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Abstract

This thesis deals with constitutive equations for metals. Two theories with which the
relationship between stresses and strains can be obtained are discussed. The first
theory concerns the introduction of hidden variables. Special attention is given to the
constraints that follow from the Clausius-Duhem inequality. The latter is also known
as the second law of thermodynamics. Relationships for metals that are derived from
this theory are models for metals, which are referred to as work and strain hardening
materials and materials of type N. The second theory discusses the decomposition of
stresses and strain rates. Special consideration is given to the relationship between
stress rates and the elastic part of the deformation rate. It is proven that only a special
class of stress rates can be used for this purpose. A comparison is made between the
models obtained with both theories. Next two special cases that follow from the sec-
ond theory are discussed: the Maxwell model for elastic-plastic materials and the
Kelvin model for kinematic hardening materials. Three experimental set-ups with
which material properties can be obtained are described: the tension test, including
necking, a combined torsion-tension test, with special attention for pure torsion, and
the compression test. Some experimental results are given. Finally, the set-up of a
computer program for the extrusion of lead is discussed. A numerical method that can
be used to solve all kind of constitutive equations for metals is described. Some results
which have been recently obtained with this program are presented.
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General Introduction

In this thesis, the constitutive equations of metals are discussed. With regard to these
equations, special attention is given to the relationships between stresses on the one

hand and deformations and deformation rates on the other.

At the beginning of this century, the Levy-Von Mises relationships were put forward for
this purpose. These relationships suggest that the stress is proportional to the defor-
mation rate and that the proportionality factor may depend on the deformation and the
deformation rate. In fact these relationships a special case of the so-called Newton
relationships for fluids. Hill (1950) gave an extension to this model. He considered the
total deformation to consist of an elastic and a plastic part. The relationships he ob-
tained are often referred to as the Prantl-Reuss relationships. Since then only minor
changes have been proposed with respect to this model. Prager (1956), for instance,

looked at non-isotropic hardening phenomena.

However, these relationships did not obey what is known as the principle of objectivity,
which states that the constitutive relationships are not influenced by rigid body ro-
tations. In order to overcome this problem, the so-called objective stress rates were
introduced; these can be regarded as a kind of time derivative of the stress tensor. This
objective stress rate was assumed to be proportional to the elastic part of the defor-
mation rate. Also in the case of non-isotropic hardening the objective rates were in-
troduced. In specific deformation patterns some of the new models, which obeyed the
principle of objectivity, predicted a very strange stress response. These results led to

an intens discussion in literature, as to which objective rate should be used.

The first 3 chapters of this thesis discuss two theories, with which constitutive re-
lationships of metals can be obtained. The first theory contains the introduction of so-
called hidden tensors, as discussed by De Groot in 1951. Some objective objective
rates can be obtained directly from this theory. The other theory is actually similar to
the way Hill (1950) obtained his relationships, because the starting point for this theory
is the decomposition of the deformation rate into an elastic and a plastic (or viscous)
part. It w?ll be seen that the objective rale of the stress tensor, which is related to the

General Introduction 2



elastic part of the deformation rate, derives from the fact, that this relationship must
be elastic in thermodynamical sense.

Apart from the two general theories about constitutive equations for metals, exper-
iments have to be done to obtain the special material properties for each single metal.
Three different experiments will be discussed, each with its own limitations. The ten-
sion test can be used for so-called strain hardening metals. An extension to the usual
measurement techniques will be discussed, with which data from this test can be ob-
tained during necking. However, this extension can only be used at room temperature.
The torsion test can be used for all kind of metals at every temperature, but only at
rather low strain rates. This limitation can be overcome by applying the compression
test which, in turn, is only suitable for metals that show little any history dependent

material behaviour.

Finally some of these theories are applied to the extrusion of lead. Within Philips
thermocompression is used as a bonding technique. If lead is the bonding metal, then
a difference in thermal expansion of the two bonded substrates can be tolerated, be-
cause of the creep and relaxation capability of lead. Lead is therefore a very attractive
metal for bonding. To give an insight into the mechanical behaviour of the process an
analysis has been made of the two stages, in which the bond is made: the compression
and the unloading stage. The mechanical model is solved by using a finite element
technique. Instead of using the displacements as variables in the numerical analysis,
as is usual for plastic deformation processes, the velocities and pressures are the
variables, for which a solution must be obtained. The solution technique is similar to

that used in fluid dynamics.

General Introduction 3



1 Fundamental laws and constitutive principles

1.1 Introduction

The main quantities used in this work together with their notation, will be introduced
in this chapter. First, some of the kinematical quantities in continuum mechanics will
be discussed. Then, before introducing the fundamental balance laws in the field of
thermomechanics, so-called state, constitutive and external variables will be defined,
in terms of which the fundamental laws and the second law of thermodynamics are
formulated. At the end of the subparagraph the second law will be discussed with

special regard to the Clausius-Duhem inequality.

In subparagraph 1.2 some widely accepted constitutive principles are discussed, in
particular the principle of objectivity and its consequences of this principle. This leads

to a general expression for the constitutive equation.

In the last subparagraph two principles are discussed, from which classes of
constitutive behaviour can be deduced. These principles concern the introduction of

so-called hidden tensors and the decomposition of the stress and strain rate.

1.2 Some kinematical quantities

In continuum mechanics a real body is considered to consist of an infinite set of mate-
rial points. Each of these points can be uniquely identified by a column ¢ of three ma-
terial coordinates, one for each dimension. Let x(¢,f) be the current (i.e. at time t)
position vector of some point with identification column &, measured with respect to a
fixed origin. It is assumed in the continuum’s theory, that x(£,t) is continuous and can

be differentiated with respect to ¢ as well asto t.

The velocity vector u(¢,{) can be obtained by differentiating x(&,f) with respect to time:

I Fundamental laws and constitutive principles 4



ut)=x¢0= a—x(;t—t) (1.2.1)

In the sequel the notion ‘rate of a quantity’ is used to denote the time derivative of that
quantity for constant value of ¢ . So, the velocity is the rate of the position.

The deformation of a body is a relative notion and has to be looked at with respect to
a well-known reference condition of the body. Let this condition have occurred at time
. The position vector at this time ¢, , i.e. the reference position vector, is denoted by

the capital letter X :
X = X(£)= X(¢.to) (1.2.2)

From this relationship it can be seen that the current position vector x can also be re-
garded as a function of the reference position vector X :

x= x(X,t) (1.2.3)

The deformation of the body with respect to the reference condition is characterized

by the deformation tensor F :

F=FX0)= %ﬁfo (1.2.4)

The deformation tensor is regular and its determinant J = def(F) is positive and equal
to the current volume per unit reference volume. F can therefore be uniquely decom-

posed, according to:
F=RU=VR (1.2.5)

where R is a rotation tensor, U and V are symmetrical, positive definite tensors, which
are called the right and left elongation tensor respectively:

R '=R"; detR)=1; U=U"; v=V’ (1.2.6)
The right and left Cauchy (or Green) strain tensor C and B are defined by:
C=F F=U%B=FF =V’ (1.2.7)

The rate of deformation is given by F.F~ ' and is independent of the reference situation.

The rate is decomposed in the deformation rate tensor D and the spin tensor Q :

D+Q=FF '=(vu) (1.2.8)

where V is the current gradient operator. Furthermore, D is a symmetric tensor and

) an skew-symmetric tensor:

I Fundamental laws and constitutive principles S



p=D"a=-0" (1.2.9)

From the definition of J and D it can be deduced that:

tr(D) = ID = % (1.2.10)

1.3 The fundamental laws

The state of a body in thermomechanics is known if the density p, the position vector
x and the absolute temperature 8 are known for the whole interval under consideration.
In each state the so-called balance equations have to be fulfilled. These balance
equations form a set of eight equations, being the balance equations of mass, of mo-
mentum, of moment of momentum, and of energy. The latter is known as the first law
of thermodynamics. However, these balance equations are not formulated in terms of
the density, position vector and temperature only, but also in terms of some other

variables.

All the variables, in the balance equations and the second law of thermodynamics,
which is discussed later, can be separated into three groups:

- the state variables

p the density
x the position vector
6 the absolute temperature

- the constitutive variables

n the entropy
Y the free energy

h the heat flow vector

0 the Cauchy stress tensor

- the external variables

r the specific heat production

I Fundamental laws and constitutive principles 6



b the specific load vector

The state variables determine the state of a body. The constitutive variables are de-
termined entirely by the current and past values of the state variables. Let ¢ represent
some constitutive variable and let = be the set of all ¢ , which identify the body. This
constitutive variable is then mathematically given by a constitutive equation of the

type:

C(E0) =C(p(, 1) XL, 1). 8L, 1) 1 < L € =) ‘ (1.3.1)

The fact that the constitutive variables can be expressed in terms of the internal vari-
ables, is known as the principle of determinism. In the next section other principles

will be discussed, which lead to simplifications of relationship 1.3.1.

The internal energy e is often introduced as a constitutive variable. This variable de-
pends on the free energy, the entropy and the temperature in the following way:

e=y + 0y (1.3.2)

It will not be considered as a separate variable as it can be expressed in terms of

others.

The constitutive variables will be regarded as primitive variables. Their descriptions
in terms of the state variables, i.e. the constitutive equations, are unique for every
distinct material and specify the physical properties of the material. The physical in-
terpretation of the constitutive variables will not be discussed here, but can be found
in, for instance, Fast (1962) and Muller (1985).

The external variables are independent variables, which enter the balance equations.
In most parts of this work it is assumed that their influence can be neglected.

In thermomechanics the variables mentioned have to obey a set of so-called balance

equations. These equations are:

- the balance equation of mass

-f,— +Vu=0 (1.3.3)
- the balance equations of momentum

V.O+pb=np.u ' (1.3.4)
- the balance equations of moment of momentum

| Fundamental laws and constitutive principles 7



g=0' (1.3.5)

- the balance equation of energy

pe=—-Yh+0D+p.r (1.3.6)

The latter equation is better known as the first law of thermodynamics. The second law
of thermodynamics is not represented by a balance equation, but by an inequality. This
inequality represents the idea that every thermodynamical process has a direction,
which means that not every conceivable state of a body can be achieved from the cur-
rent state. In a more formal way, it is stated that the entropy production has to be
positive. This leads to (Muller,1985):

ﬂ@+ény-mu+%aaxeso (1.3.7)

Equation 1.3.5 and inequality 1.3.7 can be regarded as restrictions on the constitutive
equations 1.3.2 . The remaining equations 1.3.3, 1.3.4 and 1.3.6 form a set of five
equations for the unknown state variables. Equation 1.3.3 can immediately be solved

by time integration, resulting in:
$§=J=dmu) (1.3.8)

This means that the density can be expressed in terms of the position vector x and that
the general constitutive equation 1.3.1 can be simplified to:

C(E) =C(x(L, 1), 0L, 1)1 < t: L e E) (1.3.9)

A second simplification is based on the assumption that the inequality 1.3.7 can be

decomposed into two parts:

p(V +6n)—0:D<O (1.3.10)
hg<0 (1.3.11)

where g represents the gradient of the temperature:

g=Vvao (1.3.12)

Inequality 1.3.10 is referred to as the Clausius-Duhem inequality.

I Fundamental Jaws and constitutive principles 8



1.4 Some constitutive principles.

In this subparagraph some widely accepted constitutive principles, concerning the
constitutive equations, will be discussed. First some principles and their consequences
will just be mentioned. Special attention will be given to the principle of objectivity,
because some consequences of this principle will be extensively discussed in this

thesis.

The acceptance of the principles of local action, of invariance of Galilei-translations
and of invariance under a shift of the origin of time, yields the conclusion that the
entropy », the free energy ¢, the heat flow vector h and the stress tensor 0 are com-
pletely determined by the history of the strain tensor F, of the temperature 6, and of the
temperature gradient g. Details of these principles can be found in Eringen (1967) or
in Muller (1985). Relationship 1.3.9 for a constitutive quantity/c} can therefore be re-

duced to:

C(E0) = C(F(E, 1), 0(¢, 1), g€, )it < 0) (1.4.1)

Usually the dependence of the material coordinates ¢ is not explicitly denoted and

hence the constitutive equations are written as:

C(t)= S(F(x), (x), g(); T < 1) (1.4.2)

Prior to the introduction of the principle of objectivity the idea of objective and invariant
variables will be discussed. Let x be the position vector of a certain material point, and
let X be the position vector of this point after a rigid body rotation. Then the relationship

between x and X is given by:
% = Qx (1.4.3)

where Q is a rotation tensor, which can only depend on time.

Let p and p represent some quantity respectivily before and after the rigid body rota-
tion. Then the invariancy and objectivity of this quantity can be defined by the following

scheme:

invariant objective
scalar p=p p=p
vector p=p p=Qp

| Fundamental laws and constitutive principles 9



tensor P=P P=a’ra
In Appendix A most of the previously introduced variables are divided into objective
,Jinvariant and other variables, with the following result:
-Objective variables:

scalar n, ¥, 8,J

vector h, g, x

tensor 0,B,D
-Invariant variables
scalar y,y,8,J
vector X
tensor C

The principle of objectivity states that only objective quantities can be related to ob-
jective quantities, and invariant quantities to invariant quantities. In the next paragraph
constitutive relationships between invariant quantities will be discussed. An invariant
stress tensor and invariant heat flow vector must therefore be introduced.

The invariant stress tensor § is simultaneously introduced with an invariant deforma-

tion rate tensor C. They are defined by:

S=uA'o.AT (1.4.4)
C=A"DA ; C(t)=0 (1.4.5)
A(t)= F(£).A(U(x), 1 < 0) (1.4.6)

where A is an invariant tensor. In Appendix A the invariancy of § and € is shown and
some commonly used choices of the tensor A are discussed.

The invariant heat flow vector s is defined together with an invariant temperature
gradient veclor g :
i —1 . T
h=A "h ; g=Ag (1.4.7)

The principle of objectivity states that for the invariant constitutive quantities the gen-
eral relationship 1.4.2 reduces to:

| Fundamental laws and constitutive principles 10



Y(t)=y(C(z), 6(2). g(x); 1< t) (1.4.8)

n(f) = n(C(x), 8(x), glr): 1< 1) (1.4.9)
h()= h(C(z), 6(x), gz ); v < 1) (1.4.10)
S(t)=S(C(1), (1), g(z); 1< ¥ (1.4.11)

An example of a constitutive equation, which obeys the principle of objectivity is
Fourier’s law. This law assumes that the heat flow is a linear function of the temper-

ature gradient:
h=-Kg (1.4.12)

where K is an invariant and symmetric tensor. In terms of the objective heat flow and
temperature gradient vectors this relationship becomes:

h=-AKA g=—-Kg (1.4.13)

where K is objective. From inequality 1.3.11 it follows that K is positive definite. Often
it is assumed that K reduces to:

K=kl ; k>0 (1.4.14)
where k is the thermal conductivity.

In this thesis, the main interest is the constitutive relationship for the stresses. As the
entropy and the free energy enter the Clausius-Duhem inequality, they have to be
taken into account as well. For the heat flow, it is assumed that Fourier’s law holds.

1.5 Further simplifications

In the next two chapters the consequences of two well-known methods for simplifying
the general constitutive equations, are discussed and compared.

The first method is achieved by assuming that the current value of constitutive quanti-
ties only depends on the current value of a number of variables, including so-called
hidden variables. The rate of these hidden variables depends on the same variables
as the constitutive quantities. In this way, the history of the body under consideration
can be taken into account. This is the subject of the next chapter.

1 Fundamental laws and constitutive principles i1



The second method is based on the decomposition of the Cauchy stress tensor G and
the decomposition of the deformation rate tensor D into an elastic, or reversible, part
and an irreversible part. This method is especially popular in the field of metal
plasticity. It is discussed in more detail in chapter 3.

I Fundamental laws and constitutive principles 12



2 Hidden variables

2.1 Introduction

In this chapter the constitutive equations 1.4.8, 1.4.9 and 1.4.11 will be reformulated in
current variables only. These current variables are the already introduced strain and
strain rate tensors € and 5 the temperature 8 and the temperature gradient g, but
there is also a set of so-called hidden variables. These variables can have a physical
meaning, but their main property is, that their evolution in time is described by the

current variables themselves.

In the next two subparagraphs the consequences of the introduction of hidden vari-
ables will be analysed, taking into account the second law of thermodynamics (the
Clausius-Duhem inequality) and isotropy. Some possible simplifications will be dis-
cussed. In the rest of the chapter some weli-known classes of constitutive behaviour,
such as viscous and elastic behaviour will be discussed. These classes are obtained
by introducing no hidden variables, one hidden scalar and, finally, one hidden tensor.

In the last two subparagraphs of this chapter one hidden scalar and one hidden tensor
with a clear physical meaning will be introduced. This will lead to two constitutive re-

lationships for metals.

2.2 The consequences of the introduction of hidden
variables

As discussed in lhe previous subparagraph some assumptions will be made concern-
ing the constitutive relationships 1.4.8, 1.4.9 and 1.4.11. The first assumption is that the
constitutive relationships only depend on the current values of certain variables, such
as the pseudo strain and strain rate tensors C and E, the temperature 4,the temper-
ature gradient g and finally some hidden, independent variables. Such variables can

2 Hidden variables 13



be scalar and vectorial and tensorial quantities, which means that the hidden variables
can be defined by:

gy, ..., Gs : scalar variables
g1, --» q, : vectorial variables
Qy, ..., @ :tensorial variables

For reasons of compactness of notation, these hidden variables are regarded as the

components of a column J:

J = (G4, - Gsr Qs s Gur Q- Q)T (2.2.1)

It then follows that the constitutive relationships can be formulated by:

2 =20(C,C,6,§J) (2.2.2)

All the quantities in this relationship depend on time but, for the sake of brevity this is

not mentioned in 2.2.2 .

