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Tandem queues with impatient customers
for blood screening procedures

Shaul K. Bar-Lev∗, Hans Blanc†, Onno Boxma‡, David Perry§

Abstract

We study a blood testing procedure for detecting viruses like HIV, HBV and HCV. In this procedure,
blood samples go through two screening steps. The first test is ELISA (antibody Enzyme Linked
Immuno-Sorbent Assay). The portions of blood which are found not contaminated in this first phase
are tested in groups through PCR (Polymerase Chain Reaction). The ELISA test is less sensitive
than the PCR test and the PCR tests are considerably more expensive. We model the two test phases
of blood samples as services in two queues in series; service in the second queue is in batches, as
PCR tests are done in groups. The fact that blood can only be used for transfusions until a certain
expiration date leads, in the tandem queue, to the feature of customer impatience. Since the first
queue basically is an infinite server queue, we mainly focus on the second queue, which in its most
general form is an S-server M/G[k,K]/S + G queue, with batches of sizes which are bounded by k
and K.

Our objective is to maximize the expected profit of the system, which is composed of the amount
earned for items which pass the test (and before their patience runs out), minus costs. This is done
by an appropriate choice of the decision variables, namely, the batch sizes and the number of servers
at the second service station. As will be seen, even the simplest version of the batch queue, the
M/M [k,K]/1 + M queue, already gives rise to serious analytical complications for any batch size
larger than 1. These complications are discussed in detail. In view of the fact that we aim to solve
realistic optimization problems for blood screening procedures, these analytical complications force
us to take recourse to either a numerical approach or approximations. We present a numerical solution
for the queue length distribution in the M/M [k,K]/S+M queue and then formulate and solve several
optimization problems. The power-series algorithm, which is a numerical-analytic method, is also
discussed.

1 Introduction

Basic group testing models deal with the classification of the items of some population into

two categories ‘good’ and ‘defective’. It is assumed that the items are group testable, i.e., for

any subset of the population it is possible to carry out a simultaneous test (group test) with two
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possible outcomes: ‘success’ (or clean, or negative), indicating that all items in the subset are

good, and ‘failure’ (or contaminated, or positive), indicating that at least one of the items in the

subset is defective, without knowing which or how many are defective. A contaminated group

can be subject to further screening or be scrapped. Employing suitably designed procedures of

this kind leads to a significant reduction of the number of required tests and thus of screening

cost, under controlled probabilities of misclassifications.

A group testing procedure is therefore a cost-efficient technique. It has been applied in

various areas, first of all for blood testing to detect various viruses and for DNA screening, but

also in quality control for industrial production systems (e.g. Li [24], Bar-Lev, Boneh and Perry

[5]), drug discovery (Xie et al. [39], Zhu et al. [40]) and communication networks (Wolf [38]).

A key reference is the monograph by Du and Hwang [17]. Applications to HIV screening are

given, among others, by Gastwirth and Johnson [19], Litvak, Tu and Pagano [25], Tu, Litvak and

Pagano [34] and Wein and Zenios [37]. Uhl et al. [36] study the use of pooling in an application

to genetics. In Bar-Lev et al. [6, 7, 8, 9, 10], a more detailed discussion of the literature and a

classification of group testing models according to various dichotomies are given.

In this paper we focus on blood testing. We wish to analyze and optimize the performance of

blood screening procedures. We analyze the delays experienced in the blood screening process,

and the process of outdating, and subsequently we use the results of this analysis to minimize

the costs associated with the test procedures and with the loss of blood samples due to their

exceeding the expiration date.

We divide the remainder of this introductory section into three parts. In Subsection 1.1 we

describe blood screening procedures and related relevant features; Subsection 1.2 presents a

first global description of a tandem queueing model which can be used for the performance

analysis of such blood screening procedures; and Subsection 1.3 presents aim and overview of

the paper.
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1.1 Blood screening procedures and related features

Blood banks worldwide aim toward the supply of uncontaminated blood. Each blood donation

goes through multiple testing for the presence of various pathogens which are able to cause

transfusion-transmitted diseases. In most countries screening all blood donations for hepatitis

B (HBV), hepatitis C (HCV) and human immunodeficiency virus (HIV) is mandatory. The

cost of this screening is rising in developed countries and is a major economic burden in de-

veloping countries. Currently, blood banks in the USA and several Western European countries

have adopted pooling methods for the performance of Polymerase Chain Reaction (PCR) while

screening blood donations for HIV, HBV and HCV. This is done in addition to the individual

antibody Enzyme Linked Immuno-Sorbent Assay (ELISA) testing, in order to increase earlier

detection of these agents and decrease morbidity ( see Schottstedt et al. [29], Stramer et al. [32]

and Hourfar et al. [21]).

