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Abstract 

This thesis deals with constilutive equations for metals. Two theories with which the 

relationship between stresses and strains can be obtained are discussed. The first 

theory concerns the introduction of hidden variables. Special attention is given to the 

constraints that follow from the Clausius-Duhem inequality. The latter is also known 

as the second law of thermodynamics. Relationships for meta Is !hal are derived from 

this theory are models for metals, which are referred to as work and strain hardening 

materials and materials of type N. The second theory discusses the decomposition of 

stresses and strain rates. Special consideration is given to the relationship between 

stress rates and the elastic part of the deformation rate. Il is proven that only a special 

class of stress rates can be used for this pur pose. A comparison is made between the 

models obtained with bath theories. Next two special cases !ha! follow from the sec

ond theory are discussed: the Maxwell model for elastic-plastic materials and the 

Kelvin model for kinematic hardening materials. Three experimental set-ups with 

which material properties can be obtained are described: the tension test, including 

necking, a combined torsion-tension test , with special attention for pure torsion, and 

the compression test. Some experimental results are given. Finally, the set-up of a 

computer program for the extrusion of lead is discussed. A numerical method !ha! can 

be used to solve all kind of constitutive equations for meta Is is described. Same results 

which have been recently obtained with this program are presented. 

/\h<lrnL1 



General lntroduction 

In this thesis, the constitutive equations of meta Is are discussed. With regard to these 

equations, special atlention is given to the relationships between stresses on the one 

hand and deformalions and deformation rates on the other. 

At the beg inning of this century, the Levy-Von Mises relationships were put forward for 

lhis purpose. These relationships suggest !hal the stress is proportional to the defor

mation rale and !hal the proportionality factor may depend on the deformation and the 

deformation rale. In fact these relationships a special case of the so-called Newton 

relationships for fluids. Hili (1950) gave an extension to this model. He considered the 

total deformation to consist of an elastic and a plastic part. The relationships he ob

talned are often referred to as the Prantl-Reuss relationships. Slnce !hen only minor 

changes have been proposed with respect to this model. Prager (1956), for inslance, 

looked at non-isotropic hardening phenomena. 

However, these relationships did not obey what is known ast he principle of objectivity, 

which stales that the conslitutive relalionships are nol influenced by rigid body ro

tations. In order to overcome this problem, the so-called objective stress rates were 

inlroduced; these can be regarded as a kind of time derivative of the stress tensor. This 

objective stress rate was assumed to be proportional to the elastic part of the defor

mation rate. Also in the case of non-isolropic hardening the objeclive rates were in

troduced. In specific deformation patterns some of the new mode Is, which obeyed the 

principle of objectivity, predicted a very slrange stress response. These results led to 

an intens discussion in literalure, as to which objective rate should be used. 

The first 3 chapters of this thesis discuss lwo theories, wilh which conslilutive re

lationships of metals can be obtained. The first theory contains the introduction of so

called hidden tensors, as discussed by De Groot in 1951. Some objective objective 

rates can be obtained directly from this theory. The other theory is actually similar to 

the way Hili (1950) obtained his relationships, because the starting point for this lheory 

is the decomposition of the deformation rate into an elastic and a plastic (or viscous) 

part. lt will be seen !hal the objective rale of the stress tensor, which is related to the 

(~cncrnl lntroduction 2 



elastic part of the deformation rate, derives from the fact, that this relationship must 

be elastic in thermodynamica! sense. 

Apart from the two general theories about constitutive equations for metals, exper

iments have to be done to obtain the special material properties for each single metal. 

Three different experiments will be discussed, each with lts own limitations. The ten

sion test can be used for so-called strain hardening metals. An extension to the usual 

measurement techniques will be discussed, with which data from this test can be ob

tained du ring necking. However, this extension can only be used at room temperature. 

The torsion test can be used for all kind of metals at every temperature, bul only at 

rather low strain rates. This limitation can be overcome by applying the compression 

test which, in turn, is only suitable for meta Is that show little any history dependent 

material behaviour. 

Finally some of these theories are applied to the extrusion of lead. Within Philips 

thermocompression is used as a bonding technique. lf lead is the bonding metal, !hen 

a difference in thermal expansion of the two bonded substrates can be tolerated, be

cause of the creep and relaxation capability of lead. Lead is therefore a very attractive 

metal for bonding. To give an insight info the mechanica! behaviour of the process an 

analysis has been made of the two stages, in which the bond is made: the compression 

and the unloading stage. The mechanica! model is solved by using a finite element 

technique. lnstead of using the displacements as variables in the numerica l analysis, 

as is usua 1 for plastic deformation processes, the velocities and pressures are the 

variables, for which a sotution must be obtained. The solution technique is similar to 

that used in fluid dynamics. 

( ;enrrn l lntrnduc tinn 



1 Fundamental laws and constitutive principles 

1.1 lntroduction 

The main quantities used in this work together with !heir notation, will be introduced 

in this chapter. First, some of the kinematica! quantities in continuum mechanics will 

be discussed. Then, before introducing the fundamental balance laws in the field of 

thermomechanics, so-called state, constitutive and external variables will be defined, 

in terms of which the fundamental laws and the second law of thermodynamics are 

formulated. At the end of the subparagraph the second law will be discussed with 

special regard to the Clausius-Duhem inequality. 

In subparagraph 1.2 some widely accepted constitutive principles are discussed, in 

particular the principle of objectivity and its consequences of this principle. This leads 

toa genera! expression for the constitutive equation. 

In the last subparagraph two principles are discussed, from which classes of 

constitutive behaviour can be deduced. These principles concern the introduction of 

so-called hidden tensors and the decomposition of the stress and strain rate. 

1.2 Some kinematica/ quantities 

In continuum mechanics a real body is considered to consist of an infinite set of mate

rial points. Each of these points can be uniquely identified by a column Ç of three ma

terial coordinates, one for each dirnension. Let x(Ç,1) be the current (i.e. at timet) 

position vector of sorne point with identification column Ç, measured with respect toa 

fixed origin. Il is assumed in the continuum's theory, that x(Ç,1) is continuous and can 

be differentiated with respect to Ç as well as to 1. 

The velocity vector u(Ç,1) can be obtained by differentiating x(Ç,1) with respect to time: 

1 Funrlnmcntnl lews nnrl constitutivc principle< 4 



v(U) = K(!:.1) = 
ox( ç ,1) 

at ( 1.2.1) 

In the sequel the not ion ' rate of a quantity' is used to denote the time derivative of that 

quantity for constant value of Ç . So, the velocily is the rate of the position. 

The deformation of a body is a relative notion and has to be looked at with respect to 

a well-known reference condition of the body. Let this condition have occurred at time 

to. The position vector at this time lo, i.e. the reference position vector, is denoted by 

the capital letter .X: 

(1.2.2) 

From this relationship it can be seen that the current position vector x can also be re

garded as a function of the reference position vector){: 

x = x(X-,1) (1.2.3) 

The deformation of the body with respect to the reference condition is characterized 

by the deformation tensor F : 

F = F(X 1) = o~K,t) 
- ' oX ( 1.2.4) 

The deformation tensor is regular and its determinant J = de~F) is positive and equal 

to the current volume per unit reference volume. F ca n therefore be uniquely decom

posed, according to: 

F=R.U=V.R (1.2.5) 

where Ris a rotation tensor, U and Vare symmetrical, positive definite tensors, which 

are called the right and lef! elongation tensor respectively: 

(1.2.6) 

The right and lef! Cauchy (or Green) strain tensor C and B are defined by: 

c = Fr.F= u2; s = F.Fr = v2 ( 1.2.7) 

The rate of deformation is given by i.F- • and is independent of the reference situation. 

The rate is dec:omposed in the defor rnation rate tensor 0 and the srin tensor n 

· -1 T 
D + n = F.F ~(V u) (1.2.8) 

where V is the current gradient operator. Furthermore, D is a symmetrie tensor and 

n an skew-symmetric tensor: 

1 Fumlamcnt nJ lnws n"'I eonstitutiv~ principlcs s 



From the definition of J and Dil can be deduced that: 

j 
tr\_D) = /·D = -. J 

1.3 The fundamental laws 

(1.2.9) 

( 1.2.10) 

The state of a body in thermomechanics Is known if the density p, the position vector 

.)(and the absolute temperature ()are known for the whole interval u nder consideration. 

in each state the so-called balance equations have to be fulfilled. These balance 

equations form a set of eight equations, belng the balance equations of mass, of mo

mentum, of moment of momentum, and of energy. The latter is known as the first law 

of thermodynamics. However, these balance equations are not formulated in terms of 

the density, position vector and temperature only, bul aiso in terms of some other 

varia bles. 

All the variables, in the balance equations and the second law of thermodynamics, 

which is discussed later, can be separated i nto three groups: 

- the state variables 

p the density 

x the position vector 

B the absolute temperature 

- the constitutive variables 

11 the entropy 

lf1 the free energy 

h the heat flow vector 

<J the Cauchy stress tensor 

- the external variables 

r the specific heat procluction 

1 Funilamcntal lam< and constitutivc principlcs 6 



b_ the specific laad vector 

The state variables determine the state of a body. The constitutive variables are de

termined entirely by the current and past va lues of the state varia bles. Let~ represent 

some constitutive variable and let:=: be the set of all Ç , which identify the body. This 

constitutive variable is !hen mathernatically given by a constitutive equation of the 

type: 

A A 
c ( U) = c (p((. r ). x:( (. r ). 0((. i ); i :-::; t; ( E ~) ( 1.3.1) 

The fact that the constitutive variables can be expressed in terms of the internal vari

ables, is known as the principle of determinism. In the next section other principles 

will be discussed, which lead to simplifications of relationship 1.3.1 . 

The internal energy e is aften introduced as a constitutive varia bie. This variable de

pends on the free energy, the entropy and the temperature in the following way: 

e = 1/1 +IJ .~ ( 1.3.2) 

lt will not be considered as a separate variable as it can be expressed in terms of 

others. 

The constitutive variables will be regarded as primitive variables. Their descriptions 

in terms of the state variables, i.e. the constitutive equations, are unique for every 

distinct material and specify the physical properties of the material. The physical in

terpretation of the constitutive variables will not be discussed here, bul can be found 

in, for instance, Fast (1962) and Muller (1985). 

The external variables are independent variables, which enter the balance equations. 

In most parts of this work it is assumed that their influence can be neglected. 

In thermornechanics the variables mentioned have to obey a set of so-called ba la nee 

equations. These equations are: 

- the balance equation of mass 

_P_ +V .u = O 
f' 

- the balance equations or mo1rn~ntum 

v .. rJ + p.b = p.u 

- the balance equations of moment of momentum 

J Fnmfamcntal laws and constitutivc principlcs 
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(1.3.4) 
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( 1.3.5) 

- the balance equation of energy 

p .ê = - Y....b. + CT :D + p .r (1.3.6) 

The latter equatlon is better known as the first law of thermodynamics. The second law 

oflhermodynamics is nol represented by a balance equation, bul by an inequality. This 

inequalily represenls the idea that every thermodynamical process has a direction, 

which means thal not every conceivable state of a body can be achieved from the cur

renl state. In a more formal way, it is slated !hal the entropy production has to be 

posilive. This leads to (Muller, 1985): 

. . 1 
p.(ijJ + O.ry)- CT:D+ P.f])l_.Os 0 ( 1.3.7) 

Equalion 1.3.5 and inequalily 1.3.7 can be regarded as restrictions on the constitutive 

equations 1.3.2 The remaining equations 1.3.3, 1.3.4 and 1.3.6 form a set of five 

equations for the unknown state variables. Equation 1.3.3 can immedialely be solved 

by time integration, resulting in: 

Po 
-=J = det(F) 

{J 
(1 .3.8) 

This means that the density can be expressed in terms of the position vector x and that 

the general constitutive equation 1.3.1 can be simplified to: 

A A 
c(Ç,1) = c(~((. r), 0((. r); r s I; { E ~) (1 .3.9) 

A second simpl ificalion is based on the assumption that the inequality 1.3.7 ca n be 

decomposed into two parts: 

p.(~+ ÈJ .ry)- CT :Ds:, 0 (1.3.10) 

( 1.3.11) 

where g represents the gradient of the te mperatu re: 

g = V.O (1.3.12) 

lnequal ity 1.3.10 is re ferred to as the C lausius-Du hem i nequality. 
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1.4 Some constitutive principles. 

In this subparagraph some widely accepted constitutive principles, concerning the 

constitutive equations, will be discussed. First some principles and !heir consequences 

will just be mentloned. Special attention will be g iven to the principle of objectivity, 

because some consequences of this principle w ill be extensively discussed in this 

thesis. 

The acceptance of the principles of local action, of invariance of Galilei-translations 

and of invariance under a shift of the origin of time, yields the conclusion that the 

entropy '1. the free energy iJ1, the heat flow vector /] and the stress tensor U are com

pletely determined by the history of the strain tensor F, of the temperature 0 , and of the 

te mperature gradient g_. Details of these principles can be found in Eringen (1967) or 

in Muller (1985). Relationship 1.3.9 fora constitutive quantity ~ can therefore be re

duced to: 

/\ /\ 
c ( U) = c ( F( Ç, t ), 0( Ç, t ), g_( Ç, t ); 1 :.:;; 1) ( 1.4. 1) 

Usually the dependence of the material coordinates Ç is not explicitly denoted and 

hence the constitutive equations are written as: 

/\ . /\ 
c ( t) = c ( F( r ), 1:1( t ), 9( t); r :.:;; t) ( 1.4.2) 

Prior to the introduclion of the principle of objectivity the idea of objective and invariant 

varia bles will be discussed. Let x be the position vector of a certain mate rial point, and 

let X be the position vector of this point after a rigid body rotation. Then the re lationship 

between x and x is given by: 

x= Q.x (1.4.3) 

where Q is a rotation tensor, which can only depend on time. 

Let pand p represent some quantity respectivily before and after the r igid body rota

tion. Then the invariancy and objectiv ity of thi s quant ity can be defined by the following 

sc heme: 

invariant objective 

scalar p = p P=P 

vector p = p_ p = Q.p 

1 Fundnmcntol laws onil cnnstitutiw principlcs 9 



tensor P = P 
- T 
p = Q .P.Q 

In Appendix A most of the previously introduced variables are divided into objective 

,invariant and other variables, with the following result: 

-Objective varlables: 

scalar fl, 1/J, 8, J 

vector !>.. g, K 

tensor (J, B, D 

-Invariant variables 

scalar ti. if1, 8, J 

vector .K 

tensor C 

The principle of objectivity states !hal only objective quantities can be related to ob

jective quantities, and invariant quantities to invariant quantities. In the next paragraph 

constitutive relationships between invariant quanlities will be discussed. An invariant 

stress tensor and invariant heat flow vector must therefore be introduced. 

The invariant stress tensor Sis simultaneously introduced with an invariant deforma

tion rate tensor C. They are deFi ned by: 

-· -1 -T 
S = J.A .CJ.A 

-'- T 
C = A .D.A C(fv) = 0 

A(t) = F(t).A(U(t), t s t) 

(1.4.4) 

( 1.4.5) 

(1.4.6) 

where A is an invariant tensor. In Appendix A the invariancy of S and Cis shown and 

some commonly used choices of the tensor A are discussed. 

The invariant heat flow vector h is defined togelher with an invariant temperature 

gradient vec:tor g: 

.. AT 9= .g ( 1.4.7) 

The princ iple of objectivity states that tor the invariant constitutive quantilies the gen

era! relationship 1.4.2 reduces to: 
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ifJ(t)= 1/l(C(t), 8(t),ff(r); r ~ t) 

11(t) = 17(C(r), 8(!), g(r); r :>: t) .-
11( t) = h( C( r ), 8( t ), _§'( t ); r ~ t) 

S(t)= S(C(r), 8(r),§(r); r ~ t) 

(1.4.8) 

(1.4.9) 

( 1.4.10) 

( 1.4. 11) 

An example of a constitutive equation, which obeys the principle of objectivity is 

Fourier's law. This law assumes that the heat flow is a linear function of the temper

ature gradient: 

b = - K.9_ (1.4.12) 

where K is an invariant and symmetrie tensor. In terms of the objective heat flow and 

temperature gradient vectors this relationship becomes: 

- T b.= - A.K.A .9= - K.g (1.4.13) 

where Kis objective. From inequality 1.3.11 il follows that Kis positive definite. Often 

il is assumed that K reduces to: 

K = k.I ; k > 0 (1.4.14) 

where k is the thermal conductivity. 

In this thesis, the main interest is the constitutive relationship for the stresses. As the 

entropy and the free energy enter the Clausius-Duhem inequality, they have to be 

taken into account as well. For the heat flow, il is assumed that Fourier 's law holds. 

1.5 Further simplifications 

In the next two chapters the consequences of two well-known methods for simplifying 

the general constitutive equations, are discussed and compared. 

The first method is achieved by assuming that the current value or constitutive quanti

ties only derie11ds on the current value of a number of variables, including so-called 

hidden variables. The rate of these hidden variables depends on the same variables 

as the constitulive quantities. In this way, the history of the body under consideration 

ca n be taken into account. This is the subject of the next chapter. 
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The second method is based on the decomposition of the Cauchy stress tensor (J and 

the decomposition of the deformation rale tensor D inlo an elastic, or reversible, pari 

and an irreversible pari. This melhod is especially popular In the field of metal 

plasticity. Il is discussed in more detail in chapler 3. 
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2 Hidden variables 

2.1 /ntroduction 

In this chapter the constitutive equations 1.4.8, 1.4.9 and 1.4.11 will be reformulated in 

current variables only. These current variables are the already introduced strain and 

strain rate tensors C and C, the temperature B and the temperature gradient g, bul 

!here is also a set of so-called hidden variables. These variables can have a physical 

rneaning, bul !heir main property is, that !heir evolution in time is described by the 

current variables themselves. 

In the next two subparagraphs the consequences of the introduction of hidden vari

ables will be analysed, taking into account the second law of thermodynamics (the 

Clausius-Duhem inequality) and isotropy. Some possible simplifications will be dis

cussed. In the rest of the chapter some well-known classes of constitutive behaviour, 

such as viscous and elastic behaviour will be discussed. These classes are obtained 

by introducing no hidden variables, one hidden scalar and, finally, one hidden tensor. 

In the last two subparagraphs of this chapter one hidden scalar and one hidden tensor 

with a clear physical rneaning will be introduced. This will lead to two constitutive re

lationships for meta Is. 