As already stated, the constitutive variables are,in general, a function of the current
and past states of the body. This means that the hidden variables in 2.2.2 must take
into account the influence of the past states on the current value of the constitutive
variables. This leads to the second assumption: the rate of the hidden variables is
determined by exactly the same variables, as in the case of the constitutive variables.

In mathematical form, this assumption leads to:

J=J(C,C.6§J) (2.2.3)

The consequences of these two assumptions with respect to the Clausius-Duhem ine-
quality and isotropy, will be investigated. If @ and D, in inequality 1.3.10, are replaced

by the invariant stress and strain rate tensor § and C, this inequality baecomes:

po(y +0.0)—8:C<0 (2.2.4)
With a constitutive relationship of the type 2.2.2 the rate of ¥ is given by:

Wogr W gy W, N o Xxd (2.2.5)
aC 2C 20 ag -

where X x J is a formal notation for the contribution to nj/, due to the hidden variables

J . This implies that ; follows from the requirement that:
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~

W(ond + 00 )= Y(n d )= X x d (2.2.6)

for each infinitesimally smail column d J. Within this relationship for y, the evaluation
relationship 2.2.3 and the fact, that the hidden variables, C, C and g form a set of in-
dependent parameters, the Clausius-Duhem inequality 2.2.4 leads to:

L B I

= P ) C+ X x . (2.2.7)
d

l/i -0 (2.2.8)
aC

oy
. A 229
28 n ( )
—61’_—= 0 (2.2.10)
Je]

All the choices that will be considered for j are independent of the strain rate tensor
C. In that case, it directy follows from 2.2.7 that 2.2.7 can be split into the following two

parts:
J s Y
(a—'fc’,—;—o.S):CSO (2.2.11)
Xxd <0 (2.2.12)

In order to fulfil inequality 2.2.11 it seems obvious to make the following assumption for

the constitutive relationship of the stress S:

_ oy T
S =py—+ MC 2.2.13
Po aC ( )

where the fourth order tensor ‘M is a semi-positive defirite fourth order tensor which
may depend on the state and hidden variables. This tensor is usually simplified to u.*
. Then relationship 2.2.13 becomes:

: B -
S=pp—+ulC ; p=>0 2.2.14
0 5C / ( )

The scalar y is called the viscosity which, for most materials, depends on the state and

hidden variables.
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Another widely accepted assumption has been described in De Groot (1951) and De
Groot and Mazur (1962). In order to fulfil the inequality 2.2.12, the authors argued that

it seems logical to assume that:

J+L(X)=0 (2.2.15)
where Z is a linear, semi-positive definite operator on ;(I

Another well-known assumption is that the operator L is symmetrical, i.e.:

L(A)x B=AxL(B) for YA,B (2.2.16)

The assumptions 2.2.15 and 2.2.16 have often been discussed in literature. As already
mentioned, equation 2.2.15 is widely accepted. This is not the case for the so-called
Onsager relationships 2.2.16, as can be seen in Truesdell (1968). De Groot, however,
gave some arguements for the symmetry of the operator Z derived from statistical
thermodynamics (De Groot and Mazur, 1962).

2.3 Isotropy

A special class of materials are the so-called isotropic materials. The constitutive
behaviour of these materials is equal for every direction. Most materials are consid-

ered to be isotropic.

For isotropic scalar functions the following theorem can be employed. The proof of this
theorem can be found in Muller (1985), for instance.

Let f be an isotropic scalar function of some tensors A and B, some vectors a and b and

some scalars a and b:
f=1(A,B,a,b,a,b) (2.3.1)

Then, because of the isotropy, f can only be a function of invariant characteristics of the

variahles:
f=1(FA, IB, I:1A>, A:B, I-B® 1A% A*B, A:B” IB® a.a, a.b, b.b, a, b) (2.3.2)

This theorem says, for instance, that f can’t just depend on one single component of the
tensor A or B, or on combinations like a.B.a2. Similar results are found if f depends on

more than two tensors or vectors.
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Previously it was argued that the free energy ¥ is a function of C, 8 and J, where the
hidden variables in the column J are scalar, vectorial and tensorial quantities. In the
sequel it will be assumed that ¥ is an isotropic function of C, 8 and J and only some

special cases are considered.

If there is only one hidden vectorial variable g, then this hidden vector can be replaced
by a hidden scalar, which can be interpreted as the length of the vector g. This is a
direct consequence of the the theorem 2.3.2 . Hence the case of one single hidden

vector is not taken into account in this chapter.

Far-reaching consequences of isotropy can be derived for the case, in which the free
energy is quadratically expanded, as was suggested by De Groot (1951). Theorem 2.3.2

then gives:

t
s
U= o+ %6:“5:6 + «0IC + I:EZ([i,q,-) + Z(E:‘N":o") + —%‘y92+

+ GZ(é,q,)Jr oz (@) + - Z(c,,q,q,)+ Z(K,,q,l Q)+ (2.3.3)

= 1 =1 =1

1 Z :
'5' (Qr B/] Q/) + - 2 Z Uqul q}
=1
=1

where «a, f8;,y, 6, ¢, {;; k;and v; are constant, and where all fourth order tensors, like

“‘E, ‘N, and *B;;, are of the type:

ify

‘P= p14l+ poll;  py and p, are constant (2.3.4)

The relationships 2.2.14 and 2.2.9 for the stress § and the entropy n become:

S =pq EC+ a9I+ Big) + Z( N:Q) )+ uC (2.3.5)
i=1

S !

g e T s Z(é,q,) _ Z(c,I:Q,-) (2.3.6)

=1 i=1

One of the striking results is that in these relationships for the stress and entropy no

hidden vectors enter.
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As already mentioned in the first section of this chaptor, only a few simple cases will
be considered in the following subparagraphs by introducing no hidden variables, one
hidden scalar, one hidden tensor and finally one hidden scalar and tensor. Special at-
tention will be given to the relationships in 2.2.14, the so-called stress-strain relation-

ships.

2.4 Elasticity and simple visco-elasticity

In this subparagraph the case will be considered, in which the free energy doesn’t
depend on any single hidden variable. The general expression for the free energy then
becomes:

¥ =¥(C,0) (2.4.1)
and for isotropic materials this relationship reduces to:
¥ =y(EC, EC? IC2,0) = y(ly, Iy, Iy, 6) (2.4.2)

The stress-strain relationships can be easily obtained by substitution of 2.4.2 in 2.2.14:

S = agl + ,C + azéz + /1C;'

W g
01

aor:poa—l; oy = 2poﬁ; (2.4.3)
1

Materials with constitutive equations of this kind are called simple visco-elastic mate-
rials. If 1 = 0, i.e. no viscosity, the material is called pseudo-elastic. Then the stress-

strain relationship reduces to:
§ = agl+ o,C + 0,C° (2.4.4)
and the rate of the free energy is given by:

P a‘l/ i ‘ 1 «
: —0=—0:D-yb 4.
% S:C + 28 0 B 0 n (2.4.5)

Hence, in the isothermal case, the added mechanical power equals the rate of the free
energy. This result is discussed in Appendix B.

A material is called elastic if it is pseudo-elastic and if the free energy depends on 6
and on the Cauchy strain tensor C, introduced in section 1.2. From this definition it is
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deduced in Appendix B that the Cauchy stress tensor g will be a quadratical function
of the objective Cauchy strain tensor B:

0 = agl + a;B + a,B’ (2.4.6)

A final result, obtained in Appendix B, and used in the next chapter, is that the
eigenvalues g, of the stress tensor (i.e. the main stresses) for an elastic material are

given by:
d
L (2.4.7)
69,-

where A%, A2 and A} are the eigenvalues of B.

2.5 One hidden scalar

The simplest extension in the concept of hidden variables to the simple visco-elastic

model, is the introduction of one hidden scalar q:

According to 2.2.14 and 2.2.15 the stress-strain relationships are given by:

. v .
S = —+ uC >0 2.5.2
Po g T " ( )
; o
|, —=0 ; />0 2.5.3
g+ 2q p (2.5.3)

where | is a scalar quantity. As an example, the isotropic, isothermal, quadratic ex-
pansion of the free energy is considered. Then, 2.3.3 reduces to:

V=yy+ %C:AE:'C-+ ﬂql:5+%5q2 (2.5.4)

where ‘E = E\'l + E,ll because of 2.3.4, while ¥, E,, E,, § and{ are constant. Substi-
tution in 2.5.1 and 2.5.2 gives:

8 = po(El-C + Bl + poEs€ + pnC (2.5.5)

g+ g+ I1C =0 (2.5.6)
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Equation 2.5.5 can be decomposed into a relationship for the trace of S and a re-

lationship for the deviatoric part S?of S:
§9= poE,C% + u(C)? (2.5.7)

t(8) = 3ppq + poEq+ 3ELC + plC (2.5.8)

It can be seen from 2.5.7 that §¢ doesn’t depend on the hidden scalar q. Furthermore,
it can be seen, that 2.5.6 and 2.5.8 form a set of two linear equations, relating q and the
trace of § to the trace of € and C. With the definition of C in 1.4.5 it lollows that:

I:C = D:(A.AT) (2.5.9)

In the special case, in which A is a rotation tensor, this relationship reduces to:

IC =D = % so IC = In(J) (2.5.10)

In this case the definition of § in 1.4.4 results in:

tM(8)=JOA" AT = Jro = - 3Jp, (2.5.11)

where p, = — % I:0 is the hydrostatic pressure. Substitution of 2.5.10and 2.5.11in 2.5.8
and 2.5.6 yields:

1 1 J
Ph=“P/3q—P(?E1+E2) |”(J)—§#7 (2.5.12)

G+ ILg+ I8 In(J)=0 (2.5.13)

From these equations it can be seen that by eliminating q from these equations a re-
lationship remains between the hydrostatic pressure and the relative volume change
J. So, in this case, the introduction of one hidden scalar leads to what is normally

called a p-V relationship.

Another well-known special case of 2.5.7, 2.5.8 and 2.5.9 is obtained, if the scalar factor
A becomes infinite. Then the equations reduce to I:C = 0. A trivial interpretation of this
relationship is possible if A is a rotation tensor, since it then follows from 2.5.10 that

tr(D) = 0 and J=1, which is the requirement for a material that is incompressible.
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Usually incompressibility, is accounted for in a different way, which is also applicable
when A is not a rotation tensor. In that case, the requirement of incompressibility is
considered as a restriction, which can be expressed mathematically by:

(2.5.14)

o=
I
=
B
I
o
3
o
0
S
|
>
|
\;‘
I
o

In the application of the second law of thermodynamics, this restriction can be taken
into account by using a Lagrange multiplier p. The Clausius-Duhem inequality is then

replaced by:

pd + 6n) — 5:C - p(A_1.A_T):(—»f <0 (2.5.15)

and it is easy to see that the stress-strain relationship 2.2.14 becomes:
S§=—pA A T+ po = uC (2.5.16)

Substituting relationship 1.4.4 into this result, the following expression is obtained for

the objective stress tensor G:
B -
0 =— pl+ Alpo %+/1C)AT (2.5.17)

It can be seen from this result that the requirement of incompressibility leads to the
addition of — pl to the Cauchy stress tensor. For this reason incompressibility is taken

into account in the following by separating the Cauchy tensor in:
O=—-pl+7T (2.5.18)
where a constitutive relationship is given for T.

From the results of this subparagraph it can be seen that the introduction of one hidden
scalar variable can lead to a well-known material behaviour, although no physical

meaning had previously been given to that hidden variable.

2.6 Generalized visco-elastic material behaviour

The ohvious extension to the previous subparagraph is the introduction of one hidden

tensorial variable Q. The free energy is given in this case by:
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¥ =¥(C,6,Q) (2.6.1)
If only the case is considered, in which the free energy is an isotropic, quadratic func-
tion, as in 2.3.3, it follows that:

§="E:C + *N:Q+ abl+ uC (2.6.2)

Q+ ‘L('N:C + ‘B:Q+ 0N =0 ' (2.6.3)

where ‘E, ‘N and ‘B are constant fourth order tensors and where it is assumed that “L
is symmetric (Onsager relations) and positive definite (Clausius-Duhem). For the time
being it is also assumed that ‘L is constant. Then Q can be solved from 2.6.3 (see Ap-

pendix C), which leads to :

6
Q= - Z“v, g f'( NC(1)+ 0(x)1) e~ M D g (2.6.4)
0

i=1

where the fourth order tensor *V and the scalars A(i= 1,..,6) are determined by:

W=V ; (4 L+ By Vi=0; VoLV =1 (2.6.5)

From 2.6.4 it can be seen that Q is a history dependent strain tensor with a correction
term for the temperature. This means that § depends not only on the current state of
the body but also on the total history.

Schapery (1964) made an extension of this model by introducing a reduced time y. He

assumed that ‘L can be written as:
‘L=v'L ; »>0 (2.6.6)

where ‘L is positive definite, symmetric and constant, while » can be a function of the
internal variables, except of C (2.2.12). Then the reduced time y is defined by:

t
X = f v dt (2.6.7)
0

and using this variable, the evolution equation 2.6.3 hecomes:

dQ

o ‘L:('B:@+ ‘N:C + 20D =0 (2.6.8)

This equation can also be solved for Q, resulting in:
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6
Q=- Z‘v, : f’( ‘N:C(2) + £ 6(1) 1) o) e~ M1 Dy (2.6.9)

=1

By substitution of this result in the stress-strain equation 2.6.2 a so-called integral
model for the stresses is obtained. If *N is regular, a so-called differential model can
be obtained. From 2.6.2 it follows that:

Q= "*N(S - ‘E:C — uC — abl) (2.6.10)

and this result can be used to eliminate Q from the evolution equation 2.6.3, yielding:

5+ “X:S = uC + *Y;:C + V,.C + abl + 0Z (2.6.11)

where the fourth order tensors “X, *Y, and *Y, and the second order tensor Z are given
by:

X="NIL'B:TN (2.6.12)
Yy = i1+ u'x+ °E (2.6.13)
Y, =% - ‘NLN (2.6.14)
Z=o'X:0— e*N:ALd (2.6.15)

The models obtained are still very complicated and are usually simplified by making
further assumptions. in order to obtain relationships which are well-known from liter-
ature, the following simplification will be considered: it is assumed that the fourth
tensors *B, N, ‘E and °L satisfy the requirements:

‘N="B="E=E"1+E (2.6.16)

Ey

Whr=-—L4% 5 4=-Lly_.__2 __y (2.6.17)
2 1 ME, + 3Ey)

with positive scalars E; and A and non-negative E, . Substitution of 2.6.17 into 2.6.11

results in:
16, 1¢ [ Y-
'E—'S+7'S= ?—C+(1+T+?)C+
L 1E ! (2.6.18)
2 ; a— ¢ a
+ (==(C 0+ —0)I
(£ @)+ £ 0
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This equation can be reformulated in terms of the Cauchy stress tensor 0 and the de-
formation rate tensor D by using the definition of the invariant tensors § and C, defined

in section 1.4. A lengthy but straightforward derivation yields:

A
Ao lwpyr Lyo=2aa(ELpr+ L+ Lpyaa’
Es Ey 4 o 4 (2.6.19)
1 E, T o — € a T
+p (FoAAD+ 0+ £ 0)AA

A \%
The objective rates 0 and D of respectively 0 and D are defined by:
A i a1 i oA— T
0=0-(AA )O~-0.(AA ) (2.6.20)

¥ . .o s I
D=D+(AA Y D+D(AAT (2.6.21)

Now the tensor A is chosen to be a rotation tensor, in such a way that A still satisfies

the requirement 1.4.6. In that case the tensor A.A~" is skew-symmetrical;

AA7 = —(AA Y =—a"TTAT (2.6.22)

A v
and the objective rates G and G of a tensor G are identical:

AV y et
G=G=6G-AA"G+G.AA (2.6.23)

Based on the following choices for H:, very well-known rates of this type are the

Jaumann rate:
AA ' =0 = %(F.F“’ - FTEY (2.6.24)
and the Dienes rate:

AAT"=RR" andso A=R (2.6.25)

In literature other objective rates are often used in which A is not a rotation tensor.

Some of these rates will be discussed in the next chapter.

