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MODERATE DEVIATIONS FOR LONGEST INCREASING
SUBSEQUENCES� THE LOWER TAIL

Matthias L�owe�� Franz Merkl�� and Silke Rolles�

Abstract

We derive a moderate deviation principle for the lower tail probabilities of the
length of a longest increasing subsequence in a random permutation� It refers to the
regime between the lower tail large deviation regime and the central limit regime�
The present article together with the upper tail moderate deviation principle in ����
yields a complete picture for the whole moderate deviation regime� Other than in
����� we can directly apply estimates by Baik� Deift� and Johansson ���� who ob	
tained a 
non	standard� Central Limit Theorem for the same quantity�

���� Mathematics Subject Classi�cation� Primary �F�� secondary �A�� �C��
Key words� Ulam�s problem� random permutations� moderate deviations� Pois	
sonization�

� Introduction

Recently a problem which was invented by Ulam �� years ago ���	 has returned to the
probabilists
 attention� Consider the permutation group Sn on f�� � � � � ng� We say that
� � i� � � � � � ik � n is an increasing subsequence of length k of � � Sn if �i�� � � � � �
�ik�� We denote the length of a longest increasing subsequence of a permutation � by
Ln � Ln��� note that� in general� such a subsequence is not unique� Ulam�s problem is�
What is the typical asymptotic behavior of Ln as n � �� if � is chosen with uniform
probability ��n� from Sn�
A Poissonized version of this problem is equally interesting� one replaces the determin�

istic number n above by a Poisson���distributed random variable N � Thus one obtains
the Poissonized random variable LN � Conditioned on the event fN � ng� LN has the
same distribution as Ln� For a geometric interpretation of LN we refer e�g� to ��	 and
���	�
The probability P�Ln � l	 can also be interpreted as

R
Ul
jTrM j�ndM�n�� where Ul is

the unitary group of rank l and dM denotes the Haar measure on it� This fact and other
connections of Ulam
s problem to other mathematical topics can be found in two survey
articles by Aldous and Diaconis ��	 and Deift ��	�
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Ulam conjectured that

c �� lim
n��

�p
n
E �Ln 	 ����

exists� This was proved by Hammersley in ���� ��	 by an application of the subadditive
ergodic theorem� The correct numerical value c � � was given by Logan and Shepp
���	 and independently by Kerov and Vershik ���	 in ����� The same result was proven
by di�erent methods by Aldous and Diaconis ��	� Sepp�al�ainen ���	� Johansson ���	� and
Groeneboom ��	�
The large deviation LD� principle to this law of large numbers was derived in two

papers by Sepp�al�ainen ���	 and Deuschel and Zeitouni ��	� They proved that for all x � �

lim
n��

�p
n
log P

�
Ln � x

p
n
�
� ��x arcoshx

�
� �

p
x� � �� ����

and that for � � x � �

lim
n��

�

n
log P�Ln � x

p
n	 � �� x�

�
� � log x

�
� �

�
� �

x�

�

�
log

�
�x�

� � x�

�
� ����

In ���� Baik� Deift� and Johansson ��	 came up with a method based on the theory of
matrix�valued Riemann�Hilbert problems and integrable systems to prove a non�standard
Central Limit Theorem CLT� for the quantity Ln� Their result Theorem ��� in ��	�
reads as follows� Rescale Ln as

	n�� ��
Ln��� �

p
n

n���
� ����

Then 	n converges in distribution as n�� to the Tracy�Widom distribution� introduced
by Tracy and Widom in ���	� All moments of 	n converge to the corresponding moments
of the Tracy�Widom distribution� as well Theorem ��� in ��	�� This distribution is de�ned
in the following way� Let ux� be the solution to the Painlev�e II equation

uxx � �u
� � xu with ux� � �Aix� � �e������x

���

�
p
�x���

as x��� ����

the notation a � b means that the quotient of both sides converges to �� and Ai denotes
the Airy function� Then the Tracy�Widom distribution has the distribution function