2.2 The consequences of the introduction of hidden 

variables 

/\s clisrnssed in lhe previous subraragraph some assumptions will be made concern

ing the constitutive relationships 1.4.8, 1.4.9 and 1.4.11. The first assumption is that the 

constitutive relationships only depend on the current va lues of certain variables, such 

as the pse11do strain and strain rate tensors C and C, the ternperature 0,the temper

ature gradient g and finally some hidden, independent variables. Such variables can 
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be scalar and vectorial and tensoriat quantities, which means !hal the hidden variabtes 

can be defi ned by: 

q1, .. " q5 : scalar variables 

q1, ... , 9v : veclorial varia bles 

Q1, ... , a, : tensoriat variabtes 

For reasons of compactness of notatlon, these hldden varlables are regarded as the 

components of a column J: 

(2.2.1) 

lt !hen follows !hal the constitutivP. relationships can be formulated by: 

/\ /\-...!.... _......, 

c = c(C, C, 8,fJ,J) (2.2.2) 

All the quantities in this relationship depend on time bul, for the sake of brevity this is 

not mentioned in 2.2.2 . 

As atready stated, the constitutive variables are,ln genera!, a function of the current 

and past states of the body. This means that the hidden variables in 2.2.2 must take 

into account the inftuence of the past states on the current value of the constitutive 

varia bles. This leads to the second assu mption: the ra te of the hidden varia bles is 

determined by exactly the sa me variables, as in the case of the constitutive varia bles. 

In mathematica! form, this assumption leads to: 

J =J(c,c,e,§,J) (2.2.3) 

The consequences of these two assumptions with respect to the Clausius-Duhem ine

quality and isotropy, will be investigated. lf (J and D, in inequality 1.3.10. are rep laced 

by the invariant stress and strain rate tensor S and C, this inequality b8comes: 

Po-(~+ ê.11) - S:C ~ 0 

With a constitutive relationship of the type 2.2.2 the ra te of 1/1 is given by: 

· r)ijl -'· tJij1 .~ 1)1/! . r)l/i . - ,.:, 
ijl = -_-_ :C + -. :C + - 0 + -- .g + X x J ac ac ao il§ ·· 

-

(2.2.4) 

(2.2.5) 

where X x J is a formal notation for the contribution to J1, due to the hidden variables - -J . This implies !hal X follows frorn the require me nt that: 
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tf1( .... ,J + dJ)-t/t( .... ,J)= x x dJ (2.2.6) 

for each infinltesimally small column d J. Wilhln this relationship for t/t, the evaluation 

relatlonship 2.2.3 and the fact, !hal the hidden variables, C, C and .lf. form a set of in

dependent parameters, the Clausius-Duhem inequality 2.2.4 leads to: 

ot/t 1 - ~ ~ ..: 
( -=- - - .S ): C + X x J s 0 

iJC Po 

otft 
-::;::-=0 
iJC 

Dt/t --ae= ->1 

iJijl 
-=0 off . 

(2.2. 7) 

(2.2.8) 

(2.2.9) 

(2.2.10) 

All the choices that will be considered for J are independent of the strain rate tensor 

C. In that case, it directy follows from 2.2.7 that 2.2.7 can be split into the following two 

pa ris: 

Dij! 1 - ~ ( -=- - - .s ): c s 0 
iJC Po 

(2.2.11) 

XxJsO (2.2.12) 

In order to fulfil inequality 2.2.11 il seems obvious to make the following assumption for 

the constitutive relationship of the stress S: 

- aijl 4 _,_ 
S = Po·-=-+ M:C ac 

(2.2.13) 

where the fourth order tensor 'M is a semi-positive '.idir.ite fourth order tensor which 

may depend on the state and hidden variables. This tensor is usually simplified toµ .'/ 

. Then relationship 2.2.13 becomes: 

- . Dij! ~ 
5 = p O· - _-. + /1. C ; /1 ~ 0 

ac 
(2.2.14) 

The scalar 11 is called the viscosity which, for most materials, depends on the sta le and 

hidden variables. 
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Another widely accepted assumption has been described in De Groot (1951) and De 

Groot and Mazur (1962). In order to fulfil the inequality 2.2.12, the authors argued that 

it seems logica! to assume that: 

J+L(X)=O (2.2.15) 

where L Isa linear, semi-positive definite operator on X. 

Another well-known assumption is !hal the operator L is symmetrical , i.e.: 

L ( A) x B = A x L ( B) for VA, B (2.2.16) 

The assu mptions 2.2.15 and 2.2.16 have of ten been discussed in literature. As al ready 

men!ioned, equa!ion 2.2.15 is widely accep!ed. This is not the case for the so-called 

Onsager relationships 2.2.16, as can be seen in Truesdell (1968). De Groot, however, 

gave some arguements for the symmetry of the operator L, derived from statistica! 

!hermodynamics (De Groot and Mazur, 1962). 

2.3 /sotropy 

A special class of rnaterials are the so-called isotropic materials. The constitutive 

behaviour of these materials is equal for every direction. Most materials are consid

ered to be isotropic. 

For isotropic scalar functions the following theorem can be employed. The proof of this 

theorem can be found in Muller (1985), for instance. 

Let f be an isotropic scalar function of some tensors A and B, sorne vectors a and band 

some scalars a and b: 

f = f(A, B, 9., /), a, b) (2.3.1) 

Then, because of the isotropy, f can only be a function of invariant charac!eristics of the 

variahles: 

(2.3.2) 

This theorem says, for instance, that f can '! just depend on one single component of the 

tensor A or B, or on combinations like a.B.a. Similar results are found if f depends on 

more than two tensors or vectors. 
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Previously it was argued that the free energy tf! is a function of C , ()and J, where the 

hidden variables in the column J are scalar, vectorial and tensorial quantities. In the 

sequel il will be assumed that tf! is an isotropic function of C, ()and J and only some 

special cases are considered. 

lf !here Is only one hldden vectorlal variable g, !hen thls hidden vector can be replaced 

by a hidden scalar, which can be interpreted as the length of the vector g. This is a 

direct consequence of the the theorem 2.3.2 . Hence !hé case of one single hidden 

vector is not taken into account in this chapter. 

Far-reaching consequences of isotropy can be derived for the case, in which the free 

energy is quadratically expanded, as was suggested by De Groot (1951). Theorem 2.3.2 

then gives: 

s 1 

t/! = i/1 0 + ~ C:4E:C+ rx81:C + t:cjjf3;q;)+ l(C:4N;:d)+f ya2 + 
1=1 1=1 

s t s s,I 

+ e 2.)~,q;) + e L(c;l:Q;) + ~ L((181qj) + L(K;iq/Q1) + (2.3.3) 
/= 1 I= 1 l,}= 1 IJ= 1 

1 

+ + l (Q/B;i:Qi) 

iJ=1 

v 

+ + L(v18;-~[j) 
IJ= 1 

where rx, {!;, y, Ó;, r.;, C;. K 1; and v1; are constant, and where all fourth order tensors, like 

'E, 'N, and 'B;;. are of the type: 

(2.3.4) 

The relationships 2.2.14 and 2.2.9 for the stress S and the ent ropy '1 become: 

s 1 

S = pd_ 4E:C + rxfJ I + ~(f3;q1) + l(4N1:Q1) ) + 11C 

/- 1 i = 1 

(2.3.5) 

s 1 

'1 = - rx/:C - yO - I(r5 1q;)- I(c;/:Q;) (2.3.6) 

i= 1 i=1 

One of the striking results is !hal in these relalionships for the stress and enlropy no 

hidden vectors enter. 
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As already mentioned in the first section of this chaptor, only a few simple cases will 

be considered in the following subparagraphs by introducing no hidden variables, one 

hidden scalar, one hidden tensor and finally one hidden scalar and tensor. Special at

tention will be given to the relationships in 2.2.14, the so-called stress-strain relation

ships. 

2.4 Elasticity and simpte visco-e/asticity 

In this subparagraph the case will be considered, in which the free energy doesn' t 

depend on any single hidden variable. The genera! expression for the free energy !hen 

becomes: 

i/!=t/l(C, O) (2.4.1) 

and for isotropic materials this relationsh ip reduces to: 

(2.4.2) 

The stress-strain relationships can be easily obtained by substitution of 2.4.2 in 2.2.14: 

(2.4.3) 

Materials with constitutive equations of this kind are called simple visco-elastic mate

rials. lf 11 = 0, i.e. no viscosity, the material is called pseudo-elast ic. Then the stress

strain re lationship reduces to: 

and the rate of the free energy is given by: 

. 1 -· ~. 

i/!= - S :C + 
Po 

rî l/I . 1 . 
- 0 = - CJ:D - 171J ao P 

(2.4.4) 

(2.4.5) 

Hence, in the isothermal case, the added rnecl1anica l power equals the rate or the free 

energy. This result is discussed in Appendix B. 

A m;iterial is called elastic if it is pseuclo-elastic and if the free energy depends on 0 

and on the Cauchy strain tensor C, introduced in section 1.2. From this definition il is 
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deduced in Appendix B that the Cauchy stress tensor CTwill be a quadratical function 

of the objective Cauchy strain tensor B: 

(2.4.6) 

A final result, obtained in Appendix B, and used in the next chapter, is that the 

eigenvalues "'of the stress tensor (i.e. the main stresses) for an elastic material are 

given by: 

( 2.4. 7) 

where À.l, À.~ and À.! are the eigenvalues of B. 

2.5 One hidden scalar 

The simplest extension in the concept of hidden variables to the simple visco-elastic 

model, is the introduction of one hidden scalar q: 

i/!=i/!(C,(),q) 

According to 2.2.14 and 2.2.15 the stress-strain relationships are given by: 

-- oi/! ~ . 
S =Po---=-+ µC ac 

µ20 

. oi/! 
q + /. - = 0 · I > 0 aq . -

(2.5.1) 

(2.5.2) 

(2.5.3) 

where 1 is a scalar quantity. As an example, the isotropic, isothermal, quadratic ex

pansion of the free energy is considered. Then, 2.3.3 reduces to: 

(2.5.4) 

where 'E = E,'I + E,11 because of 2.3.4, while t/1 0 , E,, E" {i and ( are constant. Substi

tution in 2.5.1 and 2.5.2 gives: 

(2.5.5) 

c;+ l(q+ lfil:C = o (2.5.6) 
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Equation 2.5.5 can be decomposed info a relationship for the !race of S and a re

lationship for the deviatoric part 5d of S: 

(2.5. 7) 

(2.5.8) 

Il can be seen from 2.5.7 that Sd doesn 't depend on the hidden scalar q. Furthermore, 

il can be seen, that 2.5.6 and 2.5.8 forma set of two linear equations, relating q and the 

trace of S to the !race of C and C. With the definition of C in 1.4.5 it follows !hal: 

~ T 
l:C = D:(A.A ) (2.5.9) 

In the special case, in which A is a rotation tensor, this relationship reduces to: 

t:c = l:D = }_ so 1:c = ln(J) 
J 

In this case the definition of Sin 1.4.4 results in: 

( 2.5.10) 

(2.5.11) 

where Pn = - ~ f:(J is the hydrostatic pressure. Substilution of 2.5.10 and 2.5.11 in 2.5.8 

and 2.5.6 yields: 

(2.5.12) 

q + /( q + I /3 1 n( J) = 0 (2.5.13) 

From these equations il can be seen !hal by eliminating q from these equations are

lationship remains between the hydroslatic pressure and the relative volume change 

J. So, in this case, the introduction of one hidden scalar leads to what is normally 

called a p-V relationship. 

Another well-known special case of 2.5.7, 2.5.8 and 2.5.9 is obtained, if the scalar factor 

f1 becomes infinite. Then the equalions reduce to l:C = 0. A trivia! interpretation of this 

relationshir is possible if Ais a rotation tensor, since it then fellows from 2.5.10 that 

tr(D) = 0 and J = 1, which is the requirement fora material that is incompressible. 
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Usually incompressibility, is accounted for in a different way, which is also applicable 

when A is nota rotation tensor . In that case, the requirement of incompressibility is 

considered as a restriction, which can be expressed mathematica lly by: 

(2.5.14) 

In the application of the second law of thermodynamlcs, this restriction can be taken 

info account by using a Lagrange multiplier p. The ClausiUs-Duhem inequality is !hen 

replaced by: 

and il is easy to see that the stress-strain relationship 2.2.14 becomes: 

- -1 -T al/f -'-
5 = - pA .A +Po -=- + µC ac 

(2.5.15) 

(2.5.16) 

Substitutlng relationship 1.4.4 into this result, the following expression is obtained for 

the objective stress tensor <J: 

iJl/f -' T 
<J = - pi+ A(p0 -=- + 11C)A 

ac 
(2.5.17) 

Il can be seen from this result that the requirement of incompressibility leads to the 

addition of - pi to the Cauchy stress tensor. For this reason incompressibility is taken 

into account in the following by separating the Cauchy tensor in: 

a = - pi+ r (2.5.18) 

where a constitutive relationship is given for r. 

From the results of this subparagraph it can be seen !hal the introduction of one hidden 

scalar variable can lead to a well-known material behaviour, although no physical 

meaning had previously been given to !hal hidden varlable. 

2.6 Generalized visco~elastic material behaviour 

The ohvious extension to the previous subparagraph is the introduction of one hidden 

tensorial variable Q. The free energy is given in this case by: 
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l/! = l/!(C, e, Q) (2.6.1) 

lf only the case is considered, in which the free energy is an isotropic, quadratic func

tion, as in 2.3.3, il fellows that: 

- 4 - 4 ~ 

S = E:C + N:Q+ rxOI+ µC (2.6.2) 

. 4 4 - 4 
Q + L:( N:C + B:Q + dJ/) = 0 (2 .6.3) 

where 'E, 'N and 'Bare constant fourth order tensors and where il is assumed !hal 'L 

is symmetrie (Onsager relations) and positive definite (Clausius-Duhem) . For the time 

being il is also assumed that 'Lis constant. Then Q can be solved from 2.6.3 (see Ap

pendix C), which leads to: 

6 

Q = - I 4V,: fc 4N:C(t) + E O(r) I) e - À;(!-!) dr (2.6.4) 

i=1 

where the fourth order tensor •v and the scalars J..,(i = 1""6) are determined by: 

(2.6.5) 

From 2.6.4 il can be seen that Q is a history dependent strain tensor with a correction 

term for the temperature. This means that S depends not only on the current state of 

the body but also on the total history. 

Schapery (1964) made an extension of this model by introducing a reduced time X· He 

assurned that 'L can be written as: 

4 4- -
L = v L; tJ > O (2.6.6) 

where 'L is positive definite, symmetrie and constant, while tJ can be a function of the 

internal variables, except of C (2.2.12). Then the reduced time x is defined by: 

and using this variable, the evolution equation 2.6.3 becomes: 

dQ 4-. 4 4 --
- d + L: ( B:Q + N:C + rOI) = 0 

x 

This equation can also be solved for Q, resulting in: 
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6 \\ J 1 4 - - ,l 1-r Q= - ~ V,: 
0

( N:C(r)+ di(r)/)1>(r)e ,( >dr (2.6.9) 

/=1 

By substltution of this result in the slress-strain equation 2.6.2 a so-called integral 

model for the stresses is obtained. lf 'Nis regular, a so-called differentia l model can 

be oblained. From 2.6.2 il follows !hal: 

-4 - · 4 - -'-· 
Q = N:(S - E:C - µC - rxO/) (2.6.10) 

and lhis result can be used to eliminale Q from the evolution equation 2.6.3, yielding: 

~ 4 - ~ 4 -'-· 4 - . 
S + X:S = 11C + Y1:C + Y2:C + rxOI+ ez (2.6.11) 

where the fourth order tensors 'X, 'Y, and 'Y2 and the second order tensor Z are given 

by: 

(2.6.12) 

(2.6.13) 

(2.6.14) 

(2.6.15) 

The models obtained are still very complicated and are usually simplified by making 

further assumptions. In order to obtain relationships which are well-known from liter

ature, the following simplification will be considered: it is assumed !hal the fourth 

tensors '8, 'N, 'E and 'L satisfy the requiremenls: 

(2.6.16) 

(2.6.17) 

wilh positive scalars E, and,\ and non-negative E2 • Substilulion of 2.6.17 into 2.6.11 

results in: 

1 ~ 1 -
-- s+-S= 
E1 A. 

µ c·. /1 /1. -· 
-- C + ( 1 + - + - )C + 
E1 A. E1 

+ ( !_~ tr( c) + ~ 0 + ~ 0)1 
E1 A. E1 

(2.6.18) 
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This equation can be reformulated in terms of the Cauchy stress tensor CJ and the de

formation rate tensor D by using the definition of the invariant tensors S and C, defi ned 

in section 1.4. A lengthy but stra ightforward derivation yields: 

1 A 1 1 1 T µ V /1 f1 T 
-CJ+(-tr(_D)+-)CJ=-A.A (-D+(1+-+-)D).A.A + 
E1 E1 Ä. J E E1 Ä. E1 . (2.6.19) 

+ ~ ( E~ D:(A.A r) + ci: ~ c B + ;
1 

B)A.A r 

A V 
The objective rates (J and D of respectively (J and D are defined by: 

A · · -1 · -1 T 
CJ = CJ - (A.A ).CJ - O".(A.A ) ( 2.6.20) 

V · · -1 T · -1 
D = D + (A.A ) .D + D.(A.A ) (2.6.21) 

Now the tensor A is chosen to be a rotation tensor, in such a way that A still satisfies 

the requiremenl 1.4.6. In !hal case the tensor À.A-• is skew-symmetrical: 

(2.6.22) 

A V 
and the objective rates G and G of a tensor Gare identical: 

A V . . -1 . -1 
G = G = G - A.A .G + G.A.A (2.6.23) 

Based on the following choices for H:, very well-known rates of this type are the 

Jau ma nn rate: 

(2.6.24) 

and the Dienes rate: 

A.A-- 1 = R.Rr and so A = R (2.6.25) 

In literature other objective rales are often used in which A is nol a rotation tensor. 

Some of these rates will be discussed in the next chapter. 

lf A is a rotation tensor, then the constilutive equation 2.6.19 reduces to: 
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1\7 1 1 1 µ \7 µ µ 
-CT+(-tr(O)+-)CT= -(- 0+(1+-+-)0+) 
f 1 f 1 À. J E1 À. f 1 

( + ( _§_ tr(O) + ~ e + _!!___ Ó)I) 
f1 À. f 1 

(2.6.26) 

v \7 
where CT and 0 follow from 2.6.22 and 2.6.23 by replaclng G by CT and 0 respectively. 