If A is a rotation tensor, then the constitutive equation 2.6.19 reduces to:

2 Midden variables 24



v v ;
Lov(Lupy+ Lo L ED+1+ L Ly
B & 4 £ & B (2.6.26)

J
(+(—EQ— D)+ £=% 9+ -2 8))
E, ) E,

where g’ and g follow from 2.6.22 and 2.6.23 by replacing G by 0 and D respectively.
The model represented by 2.6.26 is an extension of the so-called Oldroyd model that
is described by, for instance, Crochet, Davies and Walters (1984). These authors only
considered the case in which the material is incompressible and the temperatures is

not taken into account. Then the model reduces to:

O=-pl+T ; t{D)=0 (2.6.27)
1V 1 u Vv uoop

kT e T ) - [T P 2.6.28
E, PP E U E) (2.6.28)

For 1 = 0 this model reduces to the so-called Maxwell model. The relationship between

T and D then becomes:

| v
—T+—-—T=D (2.6.29)

1

2.7 Elastic-plastic models with hardening

The models in this subparagraph are based on the assumption that the free energy v
depends not only on the total strain tensor C and the temperature 8 but also on a hid-

den scalar variable q and a hidden tensorial variable Q:
¥ =y(C,6,Q,9) (2.7.1)

With respect to Q, it is assumed that this tensor represents the plastic part of the total
deformation. This interpretation of @ means that i will not depend on C and Q sepa-
rately, but on the difference C — Q of these tensors:

¥ =y(C-Q,0,q) (2.7.2)

From this relationship and 2.2.14, it immediately follows that:

— (’)x// s, al// R
S = —+pC=— —+ uC 2.7.3
Po aE I Po 2Q 1 ( )
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and hence the Clausius-Duhem inequality 2.2.7 becomes:

- uC(C— Q)+ po—a%qso (2.7.4)

Here, n Is the so-called plastic work, defined by:

t
n= I§:th ' (2.7.5)
0

The third assumption in this section is that the viscosity may be neglected, which
means that u = 0. As a consequence of this assumption the stress tensor S will be a
function of C — @, 0 and q:

§=p, Y _5c-a0,q (2.7.6)

Furthermore, the Clausius-Duhem inequality reduces to:
5]
i e 2 (2.7.7)
oq ‘

As already stated before in section 2.2, the completion of this model requires the
specification of the evolution equations 2.2.15 for ¢ and Q. According to 2.2.15 and the
definition of ; in 2.2.6, g and Q must be specified as a function of C — @, 6 and q. Be-
cause of 2.6.6 this requirement is fulfilled when ¢ and @ are specified in terms of S, 8
and q. With respect to @, it is assumed that there exists a function ¢ = ¢(S, 6, g), such
that:

.3
= — 2.7.8
Q=75 (27.8)

This function ¢ is called the plastic potential and the relationship 2.7.8 is known as the
flow rule. For isotropic materials it is common practice to assume that the plastic po-
tential only depends on the second invariant §%8¢ of the deviatoric stress tensor
§=§ - Lu(S):

¢ =¢(H 6,90 : H= \/% §%s? (2.7.9)
Then the flow rule turns out to be given by:

99 g (2.7.10)
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In practice it is often assumed that the free energy is quadratic in the strain tensor
C — Q and that y is given by:

v = %(E— Q:'E(C - Q)+ g(0,9) ; ‘E=E1+E (2.7.11)
It follows from 2.7.6 and 2.7.10 that:

12,83 106 4 g0 4=
—S8S+— ——"E:S" = EC : 2.7.12
20>t 2 HH (27.12)
This Maxwell model is a very well-known constitutive relationship for elastic-plastic
materials. It can be brought into an even better known form, by using
S=JA"'.0.A 7 and C = A.D.A, and by considering the case where A is a rotation
tensor, i.e. AT.A=1. With the notation of section 2.6 it can be easily seen that the

constitutive relationship 2.7.12 becomes:

3

1 d
2 H

1 .Y 0p ag a1 4.
P (0 + tr(D)O) + 3H E.0g" = E:D (2.7.13)

1
J

v
Here 0 is the Jaumann rate when A satisfies 2.6.24, or the Dienes rate when A satisfies
2.6.25. Constitutive equations of this type are commonly used in the field of plasticity
(see for example, Nagtegaal and De Jong (1980)).

Until now no statements have been made concerning the hidden variable q. This vari-
able will bring in the phenomenon "hardening’, which can be observed for metals. With
respect to this variable two cases will be considered in this section: work hardening
and strain hardening. In the first case it will be assumed that q equals the plastic work

n , which has been defined in 2.7.5:

g=rn (2.7.14)

This choice for q implies that  and § become functions of C — Q, 8 and n:

_ _ F) _

v =y(C—-Q6,n) ; S=po%=S(C—Q,0,n) (2.7.15)
Besides, the inequality 2.7.7 now becomes:

(1=hy)m>0 (2.7.16)

where h, is the so-called work hardening function:

oy
iy =Po - (2.7.17)
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From the definition 2.7.5 of = it can be seen that:

. o0 08
=S Q=8S:.—=H— 2.7.18
n Q 25 aH ( )

and 2.7.16 reduces to:

(1= hy )%2 0 | (2.7.19)

With the choice for the hidden variable q the constitutive model is completely deter-
mined as soon as the plastic potential ¢ = ¢(S, =, 8) is specified. From 2.7.12and 2.7.19
it follows that in fact only the partial derivative of ¢ to H must be determined. This
function can easily be determined experimentally by using relationship 2.7.18. A ma-
terial with a constitutive model of this kind is called an elastic-plastic material with

work hardening.

In the second case, it is assumed that q equals the so-called equivalent plastic strain
£. This strain is defined by:

t
g | /%Q:Q dr (2.7.20)

Theny and S become:
v =y(C-Q,0,7) ; §=S(C-Q,06,¢) (2.7.21)

From the definitions of = and ¢ it follows that:
|7 | (2.7.22)

and furthermore that the inequality 2.7.7 becomes:

: b
T__2L>o0 (2.7.23)
lxl A

Here, h; is the so-called strain hardening function, defined by:

o
he = 2.7.24
78 ﬂo aE ( )

In this constitutive model y or the partial derivative of y to H still has to be determined.
Again this can easily be done experimentally with relationship 2.7.22. A material with
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a constitutive model of this kind is called an elastic-plastic material with strain hard-
ening. These models are commonly used in the field of plasticity.

2.8 Materials of type N

In the previous subparagraph the hidden scalar variable g was chosen to be either the
plastic work or the plastic strain. This means that in both cases q was defined by giving
it a physical meaning. In the other subparagraphs of this chapter, however, q was
defined by prescribing its rate g. This is also done in this subparagraph, but in such a
way that the rate of q obeys a certain normallity rule, as did the plastic strain rate Q in

the previous section.

The first assumption for materials of type N are that relationships 2.7.2 and 2.7.6 hold

for these materials:

. e 0 ==
) =H(C-Q.0.9) i §=porl=S(C- Q6.0 (2.8.1)

The second assumption is that there exists a plastic potential ¢ = ¢(S, h, 8), such that
(see Kim and Oden (1984) and (1985)):

y_ 9% . _9¢
G =% == (2.8.2)

where h is called the hardening function, that is defined by:

W
h= oo (2.8.3)

In this subparagraph the same simplifications will be considered for  and ¢ as con-

sidered in relationships 2.7.9 and 2.7.12:

¥=—(C-Q:E(C-Q)+9g0,q9) ; ¢=5¢Hh0 (2.8.4)

[NIEN

This means that the same constitutive relationship is obtained as in relationship 2.7.12.
The Clausius-Duhem inequality 2.7.7 is reduced to:

¢ o
(Hor=h—-)=20 (2.8.5)

Kim and Oden (1984 and 1985) suggested the following choices for ¥ and ¢
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¥ = %(E— Q):EA(C ~ Q) — g (hy— hJe™ ™ (2.8.6)

i B' h \2ni—1
¢=DoZ(“1) m(g) (2.8.7)

=0

Substituting this equation into 2.7.12, the following constitutive relationship is obtained:

. 3D, h \en
—4p, 0 —B(+)"ad
ES - —— H' §"=C 2.8.8
2hH °© (28]
This constitutive model was first proposed by Bodner and Partom (1975). Kim and Oden
(1985) developed a numerical solution strategy for this model in the case, where the
Dienes rate is used (see 2.7.13). The variables h and ¢ follow from 2.8.2 and 2.8.3:

oy —
h=pog==rdh+(ho— o™ ™) (28.9)
_ad)_ ﬁ_HDO —B(-L)Z"
=== 2 e H (2.8.10)

Finally it can be easily deduced that this model obeys the Clausius-Duhem inequality
2.8.5.

One may wonder whether the work and strain hardening materials, that discussed in
the previous section, can be of type N. For work hardening materials relationship 2.7.18
must hold and for materials of type N relationship 2.8.2 must hold. A combination of

these requirements leads to :

o (2.8.11)

This requirement can be satisfied, if the plastic potential can be expressed as follows:
¢ = p(He", 6) (2.8.12)

If the inverse of the relationship for 7 in 2.8.11 exists and if relationship 2.8.4 holds, this
result means that the stress H can be expressed as follows in terms of the plastic work

n and the plastic work rate n:

H = f(n, 0)ffx, 0) (2.8.13)

A similar result can be obtained for strain hardening materials. Relationships 2.7.22
and 2.8.2 give:
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o0 _ %9 (2.8.14)

From this requirement it follows that ¢ must be a function of H + h:
¢ =¢(H+ h,8) (2.8.15)

and that the stress H can be expressed by an addition of two functions, which depend

on the plastic strain and the plastic strain rate respectively:

H=1(&, 0) + 1}z, 6) (2.8.16)

2.9 Some final remarks

In this chapter visco-elastic and elastic-plastic models have been considered. The
bases were the definition of a pseudo strain tensor C, with corresponding stress tensor
S, and the theory of the hidden variables in thermodynamics. It has been shown that
with this theory Oldroyd and Maxwell models were obtained, where the objective rate
for the Cauchy stress can be the Jaumann or the Dienes rate. This means that these

models are thermodynamically speaking completely acceptable.

The use of these objective rates has been the pointof much discussion in literature. In
the next chapter, objective rates will be discussed in more detail. From other starting
points similar visco-elastic models will be obtained, although mostly with the use of

other objective rates.

The models obtained in this chapter can be considered as definitions of classes of
material behaviour. Experiments must determine whether a certain material fits such

a model.
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3 The decomposition of constitutive equations

3.1 Introduction

As already discussed in the last subparagraph of chapter 1, a very common way of
deriving constitutive equations is by decomposing the Cauchy stress tensor 0 and the
deformation rate tensor D. It is then assumed that:

- The Cauchy stress tensor 0 can be decomposed into two parts:

For incompressible materials the Cauchy stress tensor is decomposed into three parts:

The Cauchy stress is a constitutive quantity, which is in fact defined in terms of the
state variables. This means that the decomposition only adds two constitutive quanti-
ties to the list in subparagraph 1.3 and these quantities are also to be defined in terms
of the state variables. The total stress or one of the decomposed parts is denoted by
0, in 3.1.1 and by T, in 3.1.2 respectively.

- The deformation rate tensor D consists of an elastic and a viscous or plastic part:
D=D,+ D, (3.1.3)

Interpretating the decomposition of the deformation rate tensor is a problem since D
is a well-defined kinematical quantity. Several interpretations have been given in lit-
erature. Some of them will be discussed in subparagraph 3.1, and their usefulness

assessed.

- For the viscous part of the deformation the deviatoric part of 0, is proportional to
D,:

G8=nD, (3.1.4)
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v
and for the elastic part an objective rate g, of 0, is proportional to D, :

v 4
Oy= "E:D, (3.1.5)

For incompressible materials these relationships become:

v
Tp=1D, and Ty = ‘E:D, (3.1.6)

v
An other important problem is to decide which objective rate 0 can or should be used.
This problem is discussed in subparagraph 3.3, where the definition of elasticity from
subparagraph 2.4 is the starting point.

3.2 The decomposition of the deformation rate tensor

Additive decoimposition of the deformation rate tensor D in an elastic part D, and a
viscous part D, yields:

D=D,+D, (3.2.1)

Since D is objective, D, is proportional to the objective stress rate and D, is proportional
to the deviatoric part of the Cauchy stress, it is required that both D, and D, are objec-

tive:
b.,-ap,Q@" ; D,=QD,Q’ (3.2.2)

Here, the rotation tensor Q represents an arbitrary rigid body rotation in the current
state and D, and D, are the elastic and viscous deformation rate tensors in the rotated

current state.

In literature many definitions of either D, or D, are proposed, each with its own
kinematical interpretation. The other tensor, i.e. D, or D,, then follows from 3.2.1. In the
sequel, some definitions, of which some are commonly used, are considered in more
delail, with special attention to the objectivity of the resulting tensors D, and D,. Each
definition, resulting in non-objective tensors D, and D, , is considered to be unaccept-

able.

To define D, and D, usually a so-called unfoaded state S. is introduced. This is gener-
ally an imaginary state in which the body is seen as a set of uncoupled, unstressed
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infinitesimally small material elements, and which can be attained from the current
state S, by relaxing the stresses on each of the material elements. For each element
it is assumed that the deformation from S, with respect to S,, is purely elastic and is
uniquely defined up to a rigid rotation. Let x be the position vector of a material point
in the current state S, and let x, be the position vector of the same material point in the
unloaded state S,, then is the deformation tensor F, of the state S, with respect to the

unloaded state S,, defined by:

F, =X (3.2.3)

and let V, be the Cauchy strain tensor in the polar decomposition of F,:
F.=V.R, ; R,RI=1; det(R,)=1 (3.2.4)

Then V, is uniquely determined by the elastic unloading from S to S,, while the defi-
nition of the rotation tensor R, is still completely free, as the unloaded state was de-

fined up to a rigid rotation.

The deformation tensor of the unloaded state S, with respect to the reference state S,
is denoted by F,. Then, the deformation tensor F of S, with respect to S, and the tensors
F, and F,, are related by:

F=F,F,= V,R,F, (3.2.5)

If the body, in current state, undergoes a rigid rotation Q, the tensor F transforms ac-
cording to:

F=QF (3.2.6)

The transformation rule for R, is not only derived from the rigid body rotation Q of the
current state, but also from an independent rigid bodv rotation Q, of the unloaded state,
because the unloaded state was uniquely defined up to a rigid body rotation. From 3.2.5
and 3.2.6 it can be easily seen that the transformation rules for V,, R, and F, will be

given by:
V.=QVv.Q ; R,=QR.Q], F,=Q,F, (3.2.7)
Nemet-Nasser (1979,1982) proposed to define the viscous deformation rate tensor D,

by:

D,=—(F.F "+ (F,F ") (3.2.8)

4
2
With the transformation rules 3.2.6 and 3.2.7 for F and F, . the transformation rule for

D, is given by:
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D,= Q.D,Q" + - Q(Q".Q,.F.F '+ (@ .Q.F.F ))a +
1 2 = —1 T e g—1\T (3.29)
?Q.((QT.QV— nNEF'y@Q,-nEF Y )a'

Comparison of this result with the objectivity requirement 3.2.2, yields that Q, has to

satisfy:

Q’.q,=1 and @".Q,=0 forvQ : (3.2.10)

This means that Q should be constant, a requirement that can’t be satisfied. Hence,
using the definition 3.2.8 according to Nemet-Nasser, there is no choice for Q, and
therefore no definition of R, , for which D, is objective. This means that Nemet-Nasser’s

definition of the viscous deformation rate tensor D, is unacceptable.

Lee (1969,1981) proposed a definition for both D, and D,:

LR (T (3.2.11)

1 a5 G
Dezi(Fe-Fe 1‘*’(Fe":e 1)T) ) Dv: 2

However the sum of these proposed tensors is not equal to D, which means that 3.2.1
is not satisfied. This can be corrected by a slight modification of the definition of D,, and
by maintaining the definition of D,. After this modification, D, is given by:

D= B = B -;—(FE.FV.F‘,_1.F;1 + (FEF ) (3.2.12)
A lengthy but straight-forward calculation now yields:

b,- a.D,Q + %Q.(FE.QVT,QV.FE_1 +(F.Qla.F ') ).a’ (3.2.13)
and this means that D, is objective, only if QI.Q, = 0, which means that Q, is constant.
Since Q, = I in the reference state, it can be seen that D, is objective if and only if
Q, = 1. In this case, the transformation rules for F,, F, and R, become:

F,=QF,; F,=F,; R,= QR, (3.2.14)

This is the case if the unloaded state S, is invariant for all rigid body rotations of the
current state. It can therefore be concluded that the modified definition 3.2.12 of Lee for
D, is acceptable, if the rolation tensor Q, equals the identity tensor 1. This conclusion
is in complete agreement with Besseling (1968) and Van der Heyden and Besseling
(1984), who referred to the invariant unloaded state as the natural reference state.

As a third example, the definition of D,, according to Kim and Oden (1985), is consid-
ered. Slarting from the polar decomposition of F,
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F=RU; RR =1; deR)=1 (3.2.15)

they defined D, by:
D~ %R.(KV.U_1 + (KUY )RT (3.2.16)

where K, is given by:
K,=R'F, (3.2.17)

In general, it is noted that K, is not the elongation tensor U, from the polar decompos-
ition of F, and, furthermore, that K, is not a symmetrical tensor. In this case it can be

shown that:
i 1 " y —1 = : — 1Ty pT AT
D,=D,+ ?O.Rl((KV— K)U "+ ((K,—-K,)U ") )R .Q (3.2.18)

where K, = R".Q".Q,.R.K,.

This result implies that D, is objective if and only if K, = K, , a requirement, which can
only be met if Q, = Q for all Q. From 3.2.7, it can be seen that the definition of D,, ac-
cording to Kim and Oden, is acceptable if and only if the definition of the tensors
F,, F, and R, involve the transformation rules for these tensors being given by:

F,.=QF.Q" ; F,=Q.F,; R,=Q.R,Q" (3.2.19)

This means that the unloaded state S, will not be invariant for rigid body rotations of
the current state S: if the current state undergoes a rigid rotation Q, the unloaded state

has to undergo the same rigid rotation Q.

