Robert Baillargeon, General Motors

Planned reuse can
meet predictability
and sustainability
software system
requirements that
opportunistic reuse
can’t yet guarantee.

F
rom automobiles to consumer electron-
ics, manufacturers are challenged to
meet customer preferences for individu-
alized experiences within the constraints
of mass production. In the past, auto-
mobiles were physical systems, charac-

terized exclusively by the mechanical parts of
assembly. Today, the industry has advanced to
the point where we can best describe future ve-
hicles as software-intensive systems. The tight
coupling between the physical and cyber envi-
ronments that typify these vehicles enables the
enhancement of the user experience and of sys-
tem performance.

The complexities of tightly coupled sys-
tems expose software’s critical role in manag-
ing both variability and scale in their produc-
tion. As software-intensive systems move from
large to ultralarge scale, a mandate for inno-
vation in both product and process goes with
them. Developing individualized designs in the
automotive domain isn’t an effective practice.
This is reflected in vehicle systems development
methods that attempt to employ various forms
of reuse. Central to the automotive challenge is
maintaining predictability and sustainability
while developing multiple products, so planned
reuse plays a critical role in the future of these
software-intensive systems.

Opportunistic reuse has been proposed as
the path to this future, but I doubt whether
its time as an effective method has arrived. A
simple question remains: is it effective to re-
use software outside the context of its origi-
nal use? The answer is unclear. This approach

has worked in some instances, but I question
its ability to provide sustained or predictable
success. Software developers often wish to ob-
tain reuse from scavenged software because
the investment costs are minimal. However,
they must balance their desire with sound rea-
soning. We can look to the issues that David
Garlan, Robert Allen, and John Ockerbloom
raised in “Architectural Mismatch: Why Re-
use Is So Hard” (IEEE Software, vol. 12, no.
6, 1995). They identified the source of reuse
difficulty as a mismatch between assumptions
and architecture. With only a slight extension,
I would say that reuse is enabled by unified as-
sumptions, consistent architecture concepts,
and composable behaviors (that is, interface-
type compatibility that avoids undesirable
feature-interaction behaviors in component
assembly). Successful planned-reuse methods
actively engage in these attributes to encour-
age success, whereas opportunistic success re-
flects only that the attributes exist.

Frameworks are a lightweight form of
planned reuse. They address mismatch by de-
fining a common development context for uni-
fying assumptions and architecture. Although
frameworks don’t prescribe planned reuse,
they do formalize concepts that are critical
enablers. Observe the success of such general
frameworks as Java 2 Enterprise Edition and
Corba, which encourage composition and re-
use. Furthermore, domain-specific frame-
works, such as Autosar (automotive open

counterpoint

Continued on page 82

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on November 20, 2008 at 06:00 from IEEE Xplore. Restrictions apply.

82	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

sis, and automated regression testing will
all contribute to make opportunistic soft-
ware development a responsible engineer-
ing practice.

Education must change to achieve re-
sponsible opportunism. Typically, universi-
ties don’t train students to analyze software
and reuse it opportunistically. Often, an
assignment starts with a few specification
lines, after which the student is expected
to write an elegant piece of code, preferably
starting from scratch. Some teachers are
now providing more real-life exercises, such
as starting with a program of a hundred
thousand lines of code that will require
analysis and extension.

Opportunistic software development
has implications beyond engineering. For
example, look at software licenses. It’s re-
warding for an engineer to opportunisti-

cally discover a piece of software and put it
to use. However, almost every piece of soft-
ware comes with a license agreement. Here
are three examples of what can go wrong if
opportunistic software development leads
to opportunistic licensing:

Many software license agreements don’t
allow reusing or reengineering soft-
ware. Doing it anyway can have legal
implications.
Reusing a piece of software might in-
fringe on someone’s patent.
Exposing your company’s intellectual
property by opportunistically accept-
ing a GPL can be a career breaker.

These examples don’t mean that opportu-
nistic development is impossible. They do
mean that engineering opportunism must

■

■

■

balance with business realities.
We need opportunism to meet the in-

creasing software demand, but the impli-
cations of opportunistic software develop-
ment go far beyond engineering. Allowing
and implementing opportunism must there-
fore be a business decision. Business manag-
ers will make business decisions, engineers
will develop opportunistically, and the cus-
tomers will decide which company brought
the best software to market.