The model represented by 2.6.26 Is an extension of the so-called Oldroyd model that 

is described by, for instance, Crochet, Davies and Walters (1984). These authors only 

considered the case in which the material is incompressible and the temperatures is 

not taken info account. Then the model reduces to: 

CT= -pi+ t tr(O) = 0 (2.6.27) 

1\7 1 µV µ f1. 
-r + -r = -D + (1 + -+ -)D 
f1 À. f1 À. f1 

(2.6.28) 

For 11 = 0 this model reduces to the so-called Maxwell model. The relationship between 

r and 0 !hen becomes: 

1 \7 1 
-r+-t=D 
f1 À. 

(2.6.29) 

2.7 Elastic-plastic models with hardening 

The models In this subparagraph are based on the assumption that the free energy t/t 
depends not only on the total strain tensor c· and the temperature 8 bul also on a hid

den scalar variable q and a hidden tensorial variable Q: 

t/t = t/t(C, e. Q, q) (2. 7.1) 

Wilh respect to Q, il is assumed !hal this tensor represenls the plastic part of the total 

deformation. This interpretation of Q means !hal t/t will not depend on C and Q sepa

rately, bul on the difference C - Q of these tensors: 

t/t = if1(c - Q, o, q) 

From this relationship and 2.2.14, il immediately follows that: 

_ 01/1 ~ oif1 ~s =Po----=-+ pC = - p0-+ pC 
iJC àQ 
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and hence the Clausius-Duhem inequality 2.2.7 becomes: 

-'- -'- . 31/t 
- ir- µC :(C - Q)+ Po-i/~ 0 

3q 
(2.7.4) 

Here, n Is the so-called plastic work, defined by: 

n = fs:Qdr (2.7.5) 

The third assumption in this section is !hal the viscosily may be neglected, which 

means that µ = 0. As a consequence of this assumption the stress tensor S will be a 

function of C - Q, 8 and q: 

- 31/t - -
S =Po--=-= S(C - Q, 8, q) 

iJC 

Furthermore, the Clausius-Duhem inequality reduces to: 

. 31/t . 0 
- n + Poaq q ~ 

(2. 7.6) 

(2.7.7) 

As already stated before in section 2.2, the completion of this model requires the 

specification of the evolution equations 2.2.15 for q and Q. According to 2.2.15 and the 

definition of X in 2.2.6, q and Q must be specified as a function of C - Q, () and q. Be

cause of 2.6.6 this requirement is fulfilled when q and Q are specified in terms of S, B 

and q. With respect to Q, it is assumed that !here exists a function </> = <f>(S, 8, q), such 

that : 

. o<f> 
Q =--=as 

(2.7.8) 

This function </> is cal led the plastic polential and the relationship 2.7.8 is known as the 

flow rule. For isotropic materials it is common practice to assume that the plastic po

tential only depends on the second invariant Sd:s• of the deviatoric stress tensor 

s• = s - ~ tr(S)t: 

</• = !/>(H, Il, q) (2.7.9) 

Then the flow rule turns out to be given by: 

(2.7.10) 
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In practice it is often assumed that the free energy is quadratic in the strain tensor 

C - Q and that l/; is given by: 

1/1 = ~ (C - Q): 4E:(C - Q) + g(B, q) ( 2. 7 .11) 

Il follows from 2.7.6 and 2.7.10 that: 

(2.7.12) 

This Maxwell model is a very well-known constitutive relationship for elastic-plastic 

materials. Il can be brought into an even better known form, by using 

S = J.A- 1.u.A- 1 and C = A1 .D.A, and by considering the case where A is a rotation 

tensor, i.e. A'.A = I. With the notation of section 2.6 il can be easily seen !hal the 

constitutive relationship 2.7.12 becomes: 

-1-(~ + tr(D)U) + 2
3 J_ !±_ 4E·CJ0 = __!_ 4E·D 

Po H aH . J . (2.7.13) 

v 
Here (J is the Jaumann rate when A satisfies 2.6.24, or the Dienes rate when A satisfies 

2.6.25. Constitutive equations of this type are commonly used in the field of plasticity 

(see for example, Nagtegaal and De Jong (1980)). 

Until now no statements have been made concerning the hidden variable q. This vari

able will bring in the phenomenon 'hardening', which can be observed for meta Is. With 

respect to this variable two cases will be considered in this section: work hardening 

and strain hardening. In the first case it will be assumect that q equals the plastic work 

n , which has been defined in 2.7.5: 

Thls choice for q implies that 1/1 and S become functions of C - Q, 8 and n : 

- - al/; - -
l/!=l/;(C-Q,8,n) ; S=Po--=--=S(C-Q,B,n) 

ac 

Besides, the inequality 2.7.7 now becomes: 

where h11 is the so-called work hardening function: 

iJI/! 
h = po-

n an 

2 1 liddcn vArinhl~ 

(2.7.14) 

(2.7.15) 

(2.7.16) 

(2. 7.17) 
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From the definition 2.7.5 of n it can be seen that: 

. - . - àrjJ à<P 
n = S :Q = S : --=- = H -

àS àH 

and 2.7.16 reduces to: 

àrjJ 
( 1-h )->0 n àH -

(2.7.18) 

(2.7.19) 

With the choice for the hidden variable q the constitutive model is completely deter

mi ned as soon as the plastic potential <P = rjJ(S, n, 0) is specified. From 2. 7.12 and 2.7.19 

il fellows that in fact only the partial derivative of <P to H must be determined. This 

function can easily be determined experimentally by using relationship 2.7.18. Ama

terial with a constitutive model of this kind is called an elastic-plastic material with 

work hardening. 

In the second case, il is assumed that q equals the so-called equivalent plastic strain 

f.. This strain is defined by: 

- 2 . . ~= jf;i; dr 11 

(2.7.20) 

Then if1 and S become: 

S=S(C-Q,O,E) (2.7.21) 

From the definitions of n and ï it fellows !hal: 

f. = lit_l = J...lirl 
àH H 

(2.7 .22) 

and furthermore that the inequality 2.7.7 becomes: 

ir. he ----20 
lrrl H 

(2.7.23) 

Here, hr. is the so-called strain hardening function, defined by: 

(2.7.24) 

In this constitutive model lf1 or the rartial derivative of if1 to H still has to be determined. 

Again this ca n easily be done experimentally with relationship 2.7.22. A material with 
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a constitutive model of this kind is called an elaslic-plastic material wilh strain hard

ening. These models are commonly used in the field of plasticity. 

2.8 Materials of type N 

In the previous subparagraph the hidden scalar variable q was chosen to be either the 

plastic work or the plastic strain. This means that in both cases q was defined by giving 

it a physical meaning. In the other subparagraphs of this chapter, however, q was 

defined by prescribing its rate q. This is also done in lhis subparagraph, but in such a 

way !hal the rate of q obeys a certain normallily rule, as did the plastic slrain rale Q in 

the previous section. 

The first assumplion tor materials of type Nare that relationships 2.7.2 and 2.7.6 hold 

for these materials: 

- ûtf! - -
t/!=t/!(C-Q,9,q); S=Po--=-=S(C-Q,9,q) 

oC 
(2.8.1) 

The second assumption is !hal !here exists a plast ic potent ia 1 4> = 4>( S , h , 9) , such that 

(see Kim and Oden (1984) and (1985)) : 

. oef> 
Q = -=-as 

where h is cal led the hardening function, that is defined by: 

otf! 
h = po 

ûq 

(2.8.2) 

(2.8.3) 

In this subparagraph the same simplificalions will be considered lort/! and 4> as con

sidered in relationships 2.7.9 and 2.7.12: 

1 - 4 -
t/! = 2(C - Q): E:(C - Q) + g(O, q) ; !/> = i/> (H, h, 8) (2.8.4) 

Tltis means !hal the same constitutive relationship is obta ined as in relationship 2.7.12. 

The Clausius-Duhem inequality 2.7.7 is reduced to: 

i!i/> o<fi 
(H-- h-) 2 0 

oH oh 
(2.8.5) 

l<im and Oden (1984 and 1985) suggested the following choices for t/! and <P 
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(2.8.6) 

00 

~ = D \ ( -1)' BI ( _!}__ r- 1 
0~ i1(2ni- 1) H 

(2.8. 7) 

l=O 

Substituting this equation into 2. 7.12, the fol lowing constitutive relationship is obtained: 

-4 _,__ 3Do -a(l!...)2° a -'---
E:S - 2hH e H S = C (2.8.8) 

This constitutive model was first proposed by Bodner and Partom (1975). Kim and Oden 

(1985) developed a numerical solution strategy for this model in the case, where the 

Dienes rate is used (see 2.7 . 13) . The variables hand q follow from 2.8.2 and 2.8.3: 

(2.8.9) 

. a~ ir. HD0 -B(l!...)2° 
q=-=--=--e H 

ah h h2 
(2.8.10) 

Finally il can be easily deduced !hal this model obeys the Clausius-Duhem inequality 

2.8.5. 

One may wonder whether the work and strain hardening materials, that discussed in 

the previous section, can be of type N. For work hardening mater ia Is relationship 2.7.18 

must hold and for materials of type N relationship 2.8.2 must hold. A combination of 

these requirements leads to: 

. . a~ o</> 
q=n=H-=-

iJH oh 
( 2.8.11) 

This requirement can be satisfied, if the plastic potential can be expressed as follows: 

(2.8.12) 

lf the inverse of the relationship for ir. in 2.8.11 exisls and if relationship 2.8.4 ho Ids, this 

result means that the stress H can be expressed as follows in terms of the plastic work 

n and the plastic work rate ir.: 

Il= fln, O)fiir., 0) (2.8.13) 

A similar result can be obtained for strain hardening materials. Relationships 2.7.22 

and 2.8.2 give: 
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~ 8</> 8</> 
e=-=-aH ah (2.8.14) 

From this requirement it fellows that </> must be a function of H + h: 

</> = </J(H + h, 8) (2.8.15) 

and that the stress H can be expressed by an add it ion of two functions, w hich depend 

on the plastic strain and the plastic strain rate respectively: 

(2.8.16) 

2.9 Some final remarks 

In this chapter visco-elastic and elastic-plastic models have been cons idered. The 

bases were the definit ion of a pseudo stra in tensor C, with correspond ing stress tensor 

S, and the theory of the hidden variables in thermodynamics. Il has been shown that 

with this theory Oldroyd and Maxwell models were obtained, where the objective rate 

for the Cauchy stress can be the Jaumann or the Dienes rate. This means that these 

models are thermodynamically speaking completely acceptable. 

The use of these objective rates has been the po intof much discussion in literature. In 

the next chapter, objective rates will be discussed in more detail. From other starting 

points similar visco-elastic models will be obta ined, although mostly with the use of 

other objective rates. 

The mode ls obtained in thi s cha pter can be considered as definit ions of c lasses of 

materia l behaviour . Experiments must dete rmine whether a certa in ma!eria l fits such 

a mode l. 
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3 The decomposition of constitutive equations 

3.1 lntroduction 

As already discussed in the last subparagraph of chapter 1, a very common way of 

deriving constitutive equations is by decomposing the Cauchy stress tensor (J and the 

deformation rate tensor D. Il is !hen assumed that: 

- The Cauchy stress tensor (J can be decomposed into two parts: 

(3. 1.1) 

For incompressible materials the Cauchy stress tensor is decomposed into three parts: 

a = - pi+ r = - pi+ r 1 + r 2 (3.1.2) 

The Cauchy stress is a constitutive quantity, which is in fact defined in terms of the 

state variables. This means that the decomposition only adds two constitutive quanti

ties to the list in subparagraph 1.3 and these quantities are also to be defined in terms 

of the state variables. The total stress or one of the decomposed parts is denoted by 

(Je n in 3.1.1 and by Tc,1 in 3.1.2 respectively. 

- The deformation rate tensor D consists of an elastic and a viscous or plastic part: 

(3.1 .3) 

lnterpretating the decomposition of the deformation rate tensor is a problem since D 

is a well-defined kinematica! quantity. Several interpretations have been given in lit

ernture. Some of !hem will be discussed in subparagraph 3.1, and !heir usefulness 

assessed. 

- For the viscous part of the deformation the deviatoric part of fJc;i is proportional to 

D, : 

(3.1.4) 
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v 
and for the elastic part an objective rate crM of crM is proportional to D, : 

v 4 
cru>= E:De 

For incompressible materials these re lalionships become: 

v 

(3.1.5) 

(3.1.6) 

An olher important problem is to decide which objective rate er can or should be used. 

This problem is discussed in subparagraph 3.3, where the definilion of e laslicity from 

subparagraph 2.4 is the starting point. 

3.2 The decomposition of the deformation rate tensor 

Additive decomposition of the deformation rate tensor D in an elastic part D, and a 

viscous part D, yields: 

(3.2.1) 

Since Dis objective, D. is proportional to the object ive stress rate and D, is proportional 

to the deviatoric part of the Cauchy stress, il is required that bath D, and D, are objec

tive: 

(3.2.2) 

Here, the rotation tensor Q represents an arbitrary rigid body rotation in the current 

state and D, and D, are the e lastic and viscous deformation rate tensors in the rotated 

cu rrent state. 

In literature many definitions of either D, or D, are proposed, each with its own 

kinemati ca ! interpretation. The ether tensor, i.e. D, or D,, then fellows from 3.2. 1. In the 

sequel, some definitions, of which some are common ly used, are considered in more 

detail, with specia l atlention to the objectivity of the resulting tensors D, and D,. Each 

rlefinition, resulting in non-objective tensors D, and D,, is considered to be unaccept

abte. 

To define D, and D, usually a so-ca lled unloaded state S" is introduced. This is gener

é! lly an imaginary state in which lhe body is seen as a set of uncoupled, unstressed 
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infinitesimally small material elements, and which can be attained from the current 

state S, by relaxing the stresses on each of the material elements. For each element 

il is assumed that the deformation from S, with respect to S" is purely elastic and is 

uniquely defined up toa rigid rotation. Let x be the position vector of a material point 

in the current state S, and let)(, be the position vector of the same material point in the 

unloaded state S" then is the deformation tensor F, of the state S, with respect to the 

unloaded state S" deflned by: 

F = àK 
e Ol\'v 

(3.2.3) 

and let V, be the Cauchy strain tensor in the polar decomposition of F,: 

(3.2.4) 

Then v. is uniquely determined by the elastic unloading from S to S" while the defi

nition of the rotation tensor R, is still cornpletely free, as the unloaded state was de

fined up toa rigid rotation . 

The deformation tensor of the unloaded state S, with respect to the reference state 5 0 

is denoted by F, . Then , the deformation tensor F of S, with respect to S0 and the tensors 

F, and F" are related by: 

(3.2.5) 

lf the body, in currenl state, undergoes a rigid rotation Q, the tensor F transforms ac

cording to: 

F= Q .F (3.2.6) 

The transformation rule for R, is not only derived from the rigid body rotation Q of the 

current state, but also from an independent rigid bociy rnt:ifi()ri Q, of the unloaded state, 

because the unloaded state was uniquely defined up toa rigid body rolation. From 3.2.5 

and 3.2.6 il can be easily seen !hal the transformation rules for V" R. and F, will be 

given by: 

(3.2.7) 

Nemet-Nasser (1979, 1982) proposed to define the viscous deformation rate tensor D, 

by: 

(3.2.8) 

With the lransformation rul es 3.2.6 and 3.2.7 for F and F,. the transformation rule for 

D, is given by: 
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-- T 1 T · -1 T · -1 T T 
Dv= Q.Dv.Q + 2 Q.(Q .Qv-fv.F + (Q .Qv.Fv.F ) ).Q + 

1 T · -1 T · -1 T T 2 Q.( ( Q .Qv - l).Fv.F + ( ( Q .Qv - 1).Fv.F ) ).Q 
(3.2.9) 

Comparison of this result with the objectivity requirement 3.2.2, yields !hal Q, has to 

satisfy: 

(3.2.10) 

This means !hal Q should be constant, a requirement that can'! be satisfied. Hence, 

using the definition 3.2.8 according to Nemet-Nasser, !here is no choice for Q, and 

therefore no definition of R., for which D, is objective. This means !hal Nemet-Nasser's 

definition of the viscous deformation rate tensor D, is unacceptable. 

Lee (1969, 1981) proposed a definition for both D. and D,: 

(3.2.11) 

However the sum of these proposed tensors is not equal to D, which means that 3.2.1 

is not satisfied. This can be corrected by a slight modification of the definition of D" and 

by maintaining the definition of D,. After lhis modification, D, is given by: 

(3.2.12) 

A lengthy but straight-forward calculation now yields: 

- T 1 T · -1 T · -1 T T 
Dv= Q.Dv.Q + 2 Q.(Fe.Qv.Qv.Fe + (Fe.Qv.Qv.Fe ) ).Q (3.2.13) 

and this means that D, is objective, only if Q[.Q, = 0, which means that Q, is constant. 

Since Q, = I in the reference state, it can be seen !hal D, is objective if and only if 

Q, = /. In this case, the transformation rules for F,, F, and R. become: 

(3.2.14) 

This is the case if the unloaded state S, is invariant for all rigid body rotations of the 

current state. lt can therefore be concluded that the modified definilion 3.2.12 of Lee for 

D, is acceptable, if the rotation tensor Q, equals the idr-ntity tensor /. This conclusion 

is in complete agreement with Besseling (1968) and Van der Heyden and Besseling 

(1984), who referred to the inv;iriant unloaded state as the natural reference state. 

As a third example, the definition of D" according to Kim and Oden (1985), is consid

ered. Starting from the polar decomposition of F • 
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F= R.U; R.Rr = I; de~R)= 1 (3.2.15) 

they deflned o. by: 

1 · -1 · -1 T T 
Dv= 2R.(Kv.U + (Kv.U ) ).R (3.2. 16) 

where K. is glven by: 

(3.2.17) 

In general, it is noted that K, is not the elongation tensor U, from the polar decompos

ition of F, and, furthermore, !hal K, is not a symmetrical tensor. In lhis case il can be 

shown !hal: 

(3.2.18) 

where K, = Rr.ar.Q •. R.K,. 

This result implies that D, is objective if and only if K.~ K, . a requirement, which can 

only be met if Q. = Q for all Q. From 3.2.7, it can be seen that the definition of D" ac

cording to Kim and Oden, is acceptable if and only if the definition of the tensors 

F •. F. and R, lnvolve the transformation rules for these tensors being given by: 

(3.2.19) 

This means that the unloaded state S, will not be invariant for rigid body relations of 

the currenl state S: if the current state undergoes a rigid rotation Q, t he unloaded state 

has to undergo the sa me rigid rotation Q. 