Finally a slight modification is considered, with respect to Kim and Oden’s definition.
The elongation tensor U, from the polar decomposition F, is introduced for this pur-

pose:
U,= R/} F, (3.2.20)

where U, is a symmetric, positive-definite tensor. The fransformation rules for the
tensors U, and R, follow from the definition of F, in 3.2.5 and from the transformation

rules in 3.2.7:
R,=Q.R, ; U,=U, (3.2.21)
For D, a definition similar to that in 3.2.16 is used:
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D,= —R(U, U™ "+ W, U "Y)RT (3.2.22)

1
2
From this definition, and the fact that U, and U are invariant tensors, it can easily be

seen that:
D,=an,.Q" (3.2.23)

This means that the rigid body rotations of the unloaded state S, can be chosen com-
pletely independently of the rigid body rotations of the original state S.

3.3 Rate type constitutive equations for elastic bodies

The ultimate aim of the decomposition D= D,+ D, is to formulate constitutive
equations for certain classes of material behaviour. An essential step in this approach

v
is the specification of the elastic part of the constitutive equation 0 = *L:D, , which re-

\%
lates an objective stress rate 0 of the Cauchy stress to the elastic part of the defor-
mation rate tensor D,. Some of the possible definiticiiz for D, were discussed in
subparagraph 3.2. The objective rate and the proportionality tensor “L still have to be

v
specified. The purpose of this subparagraph is to analyse which 0 is acceptable for a

v
given ‘L in such a way that the rate type equation 0 = *L:D, results in a correct de-
scription of elastic behaviour, as defined in subparagraph 2.4. For this purpose D, can
be replaced by D.

Only isotropic elastic behaviour will be considered in this subparagraph. The tensor

‘L is then given by:
L= 1+ polt (3.3.1)

where i, and p, may be functions of the invariants of the strain tensor B = F.F'. Besides
this, for elastic behaviour, the Cauchy stress tensor 0 is related to the strain tensor

by (see 2.4.6):

0 = agl+ a;B + a,B” ' (3.3.2)
where a,, a, and a, may be functions of the invariants of B.
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In subparagraph 2.6, two alternative objective rates were introduced (see 2.6.20 and
2.6.21):

AL L
0=06-(AA" No-0(AAT (3.3.3)

G= G (AAY A~
=0+(AA Y. o+0.(AA7" (3.3.4)

where the tensor A is introduced in subparagraph 1.4. From 1.4.6, it can easily be seen
that both these objective rates can be replaced by:

g =0-(Q+H.0-0(Q2+H (3.3.5)

where H is an objective tensor. Two commonly used objective rates, the Jaumann and
Dienes rate, were introduced in subparagraph 2.6. Two other very well-known rates
can be obtained for the following choices of H

H= D- 1 tr(D)I Truesdell rate
21 (3.3.6)
H=-D- > tr(D)I  Cotter-Rivlin rate

v
ubstitution of ‘L according to 3.3.1 and of 0 according to 3.3.5 in the rate type equation
0 = “‘L:D yields:

0 —(Q2+ H).O- 0(Q+H) = pu,D+ pytr(D)I (3.3.7)

The problem to be analysed in this subparagraph can now be formulated as: which
choices for H are acceptable, if it is required that the rate type constitutive equation
3.3.7 results in a stress-strain relationship of the kind 3.3.2.

From 3.3.2 it can be seen that 0 and B have the same orthonormal eigenvectors
n, n, and n,. If the associated eigenvalues of 0 and B are denoted by s,, ¢, and ¢, and
respectively by A%, A2 and A}, it follows that:

3 3

o= er,n,»n, . B-= Za?n,n, (3.3.8)

=1 =1

Furthermore, it follows from 3.3.2 that the eigenvalues of 0 can be expressed in terms

of the eigenvalues of B:

gi=ci(e;, e,e)  e=In) fori=1273 (3.3.9)
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It can also be shown that n.D.n, = ¢, for i=1,2,3. With these results it can be derived
from 3.3.7 that:

3

da,; . .
2Hyo = Z( a%‘ 1idy— 1a)éy for i=123 (3.3.10)
]

=1
where H, = n.H.n, for i=1,2,3 and where 4, is the Kronecker delta. This equation can
be interpreted as a first requirement on the tensor H. It follows from this equation that
the diagonal components H, of H must be proportional to the diagonal components g,
of D. To {ulfil this requirement, H has heen composed by a part proportional to D , and

by a part which diagonal components equal to zero:
H=pD—ytr(D)+ H ; n.Hn=0"fori=123 (3.3.11)

Substitution of 3.3.11 into 3.3.10 gives:

P
Z( a:’ — (41 + 2B0))5— 1y + 2ya)8j= 0 for i=1,2,3 (3.3.12)
)

J=1
and since these equations must hold for every 6, it follows that:

(30', .
a—ejz(u1+ 2B0 )8+ 1y — 2ya; for i=1,2,3 (3.3.13)
For the commonly used objective stress rates the factors  and y are constant. If this
property is assumed for § andy it can be shown that the set of nine differential
equations 3.3.13 for the principle stresses a,, ¢, and ¢, has a solution, if ;, and p, sat-
isfy certain requirements: there exists a function f =f(J), such that (see Appendix D and
Van Wijngaarden and Veldpaus,1986):
df (J)

Hi=2(Go— PI()) i ma=—m> i [(1)=0 (33.14)

Here, G, is a constant, which can be interpreted as the shear modulus of the material.

In the derivation of relationships 3.3.14, the following result has been used. It can be
easily deduced from equation 2.4.7, which expresses the relationship between the

principle stresses and the free energy y, that:

1
—— 3.3.15
P=3 ( )
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With 3.3.14 and 3.3.15 the solution of 3.3.13 can be determined and is given in tensor
form by:

-1 Lo g _
= (I + 3 (8" -1) (3.3.16)

where the strain tensor BB is a symmetrical tensor with the same eigenvectors and

eigenvalues as B:

3

B - foﬂnm,— (3.3.17)

=1

This result means that the diagonal components of equation 3.3.7 completely deter-
mine the solution for the Cauchy stress @, on the assumption that g and y are con-
stants. The only tensor still unknown is H. From equation 3.3.7 it follows that only three
independent linear equations are left for the six unknown components f7,,=n,-.H.g_,
(i,j=1,2,3 ; i # j). These equations can be interpreted as constraints to be put on H.
For this reason, three components can be freely chosen. At this point, it is assumed
that the tensor H is skew-symmetric, which turns out also to be the case for the com-
monly used objective rates. Substitution of 3.3.16 and 3.3.11 into 3.3.7 then yields after

some reorganisation:
H.BP — BPH —(BFY - (2 +pD)BP —BR 2+ pD) ; H=—H (3.3.18)
and this equation completely determines the tensor H.

To summarize, it can be stated that the rate type constitutive equation 3.3.7 results in
a correct stress-strain relationship for isotropic elastic behaviour, if p, and u, satisfy
3.3.14 and the tensor H satisfies 3.3.11 with constant 8 and y = i. The tensor H may
be chosen as skew-symmetric, in order to arrive at an unique solution. This skew-
symmetric tensor has to satisfy 3.3.18. For the Cauchy stress, an infinite number of
constitutive relationships has been derived in 3.3.16: each 8 and each f=f(J) define
their own stress-strain relationships

3.4 Some properties of elastic rate type relationships

In this subparagraph some special topics of rate-type constitutive equations for
isotropic elastic behaviour are discussed. First of all il is noted that H = O for f = + 1
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This follows easily from 3.3.18. In 3.3.6, it can be seen that, in this case, the objective
rate equals that Truesdell rate for § = 1 and the Cotter-Rivlin rate for § = — 1. This
means that the use of these objective rates, in the rate-type constitutive equations,
leads to a correct description of isotropic elastic behaviour. The associated stress-
strain relationships follow from 3.3.16 and are given by:

G =—"(f()I+G{B-1) for p=1 (3.4.1)

o=

O =—(f(I+Gyl— B~ ")) for p=—1 (3.4.2)

|-

Next, the Jaumann rate and the Dienes rate are considered. The Jaumann rate is found
for § = 0 and H = 0, while the Dienes rate is found for § = 0 and Q + H = R.R". How-
ever, for § = 0 the relevant relationships of subparagraph 3.3 become:

G
y=% : /11=2—J°~ ; u2=% ; I()=0 (3.4.3)
o= %(!(J) + GoIn(B)) (3.4.4)
(2 + H).In(B) — In(B).(Q2 + H) = IniB)— 2D (3.4.5)

where the logarithmic strain tensor In(B) is defined by:

3 3
In(B) = Zm(/l,?)n,n,- = 2Ze,nin,- (3.4.6)
=1

=1

Relationship 3.4.5 must be satisfied for each B. It can be seen after a straightforward
calculation that this will not hold for the Jaumann and for the Dienes rates. The use of
these rates in the rate-type constitutive equations of the subparagraph 3.3 does not
lead to a correct description of elastic behaviour. Dienes (1979), however, tried to use
kinematical arguments about the use of the objective rate, which is called after him.
But from the results obtained in this chapter, it is clear that the Dienes” arguments have
to be rejected. Thermodynamical rather than kinematical arguments dictate what ob-

jective rate must be used in the case of elasticity.

In the subparagraph 3.3 the analysis was based on the rate-type constitutive equation
3.3.7. There is a second way of solving the stress tensor ¢ from this constitutive
equation, which is based on the relationship between the objective stress rates in the
equations 3.3.4 and 3.3.5. From 3.3.4 and from 3.3.7 it then follows that:

v —T AT —1
0=A"T(AT.0.A).A"" = 1D + utr(D)I (3.4.7)
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and therefore 0 will be given by:
T ¢ T t T =]
g=A" .(j u,A DA dt + J potr(D)A A dt ).A (3.4.8)
0 0

This method which obtains an explicit relationship for 0 will be used in chapter 5 as a
starting point for the numerical treatment of constitutive equations, which contain ob-
jective rates.

If relationship 3.4.8 describes elastic behaviour it foliows from 3.3.4, 3.3.5, 3.3.11 and
3.3.15 that:

(AA™Y = (Q+H)=—(Q+H+ D)+ —;~tr(D)l (3.4.9)

Substitution of this relationship into equation 3.3.8 yields:

(BFY— (A.a~"Y.BP _ B Aa~" —t(D)BE = 0 (3.4.10)
Integration of this equation gives the following result:

AA =yB P (3.4.11)

This relationship means that if the tensor A is defined by relationship 3.4.9, then A can
be expressed by:

A=JivPia ; a'=q' (3.4.12)

where the rotation tensor Q can be obtained by substituting this result in relationship
3.4.9.

3.5 The Oldroyd model

In subparagraph 2.6 the Oldroyd model was obtained using the thermodynamical the-
ory with one tensorial hidden tensor. For incompressible materials this resulted in
constitutive equations 2.6.27 and 2.6.28. Similar models can be obtained by the de-
composition of the stress tensor 0 in three tensors --pl, T, and T, and the decompos-
ition of the deformation rate tensor D in an elastic and viscous part D, and D,:

0=-pl+T,+7T, ; D=D,+ D, (3.5.1)
For these tensors the following constitutive relationships are assumed:
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%
Ty=EDy ; Ty=MD,; Ty= D (3.5.2)

Combination of these equations in 3.5.1 and 3.5.2 result in an Oldroyd model, which
has been described In, for example Crochet, Davies and Crochet:

O=-pl+T ; t(D)=0 (3.5.3)
1 1V by Ay Ay V

L IR - e S 2.p 3.5.4
7 +ET(1+,11+E)D+E ( )

Of course the objective rates, used in 3.5.4, have to belong to one of the rate forms, that
were discussed in subparagraph 3.3 and 3.4. In the Oldroyd model, obtained in sub-
paragraph 2.6, the tensor T was expressed by the following equation (see 2.6.28):

1 14 v p A
= ——T=(1+—+—)D+—D 3.5.5
1T+E1T(+A+E1)+E1 ( )

A A v \%
where the objective rates of T and D are denoted by T and D, instead of T and D , to
emphasize that this rate may differ from the objective rates discussed in subparagraph
3.3and 3.4.

The Oldroyd models, obtained in 3.5.4 and 3.5.5, can be compared. This comparison

leads to some very interesting results:

- The difference between these two Oldroyd models can be the use of the objective
rates. In chapter 2 the objective rate was obtained by eliminating the tensor A, and in
this chapter by making requirements on the elastic part of the deformation. Only in the

case, where B equals zero, can these two models equal:

vV A . . .
T=T=T-(Q+H)T+ T(Q+ H) (3.5.6)
v oA _ _
D=D=D-(Q+ H)D+ D.(Q2 + H) (3.5.7)
(2 + H).In(B) — In(B)(S + H) = In(B) — 2D (3.5.8)

- From this result it follows directly, that the use of the Jaumann or the Dienes rate in
the Oldroyd model, leads to a model in which the deformation rate can’t be decom-
posed into an elastic and a viscous part as was done in this chapter. On the other hand,
thermodynamically speaking no objections can be made against the use of these rate

3 The d(‘co&nposilinn of constitutive cquations 43



forms. It just depends on the starting point of the constitutive model whether one ac-
cepts the use of these rates.

If the use of the rate forms, that were deduced in subparagraph 3.3, is
thermodynamically spoken allowed, In the sense that the models obtained obey the
Clausius-Duhem inequality, is still an open question for those cases where 8 # 0. This
question can’t be answered by the theory of the previous chapter, and must be inves-
tigated in a different way. In this work, no further attention will be given to this ques-

tion.

3.6 The Maxwell model

The Maxwell model is obtained by the decomposition of the deformation rate tensor D
into a viscous and an elastic part, and by the assumption that these parts obey the
following constitutive models:

d

v 4
0="ED, ; 0 =D (3.6.1)

v

This model has become very popular in the field of metal plasticity, where the viscous
part of the deformation rate D, is often referred to as the plastic part D,. Elimination of

D, and D, in relationship 3.6.1 yields:

%a + E0=D (3.6.2)

For metals the viscosity 1 is not determined by the current state only, but also by the
past. This history dependency is called hardening. In order to take hardening into ac-

count the so-called equivalent plastic strain ¢ is introduced and is defined by:

fu \/% D,D, (3.6.3)

where ¢ is zero in the absence of plastic deformation. With the equivalent or Von Mises

stress a,, defined by:

e /% c%a° (3.6.4)

the constitutive equation 3.6.2 becomes:
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“E0+ 22 0%=D (3.6.5)

It is noted that the definitions of ¢, ¢, and the constitutive equation 3.6.5 correspond to
the definitions and constitutive mode! in subparagraph 2.7. In a case where the same
requirements are made for the objective rates as in subparagraph 3.5, an equality can
be obtained for these quantities and the model.

In metal plasticity the history dependency is taken into account by postulating that the
Von Mises stress depends on the equivalent plastic strain and the equivalent plastic

strain rate:

0, =%, £) (3.6.6)

The model obtained, represented by 3.6.5 and 3.6.6, is known as the Prantl-Reuss
model (see Hill 1950). If all elastic effects are neglected, this model can be simplified
to the so-called Levy-Von Mises model:

3 &

——0" =D 3.6.7
> 7y (3.6.7)
In the field of rheology, this model is often referred to as a special case of a non-

Newtonian fluid.

It is known from experiments that the dependency of ¢, on £ can be neglected for metals
at relatively low temperature and, besides, that the dependency of 5, on ¢ can be neg-
lected for relative high temperatures. In order to obtain a constitutive model, most
experimental work on metals is focussed on the hardening equation 3.6.6. In the next
chapter three experimental set-ups will be discussed.

3.7 The Kelvin model

In this subparagraph another special version of the Oldroyd model is discussed. This
version, known as the Kelvin model, is described by:

v %
t(D)=0; O=—pl+T ; T=ED+ ID (3.7.1)

This model can be used to describe purely plastic behaviour of metals with kinematical
hardening. As Prager (1956) pointed out this model can be derived from some simple

assumptions:
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- The material is incompressible, so
tr(D)=0 ; O=-pl+7T (3.7.2)
- there exists a yield surface f, where f is given by:

f= (T = 0T — 0)— %ag (3.7.3)

Here the tensor & is the so-called shift tensor and 2, a, is the radius of the yield
surface. The stress tensor T either lies on the yield surface (f=0), or inside the yield

surface (f< 0).

- If the tensor T is inside the yield surface no deformation takes place. If T is on the

yield surface, D is perpendicular to the yield surface:
D=0for f<0 ; D=n(T-0) for =0 (3.7.4)
This relationship for D is called the associated flow rule.

The radius of the yield surface can depend on the equivalent plastic strain ¢ and on the

equivalent strain rate &:

oo=0dE E) ; i=./2DD (3.7.5)

\Y
- the objective rate 0 of the shift tensor is proportional to D:

\ 3
=hD ; h=h(e¢) (3.7.6)
where 00 = 0 in the absence of plastic deformation.