F t� �� exp

�
�
Z �

t

x� t�u�x�dx

�
� ����

Interestingly� the Tracy�Widom distribution �rst appeared in the context of eigenvalue
statistics of the Gaussian Unitary ensemble�
The following statement is an immediate consequence of the lower tail asymptotics of

the Tracy�Widom distribution see Appendix A��

lim
t��

lim
n��

log P
�
Ln � �� tn�����

p
n
�

t�
� � �

��
� ����
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The asymptotics ���� perfectly agrees with the large deviation asymptotics for the
�upper end� of the lower tail� which one readily derives from �����

lim
t��

lim
n��

logP �Ln � �� t�
p
n	

t�n
� � �

��
� ����

��� Results

In this note we �ll the gap between the estimates ���� and ���� by showing that in
the lower tail moderate deviation regime the probabilities scale in very much the same
way� Thus together with the results obtained in ���	 we obtain a full moderate deviation
principle� Our result reads as follows�

Theorem ��� For all � � 
 � ��� and t � ��

lim
n��

log P �Ln � �� tn���
p
n	

n����t�
� � �

��
� ����

Remark� Recall that in ���	 the following moderate deviation principle for the upper tail
was proved�
For all � � 
 � ��� and t � ��

lim
n��

logP �Ln � � � tn���
p
n	

n��������t���
� ��

�
�����

Observe that the moderate deviations in ���� have twice the speed of the moderate de�
viations in ������ This di�erence is in agreement with the large deviation results cited
above and can be explained on an intuitive level as well� building unusually short longest
increasing subsequences is much more expensive than creating extraordinarily long ones�
since a very short longest increasing subsequence also restricts our choice in assembling
all the other elements in a random permutation�

A more re�ned version of Theorem ���� which also covers the cases 
 � � and 
 � ����
will be given in Theorem ��� below� Both� Theorem ��� and Theorem ���� rely on the
moderate deviation principle for the corresponding quantity in the Poissonized version
of the problem� In order to state this moderate deviation principle� it is convenient to
reparametrize the pair consisting of n the size of the permutation group� and l the
length of a longest increasing subsequence� in the following way�

�l�n ��
�
p
n

l
� Ml�n ��

�
p
n� l

l���
� �l�n � ��l���� �����

Note that �l�n measures how much the length of a longest increasing subsequence de�
viates from its expected behavior� for large n and a typical permutation �� the quantity
l � Ln�� will be of order �

p
n� so that �l�n is close to one� On the other hand� note

�



that the CLT is proved for the normalized quantity n����l � �pn� � ����������l�n Ml�n�
Since �l�n is typically of order �� the variable Ml�n measures the distance from the central
limit CL� regime� Indeed� the di�erent lower tail asymptotic regimes can be conveniently
described in terms of �l�n and Ml�n�

CL� �l�n � � and Ml�n �M � R�
lower end asymptotics of the CL� �rst �l�n � �� second Ml�n ���
lower tail moderate deviations� �l�n � � and Ml�n �� simultaneously�
upper end asymptotics of the lower tail LD� �rst Ml�n ��� second �l�n � ��
lower tail LD� Ml�n �� and �l�n � � � ��

We introduce the distribution function for the Poissonized quantity LN with N �
Poisson���

�l�� �� P�LN � l	 �
�X
n	�

e���n

n�
P�Ln � l	� �����

Then we obtain the following result on �l���

Theorem ��� There are positive constants c� 	 �� c� � ���� and c�� so that for all � � �
and l � N with Ml�� 	 c� and � � �l�� � � � c� the following holds�

log �l��

M�
l��

�
��l�� � ��l�� � �� � log �l��

��l�� � ��� � l�� �����

with an error term l�� bounded by

jl��j � c�M
��
l�� logMl��� �����

Remark� Note that

�� � �� � �� � log �
�� � ��� � ��

�
�O� � �� as � � �� �����

such that ����� states that under the conditions of Theorem ���� N � Poisson��� and
for �l�n � �

logP�LN � l	

M�
l��

� ��
�
� l�� �O�l�� � �� �����

holds�
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��� Incorporating an estimate of Baik� Deift� and Johansson