Finally a slight modification is considered, with respect to Kim and Oden's definition. 

The elongation tensor U. from the polar decomposition F, is introduced for this pur

pose: 

(3.2.20) 

where U, is a symmetrie, positive-definite tensor. The transformation ru les for the 

tensors U, and R, follow from the clefinition of F, in 3.2.5 and from the transforrnation 

rules in 3.2.7: 

(3.2.21) 

For D. a definition sirnilar to that in 3.2.16 is used: 
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1 · -1 · -1 T T 
Dv=2R.(Uv.U +(Uv.U ) ).R (3.2.22) 

From this definition, and the fact that U, and U are invariant tensors, il can easily be 

seen that: 

(3.2.23) 

This means that the rigid body rotalions of the unloaded state S, can be chosen com

pletely independently of the rigid body rotations ol the original state S. 

3.3 Rate type constitutive equations for elastic bodies 

The ullimale aim of the decomposition D = D. + D, is to formulate constitutive 

equations tor certain classes of material behaviour. An essential step in this approach 

v 
is the specification of the el ast ic part of the constitutive equation (J = 4L:D, , which re-

v 
lates an objective stress rate (J of the Cauchy stress to the elastic part of the defor-

mation rate tensor D •. Some of the possible defi n::;..;;;.:; for D, were discussed in 

subparagraph 3.2. The objective rate and the proportionality tensor •L still have to be 

v 
specified. The purpose of this subparagraph is to analyse which (J is acceptable lor a 

v 
given 'L in such a way that the rate type equation (J = •L:D, results in a correct de-

scription of elastic behav iour, as defined in subparagraph 2.4. For this purpose D, can 

be repla ced by D. 

Only isotroplc elastic behaviour will be considered In this subparagraph. The tensor 

'Lis then given by: 

(3.3.1) 

where 11 1 and p , may be functions or the invariants of the si ra in tensor B = F.F. Besides 

this, for elastic be haviour, the Cauchy stress tensor fT is related to the stra in tensor 

by (see 2.4.6): 

(3.3.2) 

where a0 , a, and a, may be funct ions of the invari ants o f P. 
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In subparagraph 2.6, two alternalive objective rales were inlroduced (see 2.6.20 and 

2.6.21): 

/';. · · -1 · -1 T 
<J = <J - (A.A ).<J - <J.(A.A ) (3.3.3) 

V · · -1 T · -1 
<J = <J + (A.A ) .<J + <J.(A.A ) (3.3.4) 

where the tensor Ais introduced in subparagraph 1.4. From 1.4.6, il can easily be seen 

that bath these objective rates can be replaced by: 

v 
<J = èJ - (Q + H).a - <J .(Q + H)T (3.3.5) 

where H is an objective tensor. Two commonly used objective rates, the Jaumann and 

Dienes rate, were introduced in subparagraph 2.6. Two other very well-known rales 

can be oblained for the following choices of H 

H = D - ~ tr(D)I Truesdell rate 

H = - D - J__ tr(O)/ Cotter-Rivlin rate 
2 

v 

(3.3.6) 

~ubstitution of 'L according to 3.3.1 and of <J according to 3.3.5 in the rate type equation 

a = 'L:D yields: 

(3.3.7) 

The problem to be analysed in this subparagraph can now be formulated as: which 

choices for H are acceptable, if it is required that the rale type conslilutive equation 

3.3.7 results in a stress-strain relationship of the kind 3.3.2. 

From 3.3.2 il can be seen !hal a and B have the sarne orlhonormal eigenvectors 

n" n2 and nJ· lf the associated eigenva lues of <J and B are denoted by,,.",,. 2 and,,. l and 

respectively by ,ll, ,q and ,lj, il follows !hal: 

3 

(J = L rr;n;n; 
i= 1 

3 

B = \ À.2nn 
L' '·' 
i=1 

(3.3.8) 

Furtherrnore, it follows from 3.3.2 that the eigenvalues of (J can be expressed in terms 

of the eigenvalues of B: 

e; = ln(,l,) for i = 1, 2, 3 (3.3.9) 
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Il can also be shown !hal _o,.D.n, = e, for i = 1,2,3. Wilh these results il can be derived 

from 3.3. 7 that: 

for i = 1,2,3 (3.3.10) 

where H0 = n.H.n, for i = 1,2,3 and where 81; is the Kronecker delta. This equation can 

be interpreted as a first requirement on the tensor H. Il follows from lhis equation that 

the diagonal components H11 of H must be proportional to the diagonal components e, 

of D. To fulfil this requirement, H has been composed by a part proportional to D. and 

by apart which diagonal components equal to zero: 

H = {3D - ytr(D) + H n;.H .n; = 0 for i = 1, 2, 3 

Substitution of 3.3.11 into 3.3.10 gives: 

3 I au 
( -' - (µ 1 + 2/3a ;)Ö;i - µ 2 + 2yu;)éi = 0 for i = 1, 2, 3 

oei 
}=1 

and since these equations must hold for every ë1 il follows !hal: 

(3.3.11) 

(3.3.12) 

(3.3.13) 

For the commonly used objective stress rates the factors f3 and y are constant. lf this 

property is assumed for f3 and y it can be shown !hal the set of nine differentiat 

equations 3.3.13 for the principle stresses ..,.,, u, and a 3 has a solution, if 11 1 and µ 2 sat

isfy certain requirements: !here exists a function f=f(J), such !hal (see Appendix D and 

Van Wijngaarden and Veldpaus,1986) : 

2 df(J) 
µ1=7(Go-fif(J)); 112=-dJ; f(1)=0 (3.3.14) 

Here, G0 is a constant, which can be interpreted as the shear modulus of the material. 

In the derivalion of relationships 3.3.14, the following resull has been used. Il can be 

easily deduced from equation 2.4.7, which expresses the relationship between the 

principle stresses and the free energy ij;, that : 

1 y = -
2 

(3.3.15) 
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With 3.3.14 and 3.3.15 the solution of 3.3.13 can be determined and is given in tensor 

form by: 

CJ = J_(f(J)I+ _§_(B{J-1)) 
J f3 

(3.3.16) 

where the straln tensor s/J is a symmetrical tensor with the same eigenvectors and 

eigenvalues as B: 

(3.3.17) 

This result means that the diagonal components of equation 3.3.7 completely deter

mine the solution for the Cauchy stress CJ, on the assumption !hal {J and y are con

stants. The only tensor still unknown is H. From equation 3.3.7 it follows that only three 

independent linear equations are left for the six unknown components 11;; = fl;.H.n1 

(i,j = 1,2,3 ; i # j) . These equatlons can be 1 nterpreted as constraints to be put on H . 

For this reason, three components can be freely chosen. At this point, it is assumed 

!hal the tensor ii is skew-symmetric, which turns out also to be the case for the com

monly used objective rates. Substitution of 3.3.16 and 3.3.11 into 3.3. 7 !hen yields after 

some reorganisation: 

- - r 
H =- H (3.3.18) 

and this equation completely determines the tensor H. 

To summarize, il can be stated that the rate type constitutive equation 3.3.7 results in 

a correct stress-strain relationship lor isotropic elastic behaviour, if µ 1 and 11, satisfy 

3.3.14 and the tensor H satisfies 3.3.11 with constant fl and l' = ~.The tensor ï-i may 

be chosen as skew-symmetric, in order to arrive at an unique solution. This skew

symmetric tensor has to satisfy 3.3.18. For the Cauchy stress, an infinite number of 

constitutive relationships has been derived in 3.3.16: each fi and each f=f(J) define 

!heir own stress-strain relationships 

3.4 Some properties of e/astic rate type relationships 

In this subparagraph some special topics of rate-type constitutive equations lor 

isotropic e lastic behaviour are discussed. First of all il is noted that ii = 0 for fl - ± 1 
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This follows easily from 3.3.18. In 3.3.6, il can be seen that, in this case, the objective 

rate equals that Truesdell rate for f3 = 1 and the Cotter-Rivlin rate for f3 = - 1. This 

means that the use of these objective rates, in the rate-lype constilutive equations, 

leads to a correct description of isotroplc elastic behaviour. The associated stress

strain relationships follow from 3.3.16 and are given by: 

CJ= j (f(J)I+ GdB-1)) for /3= 1 (3.4.1) 

CJ= >f(J)l+Gdl-B- 1)) for/3=-1 (3.4.2) 

Nexl, the Jaumann rate and the Dienes rate are considered. The Jaumann rate is found 

for f3 = 0 and H = 0, white the Dienes rate is found for f3 = 0 and n + H = R.Rr. How

ever, for f3 = 0 the relevant relationships of subparagraph 3.3 become: 

(3.4.3) 

(J = j (f(J) + G01n(B)) (3.4.4) 

(n + H).ln(B)- ln(B).(n + ii) = ln(B)- 20 (3.4.5) 

where the logarithmic strain tensor ln(B) is defined by: 

3 3 

ln(B) = Iinp})n1o; = 2 Ie;f1;(1; (3.4.6) 
i=1 i=1 

Relationship 3.4.5 must be satisfied fo~ each B. Il can be seen after a slraightforward 

calculalion !hal lhis will nol hold for the Jaumann and for the Dienes rates. The use of 

these rates in the rate-type conslilutive equations of the subparagraph 3.3 does not 

lead toa correct descriplion of elastic behaviour. Dienes (1979), however, !ried to use 

kinematica! arguments aboul the use of the objective rate, which is called after him. 

Bul from the results obtained in this chapler, it is clear that the Dienes' arguments have 

to be rejected. Thermodynamica! rather than kinematica! arguments dictate what ob

jective rate must be used in lhe case of elasticity. 

In the suhparagraph 3.3 the analysis was hased 011 the rale-lype constitutive equation 

3.3.7. There is a second way of solving the stress tensor (J from this constitutive 

eq11ation, whir:h is based on the relationship between the objective stress rates in the 

e<iuations 3.3.4 and 3.3.5. From 3.3.4 and from 3.3.7 it tllen follows that: 

V - T T - 1 
(J = A .(A .CJ .A).A =11 1D+11 2tr(D)I (3.4. 7) 
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and lherefore <J will be given by: 

-T Il T f 1 T -1 <J = A .( / 1A .D.A dr + J/2tr(D)A .A dr ).A (3.4.8) 

This method which obtains an explicit relationship for U will be used in chapter 5 as a 

starting point for the numerical treatment of constitutive equations, wh ich contain ob

jective rates. 

lf relationship 3.4.8 describes elastic behaviour il follows from 3.3.4, 3.3.5, 3.3.11 and 

3.3.15 that: 

(A .A- 1 )T = - (n + H)= -(n + fi + {JD)+ ~ tr(D)I (3.4.9) 

Substitution of this relalionship inlo equation 3.3.8 yields: 

(3.4.10) 

lntegration of this equation gives the following result: 

A.A r = J.a-fl ( 3.4.11) 

This relations hip means that if the tensor A is defined by relationship 3.4.9, then A can 

be expressed by: 

(3.4.12) 

where the rotation tensor Q can be obtained by substituting this result in relationship 

3.4.9. 

3.5 The Oldroyd model 

In subparagraph 2.6 the Oldroyd model was obtained using the thermodynamical the

ory with one tensoria l hidden tensor. For incompressible materials this resulted in 

constitutive equations 2.6.27 and 2.6.28. Similar models ca n be obtained by the de

composition of the stress tensor rT in three tensors -- pi, r , and ! 2 a nd the decompos

ition of the deforrm1tion rate tensor D in an e lasti c and viscous par t D, and D.: 

(3. 5.1) 

For these tensors the following constitutive re lationships are assumed: 
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v 
î 1 =fDe; î 1 =À1Dv; î 2 =À2D (3.5.2) 

Combination of these equations in 3.5.1 and 3.5.2 result in an Oldroyd model, which 

has been described In, for example Crochet, Davies and Crochet: 

(J =-pi+ î tr(D) = 0 (3.5.3) 

(3.5.4) 

Of course the objective rates, used in 3.5.4. have to be long to one of the rate farms, that 

were discussed in subparagraph 3.3 and 3.4. In the Oldroyd model, obtained in sub

paragraph 2.6, the tensor î was expressed by the following equation (see 2.6.28): 

1 1 /';. µ µ µ /';. 
- î+-î =(1 +-+-)D+-D 
À E1 À E1 f 1 

(3.5.5) 

/';. /';. v v 
where the objective rates of î and D are denoted by î and D, instead of î and D , to 

emphasize that this rate may differ from the object ive rates discussed in subparagraph 

3.3 and 3.4. 

The Oldroyd mode ls, obtained in 3.5.4 and 3.5.5, can be compared. This comparison 

leads to some very interesting results: 

- The difference between these two Oldroyd models can be the use of the objective 

rates. In chapter 2 the objective rate was obtained by eliminating the tensor A, and in 

this chapter by making requirements on the elastic part of the deformation. Only in the 

case, where {J equals zero, can these two models equal: 

v /';. . -- --
î = r = r - (n + H).r + r.(n + H) (3.5.6) 

v /';. . - -
D = D = D - (n + H).D + D.(n + H) (3.5. 7) 

(n + H).ln(B)- ln(B).(n + H) = ln(B) - 2D (3.5.8) 

- From this result it fellows directly, that the use of the Jaumann or the Dienes rate in 

the Oldroyd model, leads to a model in which the deformation rate can '! be decom

posed in to an elastic and a viscous part as was done in this chapter. On the other hand, 

thermodynamica lly speaking no objections can be made aga inst the use of these rate 
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forms. lt just depends on the starting point of the constitutive model whether one ac

cepts the use of these rates. 

lf the use of the rate farms, thal were deduced in subparagraph 3.3, is 

thermodynamically spoken allowed, In the sense that the models obtained obey the 

Clausius-Duhem inequality, is still an open question for those cases where f3 # 0. This 

question can't be answered by the theory of the previous chapter, and must be inves

tigated in a different way. In this work, no further attention will be given to this ques

tion. 

3.6 The Maxwell model 

The Maxwell model is obtained by the decomposition of the deformation rate tensor D 

into a viscous and an elastic part, and by the assumption !hal these parts obey the 

following constitulive models: 

(3.6.1) 

This model has become very popular in the field of metal plasticity, where the viscous 

part of the deformation rate D, is aften referred to as the plastic part D,. Elimination of 

D. and D, in relationship 3.6.1 yields: 

(3.6.2) 

For meta Is the viscosity À is not delermined by the currenl state only, bul also by the 

past. This history dependency is cal led hardening. In order to take hardening info ac

count the so-called equivalent plastic strain c is introduced and is defined by: 

(3.6.3) 

where i; is zero in the absence of plastic deformation. With the equivalent or Von Mises 

stress"" defined by: 

(3.6.4) 

the conslitutive equation 3.6.2 becornes: 
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(3.6.5) 

lt is noted that the definitions of e, <J, and the constitutive equation 3.6.5 correspond to 

the deflnitions and constitutive model in subparagraph 2.7. In a case where the same 

requirements are made for the objective rates as in subparagraph 3.5, an equality can 

be obtained for these quantities and the model. 

In metal plasticity the history dependency is taken into account by postulating that the 

Von Mises stress depends on the equivalent plastic strain and the equivalent plastic 

strain rate: 

<1v = <JJJ,, c) (3.6.6) 

The model obtained, represented by 3.6.5 and 3.6.6, is known as the Prantl-Reuss 

model (see Hili 1950). lf all elastic effects are neglected, this model can be simplified 

to the so-called Levy-Von Mises model : 

(3.6.7) 

In the field of rheology, this model is aften referred to as a special case of a non

Newtonian fluid. 

Il is known from experiments !hal the dependency of <J, on~ can be neglected for meta Is 

at relatively low temperalure and, besides, !hal the dependency of <J, on i can be neg

lected for relative high temperalures. In order to obtain a constitutive model, most 

experimenlal work on metals is focussed on the hardening equation 3.6.6. In the next 

chapter three experimental set-ups will be discussed. 

3.7 The Kelvin model 

In this subparagraph another special version of the Oldroyd model is discussed. This 

version, known as the Kelvin mode l, is described by: 

v v 
tr(D) = 0 ; a = - pi+ T ; T = ED+ AD (3. 7.1) 

This model ca n be used to describe purely plastic behaviour of meta Is with kinematical 

hardening. As Prager (1956) pointed out this mode l can be derived from some simple 

assumptions: 
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- The material is incompressible, so 

tr(D) = O (J =-pi+ r 

- there exists a yield surf ace f, where f is given by: 

2 2 t = (r - a):(r - a) - 3 110 

(3. 7.2) 

(3. 7.3) 

Here the tensor et. is the so-called shift tensor and J ~ 11 0 is the radius of the yield 

surface. The stress tensor r either lies on the yield surface (f = O), or inside the yield 

surface (f < 0). 

- lf the tensor r is inside the yield surface no deformation takes place. lf r is on the 

yield surf ace, Dis perpendicular to the yleld surf ace: 

D = 0 for f < 0 ; D = 11(! - a) for f = 0 (3.7.4) 

This relationship for D is called the associated flow rule. 

The radius of the yield surf ace can depend on the equivalent plastic strain f. and on the 

equivalent straln rate c: 

v 
- the objective rate a of the shift tensor is proportional to D: 

v 
a = hD h = h(r. , f. ) 

where a = O in the absence of plastic deformation. 

From 3.7.4 and 3.7.5 il is evident that: 

f. = 0 for f < 0 
. 2 
f. = - '1<T 0 for f = O 

3 

;rnd therefore 3.7.4 can be writlen as: 

D = 0 for f < O r = a + 1- _'.1...Q. D for f = o 
3 ~ r. 