Michiel van Genuchten is a part-time professor of
software management at Eindhoven University of Technology.
He’s worked in industry since 1987, at companies including
Philips Electronics and GroupSupport, a software company he
founded. Contact him at genuchten@ieee.org.

system architecture), establish industry
standards for software—in this case,
jointly developed by automobile manufac-
turers, suppliers, and tool developers. Such
standards show continued value in frame-
work approaches, which unify assump-
tions and architecture. Yet despite these
frameworks’ success, they remain limited
by insufficient attention on behavioral
composition. Consequently, after select-
ing components, developers still face a
significant integration effort to resolve in-
terface-type compatibility and behavioral
interaction.

Software product lines (SPLs) represent
a powerful method to execute planned re-
use. The paths to SPLs are varied, but orga-
nizations that have instituted this practice
see progress toward rapid, predictable, and
sustained reuse. SPLs extend the success
of frameworks in common architectures
and assumptions via the addition of direct

development of behavioral composability.
This development of composable behaviors
requires significant forethought and invest-
ment in the architectural patterns of fea-
ture interactions, but the results have been
impressive. Instead of managing product
variability and integration reactively, which
occurs as a matter of course in opportunis-
tic methods, SPLs require a planned prac-
tice with known results and qualities. As
compared to other development methods,
integration in SPLs resolves to an activity
similar to feature selection because behav-
ioral interactions have been addressed in
the product-line creation. Through the di-
rect engagement of reuse factors, SPLs have
developed the predictable, sustainable reuse
patterns that commercial success requires.

The minimal investment costs will al-
ways make opportunistic reuse alluring,
but the transition from scattered points of
success to an applied method remains un-

charted. In frameworks and, more signifi-
cantly, in SPLs, I see a foundation of prac-
tice and success—both firsthand and in the
public literature. However, in a domain like
vehicular transportation, where consistent
and sustainable reuse are emphatic objec-
tives, opportunistic reuse doesn’t yet pro-
vide sufficient evidence of its capabilities.
Until compositional supports are available
to evaluate the potential in ad hoc construc-
tion, I believe opportunistic reuse cannot
become a sustainable industry practice. On
this basis, I conclude that effective opportu-
nistic reuse remains more related to desire
than to practice.

Robert Baillargeon is a staff researcher at General
Motors Research, where he leads software engineering prac-
tices research. Contact him at rcbaillargeon@acm.org.

point continued from page 80

counterpointcontinued from page 81

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on November 20, 2008 at 06:00 from IEEE Xplore. Restrictions apply.

	 November/December 2008 I E E E S o f t w a r e � 83

Michiel Responds
Opportunistic software development shouldn’t result in oppor-
tunistic software. Opportunistic behavior of a car’s airbag isn’t
acceptable.

I’m not against planned reuse, but planed reuse won’t be
enough if the software doubles every two years and goes be-
yond what we imagined in complexity. This situation calls for
multiple methods. The open source movement can teach an
important lesson. They’ve built very reliable systems without
planning the reuse top-down. Many factors, one of which is
extensive reviews of every line of code, have produced high-
quality open source software.

We need multiple methods and a lot of business common
sense. The amount of acceptable opportunism in software de-
velopment will vary with intended use, application, and indus-
try. In cars (Robert’s world) and in high-volume consumer prod-
ucts, the costs of failure are high. However, we can break down
the software stack and make different trade-offs for those piec-
es with lower costs of failure. For example, a nonfunctioning
DVD in the back of the car might result in unhappy children,
but it’s less of a problem than a failing braking system.

Opportunistic software development will happen, anyway,
because of the huge demand for software. One contribution of
this special IEEE Software issue is to name it and open discus-
sions of how to overcome its weaknesses.

Robert Responds
It’s true that software engineering relies on some measure of
opportunism to be successful. However, rather than a method,
it’s more appropriately identified as a difficult engineering task
requiring significant effort. Transitioning opportunistic reuse
to a predicable engineering method will require automated
reasoning about the reuse attributes—that is, the dimensions of
architecture, assumptions, and behaviors that I mentioned ear-
lier. All practitioners would like composition validation to be a
trivial analysis with a Boolean response of success or failure.
However, software engineering’s science and practice simply
aren’t capable of reasoning with certainty across these dimen-
sions today. Consequently, opportunism leaves us with the
challenging cycles of build-test-fix, which often invalidate much
of our gains from reuse.

On the other hand, planned reuse methods, such as SPLs,
have achieved the level of engineering practice that results in
predictability, quality, and productivity. We must use the gains
from these planned practices as a basis for developing the sci-
ence to account for, and predict, the success of our opportu-
nistic endeavors. Until we have a science to analyze oppor-
tunism’s validity, planned reuse will dominate the practice of
delivering predictable high-quality products.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on November 20, 2008 at 06:00 from IEEE Xplore. Restrictions apply.