Our proof of Theorem ��� is based on an estimate in ��	� We �rst quickly indicate how to
translate questions about longest increasing subsequences into problems about orthonor�
mal polynomials to which the techniques in ��	 and ���	 apply� More precise explanations
can be found in ���	 and in ��	�
It is convenient to study the Poissonized quantity LN �rst� N � Poisson��� Once

we have obtained the moderate deviation behavior for LN � we derive that of Ln by a
de�Poissonization procedure� Roughly speaking� we compare LN with varying Poisson
parameters � with Ln� � is chosen such that n lies typically in the central regime or
the moderate deviation regime of the Poisson variable N � this allows us to separate
moderate deviation e�ects caused by atypically small values of N from those caused by
permutations with an unusually short longest increasing subsequence� The details are
described in Section ��
The reason why the Poissonization helps is an identity by Gessel ��	�

�l�� � e��Dl����� �����

where Dl���� is an l 
 l Toeplitz determinant�

Dl���� � det

�Z �

��
e�i�k�j��e�

p
� cos � d�

��

�
��k�j�l��

� �����

Baik� Deift� and Johansson ��	 analyze �l�� by examining the asymptotics of Dl����
when � � � and l � �

p
�� The above Toeplitz determinants are related to certain

orthogonal polynomials� let

pl��z� �
lX

j	�

�l�j��z
j� �l�� �� �l�l�� � � �����

be the lth orthonormal polynomial with respect to the weight function e�
p
� cos � d�

��
on the

unit circle� i�e�� Z �

��
pl��ei��pk��e

i��e�
p
� cos � d�

��
� �l�k� l� k 	 �� �����

where �l�k denotes Kronecker
s delta� Then one can show see ����� in ��	�

��l �� �
Dl����
Dl��

� �����

which leads to see ����� in ��	�

log�l�� �
�X
k	l

log ��k��� �����
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Baik� Deift� and Johansson ��	 connect ��k�� to the solution of certain � 
 ��matrix
Riemann�Hilbert problems� As we will just use one of Baik� Deift� and Johansson
s
estimates� but other than in ���	� not the Riemann�Hilbert techniques themselves� we
will refrain from explaining them here in detail and just refer the interested reader to the
explanations in ��	 and ���	�
With the help of these Riemann�Hilbert techniques� Baik� Deift� and Johansson ��	

derive among others� the following estimate�

Lemma ��� �See ��	
 Lemma ����
 part �ii�� For some positive constants c�� c
 �suf�
�ciently large� and c� �su�ciently small�� the following holds� if � � � and q � N ful�ll

� � c
q
���� � �q�� � � � c� �����

or equivalently

Mq�� 	 c
 and �q�� � � � c�� �����

then

��q�� � expfq��q�� � log �q�� � ��g�����q�� eoq�� �����

with an error term

joq��j � c�
q�q�� � �� � �� �����

Note that q�q�� � �� is large if ����� holds and c� and c��� are large enough�

The rest of this paper is organized as follows� In Section � we prove Theorem ����
Section � contains the de�Poissonization procedure which allows us to derive the moderate
deviations of Ln from those of LN � In an appendix we show that our moderate deviation
result is compatible with the CLT derived in ��	�

� Summation

This section is devoted to the proof of Theorem ���� As a main ingredient we use Lemma
���� Positive constants cj keep their meaning globally during the whole article� If cj
depends on an additional parameter� this is denoted explicitly�

Proof of Theorem 	
�
 In Lemma ��� above� we may assume without loss of generality
that c
 	 �� and c� � ���� We set c� �� �c
 	 �� Let l and � ful�ll the hypothesis of
Theorem ���� Then