Elimination of the shirt tensor finally yi e lds: 

3 The rlccompositinn nf cnnstitutivc cqua tions 

(3. 7.5) 
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(3.7.7) 

(3.7.8) 
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Flgure 1. The slmple shear test 

D = 0 for f < 0 

v 
V 2 ao 
r = hD + 3 ( --:-- D) lor f = O 

l 

(3.7.9) 

The choice of the objective rate has been the subject of much discussion lately (see, 

lor example Nagtegaal and De Jong (1982), Lee, Malle! and Wertheimer (1983), 

Dafalias (1985), Atluri (1984)). Il is striking to see that, in these discussions, only ob

jective rates of the form: 

v 
CJ. =à - (0 + H).CJ. + CJ. .(O + H) ; Hr = - H (3.7.10) 

are considered. Probably the reason for lhis choice is !hal, with this rale form, 

v v 
(a.)d = (CJ.d) and therefore CJ. = CJ.d and so r = rd, i.e. tr(r) = tr(CJ.) = 0. Then lor f= 0 the 

conslitutive equation can also be written as: 

v 
CJ. = hD ; tr(D) = 0 ( 3. 7 .11) 

Furthermore il Is worlh noling that the proposed objectlve rates are evaluated in these 

discussions by analysing whal is known as the simple shear test (see figure 1): a pro

posed objective rate is accepted if no oscillations occur in the shear stress as a func

tion of the deformation. Il turns out thal, as a result, the Jaumann rale fails to pass the 

test. 
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4 The determination of material properties 

4.1 /ntroduction 

In the prevlous chapters specific constitutive equations for classes of material 

behaviour were obtained. These equations contain a number of material parameters, 

which have to be determined experimentally. 

The choice of a suitable experiment largely depends on the class of material behaviour 

to be investigated. Here, only so-called Maxwell materials with constitutive equations 

of the type: 

( 4. 1.1) 

will be considered (see subparagraph 3.6) . The behaviour of many metals can be de

scribed with sufficient accuracy by a constitutive equation of this type. In this chapter 

v 
only large deformations will be considered. The elastic part -•f:O' can then be ig-

nored, and the constitutive equation reduces to: 

( 4.1.2) 

As a consequence tr( D ) will be equal to zero, so the the material is assumed to be 

incompressible. The constitutive equations can then be reduced to: 

(J =-pi+ T (4.1 .3) 

The material property to be determined experimentally is, in this case, the ' viscosity' 

'1· From 3.6.3, 3.6.4 and 3.6.5 il ca n be seen that : 

( 4.1.4) 

where <r, is the Von Mises stress and t: is the equivalent strain rate. Then the relevant 

constitutive equation can be written as: 
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Figure 2. The tension test 

(4.1.5) 

where (Jv is now the material property to be determined as a function of & and e (see 

3.6.6): 

(4.1.6) 

In the next subparagraphs 4.2-4.4 the tension test, the torsion test and the compression 

test are discussed. Unless otherwise stated, temperature effects will be ignored. 

Flgure 3. Necking of an alumlnlum bar 
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4.2 The tension test 

In the tension test an attempt Is made to achleve an uniform, one-dlmenslonal stress 

situation in the test specimen, i.e. a stress situation such that, in each point of the 

specimen: 

(J = see r = s( - ~ I + ee) (4.2.1) 

where JJ is a given unit vector. From 4.1.5, lt fellows that D must be equal to: 

3 ~ 1 
D = - _c_ s( - - I + ee) 

2 11v 3 -
(4.2.2) 

A deformation of this kind can be .approximated by elongating a sol id, slender bar, with 

a constant cross sectlon. To eliminate end effects, only the middle section of the bar 

is considered. During the experiment, the current length, L, of this section and the ap

plied force F are measured (see figure 2). A simple kinematica! analysis yields that the 

axial component ~.D.~ of the tensor D will be equai to ~ and, because of the 

incompressibiiity, D can therefore be expressed by: 

D = 1- i:( - J_ I + ee) · 2 3 -- • 
L c =In(-) 
Lo 

( 4.2.3) 

Here, Lo Is the length of the middle section of the unstressed bar and cis what is konwn 

as the logarithmic strain of that sectlon. From this relationship for D and from the de

finition of the equivalent strain rate e in 4.1.4 il is apparent that, in this case, the 

equivalent strain E" is equal to the logarithmic strain c: 

c = c = 1 n( J:_ ) 
Lo 

(4.2.4) 

Substitutlon of this result in 4.2.2 yields 11, = s, where the current stress is related to the 

measured force F and the current area A of the cross section by s = ~ . Due to the 

as~umed incompressibility of the bar, the current volume A.L of the middle section is 

equal to the volume A,. Lo of the unstressed bar. So the material quantity 11, can be de

termined from the measured quantities F and E" by using: 

F FL F e 
11 =-=--=-e 

v A Aolo Ao 
(4.2.5) 

Usually a constant strain rate is chosen for the tension tests. By repeating the test on 

identicai specimens with different strain rates, il is possible to determine 11" as a 

function of e and e. 
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----·· R = R(z) 

Flgure 4. The necklng zone of a cyllndrlcal bar 

lf n. turns out to depend only on f, or è the material is known as a slrain hardening, or 

strain rate hardening material respectively. At relatively low temperatures, meta Is are 

slrain hardening materials, due to the dislocation density growth and the lack of 

recrystallisation . At relatively high temperatures recristallization occurs. This stops 

the dislocalion density growth, bul makes the metal strain rate dependent. Sometimes, 

il is assumed !hal (f. doesn't depend on f. and f., bul on the energy rate and the total 

energy needed for deformation of the bar. Hill (1950) showed !hal !here is no d ifference 

belween purely strain hardening and purely work hardening. This doesn't apply to 

strain rate and work rate hardening metals! 

The main disadvantages of the tension test is that necking occurs: ir the force F reaches 

a maximum value, !hen, due to bifurcation, rlow localisation will be observed (figure 

3) and the stress tensor (J and the deforrnalion rate tensor D no langer satisfy 4.2.1 and 

4.2.2 . As a consequence, relationship 4.2.5, between the axial force F and the equiv-
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Figure 5. Correclion factor: Cl according to Siebel (-)and Bridgman (-----) 

alen! stress, no langer holds. Flow localisation occurs fora strain hardening metal, in 

a constant strain rate tension test, when the axial force reaches its maximum value, 

i.e" when: 

1 d~v ---- (4.2.6) 

lf the stress-strain curve 4.2.5 is given by Ludwick's harden ing rule : 

( 4. 2.7) 

!hen necking occurs when: 

Ë = n - ï 0 (4.2.8) 

This mea ns that for low values of the strain, only, experimental data can be obtained 

using a standard tension test. Il is evide nl !hal, for slrai11 rate hardening materials th e 

situation is even worse: in that case the bar begins to neck alomst immediately. 

In the necking zone, the stress situation is much more complex than that given by 4.2.1. 

For cylindrica l bars, however, several authors found corrections for re lationsh ip 4.2.5. 
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i: = 0 f. = 0.32 i: = 0.66 i: = 0.93 

flgure 6. Several stages of a flnite element analysls of the necklng of a cyllndrlcal bar 

1 

11 . 1 

t· 

~ 

E = 1.30 

They all found that, in the neighbourhood of the smallest cross section, a, and t can 

be approximated by: 

(4.2.9) 

where A is the area of the smal lest cross section. Furthermore C, can be regarded as 

a correction factor. Different formulae are given for C, in literature. An important 

quantity in these formulae is the scalar a, defined by: 

( 4.2.10) 

Here, R is the radius of the neck and z is the axia 1 coordinate, such that z = 0 in the 

middle of the neck (figure 4). 

Two well-known proposals for C, are the following : 

- Siebel (1925) and Davidenkov and Spiridonova (1946) found that: 

4 
c, ~ --

4 + Q( 

( 4.2.11 ) 

- Bridgman (1952) found that: 

c, =-- ----
( 1 + ~ )1n(1 + ~- ) 

( 4.2. 12) 
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Flgure 7. The stress components In the necklng zone (z = 0) 

In figure 5, C, is drawn for bath cases as a funct ion of cc From th is figure and also rrom 

4.2.11 and 4.2.1 2 il is apparent that for small values of ex, the correct ion factors are al

most the same. 

Davidenko and Spiridonova found relationship 4.2.11 for the correction factor in a 

complete experimental way by measuring on the crystals in the necki ng area. In Ap

pendix E, this re lat ionship is derived by assuming that the radia l ve loc ity u" in the 

ne ighbourhood or the sma l lest cross section can be approximated by: 

u,= rf( z) 

such that: 

1-dr 1 < < l l(z)I 
dz 
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Figure 8. Stress·strain curves: One curve (--) is used as the input lor the finite e lement analysis 

and the other (····-)is reconstructed from the results of this analysis 

Before necking, 4.2.13 and 4.2.14 are fulfilled. A consequence of 4.2.13 is that a, = <1<f> 

and a consequence of 4.2.13 and 4.2.14 is that the Von Mises stress is al most constant 

in every cross section near z =O, i.e. il is nota function of r. This consequence can be 

checked by a finite element analysis of a cylindrical tensile bar. In figure 6, some of 

\ 

r= 0- ·-· 1 
Z=Ü 

) 

R(z) 

Figure 9. Predlcted shapes of the necklng zone: Prndic tion by Siebel (· -···} and Briclgman (-) 
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the steps of such an analysis are given. Here, a linear strain hardening model is used, 

which means that the Von Mises stress depends linearly on the equivalent strain. In 

figure 7, various stress components have been drawn, for the case where "i~0.7. 

Clearly, the two previously mentioned consequences are fulfilled. Another check for 

the correction factor in relationship 4.2.11 for the correction factor can be made by 

determing the stress-strain curve with 4.2.13 and the calculated shape of the neck 

(figure 6). This curve must be the same as the linear stress-strain curve, that was used 

as an input for the calculatlons. From figure 8, it can be seen that the two curves are 

al most the sa me, even for very large va lues of!:. 

From 4.1.13 and 4.1.14, the shape of the neck can be determined (see Appendix E). In 

the derivation of 4.1.12, Brldgman made an assumption about this shape: il should be 

apart of a torus.Il turns out !haf both shapes are al most the sa me in the vicinity of the 

smal lest cross section. These shapes have been drawn in figure 9. 

in practice it doesn't make much difference which of these relationships for the cor

rection factor is used, when determining the stress-strain curve from experimental 

results.The problem !haf remains is how to measure the shape of the neck since this 

shape mus1 be known to determine first a and A, and then the Von Mises stress and the 

equivalent strain. One way is to elongate the bar, bit by bit, and measure the shape of 

the bar in between times. This method has two disadvantages: it will take a long time 

before one experiment is completed and, more seriously only strain hardening can be 

determined. 

Galenkamp (1984) developed an experimental set-up to measure the shape of the bar 

during the tensile test. This set-up is shown in figure 10. On the lef! handside of the bar , 

a homogeneous lightsource LS is mounted. The shadow image of the tensile bar TB is 

projected via a mirror M and a lens L info a linear array camera DA. The camera has 

2048 light sensitive diodes, which defect a light-shadow-light line of the shadow image. 

The shadow part of the line, which is indicated by the number of diodes that haven'! 

been lil, is a measurement of the diameter of the bar at a position z. By rotating the 

mirror this position can be changed. This change of position takes about 30 millisec

onds, and a measurement of the diameter takes about 20. So, about 20 measurements 

on different positions z can be done in one second. This is fast enough to obtain a 

quasi-stationary resu lt. 

Figure 11 is a photo of the total set-up. From this picture another advantage of this 

measurernent technique can be seen: il can be used in nearly all traditional exper

imental set-ups, without basic changes to the original one. 

A result obtained with this set-up for an aluminium tensile bar, is shown in figure 12. In 

lhis figure two curves have been drawn: one for the average tensile stress fi, in the 
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Flgure 10. Cross-sectlon of the experlmental set-up of Galenkamp 

smallest cross section and one for the Von Mises stress, which was obtained by 

multiplying "ii, with the correction factor in 4.2.11 . For !: = 1.5, fracture in the bar occurs. 

At !hls point ix = 1.0. This is a value that s1ill gives nearly the sa me correction factor 

value in the relationships 4.2.11and4.2.12. 

To summarise il can be stated !ha! the Galenkamp's experimental set-up is an exten

sion of the standard set-ups, which makes il possible to obtain experimental data for 

strain and strain rate hardening materials until fracture occurs. A basic assumption in 

bath the standard set-ups and Galenkamp's is that the cross sections in the bar re main 

circular. This is not always the case for example it is not so for lead, at room temper-
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Flgure 11. Photo of the set-up of Galenkamp 

ature. Extension of Galenkamp's set-up for experiments at high temperatures is rat her 

difficult, as one !hen has to combine the optical measurement technique with the 

healing system. 

4.3 The torsion-tension test 

In the combined torsion-tension test long cylindrical bars are used, loaded by a twist

ing torque Mand a possible axial force Fat the ends of the bar (see figure 13). In this 

test it is !ried to achieve a velocity field of the type: 
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Flgure 12. Results of a tenslon test lor an aluminium bar 

ll.= u,{r, l)e,(t) + rw(z, t)e<f>(I) + u,{z, /)fl.z 

1.5 2.0 -
-E 

(4.3.1) 

where .e" .e<f> and e, are the base vectors of the polar coordinate syslem 

(r, </>, z), w(z, 1) is the current angular velocity of the cross section at axial position z 

and the radial ve locity u, and the axial ve locity u, are given by: 

u,= u,{r, 1) ; Uz = u,fz, 1) (4.3.2) 

which means that the bar retains its cylindrical shape, during deformation. The corre

sponding deformation rate tensor D is given by: 

(4.3.3) 

From the assumed incompressibil ity, i.e. tr(D) = 0, it is P.vident !hal: 

u,{z,l) = i;( t)z ; u, ~- +i;(l)r ( 4.3.4) 
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Flgure 13. The torslon-tenslon test 

where i:(I) is the current logarithmic axial strain. Sustitution of these results in 4.3.3 

yields for D: 

D = - J_ i:I + 1- i:e e + J_ r ow (e e + e e ) 2 2 "z z 2 OZ -</J - z Z- </J (4.3.5) 

Hence the equivalent strain rate ca n be determined: 

~ Jr;;; E = -D·D = 3 . (4.3.6) 

Furthermore, with CJ = -pi+ >7D il follows that the Cauchy stress tensor CJ is given by: 

~ ( 1 . )/ 3 . 1 aw ( ) 
v = - p + 2 c + 2 Yfr.ezez + 2 Yff -----;;; e</Jez + e,e<P ( 4.3. 7) 

This stress tensor has to satisfy the balance equation of momentum. A lengthy bul 

straightforward elaboration of this condition finally results in: 

w ( z, 1) = èx( t)z (4.3.B) 

and therefore (J becomes: 

( 4.3.9) 

Besides, from 4.3.6 it is apparent that the equivalent strain rate i: will depend on rand 

t only: 

(4.3.10) 

Fina lly, the twi sting torque M and the axial force Fat the ends of the bar are given by: 
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( 4.3.11) 

( 4.3.12) 

where R is the current radius of the bar. From 4.3.4, lt follows that R is related to the 

radius R0 of the unstressed bar by: 

-.1..e R = R0e 2 ( 4.3.13) 

The assumed veloclty field can be approximately reached in the middle section of long 

cylindrical bars. To decrease the influence of end effects the ratio of the radius R0 and 

the length 4 should be small, which means !hal very long thln bars have to be used 

as test specimens. 

Of special Interest is the case in whlch the axial force Fis absent. From 4.3.12 it fellows 

that: 

i; = 0 ; z(t) = z0 ; r(t) = r0 (4.3.14) 

which implies that the length of the bar remains unchanged if the specimen is not 

loaded in axial direct ion. In reality the metal bars wi ll lengthen or shorten in such case. 

Thls can be explalned by considering elastlc and anisotropic effects In the bar. Some 

examples of thls phenomenom will be glven below. As will be apparent, the deforma

tion due to the elongation or shortenlng is neglegible compared with the deformation 

due to twisting. 

Wlth i; = 0 the relationships for c and i5 reduce to: 

~ 1 ·J3 e= - rex · 
3 ' 

1 J-Ë= -rex 3 
3 

(4.3.15) 

where ex and ä are assumed to be positive. The relationship for the lwisting torque 

becomes: 

IR 2 - JR 
M = nä 11r3 dr = 3 J 3rr a,/dr 

r=O r=O 

(4.3.16) 

Here the parameter 11 is replaced by a. = ~ >re, as mentioned earlier in this chapter. 

Ina torsion test of this type both the twisting torque M(t) and the rotation ex(t) of the ends 

of the specimen are registered fora constant value of ä. The final problem is to deler-
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Flgure 14. Photo of three torsion bars: The upper bar is a undeformed bar, the middle bar has 

been slowly deformed and the lower bar has been qulckly deformed 

mine the stress-strain relationship u,= u,(€, É)= u.( ~ rä./3, ~ ra j3) from the 

measured values because 4.3.16 does not give an explicit relationship for u •. Differ

entiating the torque Min 4.3.16 to the parameters a and it., the following relationship for 

u, on one the hand and M, a and it. on the ether is obtained after a straightforward cal

culation: 

1 /3 . aM aM 1 <Tv r=R= --3 (3M+ a-.-+ er:--) r=R 
'àrR oer: oa 

( 4.3.17) 

This means that an analytica! expression has been obtained for the Von Mises stress 

on the outer radius of the bar. The corresponding va lues of "i a nd Ê, in this position, can 

easily be deduced from relationship 4.3.15: 

1 -tl = -aR) 3 r=R 3 ( 4.3.18) 

As in to the tension test, localisation of the deformation can be observed in the torsion 

test. In figure 14, three copper bars are shown. The radius of these bars is 2 mm and 

the length 200 mm. The upper bar Is an undeformed bar with a stra ight black line 

drawn on it. The middle bar is a deformed bar, where the deformation has been 

reached with a rotation velocity of 1 rotation per minute. The lowest bar has been ro

tated with a velocity of 1 rotation per second. Il can be clearly seen that the deformation 

of the middle bar is uniform and that localisation occured in the lowest bar. The reason 

for this loca lisation is !hal the torsion bar can become very hot due to d issipation. For 

a low rot at ion velocity, the dissipated energy can easily be conducted to the ends of the 

bar. lf the velocity is high, the thermal resistance is too great. lt was observed, for the 

lowest bar, that the temperature rise in the middle of the bar was at least 100"C . To 

obtaln this resutt, experlments were done with a infra-red camera. 
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Flgure 15. Results obtalned from two torslon tests of lead: Torque versus strain al a strain rate of 

0.016 1/s (-)and at a strain rate of 0.048 1/ s (-----) 

As the yield stress of meta Is decreases as the temperature increases, one can expect 

that the torque M will reach a maximum for the lowest bar, after which the deformation 

locates.ln ether words, one can postulate that localisa tion occurs during a torsion test 

if the torque reaches a maximum. Such a postulation is similar to the tension test, 

where localisation occurs if the applied force reaches a maximum. However, this pos

tulation is not true for the torsion test . To show this, the resulls obtained from the 

torsion of lead bars are considered. In figure 15 it can be seen that for every rotation 

velocity (or deformation rate) the torque M reaches él 111é1Xi rnurn. Observat ion of the 

de formations of these bars, however, didn' t show any localisa tion . This contradicts the 

postulation. The fact that the torque reaches a max imum for lead bars, is due to 

metallurgical effects. For all meta Is at relatively high temperatures (i.e. ternperatures 

at which no hardening due to recrystallisalion is observed) these effects can be seen. 