From 3.7.4 and 3.7.5 it is evident that:

g=0for f<0 ; &=-=ynagfor (=0 (3.7.7)

w

e

and therefore 3.7.4 can be written as:

. 2 %
D=0 for f<0 ; =O(+§~L—Dfor f=0 (3.7.8)

£

Elimination of the shift tensor finally yields:
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Figure 1. The simple shear test

¥ 2 7
D=0 for f<O0 ; ‘C=hD+€(fD)f0r f=0 (3.7.9)
£

The choice of the objective rate has been the subject of much discussion lately (see,
for example Nagtegaal and De Jong (1982), Lee, Mallet and Wertheimer (1983),
Dafalias (1985), Atluri (1984)). It is striking to see that, in these discussions, only ob-
jective rates of the form:

Vo
=0 —(Q+HOL+0(Q+H) ; H=-—H (3.7.10)

are considered. Probably the reason for this choice is that, with this rate form,

\ \%
(0t) = (0t9) and therefore 00 = &Y and so T = T9, i.e. tr(T)= tr(®)= 0. Then for f=0 the

constitutive equation can also be written as:

d

\
0 =0+ o

(2
%T"o . O=hD ; tr(D)=0 (3.7.11)
£
Furthermore it Is worth noting that the proposed objective rates are evaluated in these
discussions by analysing what is known as the simple shear test (see figure 1): a pro-
posed objective rate is accepted if no oscillations occur in the shear stress as a func-
tion of the deformation. it turns out that, as a result, the Jaumann rate fails to pass the

test.
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4 The determination of material properties

4.1 Introduction

In the previous chapters specific constitutive equations for classes of material
behaviour were obtained. These equations contain a number of material parameters,
which have to be determined experimentally.

The choice of a suitable experiment largely depends on the class of material behaviour
to be investigated. Here, only so-called Maxwell materials with constitutive equations

of the type:
%au “E:0 =D (4.1.1)

will be considered (see subparagraph 3.6). The behaviour of many metals can be de-
scribed with sufficient accuracy by a constitutive equation of this type. In this chapter

\%
only large deformations will be considered. The elastic part —°E:0 can then be ig-
nored, and the constitutive equation reduces to:

g°= nbD (4.1.2)

As a consequence tr( D ) will be equal to zero, so the the material is assumed to be
incompressible. The constitutive equations can then be reduced to:

G=—pl+T ; T=nD (4.1.3)

The material property to be determined experimentally is, in this case, the "viscosity’
n. From 3.6.3, 3.6.4 and 3.6.5 it can be seen that:

2 3 ; P
n=-""L  a,= \/lo":a" ; a=\/zo;o (4.1.4)
3t 2 3

where o, is the Von Mises stress and ¢ is the equivalent strain rate. Then the relevant

constitutive equation can be written as:
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Figure 2. The tension test
7=m2lp (4.1.5)
3 ¢

where ¢, is now the material property to be determined as a function of ¢ and ¢ (see

3.6.6):

o,= 0 (& £) (4.1.6)

In the next subparagraphs 4.2-4.4 the tension test, the torsion test and the compression

test are discussed. Unless otherwise stated, temperature effects will be ignored.

Figure 3. Necking of an aluminium bar
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4.2 The tension test

In the tension test an attempt Is made to achleve an uniform, one-dimensional stress
situation in the test specimen, i.e. a stress situation such that, in each point of the

specimen:

0 =se6 ; I=s(—%l+@) (4.2.1)

% I+ ea) (4.2.2)
A deformation of this kind can be approximated by elongating a solid, slender bar, with
a constant cross section. To eliminate end effects, only the middle section of the bar
is considered. During the experiment, the current length, L, of this section and the ap-
plied force F are measured (see figure 2). A simple kinematical analysis yields that the
axial component e.D.e of the tensor D will be equal to % and, because of the
incompressibility, D can therefore be expressed by:

D:%;:(_%H_e) : e=|n(i) (4.2.3)
Here, L, Is the length of the middle section of the unstressed bar and ¢ is what is konwn
as the logarithmic strain of that section. From this relationship for D and from the de-
finition of the equivalent strain rate & in 4.1.4 it is apparent that, in this case, the

equivalent strain ¢ is equal to the logarithmic strain e:
- L
e=¢e=In(—-—) (4.2.4)
Ly

Substitution of this result in 4.2.2 yields ¢, = s, where the current stress is related to the
measured force F and the current area A of the cross section by s = % Due to the
assumed incompressibility of the bar, the current volume A.L of the middle section is
equal to the volume A,. L, of the unstressed bar. So the material quantity ¢, can be de-
termined from the measured quantities F and ¢ by using:

PO A . S (4.2.5)

Usually a constant strain rate is chosen for the tension tests. By repeating the test on
identical specimens with different strain rates, it is possible to determine o,, as a
function of £ and € .
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R = R(z)

Figure 4. The necking zone of a cylindrical bar

If o, turns out to depend only on £ or ¢ the material is known as a strain hardening, or
strain rate hardening material respectively. At relatively low temperatures, metals are
strain hardening materials, due to the dislocation density growth and the lack of
recrystallisation. At relatively high temperatures recristallization occurs. This stops
the dislocation density growth, but makes the metal strain rate dependent. Sometimes,
it is assumed that ¢, doesn’t depend on ¢ and &, but on the energy rate and the total
energy needed for deformation of the bar. Hill (1950) showed that there is no difference
between purely strain hardening and purely work hardening. This doesn’t apply to

strain rate and work rate hardening metals!

The main disadvantages of the tension test is that necking occurs: if the force F reaches
a maximum value, then, due to bifurcation, flow localisation will be observed (figure
3) and the stress tensor 0 and the deformation rate tensor D no longer satisfy 4.2.1 and

4.2.2 . As a consequence, relationship 4.2.5, between the axial force F and the equiv-
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Figure 5. Correction factor: C1 according to Siebel (—) and Bridgman (-----)

alent stress, no longer holds. Flow localisation occurs for a strain hardening metal, in
a constant strain rate tension test, when the axial force reaches its maximum value,

i.e., when:
dF 1 doy
— . - =1 4.2.
- 0 oy g (4.2.6)

If the stress-strain curve 4.2.5 is given by Ludwick’s hardening rule:

o,=CE+ &)" (4.2.7)
then necking occurs when:

£E=n—gg (4.2.8)

This means that for low values of the strain, only, experimental data can be obtained
using a standard tension test. It is evident that, for strain rate hardening materials the

situation is even worse: in that case the bar begins to neck alomst immediately.

In the necking zone, the stress situation is much more complex than that given by 4.2.1.

For cylindrical bars, however, several authors found corrections for relationship 4.2.5.
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Figure 6. Several stages of a finite element analysis of the necking of a cylindrical bar

They all found that, in the neighbourhood of the smallest cross section, ¢, and £ can

be approximated by:

o owamley (4.2.9)

v=Cig A

where A is the area of the smallest cross section. Furthermore C, can be regarded as
a correction factor. Different formulae are given for C, in literature. An important

quantity in these formulae is the scalar «, defined by:

2
d°R
a=(R el )r=0 (4.2.10)

Here, R is the radius of the neck and z is the axial coordinate, such that z=0 in the

middle of the neck (figure 4).
Two well-known proposals for C, are the following:
- Siebel (1925) and Davidenkov and Spiridonova (1946) found that:

4
T (4.2.11)

1=

- Bridgman (1952) found that:

1
Ci= (4.2.12)
Y + 21+ %)
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Figure 7. The stress components in the necking zone (z=0)

In figure 5, C, is drawn for both cases as a function of «. From this figure and also from
4.2.11 and 4.2.12 it is apparent that for small values of a, the correction factors are al-

most the same.

Davidenko and Spiridonova found relationship 4.2.11 for the correction factor in a
complete experimental way by measuring on the crystals in the necking area. In Ap-
pendix E, this relationship is derived by assuming that the radial velocity u,, in the

neighbourhood of the smallest cross section can be approximated by:
u,=rf(z) (4.2.13)

such that:

—% | < < [2)] (4.2.14)
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Figure 8. Stress-strain curves: One curve (—)is used as the input for the finite element analysis
and the other (-----) is reconstructed from the results of this analysis

Before necking, 4.2.13 and 4.2.14 are fulfilled. A consequence of 4.2.13 is that g, = T4
and a consequence of 4.2.13 and 4.2.14 is that the Von Mises stress is almost constant
in every cross section near z=0, i.e. it is not a function of r. This consequence can be

checked by a finite element analysis of a cylindrical tensile bar. In figure 6, some of

Figure 9. Predicted shapes of the necking zone: Prediction by Siebel (----- ) and Bridgman (—)
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the steps of such an analysis are given. Here, a linear strain hardening model is used,
which means that the Von Mises stress depends linearly on the equivalent strain. In
figure 7, various stress components have been drawn, for the case where £~0.7.
Clearly, the two previously mentioned consequences are fulfilled. Another check for
the correction factor in relationship 4.2.11 for the correction factor can be made by
determing the stress-strain curve with 4.2.13 and the calculated shape of the neck
(figure 6). This curve must be the same as the linear stress-strain curve, that was used
as an input for the calculations. From figure 8, it can be seen that the two curves are

almost the same, even for very large values of &.

From 4.1.13 and 4.1.14, the shape of the neck can be determined (see Appendix E). In
the derivation of 4.1.12, Bridgman made an assumption about this shape: it should be
a part of a torus.It turns out that both shapes are almost the same in the vicinity of the

smallest cross section. These shapes have been drawn in figure 9.

In practice it doesn’t make much difference which of these relationships for the cor-
rection factor is used, when determining the stress-strain curve from experimental
results.The problem that remains is how to measure the shape of the neck since this
shape must be known to determine first « and A, and then the Von Mises stress and the
equivalent strain. One way is to elongate the bar, bit by bit, and measure the shape of
the bar in between times. This method has two disadvantages: it will take a long time
before one experiment is completed and, more seriously only strain hardening can be

determined.

Galenkamp (1984) developed an experimental set-up to measure the shape of the bar
during the tensile test. This set-up is shown in figure 10. On the left handside of the bar,
a homogeneous lightsource LS is mounted. The shadow image of the tensile bar TB is
projected via a mirror M and a lens L into a linear array camera DA. The camera has
2048 light sensitive diodes, which detect a light-shadow-light line of the shadow image.
The shadow part of the line, which is indicated by the number of diodes that haven’t
been lit, is a measurement of the diameter of the bar at a position z. By rotating the
mirror this position can be changed. This change of position takes about 30 millisec-
onds, and a measurement of the diameter takes about 20. So, about 20 measurements
on different positions z can be done in one second. This is fast enough to obtain a
quasi-stationary result.

Figure 11 is a photo of the total set-up. From this picture another advantage of this
measurement technique can be seen: it can be used in nearly all traditional exper-
imental set-ups, without basic changes to the original one.

A result obtained with this set-up for an aluminium tensile bar,is shown in figure 12, In
this figure two curves have been drawn: one for the average tensile stress 4, in the
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Figure 10. Cross-section of the experimental set-up of Galenkamp

smallest cross section and one for the Von Mises stress, which was obtained by
multiplying o, with the correction factor in 4.2.11. For ¢ = 1.5, fracture in the bar occurs.
At this point « = 1.0. This is a value that still gives nearly the same correction factor

value in the relationships 4.2.11 and 4.2.12.

To summarise it can be stated that the Galenkamp’s experimental set-up is an exten-
sion of the standard set-ups, which makes it possible to obtain experimental data for
strain and strain rate hardening materials until fracture occurs. A basic assumption in
both the standard set-ups and Galenkamp’s is that the cioss sections in the bar remain

circular. This is not always the case for example it is not so for lead, at room temper-
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Figure 11. Photo of the set-up of Galenkamp

ature. Extension of Galenkamp’s set-up for experiments at high temperatures is rather
difficult, as one then has to combine the optical measurement technique with the

heating system.

4.3 The torsion-tension test

In the combined torsion-tension test long cylindrical bars are used, loaded by a twist-
ing torque M and a possible axial force F at the ends of the bar (see figure 13). In this

test it is tried to achieve a velocity field of the type:
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Figure 12, Results of a tension test for an aluminium bar

u= ufr, he{t) + rw(z, hey(l) + ufz, e, (4.3.1)

where e, € ande, are the base vectors of the polar coordinate system
(r,¢,2z), w(z, t) is the current angular velocity of the cross section at axial position z

and the radial velocity u, and the axial velocity u, are given by:
u=ufr,t)y ; u,=ufz1) (4.3.2)

which means that the bar retains its cylindrical shape, during deformation. The corre-
sponding deformation rate tensor D is given by:
du 1 dw

D=—'e,e+—u—'ee +—a£2—ee +—=r
ar TrT T Se% T T TET o gy

(ed)e_z-i— ezed)) (4.3.3)
From the assumed incompressibility, i.e. tr(D) = 0, it is evident that:
ufz, 0= iz : - — %é(t)r (4.3.4)
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Figure 13. The torsion-tension test

where &(t) is the current logarithmic axial strain. Sustitution of these results in 4.3.3

yields for D:

Lire 2ie0,+ 1 r 2% (g4, + e,04) (4.3.5)

D=—
2 2 2 3z

Hence the equivalent strain rate can be determined:
B 2 201 dw |2
=./<£DD = —(r=—=— 4.3.6
£ 3 e+ 3 (r s ) ( )

Furthermore, with 0 = —pl + »D it follows that the Cauchy stress tensor 0 is given by:
1. 3 . 1 dw
0 =— (p + ? 6)' + ? nee,e; + ? nr —67 (e¢ez + ele¢) (4.3.7)

This stress tensor has to satisfy the balance equation of momentum. A lengthy but

straightforward elaboration of this condition finally results in:
p=——nt ; o(z,)=dt)z (4.3.8)
and therefore 0 becomes:

0=

|

. 1 .
nieze, + o narlege; + eey) (4.3.9)

Besides, from 4.3.6 it is apparent that the equivalent strain rale ¢ will depend on r and

N (4.3.10)

Finally, the twisting torque M and the axial force F at the ends of the bar are given by:

t only:
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R R
M= 21:] ot dr= n&f nrdr (4.3.11)

=0 =0

R R

F= 27:". o rdr= 31:5:] nrdr (4.3.12)
r=0 =0

where R is the current radius of the bar. From 4.3.4, it follows that R is related to the
radius R, of the unstressed bar by:

3
R=Rpe 2°¢ (4.3.13)

The assumed velocity field can be approximately reached in the middle section of long
cylindrical bars. To decrease the influence of end effects the ratio of the radius R, and
the length L, should be small, which means that very long thin bars have to be used

as test specimens.

Of special interest is the case in which the axial force F is absent. From 4.3.12 it follows
that:

£E=0; 2z)=2zy ; nMb)=ry (4.3.14)

which implies that the length of the bar remains unchanged if the specimen is not
loaded in axial direction. In reality the metal bars will lengthen or shorten in such case.
This can be explained by considering elastic and anisotropic effects in the bar. Some
examples of this phenomenom will be given below. As will be apparent, the deforma-
tion due to the elongation or shortening is neglegible compared with the deformation

due to twisting.

With ¢ = 0 the relationships for & and & reduce to:

E=%rd\/§ : E:%ra\/a_ (4.3.15)
where « and @ are assumed to be positive. The relationship for the twisting torque
becomes:

R — R
M=ndj nrsdr=%\/3 nj o2 dr (4.3.16)

r=0 =0

Here the parameter » is replaced by ¢, = %r]é , as mentioned earlier in this chapter.

In a torsion test of this type both the twisting torque M(t) and the rotation a(f) of the ends
of the specimen are registered for a constant value of a. The final problem is to deter-
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Figure 14. Photo of three torsion bars: The upper bar is a undeformed bar, the middle bar has
been slowly deformed and the lower bar has been quickly deformed

mine the stress-strain relationship o, =0z, &)= o % r&\/3—, %—mﬁ) from the
measured values because 4.3.16 does not give an explicit relationship for ¢,. Differ-
entiating the torque M in 4.3.16 to the parameters « and «, the following relationship for
o, on one the hand and M, « and « on the other is obtained after a straightforward cal-

culation:

J3 . M M
W(3M+ aw-{-aw)l’:R (4317)

6V'r=R=

This means that an analytical expression has been obtained for the Von Mises stress
on the outer radius of the bar. The corresponding values of £ and , in this position, can
easily be deduced from relationship 4.3.15:

ilp= 2R3 E|,.=R=T13—aR\/3_ (4.3.18)
As in to the tension test, localisation of the deformation can be observed in the torsion
test. In figure 14, three copper bars are shown. The radius of these bars is 2 mm and
the length 200 mm. The upper bar is an undeformed bar with a straight black line
drawn on it. The middle bar is a deformed bar, where the deformation has been
reached with a rotation velocity of 1 rotation per minute. The lowest bar has been ro-
tated with a velocity of 1 rotation per second. It can be clearly seen that the deformation
of the middle bar is uniform and that localisation occured in the lowest bar. The reason
for this localisation is that the torsion bar can become very hot due to dissipation. For
a low rotation velocity, the dissipated energy can easily be conducted to the ends of the
bar. If the velocity is high, the thermal resistance is too great. It was observed, for the
lowest bar, that the temperature rise in the middle of the bar was at least 100°C . To

obtain this result, experiments were done with a infra-red camera.
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Figure 15. Results obtained from two torsion tests of lead: Torque versus strain at a strain rate of
0.016 1/s (—) and at a strain rate of 0.048 1/s (----- )

As the yield stress of metals decreases as the temperature increases, one can expect
that the torque M will reach a maximum for the lowest bar, after which the deformation
locates.In other words, one can postulate that localisation occurs during a torsion test
if the torque reaches a maximum. Such a postulation is similar to the tension test,
where localisation occurs if the applied force reaches a maximum. However, this pos-
tulation is not true for the torsion test. To show this, the results obtained from the
torsion of lead bars are considered. In figure 15 it can be seen that for every rotation
velocity (or deformation rate) the torque M reaches a maximum. Observation of the
deformations of these bars, however, didn’t show any localisation. This contradicts the
postulation. The fact that the torque reaches a maximum for lead bars, is due to
metallurgical effects. For all metals at relatively high temperatures (i.e. temperatures
at which no hardening due to recrystallisation is observed) these effects can be seen.
For some of these metals, even oscillations of the torque can be observed. Rauch,

Canova,. Jonas and Semiatin (1984) gave some theoretical explanation for this non-
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Figure 16. Results obtained from two torsion tests of copper: Torque versus strain for copper bars
with (—) and without (-----) a heal treatment

localisation effect, caused by metallurgical effects. They also predicted the moment,

at which localisation will occur, due to temperature effects.