� � ��l��M
�
l���l�� � ������ 	 c��c

��
� ��� ����

�



As a consequence of ������

log
�l��

�b��
�

bX
q	l��

log ��q���� ����

holds for all b � l� b � N �
We choose a �reference point� b � N � such that Mb�� � �c
� c��� such a number b exists�

to see this� one observes Mp
��� � ���� � c�� M�

p
��� � � � c
� and for q � �

p
�� �

p
�	�

j�Mq����qj � ����jq���� � ����q����j � �������� � � � c
 � j�c
� c��j� Furthermore�
Mb�� � c� � Ml�� implies l � b� As a consequence of Ml�� 	 c
� Mb�� 	 c
� and
�b�� � �l�� � �� c�� the hypothesis ����� is ful�lled for q � l and q � b� Hence� using the
monotonicity of q �� Mq�� and q �� �q��� this hypothesis is ful�lled for all q � �l� b	� too�
From the formulas ���� and ����� we obtain�

log
�l��

�b��
�

bX
q	l��

q��q�� � log �q�� � ��� �
�

bX
q	l��

log �q�� �
bX

q	l��

oq��� ����

We examine the �rst sum on the right�hand side of ����� using the trapezoidal rule with
error estimates�

bX
q	l��

fq� �

Z b

l

fx� dx�
fb�� fl�

�
�

Z b

l

Kx�f ��x� dx ����

with f � C��l� b	 and

Kx� ��
�

�
fxg�� fxg�� ����

here fxg � x�maxfn � Z � n � xg denotes the fractional part of x� We get
bX

q	l��

q��q�� � log �q�� � �� ����

� �
p
�

Z b

l

�
x

�
p
�
� �� x

�
p
�
log

x

�
p
�

�
dx

�
b

�
��b�� � log �b�� � ��� l

�
��l�� � log �l�� � ���

Z b

l

Kx�

x
dx

� �
�
����l�� � ����l�� � ����l�� log �l�� � ����b�� � ��

��
b�� � ��

��
b�� log �b��

�
�
b

�
log �b�� � ��� l

�
log �l�� � ���

Z b

l

Kx�

x
dx�

Using � � Kx� � �
�
� we see

� �
Z b

l

Kx�

x
dx � �

�
log

b

l
� ����

�



To estimate the second term on the right�hand side of ���� we note that

bY
q	l��

�q�� �
bY

q	l��

�
p
�

q
� �

p
��b�l

l�

b�
� ����

Using Stirling
s formula n� �
p
��nn����e�n���n� with limn�� �n� � �� we obtain

bY
q	l��

�q�� � �
p
��b�leb�lll����b�b����e��l����b�� ����

and we conclude

��
�

bX
q	l��

log �q�� �
l � b

�
log

�
�
p
�
	
�
�
l

�
�
�

�

�
log l �

�
b

�
�
�

�

�
log b �����

�
l � b

�
�
�b�� �l�

�

�
l

�
log �l�� � ��� b

�
log �b�� � �� �

�

�
log

b

l
�
�b�� �l�

�
�

Finally we estimate the sum of the error terms in ����� using ����� and �
p
� � b �

M
���
b�� �b�� � ������ 	 ��






bX
q	l��

oq��






 �
bX

q	l��

c�
q�q�� � �� �

bX
q	l��

c�

�
p
�� q

� �c�
Z b

l

dq

�
p
�� q

�����

� �c� log
�
p
�� l

�
p
�� b

�
�

�
c� log

l

b
� �c� log

Ml��

Mb��

�

Combining ����� ����� ������ and ����� with ����� we get�

log
�l��

�b��
�����

� �
�
����l�� � ����l�� � ����l�� log �l�� � ����b�� � ��

��
b�� � ��

��
b�� log �b��

�
� l� b� ���

with an error term bounded by

jl� b� ��j � � � c��





log bl




� �c�





log Ml��

Mb��





 �




�l�� �b�

�





 � c� � �c� logMl�� �����

for some positive constant c�� note that b�l � �l����b�� � ����� �	� We estimate the b�
dependent part in ����� using � � ��b��M