For sorne of these rnetals, even oscillations of the torque can be observed. Rauch, 

Canova, Jonas and Sem iat in (1984) gave some theoretica ! explanation for thi s non-
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Flgure 16. Rei:ults obtalned lrom two torslon tests of copper: Torque versus strain for copper bars 

with (-) and without(---·-) a heal trealment 

localisation effect, caused by metallurgical effects. They also pred icted the moment, 

at which localisation will occur, due to temperature effects. 

The measurement of the axial force (no axial deformation) or the axial deformation (no 

axial force) or a combination of these two gives an impression of the non-isotropic ef

fects, such as kinemalic hardening. In figure 16, the results of two torsion tests are il

lustrated: one fora copper bar with no heat treatment (dotted line) and the ether fora 

copper bar with a heat lrealment (solid line) . Because of the heat treatmenl, !here is 

a difference in the cryslalline structure of the bars, which leads to this difference in the 

torque response. Taking into account the P.longation of the~e bars, a much larger dif

ference is obtained (see figure 17). In figure 18, the radius of the bar du r ing torsion of 

lead bars has been drawn, for different deforrnation rales. Apparent ly, the anisotropic 

effects are only influenced by the total deformation. lt is strongly recomrnended that 

these phenornena be investigated in re lat ion to the conslitutive models, obtained in 
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Flgure 17. Elongatlon during a torslon test of two copper bars: Elongation versus strain tor copper 

bars with (-)and without(-----) a heat treatment 

subparagraph 3.7. Montheillet, Cohen and Jonas (1984) did some torsion experiments 

on the development of axial slresses, when the elongation of the bars is surpressed. 

They succeeded in relaling the axial force to the texture developmenl in the bar. 

Besides the advantages !hal al a relatively low deformalion rate, no localisalion oc

curs, and !hal model studies can be made of non-isolropic effects, the main advantage 

of the torsion lest, com11ared with the tension lest , is lhat measuremenls can easily be 

done for different lemperatures, by pulling an oven around the bar. In figure 19 the 

results are given fora torsion test on lead bars at different temperatures. Due to the 

ternperature increase an enormous decrease of the torque can be observed. The re

sults obtained at 300°C will be used in chapler 5. 

The total set-up fora torsion bank can be as follows: 
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1) drive for the rotation of the bar 

2) element for the measurement of the total angle 

3) oven 

4) bar 

5) element for the measurement of the torque M 

6) element for the measurement of the elongation or the axial force 

In figure 20 a photo is given of such a set-up developed and built by Meershoek (1988) . 
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Flgure 18. Shortenlng du ring a tors Ion test of two lead bars: Shortening versus slrain for lead bars 

at a slrain rate of 0.016 1/s (-)and 0.024 1/s (-----) 
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Flgure 19. Results obtalned from two torslon tests of lead: Torque versus strain at a temperature 

of 2o·c (-) and 3oo·c (-----) 

In summary il can be stated that some of the disadvantages of the tension test (insta

bilities for small deformations and the difficulties of taking measurements at different 

temperatures) can be avoided, by doing torsion tests. Further, non-isotropic effects 

can be studied with the tors ion test. A disadvantage of the tors ion test is !hal the ratio 

between the radius and the length of the bar has to be small and the rotation velocity 

can'! be too large, because of thermal instabllities. Hence, large va lues of the strain 

rate can not be achieved. For strain hardening materials, experimental data for large 

strain rates can be obtained from the tension test.For metals at relatively high tem

peratures, however, this is not possible, because of the non- uniform necking. For 

these metals, the compression test can be an alternative. 
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Flgure 20. Photo of the experimental set-up for torsion tests 

4.4 The compression test 

In this subparagraph the compression test will be discussed. Using this test, material 

propertles can be determlned at large deformatlon rates and at different temperatures. 

A condition for thls test is that the Von Mises stress a. only depends on the equivalent 

strain rate É and the temperature. 

Figure 21 gives an idea of the experimental set-up. A cylindrical pallet, whose height 

h is much sma ller than its radius R. is compressed with a velocity h, where h < 0. The 

surface of the upper and lower stamps is such, that sticking occurs on the interfaces 

between the pallet and the stamps. The temperature in the pallet can be controlled by 

the temperafure in the stamps, whose surfaces have to be almost isothermal. As the 

energy losses near the outer radius of the pallet w i ll be ~m311, due to the small height, 
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Flgure 21. The compresslon test 

near isothermal conditions will be reached in the pallet. During the experiment, the 

pressure force F, the height hand the (compression) velocity hare measured. 

In order to obtain a relationship between the Von Mises stress <J, and the equivalent 

strain f; on the one hand and the pressure force F, the height hand the velocity h on the 

other, use will be made of the ratio between the height and the radius. As this ratio is 

very small, the ratio between the axial coordinate zand the radial coordinate r will also 

be small, in most parts of the pallet. The sa me will hold good for the axial and radial 

velocity, and the derivatives in radial and axial direr:tion (see Van Wijngaarden, 

Dijksman and Wesseling, 1982): 

_!!_ = b 
R 

Uz 
-= O(b) u, ( 4.4.1) 

where O(b)lb remains finite when b--+ 0. The parameter delta is much smaller than 1, 

for the pallets under consideration. lt is now easy to deduce lhat the deformation rate 

tensor D is reduced to: 

1 ou, 
D = 2 ~(~rez+ ?ze,)+ O(ö) (4.4.2) 

From relationship 4.1.6 between the stresses and the strain rates and from 4.4.2 il fol

lows !hal the Cauchy stress can be expressed by: 

( 4.4.3) 

Hence, the definitions of the Von Mises stress and the equivalent strain rate yield: 
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Flgure 22. Results obtalned from four compression tests of lead: Compression rorce versus heighl 

reduc.lion at two temperatures and two compression velocities (- 300'C, 3 mm/s: lt---l( 

300'C, 30 mm/s , ----- 275"C. 3 mm/s :ll---~275'C, 30 mm/s) 

( 4.4.4) 

Taking incompressibility into account, the balance equation of mass becomes: 

au, u, OUz 
-- + - + - -=0 
or r (!z 

( 4.4.5) 

and the neg lecting of body farces and inertia terms in the balance equation of mo

mentum leads to: 

i)p Off rz 2 
-= - - + O(,S) 
tJr az 

iJp 2 
---- = O(ö ) 
iJz 
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Flgure 23. Results obtalned trom two compresslon tests of lead: G versus ln(y) at a comrression 

velocity of-1.5 mm/s (-)and -3 mm/s (-----) 

For b ..... 0, a set of equations is found from which the desired relationship between 

n, and è on one the hand and F, hand h on the other can be deduced (see Appendix 

F). Il is similar to the deduction, made by Doustens and Laquerbe (1987) for com

pression flows of liquids between parallel circular plates with constant radius. 

Let G and y be defined by: 

( 4.4.7) 

A direct consequence of the assumption that the Von Mises stress <J, only depends on 

the equivalent strain ra te/: and the temperature e, is that Gis a function of y and e only: 

G = G(y, 8) ( 4.4.8) 

On the outer radius and the interface between the pallet and the stamps an analytica! 

expression can be found for u, and f. in terms of the quantities G and y (see Appendix 

G) : 
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Figure 24. Results obtained !rom two compression tests of lead: G versu~ ln(y) al a heighl of 1.2 

mm(-) and 1.3 mm(-----) 

J3i: tJG 
rr v = -- -=- (3G + y - ) 

2V j v Dy 0 0 

(4.4.9) 

· 1 Da v -1 
f. = -·=- ( 2y + (1 .J.. - - ) ) J3 ay 

( 4.4.10) 

where v, is the volume or the pa llet. 

As an example, thP. compression of pallP.ls of leaci is discussed. The pallets have an 

initia! height of 2 mrn and a radius of 10 mm. They were compressed to a heighl of 1 

mrn for various compression ve locities ( 0.025 mm/s ~ 1h 1 :,: 2 mrn/s ) and al a tern

perature of 275°C and 300"C. In figure 22, some of the curves ohtained for the force as 
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Flgure 25, Results obtained !rom two compression tests of lead: G versus ln(y) at a temperature 

of 300'C (-) and 275'C (-----) 

a runction or the he ight reduction i\h have been drawn. During each test the com

pression velocity and the temperature re mai ned constant. Il ca n be clea r ly seen !hal 

the force increases for increasing height reduction and compression vetocity and for 

decreasi ng temperature. 

In the previ ous subparagraph il was observed !hal during a torsion test the Von Mises 

slrP.ss increasecl toa maximum a nd !hen cler.reased toa r onstant va lue which only 

depended 011 the stra in rate a nd the te111perature. The sa me phe nomena ca n be ob

served fro111 the results obt<Jined with the compression test. lf the Von Mises stress of 

lead only clepencls on the str;iin rate at constant temperature, !hen G is a fu nr::tion of 

y. The curves in figure 23 are basccl on the mcasure rn8 nts of F and h in experiments 

with constant compress io n velocity ti = - 1.5mm/s and h = -- 3mm/s. lt is apparent that 
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by increasing y, G first decreases, !hen slightly increases. The curves in figure 24 

represent the results of a number of experiments in which Fis measured as a function 

of h, at constant height reduction . From these curves il can be seen !hal G increases 

by increasing y. In evaluating of these results, to gel a relationship between the Von 

Mises stress and the equivalent strain rate, it is assumed that the most reliable results 

are oblained at large deformation, which means at large height reduction. 

In figure 25, two curves for G have been drawn for two rlifferent temperatures. lt can 

be clearly seen that G increases as temperature rlecreases. In the next chapter, the 

results ohtained at a temperature of 300"C are used for the derivation of a relationship 

between er, and!:. Relationships 4.4.9 and 4.4.10 have b0e11 used for this purpose. 
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5 The extrusion of lead 

5.1 lntroduction 

In this chapter the application of some of the theories in the previous chapters will be 

discussed. Most of the subjects in this chapler have already been published by Van 

Wijngaarden, Van Bakel, Verwey and Meershoek (1986). The application is adapted 

from the thermocompression bonding technique, where lead is deformed between two 

substrates. The next subparagraph gives a short review of the thermocompression 

technique and the mechanica! problems that arise from it. In subparagraph 5.3 the 

mechanica! model that has been used uni il now, of the thermocompression process is 

discussed and some statements are given about the choices, that have been made to 

ob!ain a constitutive model for lead. In the set-up of the programm futur extensions 

have been taken info account for better material models for lead. lnstead of the used 

Maxwell model, Oldroyd models and even combinations of Maxwell models and the 

Kelvin model can be easily brought into the prograrnrn. Some statements about the 

way, this can be done, are made. 111 order to solve the relevant balance equations, a 

finite element technique has been used, in which special atlention has been given to 

substitution of the constitutive equations into the ba lance equations. The choice of the 

elements will be motivated, as well as the iteration technique, used to so lve the non

linear equations. 

In the first instance! results were obtained with a Maxwell model, whose viscous part 

had been fitted inlo the results of the torsion test. These results were mainly used for 

the investigation of the convergence of the iteration scheme. Only recenlly, an update 

has been made for the viscous part of the Maxwell mode l. In this case, the exper

imE?nta l data ohta ined from the cornpression test and creep tests, whi ch have been 

publis lwct in liternt11re, have ;:ilso heen tr.i lw n into account. Only the first results ca n be 

presented, hecause the project is still going on. In fulure. comparisons will be made 

between the results of the ca lculations and the GxperimP.ntal observations of the 

lherrnocornpression technique. 
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5.2 Thermocompression bonding 

Thermocompression is a technique, in which a bonding metal is deformed between two 

substrates. The process is performed at about 90 % of the meltlng temperature (Kelvin) 

of the metal. Due to compressive stresses close contact is established between the 

bonding metal and the substrates, to be bonded. During the deformation the oxidised 

surface of the bonding metal is broken. The high temperature ensures a high rate of 

physical and chemica! interaction between the pure lead and the substrates. As the 

temperature is always below the melting temperature of the bonding metal and the two 

substrates, bonding is carried out in the solid state. This technique is suitable for 

substrates of oxides (ceramic materials or glasses), meta Is and alloys. An advantage 

of this technique is !hal bonding can be done very quickly, even within 5 milliseconds. 

A large range of bonding materials can be used from indium at 20°C to niobium at 

1750°C. When one of the substrates is glass, the bonding temperature may not be 

higher than the softening temperature of glass, which is about 550°C. This means that 

the bondlng materials used must be reactive below 550°C. the only three alternatives 

for glass are therefore indium, lead and aluminium. 

Indium is a good bonding metal, bul often it cannot be used in further steps of the 

process, due to its relatively low melting temperature of 157°C. Aluminium has a higher 

melting point (660°C), bul shows insufficient stress relaxation during cooling . Using 

iead (melting temperature of 326°C) as a bonding metal, il is necessary to heat the 

substrates up to about 300"C, before bonding. 

Lead, however shows surricient stress relaxation for stresses built up after bonding. 

This can be seen in figure 26, which shows a thermocompression bond between glass 

and steel, where the substrates have a big difference in thermal expansion. Afler 

cooling to 20°C, the bond made with lead is still intact, bul the glass substrate used for 

the aluminium bond, is broken. The cooling phase is therefore not considered in this 

chapter. 

Considering the bonding process of lead between glass and steel one of the main 

problems !hal arise, is the failure of the boncl, due to the fa ct, that the surface of one 

or both substrates is not completely plain . After the cornpression of lead unloading 

takes place, which can result in elastic relaxation of the substrates. lt is !hen possible 

that large tensile stresses occur in the lead, which can cause a failure of the bond. tn 

the following subparagraphs a mechanical model will be discussed, which describes 

the compression and unloading phases of the thermocompression process. 
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Flgure 26. A thermocompression bond of lead (right) and aluminium (lef!) between glass and steel 

At the time of writing this thesis, the first results of the model analyses have been ob

tained, like il has already been mentioned in the subparagraph 5.1. These and future 

results will be used to oblain an lnslghl lnto the thermocompression process, parhaps 

leading to further lmprovements. 

5.3 A model for thermocompression 

In lhis subparagraph lhermocompression of rings of lead are considered. First, the 

ring is compressed belween the two subslrales, afler which unloading takes place (see 

figure 27). The initia! radius of a cross seclion of the ring is aboul 2 mm. During com

pression the height between the two subslrales is reduced to about 0.3 mm, a heighl 

reduclion of more than 90 %. This means thal very large deformalions will lake place. 

The whole process of compression and unloading takes place at a temperature of 

300"C, and isothermal conditions are assumed. Because lead is very soft al lhis 

temparature, it is assumed that the substrates can be considered rigid. During the 

compression phase the eventually not plain substrales are deformed elastically. Aftar 

unloading, the elastlc deformations causa lnltially a loading to the bond which, in turn, 

Is relaxed, due to the relaxation capability of lead. 
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Flgure 27. Compresslon and unloadlng of a ring 

The balance of mass and momentum have to be fulfilled durlng the process. These 

equations are: 

p au, u, OUz 
-+--+-+--= 0 
p or r az (5.3.1) 

(5.3.2) 

Oa rz a rz Oaz 
--+-+--=0 or r oz 

(5.3.3) 

The boundery conditions for this set of partial differential equations are the following 

(see figure 28). On the symmetry plane, z = 0, ·the symmetry conditions 

u,., = 0 and u, = 0 will hold. On the interface between lead and substrate, (z = h), stick

ing is assumed, which indicates that u, = 0 and u, = h. This assumption seems va lid, 

because on these two interraces the substrates are bonded to lead. On the Free 

boundaries (r = R,(z, t) and r = R.j..z, t)), no stress is applied. The position of these free 

boundaries can be obtained by solving the the following equations: 

(r - Rlz, t)) = 0 -+ 
aR, aR, 
~- - u + u - - = 0 for i = 1, 2 at r z oz (5.3.4) 

This model is completed by the constitutive equations for lead. In the previous chapter 

some results obtained from experiments, have already been discussed. From these 

results it can be concluded that the viscous behaviour of lead is mainly influenced by 

the strain rate and the temperature. But the temperature dependency is irrelevant, 

because it is assumed that the process is isothermal. Secondary effects, such as the 

increase of the torque at the beginning of the deformation and the shortening of the 

torsion bars (see subparagraphs 4.3 and 4.4), are neglegible . In that case it is as

sumed, that the constitutive behaviour can be descrlbed with a Maxwell model (see 

subparagraph 3.6). This model, where the deformation rate is decomposed into an 

elastic and a viscous part, is usually used for metals. The elastic part, which will be 

very small compared with the total deformation, is taken info account , so as to be able 

S The extrusion of lead 78 



u, = 0 

Z=h 

(T .fl = Q 'î ·---· r z = O 
- -- - -- -<T rz = 0 - Uz = 0 - -- - -- -

Flgure 28. Cross sectlon of the upper half of the ring 

to describe relaxation effects that may occ1H during the unloading fase of the ring. The 

secondary effects could be taken into account by considering an Oldroyd model, for 

instance (see subparagraphs 2.6 and 3.5) or a Maxwell model, in combina tion with 

kinematica! hardening (see section 3.6 and 3.7). How thpse rnodels work out, with re

spect to the experi rnents in chapter 4, and whether these models are ab le to describe 

these secondary effecls, hasn't been investigated yet, a lthough it is easy to show tha t 

these mode Is lead to elongations in, or shortening of torsion bars, when no axial force 

is applied to the bar. Further investigat ion is required in order to bring the secondary 

effects into account. However, in the discussion of the nurnerical approximation of the 

Maxwell model in Appendic G (and the next subparagrnph), a possible numerical 

treatment of the Oldroyd model and of the Maxwel l model with kinemat ica ! hardening 

is given as well. 