The measurement of the axial force (no axial deformation) or the axial deformation (no
axial force) or a combination of these two gives an impression of the non-isotropic ef-
fects, such as kinematic hardening. In figure 16, the results of two torsion tests are il-
lustrated: one for a copper bar with no heat treatment (dotted line) and the other for a
copper bar with a heat treatment (solid line). Because of the heat treatment, there is
a difference in the crystalline structure of the bars, which leads to this difference in the
torque response. Taking into account the elongation of these bars, a much larger dif-
ference is obtained (see figure 17). In figure 18, the radius of the bar during torsion of
lead bars has been drawn, for different deformation rates. Apparently, the anisotropic
effects are only influenced by the total deformation. It is strongly recommended that

these phenomena be investigated in relation to the constitutive models, obtained in
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Figure 17. Elongation during a torsion test of two copper bars: Elongation versus strain for copper
bars with (—) and without (----- ) a heat treatment

subparagraph 3.7. Montheillet, Cohen and Jonas (1984) did some torsion experiments
on the development of axial stresses, when the elongation of the bars is surpressed.

They succeeded in relating the axial force to the texture development in the bar.

Besides the advantages that at a relatively low deformation rate, no localisation oc-
curs, and that model studies can be made of non-isotropic effects, the main advantage
of the torsion test, compared with the tension test, is that measurements can easily be
done for different temperatures, by putting an oven around the bar. In figure 19 the
results are given for a torsion test on lead bars at different femperatures. Due to the
temperature increase an enormous decrease of the torque can be observed. The re-

sults obtained at 300°C will be used in chapter 5.

The total set-up for a torsion bank can be as follows:
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1) drive for the rotation of the bar
2) element for the measurement of the total angle

3) oven
4) bar
5) element for the measurement of the torque M

6) element for the measurement of the elongation or the axial force

In figure 20 a photo is given of such a set-up developed and built by Meershoek (1988).

40, mm

20 4

10

Figure 18. Shortening during a torsion test of two lead bars:  Shorlening versus strain for lead bars
at a strain rate of 0.016 1/s (—) and 0.024 1/s (-----)
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Figure 19.
of 20°C (—) and 300°C (-----)

Results obtained from two torsion tests of lead

Torque versus strain at a temperature

In summary it can be stated that some of the disadvantages of the tension test (insta-
bilities for small deformations and the difficulties of taking measurements at different

temperatures) can be avoided, by doing torsion tests. Further, non-isotropic effects
can be studied with the torsion test. A disadvantage of the torsion test is that the ratio
between the radius and the length of the bar has to be small and the rotation velocity
can’t be too large, because of thermal instabilities. Hence, large values of the strain
rate can not be achieved. For strain hardening materials, experimental data for large
strain rates can be obtained from the tension test.For metals at relatively high tem-
peratures, however, this is not possible, because of the non- uniform necking. For

these metals, the compression test can be an alternative.
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Figure 20. Photo of the experimental set-up for torsion tests

4.4 The compression test

In this subparagraph the compression test will be discussed. Using this test, material
properties can be determined at large deformation rates and at different temperatures.
A condition for this test is that the Von Mises stress o, only depends on the equivalent

strain rate £ and the temperature.

Figure 21 gives an idea of the experimental set-up. A cylindrical pallet, whose height
h is much smaller than its radius R, is compressed with a velocity A, where A< 0. The
surface of the upper and lower stamps is such, that sticking occurs on the interfaces
between the pallet and the stamps. The temperature in the pallet can be controlled by
the temperature in the stamps, whose surfaces have to be almost isothermal. As the

energy losses near the outer radius of the pallet will be small, due to the small height,
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Figure 21. The compression test

near isothermal conditions will be reached in the pallet. During the experiment, the
pressure force F, the height h and the (compression) velocity A are measured.

In order to obtain a relationship between the Von Mises stress ¢, and the equivalent
strain & on the one hand and the pressure force F, the height h and the velocity A on the
other, use will be made of the ratio between the height and the radius. As this ratio is
very small, the ratio between the axial coordinate z and the radial coordinate r will also
be small, in most parts of the pallet. The same will hold good for the axial and radial
velocity, and the derivatives in radial and axial direction (see Van Wijngaarden,

Dijksman and Wesseling,1982) :

|

9 __ ofs) (4.4.1)

h Yz
—=46; —=0();
R u, = 90)

o
N’Q’

where O(8)/6 remains finite when § - 0. The parameter delta is much smaller than 1,
for the pallets under consideration. It is now easy to deduce that the deformation rate

tensor D is reduced to:

ou,
z

D=

1S (erer + 80+ O(0) (4.4.2)

D

From relationship 4.1.6 between the stresses and the strain rates and from 4.4.2 it fol-

lows that the Cauchy siress can be expressed by:

0 = —plee, + epey + €,6,) + a (€0, + 6,8,) + O(6) (4.4.3)
Hence, the definitions of the Von Mises stress and the equivalent strain rate yield:
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Figure 22. Results obtained from four compression tests of lead: Compression force versus height
reduction at two temperatures and two compression velocities (— 300°C, 3 mm/s ; x—X
300°C, 30 mm/s ; ----- 275°C, 3 mm/s ;¥---X275°C, 30 mm/s )

o= 3 lonl + O 5 i=—— | 2| 4 o(s?) (4.4.4)

\/3 4z
Taking incompressibility into account, the balance equation of mass becomes:

ou, u,  0u,

or r 4z

-0 (4.4.5)

and the neglecting of body forces and inertia terms in the balance equation of mo-

mentum leads to:

op  doy, 2 op 2
—=—= 4 0(8) ; ——=0(6 4.
ar 0z 8 0z (%) ¥4.4.6)

4 ‘The determination of material properties 70



1
Nmm? 2( x 10%)
124 \
\\\
G N
10 -
8 -
-5 4 _3

Figure 23. Results obtained from two compression tests of lead: G versus In(y) at a compression
velocity of -1.5 mm/s (—) and -3 mm/s (----- )

For 6 — 0, a set of equations is found from which the desired relationship between
o, and £ on one the hand and F, h and A on the other can be deduced (see Appendix
F). It is similar to the deduction, made by Doustens and Laquerbe (1987) for com-
pression flows of liquids between parallel circular plates with constant radius.

Let G and y be defined by:

- h|R :
2 | hR
G=h/nF ; y= i (4.4.7)
A direct consequence of the assumption that the Von Mises stress g, only depends on
the equivalent strain rate £ and the temperature 6, is that G is a function of y and 8 only:

G = G(y, 0) (4.4.8)

On the outer radius and the interface between the pallet and the stamps an analytical
expression can be found for ¢, and £ in terms of the quantities G and y (see Appendix
G):
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Figure 24. Results obtained from two compression tests of lead: G versus In(y) at a height of 1.2

mm (—) and 1.3 mm {----- )

an
e Y S (36+y2% (4.4.9)
2o /Vy dy
& 1 oy 4
=L 2y 4 ag ey (4.4.10)
3 (3)/

where V, is the volume of the pallet.

As an example, the compression of pallets of lead is discussed. The pallets have an
initial height of 2 mm and a radius of 10 mm. They were compressed to a height of 1
mm for various compression velocities ( 0.025 mm/s < (h{ < 2mm/s ) and at a tem-
perature of 275°C and 300"C. In figure 22, some of the curves obtained for the force as
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Figure 25. Results obtained from two compression tests of lead: G versus In(y) at a temperature
of 300°C (—) and 275°C (-----)

a function of the height reduction Ah have been drawn. During each test the com-
pression velocity and the temperature remained constant. It can be clearly seen that
the force increases for increasing height reduction and compression velocity and for

decreasing temperature.

In the previous subparagraph it was observed that during a torsion test the Von Mises
stress increased to a maximum and then decreased to a constant value which only
depended on the strain rate and the temperature. The same phenomena can be ob-
served from the results obtained with the compression test. Il the Von Mises stress of
lead only depends on the strain rate at constant temperature, then G is a function of
y. The curves in figure 23 are based on the measurements of F and h in experiments
with constant compression velocily h = — 1.5mm/s and h = --3mm/s. It is apparent that
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by increasing y, G first decreases, then slightly increases. The curves in figure 24
represent the results of a number of experiments in which F is measured as a function
of h, at constant height reduction. From these curves it can be seen that G increases
by increasing y. In evaluating of these results, to get a relationship between the Von
Mises stress and the equivalent strain rate, it is assumed that the most reliable results

are obtained at large deformation, which means at large height reduction.

In figure 25, two curves for G have been drawn for two different temperatures. It can
be clearly seen that G increases as temperature decreases. In the next chapter, the
results obtained at a temperature of 300°C are used for the derivation of a relationship

between ¢, and &. Relationships 4.4.9 and 4.4.10 have haen used for this purpose.
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5 The extrusion of lead

5.1 Introduction

In this chapter the application of some of the theories in the previous chapters will be
discussed. Most of the subjects in this chapter have already been published by Van
Wijngaarden, Van Bakel, Verwey and Meershoek (1986). The application is adapted
from the thermocompression bonding technique, where lead is deformed between two
substrates. The next subparagraph gives a short review of the thermocompression
technique and the mechanical problems that arise from it. In subparagraph 5.3 the
mechanical model that has been used until now, of the thermocompression process is
discussed and some statements are given about the choices, that have been made to
obtain a constitutive model for lead. In the set-up of the programm futur extensions
have been taken into account for better material models for lead. Instead of the used
Maxwell model, Oldroyd models and even combinations of Maxwell models and the
Kelvin model can be easily brought into the programm. Some statements about the
way, this can be done, are made. In order to solve the relevant balance equations, a
finite element technique has been used, in which special atiention has been given to
substitution of the constitutive ecuations into the balance equations. The choice of the
elements will be motivated, as well as the iteration technique, used to solve the non-

linear equations.

In the first instance! results were obtained with a Maxwell model, whose viscous part
had been fitted into the results of the torsion test. These results were mainly used for
the investigation of the convergence of the iteration scheme. Only recently, an update
has been made for the viscous part of the Maxwell model. In this case, the exper-
imental data obtained from the compression test and creep tests, which have been
published in literature, have also been taken into account. Only the first resuits can be
presented, because the project is still going on. In future. comparisons will be made
between the results of the calculations and the experimental observations of the

thermocompression technique.
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5.2 Thermocompression bonding

Thermocompression is a technique, in which a bonding metal is deformed between two
substrates. The process is performed at about 90 % of the melting temperature (Kelvin)
of the metal. Due to compressive stresses close contact is established between the
bonding metal and the substrates, to be bonded. During the deformation the oxidised
surface of the bonding metal is broken. The high temperature ensures a high rate of
physical and chemical interaction between the pure lead and the substrates. As the
temperature is always below the melting temperature of the bonding metal and the two
substrates, bonding is carried out in the solid state. This technique is suitable for
substrates of oxides (ceramic materials or glasses), metals and alloys. An advantage

of this technique is that bonding can be done very quickly, even within 5 milliseconds.

A large range of bonding materials can be used from indium at 20°C to niobium at
1750°C. When one of the substrates is glass, the bonding temperature may not be
higher than the softening temperature of glass, which is about 550°C. This means that
the bonding materials used must be reactive below 550°C . the only three alternatives

for glass are therefore indium, lead and aluminium.

Indium is a good bonding metal, but often it cannot be used in further steps of the
process, due to its relatively low melting temperature of 157°C. Aluminium has a higher
melting point (660°C), but shows insufficient stress relaxation during cooling. Using
lead (melting temperature of 326°C) as a bonding metal, it is necessary to heat the

substrates up to about 300°C, before bonding.

Lead, however shows sufficient stress relaxation for stresses built up after bonding.
This can be seen in figure 26, which shows a thermocompression bond between glass
and steel, where the substrates have a big difference in thermal expansion. After
cooling to 20°C, the bond made with lead is still intact, but the glass substrate used for
the aluminium bond, is broken. The cooling phase is therefore not considered in this

chapter.

Considering the bonding process of lead between glass and steel one of the main
problems that arise, is the failure of the bond, due to the fact, that the surface of one
or both substrates is not completely plain. After the compression of lead unloading
takes place, which can result in elastic relaxation of the substrates. It is then possible
that large tensile stresses occur in the lead, which can cause a failure of the bond. In
the following subparagraphs a mechanical model will be discussed, which describes

the compression and unloading phases of the thermocompression process.
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Figure 26. A thermocompression bond of lead (right) and aluminium (left) between glass and steel

At the time of writing this thesis, the first results of the model analyses have been ob-
tained, like it has already been mentioned in the subparagraph 5.1. These and future
results will be used to obtain an insight into the thermocompression process, parhaps

leading to further improvements.

5.3 A model for thermocompression

In this subparagraph thermocompression of rings of lead are considered. First, the
ring is compressed between the two substrates, after which unloading takes place (see
figure 27). The initial radius of a cross section of the ring is about 2 mm. During com-
pression the height between the two substrates is reduced to about 0.3 mm, a height
reduction of more than 90 %. This means that very large deformations will take place.
The whole process of compression and unloading takes place at a temperature of
300°C, and isothermal conditions are assumed. Because lead is very soft at this
temparature, it is assumed that the substrates can be considered rigid. During the
compression phase the eventually not plain substrates are deformed elastically. After
unloading, the elastic deformations cause initially a loading to the bond which, in turn,

is relaxed, due to the relaxation capability of lead.
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Figure 27. Compression and unloading of a ring

The balance of mass and momentum have to be fulfilled during the process. These
equations are:
p ou,  u,  ou

LI S S S 5.3.1
2RI PR R (b21)

do, 9r=% 00,

—_—t —+ =0 5.3.2
or * r 0z ( )
0o, 0, Oa,

=0 5.3.3
or r 9z ( )

The boundery conditions for this set of partial differential equations are the following
(see figure 28). On the symmetry plane, z=0, the symmetry conditions
o,= 0and u,= 0 will hold. On the interface between lead and substrate, (z=h), stick-
ing is assumed, which indicates that u,=0and y, = h. This assumption seems valid,
because on these two interfaces the substrates are bonded to lead. On the free
boundaries (r= Rz, t) and r = Rfz, t)), no stress is applied. The position of these free
boundaries can be obtained by solving the the following equations:

oR, 3R, _
(r—R{z,))=0 - 7—ur+ uz—az—=0for i=1,2 (5.3.4)

This model is completed by the constitutive equations for lead. In the previous chapter
some results obtained from experiments, have already been discussed. From these
results it can be concluded that the viscous behaviour of lead is mainly influenced by
the strain rate and the temperature. But the temperature dependency is irrelevant,
because it is assumed that the process is isothermal. Secondary effects, such as the
increase of the torque at the beginning of the deformation and the shortening of the
torsion bars (see subparagraphs 4.3 and 4.4), are neglegible. In that case it is as-
sumed, that the constitutive behaviour can be described with a Maxwell model (see
subparagraph 3.6). This model, where the deformation rate is decomposed into an
elastic and a viscous part, is usually used for metals. The elastic part, which will be
very small compared with the total deformation, is taken into account, so as to be able
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Figure 28. Cross section of the upper half of the ring

to describe relaxation effects that may occur during the unloading fase of the ring. The
secondary effects could be taken into account by considering an Oldroyd model, for
instance (see subparagraphs 2.6 and 3.5) or a Maxwell model, in combination with
kinematical hardening (see section 3.6 and 3.7). How these models work out, with re-
spect to the experiments in chapter 4, and whether these models are able to describe
these secondary effects, hasn’t been investigated yet, although it is easy to show that
these models lead to elongations in, or shortening of torsion bars, when no axial force
is applied to the bar. Further investigation is required in order to bring the secondary
effects into account. However, in the discussion of the numerical approximation of the
Maxwell model in Appendic G (and the next subparagraph), a possible numerical
treatment of the Oldroyd model and of the Maxwell model with kinematical hardening

is given as well.

Finally lead is considered to be incompressible. For the viscous part of the deformation
this can be shown by experiment. For the elastic part this is probably not true. This
part, however, is very small with respect to the total deformation, and so the assump-
tion about the incompressibility can be made. Then the balance equations of mass re-
duce to:

2y, Y

tr(D) = =0 (5.3.5)

aor r 0z

The constitutive equations for lead then become:

G=-pl+T (5.3.6)

= (5.3.7)
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Figure 29. Several stress-strain rate curves: Von Mises stress versus strain rate obtained from a
creep test (----- ), a torsion test (— -), a compression test (—) and a fit (----+)

where the objective stress rate still has to be defined. In the next subparagraph a
solution method is discussed for this constitutive relationship, which is valid for every
rate, defined in chapters 2 and 3. In the [inal subparagraph results obtained using the
Truesdell rate, will be discussed. There was no parlicular reason for this choice. It is
doubtful whether in this case, the choice would make much difference, because the

elastic part of the deformation is very small.