�
b���b�� � �������

�


�� ����b�� � ��

��
b�� � ��

��
b�� log �b��



 � M�
b��



��b�� � ��b�� � � � � log �b��


��b�� � ���

� cM
�
b�� � cc

�
� �����

�



for some constant c � �� here we have used the convergence in ����� as well as �b�� �
��� ���	� Using our notation� part iii� of Lemma ���� in ��	 states the following� There is
a constant c� � �� such that for all su ciently large M � � there is CM� � �� so that
for all � � � and q � N with �M �Mq�� �M we have



log �q����� logF ����Mq���


 � CM�q���� � c�e

��M������ � �����

see also the last line of the proof of Theorem ��� of ��	 page ������ Here F denotes the
distribution function of the Tracy�Widom distribution� As a consequence of ������ there
is a constant c� � � such that

j log�b��j � c�� �����

to see this� one may choose q � b�� in ������ then use that � � Mb���� � Mb�� � c�� and
�nally use that j logF j is bounded on bounded intervals� The estimates ������ ������
������ ����� and Ml�� 	 c� � � together imply

log�l�� � �
��� � ����l�� � ����l�� � ����l�� log �l��

�
�M�

l��l��� �����

with some error term l�� bounded by ����� for some constant c� � �� Hence the claim
����� follows� using the fact � � ��l��M

�
l���l��� ������� and we have proved Theorem ����

�

� De�Poissonization

We split the de�Poissonization considerations into two parts� an upper and a lower esti�
mate� For the upper bound� we use a result of Baik� Deift� and Johansson� while for the
lower bound� we compare Ln with LN � N � Poisson��� with varying values of �� Let

ql�n �� P�Ln � l	 ����

denote the cumulative distribution function of Ln� We start with the upper bound�

Lemma ��� There exist positive constants c��� c��� c�� such that for all n � N and l � N�
l � n� satisfying Ml�n 	 c�� and � � �l�n � � � c�

log ql�n
M�

l�n

� log �ln�
M�

l�n

�
c��

M
���
l�n

� c���l�n � ��� ����

Proof
 By Lemma ��� of ��	� there exist c�� � � and c�� 	 �c� su ciently large� such
that for all n � c�� and all l � N � l � n�

ql�n � c���ln�
p
n�� ����

�



Let l and n ful�ll the hypothesis of the lemma� Using �l�n � �
p
n�l � � we conclude

n � l��� � M�
l�n�l�n � ������ 	 c���c

��
� �� 	 c��� Hence we can apply ����� Taking

logarithms on both sides of the inequality and dividing by M�
l�n we obtain

log ql�n
M�

l�n

� log c��
M�

l�n

�
log �ln�

p
n�� log�ln�

M�
l�n

�
log �ln�

M�
l�n

� ����

Note that

M�
l�n�pn �

�
�

q
n�pn� l

��

l�� � �
p
n� l � �n�

�l�� ����

with some �n � ��� �	� Together with

�
p
n� l � l���Ml�n 	 �c� 	 � 	 ��n ����

this implies

�

�
� Ml�n�pn

Ml�n

�
�l�n�pn � �
�l�n � � � �� ����

In particular� it follows that Ml�n�pn 	 Ml�n�� 	 c���� 	 c
 and � � �l�n�pn � �l�n �
� � c�� Let

g�� ��
�

�
�
�� � �� � �� � log �

�� � ��� � ����

By ������ there exists a constant c�� � � such that

jg��j � c��� � �� ����

holds for � � � � � � c�� With the help of Theorem ��� we estimate the second term on
the right�hand side of �����

log �ln�
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with an error term �l�n �� l�m � g�l�m� satisfying
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for some constant c�
 � �� Using ����� ������ the bound
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and the monotonicity of m �� �l�m� we conclude
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Combining ������ ������ and ����� with ����� we obtain ���� for some c�� � � and
c�� �� �c���

�

Lemma ��� For every �xed number � � � � ��� there is a constant c���� � �� such
that for every n� l � N with � � �n�l � � � c���� and Mn�l 	 c� we have
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with positive constants c� and c�� independent of �


Proof of Lemma �
�
 We choose a �xed number � � � � ���� Given n and l such that
� � �l�n � � � c��� and Mn�l 	 c� holds� we de�ne � �� �l�n � ����� �	�� �	 and set
� �� � � ��n� For � � � we denote by P	 the Poisson measure on N� with parameter ��
and we denote by N the identity map on N� � Furthermore we set

� ��
dP�
dPn

n� � en���nn�n � expfnlog� � ��� ��g � �e�n
���� e�n
���	� �����

For �xed l� the map n �� ql�n is monotonically decreasing� Using this and the fact that
the density dPn�dP� is monotonically decreasing because n � ��� we obtain
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The heuristic idea behind the remaining part of the proof is that �l�� is �close� to
�ln� in the sense that �l����ln� is �close� to � on a rather rough scale�� and e�n


���

is �close� to ��
We observe that �l�� � � � �l�n

p
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�� �l�n� �����l�n� �� � ��l�n� �� � c� and Ml�� 	Ml�n 	 c�� Hence the assumptions
of Theorem ��� are satis�ed for l� n and l� �� We estimate
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By Theorem ���� ���!����� and the above estimates� we obtain
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for some positive constants c� and c��� Substituting this in ����� and using
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We observe� there is a positive constant c���� su ciently small� such that the assump�
tions Ml�n 	 c� and � � �l�n � � � c���� imply
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Note that c��l�n� ���� c��M
��
l�n logMl�n is bounded by a constant and �l�n� ������ can

be made arbitrarily large by choosing c���� su ciently small because ���� � �� Hence�
by ������

ql�n 	 expf�c�M�
l�n�l�n � ��� � c�� logMl�n � �g�ln�� �����

and thus we get the claim ����� for some constant c�� � c���
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We combine the upper and lower de�Poissonization estimates�

Theorem ��� As Ml�n �� and �l�n � � �independently of each other��
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More precisely� we have the following speed of convergence� for every �xed � �	�� �����
there exist positive constants c��� c��� c��� and c���� such that for all natural numbers
l � n with � � �l�n � � � c���� and Ml�n 	 c�� the following holds�
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Proof of Theorem �
�
 The theorem is an immediate consequence of the Lemmata ����
���� and Theorem ����

�

Proof of Theorem 	
	
 Given �xed numbers t � � and 
 �	�� ����� we de�ne ln� implicitly
by the equation
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p
n� ln�
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In general ln� �� N � however� this causes no serious problem�� Using
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the claim ���� follows from Theorem ����

�

A Asymptotic behavior of the Tracy�Widom distri�

bution

Even though the lower tail asymptotics of the Tracy�Widom distribution seems to be well
known� we could not �nd a reference� Therefore we brie"y describe it here�
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Proof
 Recall that u denotes the solution of the Painlev�e II equation given by ����� It
is known see for example ��	� Theorem ����� that there exist constants c��� c�
 � � such
that

u�x� � c��e
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u�x� � �x
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By De�nition ���� of the Tracy�Widom distribution�
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We write the last integral for t � �c�
 as a sum of two integrals splitting the domain of
integration into the two intervals �t��c�
	 and 	� c�
���� Using A��� we obtain
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Baik� Deift� and Johansson
s nonstandard central limit theorem together with Lemma
A�� imply ����� This asymptotics is also compatible with Theorem ����
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