Finally lead is considered to be incompressiblP.. For the viscous pari of the deformation 

this can be shown by experiment. For the elastic part this is probably not true . This 

pari, llowever, is very sma ll with respect to the total deforrnation , and so the assurnp

t ion about the incornpressibility can be made. Then the balance equat ions of rnass re

duce to: 

ou" Ur r)Uz 
tr(D) = - -+ -+ --= 0 

ar r ,Jz 
(5.3.5) 

The constitutive equalions for lead then become: 

(J ~ - pi+ '[ (5.3.6) 

1 1 v 
." ---- r + - r = D 
i7{i) E 

(5.3.7) 
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Flgure 29. Several stress-straln rate curves: Von Mises stress versus slrain rale oblained from a 

creep test(-----), a lorsion lest (- -), a compression test(-) and a fit(······) 

where the objective stress rate still has to be defined. In the next subparagraph a 

solution method is discussed for this consti1utive relationship, which is va lid for every 

rate, defined in chapters 2 and 3. In the final subparagraph resulls ob1ained using the 

Truesde ll rat e, wilt be discussed. There was no parlicular reason for this choice. lt is 

ctoubtful whether in this case, the choice wou ld make much difference, because the 

elastlc pari of the deformation is very small. 

111subparagraph4.3 and 4.4 resulls were given on tesls on the torsion and compression 

of lead. obtained at a 1emperature of 300, °C. Frost a nd Ashbey (1982)have also pub

lislicd results, obt<iined from severa l tesls on lead. In fioure 29, where the Von Mises 

stress is ctrawn as a function of the equivalent strain rate, all these results have been 

assembled. Frost and Ashbey gave resulls for very low equivalent strain rates 

(f ~ 0.01). In fact these authors were mainly interested in creep exper iments. For the 

tors ion test results were oblained for 0.01 ~ i: ~ 0.5. The facl !hal resu lts could be ob-
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tained for only relatively small values of the equivalent strain rate, has already been 

rnentioned in subparagraph 4.3. For ~ 2 1 the compression test gave some results, 

which have been discussed in subparagraph 4.4 . One of the most striki ng results is, 

that these test are complementary. From the results obtained the viscosity 11 has been 

described, in terms of CJ •• in the following way: 

1 n >7 = c,a v for (Tv~ (T 0 (5.3.8) 

(5.3.9) 

This relationship has also been reproduced in figure 29. The following values have 

been used: 

n = 4.56 ; m = 2.27 (5.3.10) 

For the property E. in relationship 5.3.7, a value is given in Frost and Ashbey (1982). 

The value is at 300°C: 

E = 9500N/ mm2 (5.3.11) 

In the next subparagraph a solution method will be discussed for both these 

constitutive equations and the balance equations. 

5.4 The solution procedure 

In order to so lve the ba la nee equations 5.3.2, 5.3.3 and 5.3.5 Ga lerki n's method is used. 

Let the 11ressure p be a11rroximated by the base fu nctions v1 , for i = 1, .. ,M and the ve

locily u by tl1e base functions 1'; for i = 1," ,N. Then, the weig hted formu lae become: 

J tr(D)l/t; dV = 0 
v 

(5.4.1) 

( 5. 4. 2) 

The r ight-h;ind side of equatio 11 5.4.2 is eciu;i l to zero, clu e to the boundary cond itions: 

e ither rr.n = 0 or if> = 0. 
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Direct substitution of the constitutive equat ion 5.3.6 in order to e limanate the stress 

tensor r in 5.4.2, is not possible. This equation is therefore transformed info the fol

lowing equations, which are a numerical approximation of t he original constitut ive 

equations: 

r = KD+ G 

ME 
K=11--

lj +IJ.IE 

Ij T 
G=-- - P.îa.P 

11+ME 

(5.4.3) 

(5.4.4) 

( 5.4.5) 

(5.4.6) 

where T0 is the value of this stress tensor at the previous point of time of the materia l 

point unde r consideration and where the tensor H is given by equatio.n 3.3.11 and 

3.3.18. This numeri cal approximation is derived in Appendix G. 

In thi s chapte r the tensor H is chosen as equal to the deformation rate tensor 0, which 

is obtained lor {J = 1 in 3.3.18. This choice of H results in a non-linear relationship be

tween the stress on one the hand and the velocity and previous va lues of the stress on 

the other. Choices for fl ' #- 1 will lead to much more complicated re lationships between 

the stress and velocity: in that case the main problem would be to obta in a relationship 

lor H in terms of the velocity. This problem hasn't been investigated in this thes is. 

Substitution of 5.4.3 into 5.4.2 yietds: 

r. ( -- pi+ 1< D):('\1 4>;)dV = - f G:(Yi/>_;) dV 
·v · v 

(5.4.7) 

Beca use the quant ity K and the tensor G are non-linear in terms of the ve locity, thi s 

weighted re lationship 5.4.7 is a tso non-linear . There are several nu merica l tech niques, 

which deal with non-linearities. Damsteegt, Segal and Van der Zanden (1986) showed 

that for these kind of constitutive relati onships a re lative si mple Picard iteration 

scheme can lead to a converging so lut ion strategy. In this case the Pica rd scheme is 

given by: 

{( - pl-1 i<D):(Vt/!;)dV= - [G:(V1/>,) dV 
• v 

(5.4.8) 

where ic and G arn the va lues of K and G. obtai necl from the va lues of the velocity at the 

previous iteration step. 
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0000 
Flgure 30. Several elements wlth !heir nodal points lor the velocity 

Excepl for the pressure and the velocity, the only unknown in relationship 5.4.8 is the 

volume V. This volume is obtained by an explicit numerical integration of relationship 

5.3.4. 

For the choice of elements several elements have been considered: three 

quadrangular elements and one triangular (see figure 30). These elements have been 

tested for accurancy and on their numerical smoolhing in the vicinity of singular points . 

This has been done, because in the actual problem, two singular points can be con

sidered, due to sticking on the lead substrate interface. As a test case the compression 

of a ring with a rectanglar cross-section has been chosen (see figure 31). The height 

of the ring was be much smaller than the radial thickness of the ring. Therefore, the 

numerical solutions could be compared with the so c;1li~d Reynolds solution (see Ap-

~ : ~· 1 --t--------,-1z-r/-r-z-r-z-rz--r-z-rz-r-z...,,....z--,.71--,, 
r = 1 r = 2 

Figure 31. Compresslon of a ring wilh a rectangular cross·,~• . i:vn 
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Flgure 33. Numerical and analytlcal results of the compression of a ring: Axial velocity versus 

radius obtained from a fini te element analysis (-----)and the analytica! solution (-----) 

pendix H). The results of the pressure have been drawn in figure 32. To obtain these 

results, two meshes were used for each element: 2 or 4 elements respectively in the 

height direction and 16 or 32 elements respectively in the radial direction for the 

quadrangular elements with four nodes. The two of her element meshes were twice as 

r.oarse, so as to obtain a good comparison. From these results, il can be seen !hal the 

triangle and the nine-node quadrangle give the best results. For the axial velocity 

component, which has been considered in the vicinity of the interface between lead 

and substrate, only the triangle gives acc.eptable results (see figure 33): the ether ele-
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Flgure 34. Convergence lor different rnaterlal propertles: C2 is ef!ual to 0.006 (-), 60 (--)and 

600000 (-----) 

ments show much larger oscillations, due to the singularities. Dhatt and Hubert (1986) 

found similar superior numerical results for this triangular element. 

Because of these results the triangle .element, which is often called the bubble ele

ment, has been chosen for numerical analysis of the compression of the lead ring. This 

element was developed by Crouzeix and Raviart (1973). Griffith (1979) showed how the 

total number of unknowns can be decreased enormously, which makes the use of this 

accurate element very allractive, with respect to calculation time. All the results, 

shown in the next section, have been obtained with this element. 

5.5 Preliminary results 

The computer program, used for acquiring results of the cornpression and unloading 

of lead, was developed by Van Bakel (1988) . This program is based on the theories 

discussed in the previous section. 
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Flgure 35. :Deformatlon pattem at different helght reductions for dillerent material propertles 
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The first results obtained concern the cornpression phase, where attent ion is given to 

the influence of the material parameter C, (see 5.3.9). The other material properties in 

models 5.3.8 and 5.3.9 were slightly different from the properties given in 5.3.10. Al the 

time that these investigations were made, the data lor the creep tests (Frost and 

Ashbey 1982) and the compression test (subparagraph 4.4) had not been taken into 

account. The other propertles had the following va lues: 

The property C2 varied between 6 10-3 and 6 105 . Besides the slighl difrerence in ma

terial properties, the first results have been obtained lor an initia! rectangular cross 

section of the ring, instead of the more realist ic circular cross section. 

In figure 34, the convergence of the Pi card iteration scheme is shown lor three different 

values of C" on a height reduction of 60 % . On the vertical axis in this figure, the 

quantity ó has been drawn, which is defined by: 

n,- n, 1 
ti = 1og(I --~ 1) 

n1 
(5.5.2) 

where n, is the norm lor the solution vector of the linite element analysis, obtained aller 

the r-th iteration. Il can be clearly observed that, for i11creasing values of C, more it

eralions are needed, in order to obtain equally accurate answers. However, the Picard 

iteration scheme always converges. For large values or c" the malerial becomes an 

almost ideal plastic. lf C2 -+ oo , !hen il follows from 5.3.9 that a , - a 0• In figure 35 the 

deforrned rnaterial grid has been drawn lor various values of C, . Il can be seen that 

due to increaslng values of C, , the delormation pattern locates. This localisation is 

probably the cause of the worse convergence of the Picard scheme. In figure 36, the 

compression force has been drawn, as a function of the parameter C,. From this figure, 

il can be concluded that the force is very sensitive lor variations of C, , if C, is of the 

order 1. 1 n 5.3.10, it can be seen that C,°" 0.25, which mea ns that the process conditions 

have to be tightly controlled in order to obtain a reproducible bonding technique. 

Recently, some numerical experirnents have been done with the material properties, 

given in 5.3.10. The ring has an initia! radius of 20 mm and a circular cross section with 

a radius of 2 mm. Figure 37 shows the results, !hal have bee n obtained lor the axial 

stress on the interface of lead and the substrate, during the compression phase. The 

increase of the area 011 the interface ca n be observed. As input lor these calculations, 

a measured force versus time curve was used. The boundary value lor the axial ve

locity on the interface can !hen be ohtained iteratively. In figure 38, some vector plots 

have been drawn for variou s rih ases during comriression . In figure 39, the axial stress 

on the interface has been given, during unloading. lf the ring is completely unloaded, 
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Flgure 36. Compresslon force lor different materlal properties: F versus C2 at a height reduction 

ofO % (······), 30 % (-----), 60 % (--)and 90 % (-) 
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Flgure 37. Axlal stress durlng several stages of the compression phase on the interface between 

lead and substrale 
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Flgure 38. Vector plots durlng several stages of the compresslon phase 

!hen !here are two areas, where tension can be observed. lt is known from experiments 

!hal, in the sarne arnas the bond can fail. This failure mechanisrn can be influenced by 

the interval of time, in which unloading takes place. The calculated residu<1I lension 

stresses might correspond with the observed failing of the bonds. This is even now an 

open question. In future numerical as well as bonding experiments will have to provide 

the answer. 

5 Thr rxtrusion of le11d 90 

-



50 N/mm2 

(f z 

î 
25 

0 .~~m 
16 20 24 

r 

Flgure 39. Axlal stress durlng sevaral stages of the unloadlng phase on the Interface between lead 

and subslrate 
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6 Discussion 

In chapters 2 and 3 two different theories were discussed, bath of which yield 

constitutive equations for meta Is. lt was pointed out that the two lheories only coincide 

once, in the case of the Oldroyd and Maxwe ll rnodels. The lalter, especially, is aften 

applied in the field of plasticity. Also, the theory of the decomposition of the deforma

tion rate, as discussed in chapler :l, is usually used in this field. However, il was shown 

that from the hidden tensors theory constitutive rnodeis ror metals can be also ob

tained. Chapter 4 then shows that a simpte Maxwell model ca n only describe the pri

mary effects observed from experiments. Phenomena, such as the overshoot of the 

torque or shortening of lead during torsion, can' ! be predicted with a Maxwell model. 

Il is still an open question whether the Oldroyd or Kelvin models in combination with 

a Maxwell model, are able to describe these phenomena, as was suggested in sub

paragraph 5.3. A good alternative, however, seems to be the theory of hidden vari

ables. lf a beller physical understanding is obtained from !hes(>, phenomena, !hen 

hidden variables might be found, whose evaluation ca n be described in terms of the 

state and hidden variables. This approach, for insta nee, seems to be a good alternative 

for describing kinematica! hardening. A beller understanding is needed of this hard

ening phenomenom, bul pointless discussions about what rat e should be used, con

sidering the shear test (figure 1), can be avoided in this way. 

The combined tension-torsion test seems to be a good start lor further invest igation 

points of some of the secondair y effecls. In particular a lot of information can be ob

tained from the elongation or shortening of the specimen, which can be easily meas

ured. In the compression test too some non-viscous and non-elastic phenomena were 

observed. Understanding the results of this test, however, is much harder, because the 

deformation paltern is more complicated than the d1.~rc~r mation fie ld of the torsion

te nsion test. In litera ture, some work has a lready been reported . relat ing the second

ary effects, such as those ca n be observed during a to rsion test, to metallurgical 

ciuantities. These relationships ca n help to obta in constituti ve equations in the w ay, 

just discussed: the metallurgical ciuantities may be related to some hidden variables. 

In f11ture, the need for accurate constilutive eciuation s will increase. The reason for thi s 

increase is not only, that with modern computers and nurnerical techniques, more and 
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more problems, arising from conlinuum mechnics, can be solved. Also the require

menls, of many processes, such as lhermocompression, will increase, in order lo ob

tain a better reproducibility of these processes. Particularly in the field of precision 

engineering, where processes such as extrusion, grinding, cutting. etc., are consid

ered, a good underslandlng of the mechanica! process is indispensible. 
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Appendix A 

Due to a rigid body rotation, represenled by the tensor Q, the position vector x is 

transformed into the vector x in the following way: 

x= Q.x (A.1) 

where tl ~e rotation tensor Q can only clepend on time. By definition, il t hen fellows that 

the position vector x is objective. Because the positio11 vector X of the or iginal state is 

1101 lrn11sformecl by the rigid body rolation of the curre ril c:late, X is inva riant. From the 

<le finition of the r!elormatio11 te nsor F. il is evident that : 

-· dx ri(Q.x) 
F = -dX-~ dX 

rlx 
Q. dX= Q.F (A.2) 

which means th;:it Fis 11eitl1er objeclive nor invariant. 8"n 11:·" of the un iqueness of the 

polar decornposition of F. it dir ect ly fe llows from A.2 and 1.2. 5 that: 

··- . 1 
R = Q.R : U "~ U ; V = Q . V.Q (A.3) 

Co11seque11tly U and C (see 1. 2 .7) are invariant, anc1 ll ;111d R {set> 1.Li) ( > I J j<~ctive. 

Differnntiation of x gives: 

x = ii = Q.x + Q.x = Q.x + Q.u (A.4) 

which means that the velocity vector is neither invm ian: nor objecl ivr>. Frorn the dif

ferentiation of F. il is apparent !hal: 

~ · - 1 · T · - 1 T 
F.F = Q.Q + Q.F.F .Q (A.5) 

So the syrnrnetric pi'lrt of this exprPssion. wll icll is 0qual to the clefor rnat ion rale te nsor 

D. is objective, beca 11se Q.Q' is sl<ew-sym111etric. The skew-symrnetr ic part of A.5, 

which is equal to tl1e spin tensor 0. is th P.11 nei ther objective nor invariant : 

· · T T n = Q.Q 1 o.n.o (A.6) 
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Let p be some invariant (and thus objective) scalar function of x. The gradient of p, i.e. 

yp, is defined by: 

P(X. + !J.,x.) - P(K) = 'Yfl.i\x (A.7) 

for each infinitesslmally small vector /\..15. After a rigid body rotation the following sol

ution is obtained: 

p(){ + i\X)- p(X) = p(x + i\x.) - p(x) = Vp .A'i. = ~p.Qöx. (A.8) 

which means that the gradient of pis objective. As the constitutive quantities hand (J 

enter the second law of thermodynamics (relationship 1.3.7), the scalar expressions 

<J:D and n.v_o may have to be objective: 

a:D = <J:D and fi..VO = b.Y._O (A.9) 

From the objectivity of D and '\l_fi it fellows that <J and hare objective too. Il is obvious 

from the definition of the tensor A that the tensors S and C are invariant. 

By definition the time derlvatives of invariant quantities are invariant too. However, for 

an objective vector panda tensor Pil can be seen that: 

p= Qp + Q.p_ (A .10) 

-'- • T · T · T 
P = Q.P.Q + Q.P.Q + Q.P.Q (A.11) 

From relationship A.6 il can be derived !hal the following expressions are objective: 

-p - n .fJ = Q.(p_ - n .p_) (A .12) 

~ - - - - . T 
p - O.P + P.n = Q.(P- n.P+ P.n).Q (A.13) 

The latter expression is known as the Jaumann rate of P. In chapter 2 and 3 several 

other similar objective rates of tensors are discussed. 
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Appendix B 

lf the free energy 1/1 can be expressed by: 

1/1 = l/!(C. IJ) 

then il follows directly from 2.2.9 and 2.2.14 that: 

. àl/! ~ àl/! . 1 - ~ . 
1/1 = -=-:C +-IJ= -S:C-171J ac iJIJ Po 

(8.1) 

(8.2) 

By introducing the second Piola Kirchoff stress S, which is equal to J.F- 1.a.F- r, and 

the tensor C (see 1.2.7), evaluation of the free energy can also be expressed by: 

. 1 . . 
1/1 = -S:C-1]0 

2po 

Finally the relationships 1.4.4 and 1.4.5 together with B.2 yield: 

. 1 . 
1/1 = -O':D- ..,IJ p 

(B.3) 

(B.4) 

lf the free energy only depends on the Cauchy strain tensor C and the temperature 8 

as is the case for elastic materials, then due to isolropy this relationship reduces to: 

(B.5) 

Substitution of B.5 into B.3 gives the following constitutive relationship for elastic ma

terials: 

(B.6) 

Il can easily be seen from 1.2.7, that the invariants J,, J, and J, can be expressed in 

terms of the tensor B . In the same way, the invaria nls 2re r~xpressed in terms of the 

tensor C: 

Appcnrlix Il IOO 



J1 = l:C = l:B ; J2 = /:C2 = /:82 ; J 3 = /:C3 = 1:83 (B.7) 

Replacemenl of the tensors S and C by the tensors IJ and B in B.6 yielcJs: 

(B.8) 

where {3 0.fl, and /3 2 can be expressed in terms of the invariants of B, because of B.6 and 

B.7. Substitution of the Cayley-Hamilton relationship which is: 

(8.9) 

finally gives the following result: 

( B .10) 

where, alter a straightforward calculation , a0, a, and a2 are expressed by: 

(B.11) 

Because of B.5 and B.8 the free energy and the eigP.r.values of (J w hich are better 

known as the main stresses rT;. can be expressed in terms of the eigenval ues of B: 

(B.12) 

where ,.lj, ,.lj and ,\~ are the eigenvalues of B. Using this result, relat ionship 8.4 be

cornes: 

3 
. 1 . 1 '\" . ' 

i/! = P <J:D - 110 = {) L./;e; - 170 

frorn which il fellows that : 

oif! 
f11 = p 

De; 
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i=1 

(B .13) 

(B.14) 
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Appendix C 

In this Appendix a solution is deduced for equation 2.6.3. This equation can be ex

pressed in the following way: 

(C.1) 

All the tensors in C.1 are symmetrie, and 'A is regular. The solution procedure lor this 

equation is si mi lar to the procedure Bio! (1954) proposed lor the sa me kind of equation. 