In subparagraph 4.3 and 4.4 results were given on tests on the torsion and compression
of lead, obtained al a temperature of 300, °C. Frost and Ashbey (1982)have also pub-
lished results, ohtained from several tests on lead. In fiaure 29, where the Von Mises
stress is drawn as a function of the equivalent strain rate, all these results have been
assembled. Frost and Ashbey gave results for very low equivalent strain rates
(f < 0.01) . In fact these authors were mainly interested in creep experiments. For the

torsion test results were obtained for 0.01 < & < 0.5. The fact that resuits could be ob-
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tained for only relatively small values of the equivalent strain rate, has already been
mentioned in subparagraph 4.3. For £ > 1 the compression test gave some results,
which have been discussed in subparagraph 4.4. One of the most striking results is,
that these test are complementary. From the results obtained the viscosity n has been
described, in terms of 0, in the following way:

%: Cia fof g,< 0y (5.3.8)

(o — Uo)m_
Oy

%: Gl + 6, for a,> ag (5.3.9)

This relationship has also been reproduced in figure 29. The following values have
been used:

Cy= 510" *mm?t? N5 . C,= 0.25mm*™IN™s ; ¢y= 2.13N]mm°
n=456; m=227 (5.3.10)

For the property E, in relationship 5.3.7, a value is given in Frost and Ashbey (1982).
The value is at 300°C:

E = 9500N] mm? (5.3.11)

In the next subparagraph a solution method will be discussed for both these
constitutive equations and the balance equations.

5.4 The solution procedure

In order to solve the balance equations 5.3.2, 5.3.3 and 5.3.5 Galerkin’s method is used.
Let the pressure p be approximated by the base functions y; for i=1,..,M and the ve-
locity u by the base functions ¢, for i=1,..,N. Then, the weighted formulae become:

jtr(D)dz, dv=10 (5.4.1)
v

~

J( - pl+ T)(Ve,) dV = ’ h.0.nds (5.4.2)
" "oy

The right-hand side of equation 5.4.2 is equal to zero, due to the boundary conditions:
either 0.n=0or $ = 0.
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Direct substitution of the constitutive equation 5.3.6 in order to elimanate the stress
tensor T in 5.4.2, is not possible. This equation is therefore transformed into the fol-
lowing equations, which are a numerical approximation of the original constitutive

equations:
T=xD+ G (5.4.3)
s ge—tEE ‘ (5.4.4)
n+ ALE
G=—" __PTP" (5.4.5)
n+ AtE
P=1+A{Q + H) (5.4.6)

where T, is the value of this stress tensor at the previous point of time of the material
point under consideration and where the tensor H is given by equation 3.3.11 and
3.3.18. This numerical approximation is derived in Appendix G.

In this chapter the tensor H is chosen as equal to the deformation rate tensor D, which
is obtained for # = 1in 3.3.18. This choice of H results in a non-linear relationship be-
tween the stress on one the hand and the velocity and previous values of the stress on
the other. Choices for 2 # 1 will lead to much more complicated relationships between
the stress and velocity: in that case the main problem would be to obtain a relationship
for H in terms of the velocity. This problem hasn’t been investigated in this thesis.

Substitution of 5.4.3 into 5.4.2 yields:

[( ~ pl+ kD){(Vé)) dV = — [G:(v(/)_,.) av (5.4.7)
Jy Jy

Because the quantity x and the tensor G are non-tinear in terms of the velocity, this
weighted relationship 5.4.7 is also non-linear. There are several numerical techniques,
which deal with non-linearities. Damsteegt, Segal and Van der Zanden (1986) showed
that for these kind of constitutive relationships a relative simple Picard iteration
scheme can lead to a converging solution strategy. In this case the Picard scheme is

given by:

j( — pl+ kD)(Ve,) dV = — [(‘;:(vfp,) av (5.4.8)
v J

where ic and G are the values of ¥ and G. obtained from the values of the velocity at the

previous iteration step.
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Figure 30. Several elements with their nodal points for the velocity

Except for the pressure and the velocity, the only unknown in relationship 5.4.8 is the

volume V. This volume is obtained by an explicit numerical integration of relationship

5.3.4.

For the choice of elements several elements have been considered: three
quadrangular elements and one triangular (see figure 30). These elements have been
tested for accurancy and on their numerical smoothing in the vicinity of singular points.
This has been done, because in the actual problem, two singular points can be con-
sidered, due to sticking on the lead substrate interface. As a test case the compression
of a ring with a rectanglar cross-section has been chosen (see figure 31). The height .
of the ring was be much smaller than the radial thickness of the ring. Therefore, the

numerical solutions could be compared with the so calicd Reynolds solution (see Ap-

i

N
N
N
N
N
AN
N
N
N

Figure 31. Compression of a ring with a rectangular cross-ss:.iiun
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Figure 32. Numerical and analytical results of the compression of a ring: Pressure versus radius

obtained from a coarse mesh (——), a mesh that is iwice as fine (—) and the analytical
solution (-----)
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radius obtained from a finite element analysis (-----) and the analytical solution (

Numerical and analytical results of the compression of a ring: Axial velocity versus

pendix H). The results of the pressure have been drawn in figure 32. To obtain these

results, two meshes were used for each element: 2 or 4 elements respectively in the

height direction and 16 or 32 elements respectively in the radial direction for the

quadrangular elements with four nodes. The two other element meshes were twice as

coarse, so as to obtain a good comparison. From these results, it can be seen that the

triangle and the nine-node quadrangle give the best results. For the axial velocity

component, which has been considered in the vicinity of the interface between lead

and substrate, only the triangle gives acceptable results (see figure 33): the other ele-
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Figure 34. Convergence for different material properties: C2 is equal to 0.006 (—=), 60 (—-) and
600000 (-----)

ments show much larger oscillations, due to the singularities. Dhatt and Hubert (1986)

found similar superior numerical results for this triangular element.

Because of these results the triangle.element, which is often called the bubble ele-
ment, has been chosen for numerical analysis of the compression of the lead ring. This
element was developed by Crouzeix and Raviart (1973). Griffith (1979) showed how the
total number of unknowns can be decreased enormously, which makes the use of this
accurate element very attractive, with respect to calculation time. All the results,

shown in the next section, have been obtained with this element.

5.5 Preliminary results

The computer program, used for acquiring results of the compression and unloading
of lead, was developed by Van Bakel (1988). This program is based on the theories

discussed in the previous section.
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The first results obtained concern the compression phase, where attention is given to
the influence of the material parameter C, (see 5.3.9). The other material properties in
models 5.3.8 and 5.3.9 were slightly different from the properties given in 5.3.10. At the
time that these investigations were made, the data for the creep tests (Frost and
Ashbey 1982) and the compression test (subparagraph 4.4) had not been taken into
account. The other properties had the following values:

Cy=10"*mm?Ns; o,=2.13N/mm?; n=0; m=1; E=10'N/mm® (5.5.1)

The property C, varied between 6 1072 and 6 10°. Besides the slight difference in ma-
terial properties, the first results have been obtained for an initial rectangular cross

section of the ring, instead of the more realistic circular cross section.

In figure 34, the convergence of the Picard iteration scheme is shown for three different
values of C,, on a height reduction of 60 %. On the vertical axis in this figure, the
quantity 6 has been drawn, which is defined by:

np— N,y
L) (5.5.2)

8 = log(|

where n, is the norm for the solution vector of the finite element analysis, obtained after
the r-th iteration. It can be clearly observed that, for increasing values of C, more it-
erations are needed, in order to obtain equally accurate answers. However, the Picard
iteration scheme always converges. For large values of C,, the material becomes an
almost ideal plastic. If C, - oo, then it follows from 5.3.9 that ¢, —» a,. In figure 35 the
deformed material grid has been drawn for various values of C, . It can be seen that
due to increasing values of C, , the deformation pattern locates. This localisation is
probably the cause of the worse convergence of the Picard scheme. In figure 36, the
compression force has been drawn, as a function of the parameter C,. From this figure,
it can be concluded that the force is very sensitive for variations of C,, if C, is of the
order 1. In 5.3.10, it can be seen that C,~0.25, which means that the process conditions
have to be tightly controlled in order to obtain a reproducible bonding technique.

Recently, some numerical experiments have been done with the material properties,
given in 5.3.10. The ring has an initial radius of 20 mm and a circular cross section with
a radius of 2 mm. Figure 37 shows the results, that have been obtained for the axial
stress on the interface of lead and the substrate, during the compression phase. The
increase of the areca on the interface can be observed. As input for these calculations,
a measured force versus time curve was used. The boundary value for the axial ve-
locity on the interface can then be obtained iteratively. In figure 38, some vector plots
have been drawn for various phases during compression. In figure 39, the axial stress
on the interface has been given, during unloading. If the ring is completely unioaded,

S 'The extrusion of lead 8R



5 ‘The extrusion of lead

8-
log(F)
6-
e
— \\
L \“~\\ S~
2 4 % ‘\_‘\‘ T L
-2 0 2 4 6
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Figure 37. Axial stress during several stages of the compression phase on the interface between
lead and substrate
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Figure 38. Vector plots during several stages of the compression phase

then there are two areas, where tension can be observed. It is known from experiments
that, in the same areas the bond can fail. This failure mechanism can be influenced by
the interval of time, in which unloading takes place. The calculated residual tension
stresses might correspond with the observed failing of thhe bonds. This is even now an
open queslion. In future numerical as well as bonding experiments will have to provide

the answer.
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Figure 39. Axial stress during sevaral stages of the unloading phase on the Interface between lead
and substrate
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6 Discussion

In chapters 2 and 3 two different theories were discussed, both of which yield
constitutive equations for metals. It was pointed out that the two {heories only coincide
once, in the case of the Oldroyd and Maxwell models. The latter, especially, is often
applied in the field of plasticity. Also, the theory of the decomposition of the deforma-
tion rate, as discussed in chapler 3, is usually used in this field. However, it was shown
that from the hidden tensors theory constitutive modeis for metals can be also ob-
tained. Chapter 4 then shows that a simple Maxwell model can only describe the pri-
mary effects observed from experiments. Phenomena, such as the overshoot of the
torque or shortening of lead during torsion, can’t be predicted with a Maxwell model.
It is still an open question whether the Oldroyd or Kelvin models in combination with
a Maxwell model, are able to describe these phenomena, as was suggested in sub-
paragraph 5.3. A good alternative, however, seems to be the theory of hidden vari-
ables. If a better physical understanding is obtained from these phenomena, then
hidden variables might be found, whose evaluation can be described in terms of the
state and hidden variables. This approach, for instance, seems to be a good alternative
for describing kinematical hardening. A better understanding is needed of this hard-
ening phenomenom, but pointless discussions about what rate should be used, con-

sidering the shear test (figure 1), can be avoided in this way.

The combined tension-torsion test seems to be a good start for further investigation
points of some of the secondairy effects. In particular a lot of information can be ob-
tained from the elongation or shortening of the specimen, which can be easily meas-
ured. In the compression test too some non-viscous and non-elastic phenomena were
observed. Understanding the results of this test, however, is much harder, because the
deformation pattern is more complicated than the defermation field of the torsion-
tension test. In literature, some work has already heen reported, relating the second-
ary effects, such as those can be observed during a torsion test, to metallurgical
quantities. These relationships can help to obtain constitutive equations in the way,

just discussed: the metallurgical quantities may be related to some hidden variables.

In future, the need for accurate constitutive equations will increase. The reason for this
increase is not only, that with modern computers and numerical techniques, more and
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more problems, arising from continuum mechnics, can be solved. Also the require-
ments, of many processes, such as thermocompression, will increase, in order to ob-
tain a better reproducibility of these processes. Particularly in the field of precision
engineering, where processes such as extrusion, grinding, cutting, etc., are consid-
ered, a good understanding of the mechanical process is indispensible.
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Appendix A

Due to a rigid body rotation, represented by the tensor Q, the position vector x is

transformed into the vector X in the following way:
X = Q.x (A1)

where th2 rotation tensor Q can only depend on time. By definition, it then follows that
the position vector x is objective. Because the position vector X of the original state is
not transformed by the rigid body rotation of the current state, X is invariant. From the

definition of the deformation tensor ¥, it is evident that:

X d(@.x)
df _A9x) o % _ ar (A2)

F=ax= "ax ax

which means that F is neither objective nor invariant. Bec-uce of the uniqueness of the

polar decomposition of F, it directly follows from A.2 and 1.2.5 that:
R=QR;: U-U: Vv-0va (A.3)

Consequently U and C (see 1.2.7) are invariant, and V and B (see 1..2.7; abjoctive.
Differentiation of x gives:

X=U=Qx+Qx=Qx+Qu (A.4)

which means that the velocity vector is neither invariani nor objective. From the dif-

ferentiation of F, it is apparent that:

FF'=QQ +afF 'Q' (A.5)

So the symmetric part of this expression, which is equal fo the deformation rate tensor
D, is objective, because Q.Q" is skew-symmetric. The skew-symmelric part of A.5,

which is equal to the spin tensor Q. is then neither objective nor invariant:

Q=0Q 1 Q0.Q’ (A.6)
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Let p be some invariant ( and thus objective) scalar function of x . The gradient of p, i.e.
Vp, is defined by:

p(x + AX) — p(X) = ¥Yp.Ax (A7)

for each infinitessimally small vector Ax. After a rigid body rotation the following sol-

ution is obtained:
B(X + AX)— B(X) = p(x + Ax) — p(x) = Yp.AX = Vp.QAX (A.8)

which means that the gradient of p is objective. As the constitutive quantities h and 0
enter the second law of thermodynamics (relationship 1.3.7), the scalar expressions
0:D and h.V6 may have to be objective:

0:D=0:D and HhVO=hV0 (A.9)

From the objectivity of D and V4 it follows that 0 and h are objective too. It is obvious
from the definition of the tensor A that the tensors § and C are invariant.

By definition the time derivatives of invariant quantities are invariant too. However, for

an objective vector p and a tensor P it can be seen that:

pP=Qp+Qp (A.10)

P=apra’+aPa’ +arq’ (A.11)

From relationship A.6 it can be derived that the following expressions are objective:
p—Qp=Q(p—Q.p) . (A.12)

P-QP+PQ=QP-QP+PQ)Q (A.13)

The latter expression is known as the Jaumann rate of P. In chapter 2 and 3 several

other similar objective rates of tensors are discussed.
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Appendix B
if the free energy y can be expressed by:
¥ =¥(C,6) (B.1)

then it follows directly from 2.2.9 and 2.2.14 that:

Wy

1 _.;_ N
g Y Be S:C —yb (B.2)

By introducing the second Piola Kirchoff stress S, which is equal to J.F~'.0.F~7, and
the tensor C (see 1.2.7), evaluation of the free energy can also be expressed by:

. 1 . .

h = ——8.C—nb B.3

¥ %0, n (8.3)
Finally the relationships 1.4.4 and 1.4.5 together with B.2 yield:

l//=—p—O'.D—r19 (B.4)

If the free energy only depends on the Cauchy strain tensor C and the temperature 6
as is the case for elastic materials, then due to isotropy this relationship reduces to:

¥ = (IC, EC? I:C3, 0) = §i(Jy, Jy. Ja. 0) (B.5)

Substitution of B.5 into B.3 gives the following constitutive relationship for elastic ma-

terials:
S = fol + B1C + B,C?

I N el'
=2py — | =4p,—— ; = 6pn —— B.6
Bo /05‘/1 B4 Po ad, By o 0, (B.6)
It can easily be seen from 1.2.7, that the invariants J,, J, and J, can be expressed in
terms of the tensor B . In the same way, the invarianis are expressed in terms of the

tensor C:
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Jh=IC=1B; J,=IC*=IB*; J=1C*=1B° (B.7)
Replacement of the tensors § and C by the tensors G and B in B.6 yields:
_1 2 3
0 = (BB + B4B" + f3,B7) (B.8)

where f,f, and B, can be expressed in terms of the invariants of B, because of B.6 and
B.7. Substitution of the Cayley-Hamilton relationship which is:

B°_ J,B%+ %(Jf EAY: %(2.13— 3y + S = 0 (B.9)
finally gives the following result:

0 = agl + a,B + a,B° B.10
0 4 2

where, after a straightforward calculation, a,, a, and a, are expressed by:

o o oy
ag= p(3Jsdy — 2J3— J?)E ;oay= /’(251“4' 35 — &) ETA )
) 0
a,= 2p(2 2V _ 3y, (B.11)
EYA FYA

Because of B.5 and B.8 the free energy and the eigervalues of 0 which are better
known as the main stresses a, can be expressed in terms of the eigenvalues of B:

V=y(eeye0) ; a=afe;eye,d)fori=1223,; e=In(4) (B.12)

where A%, A3 and A2 are the eigenvalues of B. Using this result, relationship B.4 be-

comes:

2
W=701D—;70:7Zn,-e,—;70 (B.13)

i=1

from which it follows that:

(T,=p-a—l//— (B.14)
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Appendix C

In this Appendix a solution is deduced for equation 2.6.3. This equation can be ex-
pressed in the following way:

‘AQ+‘B:Q=H (c.1)

All the tensors in C.1 are symmetric, and *A is regular. The solution procedure for this
equation is similar to the procedure Biot (1954) proposed for the same kind of equation.