First, a solution for the homogeneous equation, i.e. H = 0, is obtained. Suppose: 

(C.2) 

where V Is symmetrie and doesn't depend on time. Substitution in C.1 yields: 

(C.3) 

This means that Visa •A-eigenvector of '8 with corresponding eigenvalue },_ Because 

of the symmetrical property of 'A, 'Band V !here are six eigenvectors V, and 

eigenvaiues À.1 (i = 1, .. ,6). From these definitions of V, and À1 it fellows that: 

(C.4) 

This rneans that À.1 has to be real (i = j) instead of complex, and that: 

v/B:V1 = o for ; .,p J (C.5) 

Due to the regularity properly of 'A and relationshiri C.4 the eigenvectors can be cho

sen in such way that : 

(C.6) 

where n,ï is the Kronecker delta. Suppose: 

(C.7) 
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Substitution in C.1 gives: 

6 L( 4A:V;P1 + 4B:Vp;) = H 

1=1 

Pre-multiplying thls relationship with Vi· the followlng equation is obta ied for P;: 

The solution of this equation and relationship C.7 finally yield: 

6 

Q = L 4 V;:fe·- À,(t-r)H(-r) di 

1=1 

where: 
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(C.8) 

(C.9) 

( C.10) 

(C.11) 
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Appendix D 

In this Appendix a solution is deduced for equation 3.3.13. This equat ion is: 

(0.1) 

which isvalid for i,j = 1,2,3. From rr; = uf..e" e" e,) (see 3.3.9) it follows for i # j # k that: 

aa 1 iJa 1 
- - - =0 
aej iJ ek 

(0.2) 

From this equation it is obvious that rr; = rr /.. e,, J), because ln(J) = e , + e, + e3. The nine 

equations in D.1 can !hen be reduced to six: 

aa, aa, 
-- + J -- = 11 1 + 2{Jrr / + µ 2 - 2yrr 1 for i = 1, 2, 3 
i!e; iJJ 

iJrr1 
J - = µ 2 - 2yrr; for i = 1, 2. 3 

()J 

From these equations il directly follows that : 

This equ ation must be va lid lor every i, so: 

Differentiating equation 2.4.7 toe; the following relationshir is obta ined: 

(0.3) 

(0.4) 

(0.5) 

(0.6) 

(0.7) 

Substitution of equation D.1 into this relationship, leads to the requirement that 

y = t· By defining the funclion f "" f(J ) with f(1) = 0 ,in such a way fhat: 

(0.8) 
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equation D.4 yields: 

(D.9) 

The combination of D.3, D.6 and D.9 finally gives: 

Jµ, = 2(Go - {Jf(J)) (D.10) 

(0.11) 

This means that the Cauchy stress tensor can be expressed by: 

a = ~ (f (J)I + ~0 (Bf3 - /)) (D.12) 
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Appendix E 

The tension bar has to obey the following equations during necking: 

O<T r <T r - ar/> O<T rz 
- - + +-- =0 
or r r)z 

(E.1) 

rJa rz a rz au z 
--+-+--=0 

or r oz 
(E.2) 

where the following boundary conditions have to be met in the vicinity of the neck: 

(E.3) 

u,=<T,.,=0 on r=O (E .4) 

CJ.o.=0 on r=R(z) (E.5) 

where R(z) is the. outer radius of the bar and where n is the normal on the surf ace of 

the bar. The boudary condition E.5 can therefore be written as: 

dR dR 
er r - <1 rz - · = 0 and <T rz - er z -d = 0 

dz z 
(E.6) 

In chapter 4, il is assumed !haf the consfitutive relafionships can be expressed by: 

d 2n..(f.. t) 
(J = - --D 

3~ 
(E .7) 

In relationships 4.2.13 and 4.2.14 the following assurnrtions were made about the ra

dial velocity in the vicinity of the smallest cross section: 

u,= rf(z, t) with 1J.f_1 < < lf(z, 1)1 
rJz 

(E .B) 

Frorn boundary condition E.3 and the fact that tr(D) = 0. if follows that the axial velocity 

u, can be expressed by: 
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Uz = - 2f r(z, t) dz 
0 

and the deformation rate tensor D by: 

Due to E.8 the equivalent strain rate f. can be approximated by: 

f.= ~':::f.2lr(z. t)I 

(E.9) 

(E.10) 

( E .11) 

lntegration of lhis equation yields !hal the equivalent strain f. doesn't also depend on 

the radial position. The same can therefore be concluded for the Von Mises stress a,. 

Consequently from E.7 and E.10 il follows directly that a" is proportional tor, and 

rr, = rr </! is a parabolic function of r, due to E.1: 

a, = A(z,l)r2 +B(z,1) ; rrrz = -2A(z,t)rz (E.12) 

Following the definition of the Von Mises stress the axial stress a, can be expressed 

in the vicinity of the smallest cross section by: 

rrz = A(z, t)r2 + B(z, 1) + rr.J..z, 1) (E.13) 

Then, equation E.2 requires that: 

A=A(t) and B+rrv=2A(l)z 2 +C(t) (E.14) 

The force F can be expressed by: 

JR(z) 

F = 2rr <J zr dr 
0 

(E.15) 

Substitution of E.13 info E.15 gives: 

B + a = _F_ - J_ AR 2 
v rr.R2 2 

(f.16) 

From the boundary condition E.6. the fo llowing requirement is obtained for B: 

B = -- AR2 - 2AzR !}B__ 
- dz (E .17) 

Eliminating A, Band C from E.14, E.16 and E.17, the required correction factor C, is 

found: 
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F 4 F 
a.J..z= 0)= C1-- = ----

rrR2 4+ a rrR2 
(E.18) 

where a is defl ned by: 

(E.19) 

The other boundary condition on the outer radius (see E.6) gives: 

B+a =-AR(2z+R_dR X dR )-1 
v dz dz 

(E.20) 

Relationship E.14 and E.20 lead to the equation for the outer radius, which after a 

straightforward calculation gives: 

R.4 + ( 4z2 - 2 - _.i_ )R-2 + 1 + _.i_ = 0 
a et. 

(E.21) 

where R = R and z = z 
R(z=O) R(z=O) 

Bridgman (1952) assumed that the radius 

could be expressed by: 

- 1 1 J 2- 2 R=1+---- 1-az a a 

These two functions for R have heen drawn in figure 9. 
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Appendix F 

In this Appendix the compression of the upper half of the cylindr ical pallet 

(0 ~ z ~ ~ h) is considered. In this pari the shear rate ~~ is negative, wh ich means 

!hal equations 4.4.4 and 4.4.6 yield: 

au, J-~ iJp(r, t) 1 J-
- - = - 3~ and <Trz=Z---=--3 3rrv 
i)z or 

(F.1) 

The Van Mises stress a. only depends on the equivalent slrain rate, and possibly also 

on the temperature. Il is assumed that the inverse of this relationship exists with re

spect tof.: 

(F.2) 

where the temperalure dependence is nol mentioned, because only isothermal com

pression tests are considered. From F.1 and F.2 it follows !hal on z =-}hand r = R: 

/3 op . _1 /3 ap 
rrv = - 2-h( - ç;;:)r=n and f. = </> (2-h( - r;;: }r=nl (F.3) 

lntegration of relationship 4.4.5 (balance of mass) yields 

dh d·" au, hr Jo u, dz = - Jo --~ z dz = - - 4 (F.4) 

By the introduction of the quantity y = - ~~ , F.1 , F.2 and F.4 lead to the following 

equalion: 

1 

J2 -1 J- op yr 
</> ( 3( -- h -- )x)xdx = - _-

o or 4j 3 R 
(F.5) 

lf the inverse of this equation exists, a function 1/1 = ij1(y) can be inlroduced such !hal 
1 on z"' .2 hand r = R (see F.3): 

rJp /3 
(- hr;;:)=ot/J(y}; ITv =- 2 - iJ1(y) (F.6) 
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The force F can therefore be expressed by: 

IR iJp 2 nR3 Jy 2 F = n ( - - )r dr = -- ijl(x)x dx 
o iJr hy3 o 

(F.7) 

The volume V0 of the pallet remains constant and equals to nhR2• A quantity G ca n 

therefore be lntroduced such !hal: 

(F.8) 

from which il directly fellows !hal G = G(y) 

Differentiating G wlth respect to y and substituting in F.6 gives at co-ordinates 

z = J_ hand r = R· 2 . 

J3;: 
ffv= (3G+y~~) (F.9) 

2v0J v0 

From equation F.5 il directly fellows that on r = R: 

J3 -J--1/l(y) J3 
2 -1 2 qi (x)x dx = - 4 - yi/1 (y) 

0 

(F.10) 

Differentiation of F.10 with respect toy and substitution of F.3 and F.6 in this equation 

finally gives at co-ordinates z = + hand r = R : 

· 1 dov -1 
1: = ----=- ( 2y + (f J - ) ) 

J3 dy 
(F.11 ) 
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Appendix G 

In this Appendix every objective tensor G will be related to an invariant tensor G by: 

-- T 
G = A .G.A (G.1) 

The objective rate of Gis then related to G (see 3.4.7) by 

-'- T '\/ 
G = A .G.A (G.2) 

where A is given by (see 3.4.9): 

(Ä.A-y = - (n + H) (G.3) 

The Oldroyd model (see 3.5.4) can be expressed by: 

1 1 \7 v 
-r+ - T=D+J..D 
'1 E 

(G.4) 

The invariant form of this equation is: 

1 - · 1 -'· - :. 
-r+-î=D+W 
'1 E 

(G.5) 

Wllen an implic it Euler nurnerical integration scheme is used, the following expression 

is obtained: 

1 __ r - r 0 - 6 - 50 
-T + ---= D + J..-------'---
'1 AtE t\t 

(G.6) 

where th r~ tensors r, and ö0 are the values or the tensors i' and b at the point or time 

prior to tl1e rnaterial point under consideration. This equat ion leads to 1 he following 

exprP.ssion lor the original objective tensors: 

E(M+J..) '1 T 
T ~' 11 - ·------ - D + - - - P.(T - AED ).P 

~1+!\IE 11 +!\ IE o o 
(G.7) 
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where P = A-'.A[. Numerical integration of equatlon G.3 leads to the following ex

pression: 

(G.8) 

Then for P the followlng expression Is found: 

(G.9) 

For A = O the relationships 5.4.3, 5.4.4, 5.4.5 and 5.4.6 are easily obtained from G.7 and 

G.9. 

lf kinematica! hardening is taken into account, the sa me numerical integration scheme 

can be used. Consider the following elastic-plastic model with kinematica! hardening: 

1 1 v v 
-(1:-Cl)+-î=D; Cl=hD 
'1 E 

(G.10) 

Numerical integration gives: 

( G .11) 

and for et the following expression is obtained: 

(G.12) 

Substitution of G.12 into G.13 yields: 

1: = ('1+/\lh) /':.IE D+--1 -P.{tJî0 +f\IECX0).Pr 
'1 +/\IE IJ+ /\IE 

(G.13) 

This n:ieans that this constitutive model can be solved in a way similar to that in which 

the ordinairy Maxwell model is solved. (see subparagraph 5.4). 
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Appendix H 

In subparagraph 4.4 an asymplotic approximation has been made for compression 

flows. In this case, i.e. the compression of a ring, the sa me approximation can be made 

because the height hof the ring is much smaller than the width R, - R,. The appropriate 

balance equalions fora viscous flow !hen reduce to (see 4.4.3 and 4.4.6): 

au, u, auz 
--+-+--=0 

rJr r oz 

p=p(r, 1) 

The boundary conditions are: 

Z = 0 u, = 0 Uz = 0 

Z = h u, = 0 Uz = h 

r = R1 p = 0 

R = R2 p = 0 

lntegration of H.1 and H.2 in the axial direction yields: 

f ,, 
Jou, dz = · 

1 · Co 
-hr + --
2 r 

1 op 
u,= 11 -~z(z- h) 

vii11'~ re C0 can onty depe nd on time. Suhslilulion of H.8 info H.7 gives: 

1 · Co -- hr + --
2 r 

(H.1) 

(H.2) 

(H.3) 

(H.4) 

(H.5) 

(H.6) 

(H.7) 

(H.8) 

(H.9) 

l.h11g the ho11mlmy conditions thn following expressions for p, u, and u, can be ob

lained: 
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(H.10) 

3h R;- Rf 1 
u,= 2h3 z(z- h)(2r- lnR2- lnR, --,-) (H.11) 

( H .12) 

In figure 32 and 33 the following data have been used: 

h = 0.1mm ; h = - 1mm/s ; R1 = 1mm ; R2 = 2mm '1 = 1Ns/mm 2 (H.13) 
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Samenvatting 

Dit proefschrift behandelt constitutieve relat ies voor metalen. Twee theorieen, 

waarmee relaties tussen spanningen en rekken of reksnelheden verkregen kunnen 

worden, zullen worden besproken. De eerste theorie betreft de introductie van 

verborgen variabelen. Met name wordt aandacht besteed aan de voorwaarden, die 

volgen uit de Clausius-Duhem ongelijkheid. Deze laatste staat ook bekend als de 

tweede hoofdwet van de thermodynamica. Modellen voor metalen, die met deze 

theorie kunnen worden verkregen, slaan bekend als modellen voor energie of rek 

verstevigende materialen en materialen van het type N. De tweede theorie behandelt 

de decompositie van de spanningen en de reksne lheden. Speciale aandacht wordt 

geschonken aan relaties tussen afgeleiden van spanningen en reksnelheden. 

Bewezen wordt dal slechts een speciale klasse van afgeleiden gebru ik! kan worden 

voor dil doel. Een vergelijking wordt gemaakt tussen de modellen d ie mei beide 

theorieen zijn verkregen. Ten slotte worden twee modellen, die volgen uil de tweede 

theorie, nader toegelicht: het Maxwe ll model voor elasto-plastische materialen en hel 

Kelvin model voor materialen met k inematische versteviging. Drie experimenten, 

waarmee materiaaleigenschappen Ie verkrijgen zijn, worden beschreven: de lrekproef 

inclusief insnoering, de gecombineerde torsie-trek proef met speciale aandacht voor 

pure torsie en de compressie proef. Enige experimentele resultaten zullen besproken 

worden. Tot slot wordt de opzet van een computerprogramma besproken, waarmee 

de extrusie van lood beschreven kan worden. Enige resultaten, die onlangs met behulp 

van dit programma verkregen zijn, zullen worden getoond. 
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1. De thermodynamische theorie met verborgen variabelen is een krachtig 

hulpmiddel bij het aneiden van constitutieve vergelijkingen. 

• hoofdstuk 2 van dit proefschrift 

• S.R.de Groot en P. Mazur - Non-Equilibrium Thermodynamics - North 

Holland Publishing Company (1962) 

2. In de kinematica is de gradient van de snelheid de som van de symmetrische 

deformatiesnelheidstensor en de anti-symmetrische spintensor. De 

interpretatie van deze tensoren als een direkle maat voor de verandering van 

de deformatie respectievelijk de rotatie van het materiaal is onjuist en kan 

leiden tol foutieve materiaal beschrijvingen. 

• J.C. Nagtegaal en F. E. Veld paus - Analysis of metal forming problems 

with an improved fïnite strain plasticity formulation - Numerical Methods 

in lndustrial Forming Processes, Ed. Pittman, Wood, Alexander and 

Zienkiewicz, Pineridge Press, Swansea, UK (1982) 

3. De afschuifproef is een onzinnige test voor het bepalen van de te gebruiken 

objectieve tensor afgeleide in het geval van elasticiteit en kinematische 

versteviging. 

• S.A. Atluri - On the constitutive relationship nt fïnitc strain: hypo

elasticity and elasto-plasticity with isotropic or kinmatical hardening -

Comp. Meth. in Appl. Mech. and Eng" Vol 43 (1984) 

4. Voor het juist kunnen beschrijven van kinematische versteviging is een beter 

fysisch inzicht nodig in dit fenomeen. Dit inzicht kan verkregen worden door 

hel doen van gerichte experimenten. 

• E.H. Lee, R.L. Mallet and T.B. Wertheimer - Stress analysis for 

anisotropic hardening in finite deformation plasticity - .1. of Appl. Mcch., 

Vol 50 (1983) 

.'i, Menig commercieel eindig elementen pakket zou kwalitatief sterk verbeteren 

als aan de elementen bibliotheek het 'bubblc'-clcmcnt zou worden toegevoegd. 

• hoofdstuk .'i van dit proefschrift 



6. Eindige elementen en differentie methoden zijn er enkel en alleen voor het 

oplossen van integraal en differentiaal vergelijkingen. Vele fysische 

interpretaties van deze methoden zijn dan ook niet relevant en vaak 

verwarrend. 

• J. Blaauwendraat en A.W.M. Kok - Elementenmethode - Agon Elsevier, 

( l 973) 

7. Wetenschapsbeoefening krijgt een toenemend analytisch en daardoor 

projectmatig karakter. De interne organisatie van wetenschappelijke 

instellingen dient hierop aangepast te worden. 

• G. Holst - De tien geboden van het Nat.Lab. - NRC-Handelsblad, (12 juni 

1985) 

8. Het groepsresultaat, dat door goede interne samenwerking in positieve zin 

beïnvloed wordt, is in de praktijk vaak belangrijker dan het individuele 

resultaat. Naast formele individuele boordelingen in bijvoorbeeld het onderwijs 

en het bedrijfsleven dienen groepsbeoordelingen daarom (veel vaker) toegepast 

te worden. 

9. De ware informaticus herkent men aan zijn bureau. 

10. In het ziekenhuis ben je gezegend met een non als afdelingshoofd. 