First, a solution for the homogeneous equation, i.e. H= 0, is obtained. Suppose:

Q=e v (C.2)
where V Is symmetric and doesn’t depend on time. Substitution in C.1 yields:

(- A'A+‘Brv=0 (C.3)

This means that V is a ‘A-eigenvector of “‘B with corresponding eigenvalue A. Because
of the symmetrical property of “A, ‘Band V there are six eigenvectors V, and
eigenvalues 4, (i=1,..,6). From these definitions of V, and 4, it follows that:

AVe(*B:V) = — A Vi(*AV) = — LA(VA)V = 1V *B)Y, (C.4)
This means that 1, has to be real (i =j) instead of complex, and that:
Vi‘B:V)= 0 for i# | (C.5)

Due to the regularity property of ‘A and relationship C.4 the eigenvectors can be cho-
sen in such way that:

Viiav =5, (C.6)

where 4, is the Kronecker delta. Suppose:

6
Q= ZP,’V/ (C.7)

=1
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Substitution in C.1 gives:

(‘A:Vp + ‘B:Vp)=H (C.8)
=1
Pre-multiplying this relationship with V, the following equation is obtaied for p;:
P+ Apy= ViH (C.9)

The solution of this equation and relationship C.7 finally yield:

6
t
Q= Z“v,-:f o™ MUy gy (C.10)
=1 .
where:
Q0)=0 and ‘v,=VyV, (C.11)
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Appendix D

In this Appendix a solution is deduced for equation 3.3.13. This equation is:

60, P
—£=(Il1+ 2Bai)by+ jp — 2y0 (D.1)
i

which isvalid for i,j=1,2,3. Froma,= g€, €, &) (see 3.3.9) it follows for j # j # k that:

50,_ 00,_0 (D2)

Bej aek

From this equation it is obvious that g, = ¢ (e, J), because In(J) = e, + e,+ e,. The nine

equations in D.1 can then be reduced to six:

%01 4 ylo1 28 2ya; for i=1,2,3 D.3)

o 5 — — o j= .

76, oJ Myt 20+ 1y yoi for y & (
(30'[ .

J——=p,—2y0; for i=1,2.3 (D.4)
aJ

From these equations it directly foIIow‘s that:

py=py(e,J) and = pfe;,J) (D.5)
This equation must be valid for every i, so:

iy =puy(J) and py= pyJ) (D.6)
Differentiating equation 2.4.7 to e; the following relationship is obtained:

o d
v s .29

, s
o€

0(1/

= = Jo, 4+ -—- D.7
rn )= o+ o) (0.7)

Substitution of equation D.1 into this relationship, leads to the requirement that
1

y = > By defining the function f = f(J) with (1) = 0 ,in such a way that:
df (J)
YL (D.8)
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equation D.4 yields:
Ja,=1(J)+a(e) (D.9)
The combination of D.3, D.6 and D.9 finally gives:

Jpuy = Gy — BI(Y)) (D.10)
G Gy , 4 ;
R GER BRI CHE (D-11)
B B
This means that the Cauchy stress tensor can be expressed by:

_1 So (gf_
O_J(I(J)I+ 3 (B” = 1) (D.12)
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Appendix E
The tension bar has to obey the following equations during necking:

da, TrT % 0014

L — L 2 EA
ar r oz (E.1)
20,2 Oz da,

=0 E.2
ar r 0z (E.2)

where the following boundary conditions have to be met in the vicinity of the neck:

Uu,=0,=0 on z=0 (E.3)
Uy=0,=0 on r=0 (E.4)
o.n=0 on r=R(2) (E.5)

where R(z) is the outer radius of the bar and where n is the normal on the surface of

the bar. The boudary condition E.5 can therefore be written as:

dR dR
a,—(r,zd—z--—:o and ”'rz"”zF:O (E6)

In chapter 4, it is assumed that the constitutive relationships can be expressed by:

go= A (E.7)

In relationships 4.2,13 and 4.2.14 the following assumptions were made about the ra-
dial velocity in the vicinity of the smallest cross section:
of

u=rf(z,t) with | —
az

< < |f(z, )] (E.8)

From boundary condition E.3 and the fact that tr(D) = 0, if follows that the axial velocity

u, can be expressed by:
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Up=— ZJZI(Z, t)dz (E.9)
0

and the deformation rate tensor D by:
D=1(z, t(ee + ey64 — 26,6,) + ir—aL(e,ez+ e,e,) (E.10)
€6+ 8484 € 2 "5, ek e

Due to E.8 the equivalent strain rate ¢ can he approximated by:

h= /%D:D:Zlf(z, 0| (E.11)

Integration of this equation yields that the equivalent strain ¢ doesn’t also depend on
the radial position. The same can therefore be concluded for the Von Mises stress a,.
Consequently from E.7 and E.10 it follows directly that ¢,, is proportional to r, and
a,=0d4 is a parabolic function of r, due to E.1:

o,=AZ 0P+ Bz, t) ; a,=—2Az t)rz (E.12)

Following the definition of the Von Mises stress the axial stress ¢, can be expressed

in the vicinity of the smallest cross section by:

oy= Az, )’ + B(z, )+ o (7, 1) (E.13)
Then, equation E.2 requires that:

A=A(l) and B+ a,=2A(0)z°+ C(l) (E.14)

The force F can be expressed by:

R(z)
F=2nJ. o, rdr (E.15)
0

Substitution of E.13 into E.15 gives:

F 1 2 ’
+o,= — s y
B+o,= 3 AR (E.16)
R 2

From the boundary condition E.6. the following requirement is obtained for B:

drR
B=- AR? - 2A7R %% E.A7
R~ (EAT7)

Eliminating A, B and C from E.14, E.16 and E.17, the required correction factor C, is

found:
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F 4 F
=0)= = E.8
lz=0=C— 5= (E.18)

where « is defined by:
d°R
a=(R—F),= (E.19)
d22 z=0

The other boundary condition on the outer radius (see E.6) gives:
dR  dR \—1
B+o,=- AR(2z+ R - X e ) (E.20)

Relationship E.14 and E.20 lead to the equation for the outer radius, which after a

straightforward calculation gives:

Riv(z8-2- 2Rt 2o (E.21)

where R=—PR __ and7=—2 Bridgman (1952) assumed that the radius

z= R(z = 0)
could be expressed by:

ﬁ=1+%—%\/1—a222 (E.22)

These two functions for R have been drawn in figure 9.
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Appendix F

In this Appendix the compression of the upper half of the cylindrical pallet
u,

(0<z< 1 h) is considered. In this part the shear rate a—' is negative, which means
z

that equations 4.4.4 and 4.4.6 yield:

u = Pt _
az’:—\/:}g and a,z=z = \/30‘, (F.1)

The Von Mises stress g, only depends on the equivalent strain rate, and possibly also
on the temperature. It is assumed that the inverse of this relationship exists with re-

spect to &

=¢(f) and t=¢ Y(a,) (F.2)

where the temperature dependence is not mentioned, because only isothermal com-
pression tests are considered. From F.1 and F.2 it follows that on z = % handr=R:

J3 op . J3 ap
(IV=Th(— = )r—n and § = (*—h( 3 | (F.3)
Integration of relationship 4.4.5 (balance of mass) yields
1 1
—h -h au ;
J2 u,dz—_——J‘2 —{—'zdz=——/:% (F.4)
o o 0z
By the introduction of the quantity y = — ’;)’f F.A, F.2 and F.4 lead to the following

equation:

(F.5)

's-h—— dx =
f¢ (Ja( )X)Xxd\/SR

If the inverse of this equation exists, a funclion y = y/(y) can be introduced such that
on z == % handr=R (see F.3);

/3

) =YY i oy =) =T (S5 () (F.6)
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The force F can therefore be expressed by:

= n-[ (— )r dr= ,;: fyw(x)xz dx (F.7)
0

The volume V, of the pallet remains constant and equals to nhR% A quantity G can
therefore be introduced such that:

G= hz\/h—F= w(x)x? dx (F.8)
Jn y J

from which it directly follows that G = G(y)

Differentiating G with respect to y and substituting in F.6 gives at co-ordinates
z= % handr=R:

\/ a6

o,= ———(3G +y
2Vo/ Vo £

From equation F.5 it directly follows that onr = R:

) (F.9)

3 — .
= _ 3
f 2 ’(x)xdx=JTyv/2(y) (F.10)
0

Differentiation of F.10 with respect to y and substitution of F.3 and F.6 in this equation
finally gives at co-ordinates z = % handr=R:

(2y + af d"y” ) (F.A1)
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Appendix G
In this Appendix every objective tensor G will be related to an invariant tensor G by:
G=A"GA (G.1)

The objective rate of G is then related to G (see 3.4.7) by

G=A'G.A (G.2)

where A is given by (see 3.4.9):

(AA™Y = —(Q + H) (G.3)
The Oldroyd model (see 3.5.4) can be expressed by:
Aot by (G.4)
n E
The invariant form of this equation is:

1_. 1_~.—_ 4,
nT+E‘E_D+AD (G.5)

When an implicit Euler numerical integration scheme is used, the following expression

is obtained:
1=, T-Tp = b“_o
—T+———=D+4 A——— G.6
" AtE At ( )

where the tensors T, and D, are the values of the tensors T and D at the point of time
prior to the material point under consideration. This ecuation leads {o the lollowing
expression lor the original objective tensors:

E(At+ A) n

2 py —— P(Ty~ IED,).PT &7
w+ ALE +:1+AIE (To 0 (G.7)
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where P = A~ T.A]. Numerical integration of equation G.3 leads to the following ex-
pression:

T T
=T A ‘—AO

= — (4 H) (G.8)

(AA™ Y ~aA
Then for P the following expression Is found:
P=1+A{Q + H) : (G.9)

For A = Othe relationships 5.4.3, 5.4.4, 5.4.5 and 5.4.6 are easily obtained from G.7 and
G.9.

If kinematical hardening is taken into account, the same numerical integration scheme

can be used. Consider the following elastic-plastic mode! with kinematical hardening:

1 \Y \
F(T—a)-lr T=D; 0= hD (G.10)

1
E

Numerical integration gives:

AtE ALE " r
T= D+ o+ P.T,P GA1
Y+ ATE 7w+ ALE mtAE O By

and for & the following expression is obtained:

oL =AthD + P.O,P' (6.12)
Substitution of G.12 into G.13 yields:

NE _po

P(nT,- P’ G.13
0+ ALE ot AE T nTo+ AtEG) 1e1e)

T=(n-+Ath)

This means that this constitutive model can be solved in a way similar to that in which

the ordinairy Maxwell model is solved. (see subparagraph 5.4).
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Appendix H

In subparagraph 4.4 an asymptotic approximation has been made for compression
flows. In this case, i.e. the compression of a ring, the same approximation can be made
because the height h of the ring is much smaller than the width R, — R,. The appropriate
balance equations for a viscous flow then reduce to (see 4.4.3 and 4.4.6):

ou, u,  du,

i =0 H.A
or ¥F 0z (H-1)

op ou,

P _1 3
ar_QJZ(” 0z

)=0 : p=p(rt) (H.2)

The boundary conditions are:

z=0 4 =0 uy,=0 (H.3)
z=h u=0 u,=h (H.4)
r=R, p=0 (H.5)
R=R, p=0 . (H.6)

Integration of H.1 and H.2 in the axial direction yields:

h
1. . %
J u dz=-. —2—hr+ Rt (H.7)
0
1 0p

=—-—2(z—h H.8

b= o2 2z = h) (H.8)
where C, can only depend on time. Substitution of H.8 into H.7 gives:

n® ap 1. G
BUTHNE | S 5] TN .9
6y Aar 2 ar r (H.9]

tI=ing the boundary conditions the following expressions for p, u, and u, can be ob-

tained:
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3nh , InRy— Inr

= RZ— R} + r*— R? H.10
p 2h3( InR,‘,-—InR1( 2 1+ r 2) ( )
. 2 2
_ 8h Ry — Ry 1
u,= oh? 2(z — h)(2r TR, InR, T ) (H.11)
h 2 ‘
up = == 2°(3h - 22) (H.12)
h

In figure 32 and 33 the following data have been used:

2

h=04Amm ; h=—tmm/s ; Ry=1mm ; Ry=2mm ; »= INs/mm*® (H.13)
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Samenvatting

Dit proefschrift behandelt constitutieve relaties voor metalen. Twee theorieen,
waarmee relaties tussen spanningen en rekken of reksnelheden verkregen kunnen
worden, zullen worden besproken. De eerste theorie betreft de introductie van
verborgen variabelen. Met name wordt aandacht besteed aan de voorwaarden, die
volgen uit de Clausius-Duhem ongelijkheid. Deze laatste staat ook bekend als de
tweede hoofdwet van de thermodynamica. Modellen voor metalen, die met deze
theorie kunnen worden verkregen, staan bekend als modellen voor energie of rek
verstevigende materialen en materialen van het type N. De tweede theorie behandelt
de decompositie van de spanningen en de reksnelheden. Speciale aandacht wordt
geschonken aan relaties tussen afgeleiden van spanningen en reksnelheden.
Bewezen wordt dat slechts een speciale klasse van afgeleiden gebruikt kan worden
voor dit doel. Een vergelijking wordt gemaakt tussen de modellen die met beide
theorieen zijn verkregen. Ten slotte worden twee modelien, die volgen uit de tweede
theorie, nader toegelicht: het Maxwell model voor elasto-plastische materialen en het
Kelvin model voor materialen met kinematische versteviging. Drie experimenten,
waarmee materiaaleigenschappen te verkrijgen zijn, worden beschreven: de trekproef
inclusief insnoering, de gecombineerde torsie-trek proef met speciale aandacht voor
pure torsie en de compressie proef. Enige experimentele resultaten zullen besproken
worden. Tot slot wordt de opzet van een computerprogramma besproken, waarmee
de extrusie van lood beschreven kan worden. Enige resultaten, die ontangs met behulp

van dit programma verkregen zijn, zullen worden getoond.
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Stellingen
behorende bij het proefschrift

Constitutive Equations for Metals
with an Application to the
Extrusion of Lead

van

Hans van Wijngaarden



De thermodynamische theorie mct verborgen variabelen is cen krachtig
hulpmiddel bij het afleiden van constitutieve vergelijkingen.

® hoofdstuk 2 van dit proefschrift

¢ S.R.de Groot en P. Mazur - Non-Equilibrium Thermodynamics - North
Holland Publishing Company (1962)

In dc kinematica is de gradicnt van de snelheid de som van de symmetrische
deformatiesnelheidstensor en de anti-symmetrische spintcnsor. De
interpretatie van deze tensoren als cen dirckte maat voor de verandering van
de dcformatie respecticvelijk de rotatic van het materiaal is onjuist cn kan
leiden tot foutieve materiaal beschrijvingen.

e J.C. Nagtegaal en F.E. Veldpaus - Analysis of mectal forming problems
with an improved finite strain plasticity formulation - Numecrical Mcthods
in Industrial Forming Processes, Ed. Pittman, Wood, Alexander and
Zicnkiewicz, Pineridge Press, Swansea, UK (1982)

De afschuifproef is een onzinnige test voor het bepalen van de te gebruiken
objectieve tensor afgelcide in het geval van elasticiteit cn kinematische
versteviging.

e S.A. Atluri - On the constitutive relationship at finite strain:  hypo-
clasticity and elasto-plasticity with isotropic or kinmatical hardening -
Comp. Meth. in Appl. Mech. and Eng., Vol 43 (1984)

Voor het juist kunnen beschrijven van kinematische versteviging is ecn beter
fysisch inzicht nodig in dit fenomeen. Dit inzicht kan verkregen worden door
het doen van gerichte cxperimenten.

e EH. Lee, R.L. Mallet and T.B. Werthcimer - Stress analysis for
anisotropic hardening in finite deformation plasticity - J1. of Appl. Mech.,
Vol 50 (1983)

Menig commerciecl cindig clementen pakkel zou kwalitatief sterk verbeteren
als aan de elementen bibliotheek het ‘bubble’-clement zou worden tocgevoegd.

*  hoofdstuk 5 van dit proefschrift



6. Eindige elementen en differentic methoden zijn er cnkel en allecn voor het

9.

oplossen van integraal en differentiaal vergelijkingen. Vecle fysische
interpretaties van deze mcthoden zijn dan ook nict relevant en vaak
verwarrend.

e J. Blaauwendraat en A.W.M. Kok - Elementenmethode - Agon Elscvier,
(1973)

Wetenschapsbeoefening  Krijgt ccn  toenecmend analytisch en  daardoor
projectmatig karakter. Dec internc organisatic van wetenschappelijke
instellingen dient hicrop aangepast tc worden.

® G. Holst - De ticn gecboden van het Nat.Lab. - NRC-Handeclsblad, (12 juni
1985)

Het groepsresultaat, dat door goede interne samenwerking in positieve zin
beinvioed wordt, is in de praktijk vaak belangrijker dan het individucle
resultaat. Naast formele individucle boordclingen in bijvoorbeeld het onderwijs
en het bedrijfsleven diencn groepsbeoordelingen daarom (veel vaker) tocgepast
te worden.

Dec ware informaticus herkent men aan zijn burcau.

10. In het zickenhuis ben je gezegend met cen non als afdelingshoofd.