Until a few years ago, the routine testing was based only on ELISA tests that detect virus-

specific antibodies in the blood. Such an ELISA test has high sensitivity and specificity but has

a lower analytic detection limit which affects the identification of positive samples very soon

after HIV seroconversion, as it takes time to develop a high concentration of antibodies. The

latter drawback of ELISA is related to the effect of the window period which causes serious

problems when testing for viral diseases. The window period of a given virus is defined as the

period elapsing between the time a person is infected by the virus and the time antibodies are

developed and can be detected. The window period varies for different types of viruses, and

will influence the effectiveness of group testing. The importance of this issue depends greatly

on the extent of the epidemic in a given population and the incidence rate of new infections.

Examples of average window periods (based on ELISA) for some viruses are: 22 days for HIV,

70 days for HCV and 60 for HBV, but in individual cases window periods can be substantially

longer. Note that antibodies are not developed in a non-live organism, implying that once a

blood sample is donated, no antibodies are further produced. Consequently, the ELISA test

cannot detect a viral contaminated blood sample if the individual who donated the sample was
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infected prior to making the donation, but yet had not ”completed” the respective viral window

period, and thereby not producing a sufficiently high concentration of antibodies to be detected

by the ELISA test.

The relatively new PCR test can detect viral genetic material in the blood and has a much

higher sensitivity and specificity than the ELISA test. PCR testing is especially advantageous

in the window period soon after seroconversion when the virus starts multiplying but antibodies

are not yet at high levels. For these blood samples, the ELISA test will be negative while the

PCR test is likely to be positive. However, the PCR test is considerably more expensive than the

ELISA test. Therefore, blood banks in the USA and some countries in Europe have established

a new protocol with a two-stage procedure comprising of individual and pooled testing. By

such a procedure blood samples are first screened individually for HIV (or any other viruses)

with ELISA. Those samples that are found positive (i.e., contaminated) are discarded. All the

negative samples are then pooled in groups and tested for the same viruses with PCR techniques.

All donations in the negative pools are accepted while the positive pools are discarded and

a resolution testing is performed to identify the individual positive donation. Pool sizes are

typically 6-24.

Accordingly, we face here a service facility with two testing stages (service stations): Blood

samples arrive at the first station for an ELISA test and are individually tested, and if they are

found HIV positive they leave the system. Otherwise, they are forwarded to the second station

which involves PCR testing, where the tests are processed in groups (batches) of size K, say.

The groups then leave the system either as a contaminated group (HIV positive) or a clean group

(HIV negative). It should be noted that a similar routine is also applied to detect HBV or HCV

in blood testing.

However, at least one more substantial feature related to the above testing process should be

taken into account, namely, aging (or expiration date). This relates to the fact that each blood

donation is basically ”divided” into at least three components that are used separately, depend-

ing on the needs of the patients: a) red blood cells - which can be used for up to 42 days (red
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cells of 35-42 days old are less viscous); b) plasma and cryoprecipitate concentrations - which

can be kept frozen for about one year; and c) platelets (’thromobotzitim’) - which are usable

for at most 5 days. The time constraints due to these expiration dates must be taken into ac-

count when considering the processing times of the two-stage testing procedure. Consequently,

at each service station, one faces impatient customers.

1.2 Various queueing systems for modeling the two-stage blood screening procedure

Based on the previous subsection it can be seen that we are dealing with a queueing system

consisting of two service stations in tandem with impatient customers, where items (customers)

are served individually at the first service station and in batches at the second. Accordingly,

our basic assumptions are made as follows. Having realized that the ELISA test is relatively

cheap and that the blood samples can be tested individually in parallel, we may assume that

the first service station is an infinite-server queue. As opposed to the ELISA test, the PCR test

performed at the second station is excessively expensive, much more costly than the ELISA

test. Accordingly, we shall assume that the second service station is a finite-server queue,

with service in batches. The customers have some overall patience; we shall see later that we

can decompose the tandem queue, studying each station in isolation as a queue with customer

impatience. The queueing analysis of station 1 is easy. However, the combination of bulk

service, multiple servers and customer impatience leaves us with little hope of obtaining an

exact analytic solution of station 2; even the single server case already seems prohibitively

difficult, cf. Section 3.

Batch (or bulk) service has also been extensively studied in the queueing literature. We refer

to the book of Chaudhry and Templeton [16] for an extensive overview of this field. Relevant

literature on queueing systems in batches can be found in Neuts [27], Nair and Neuts [26],

Abolnikov and Dukhovny [1, 2], Bar-Lev et al. [10].

Impatience is also a very natural and important concept in queueing models. There is a wide

range of situations in which customers may become impatient when they do not receive service

fast enough. Next to blood screening, one may think of call centers and health care centers.
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A pioneering paper on queueing models with impatience is [11]; it studies the M/M/s + D

model for the case that impatience refers to the waiting time, and the M/M/1 + D model for

the case that the impatience refers to the sojourn time. Here the symbol D denotes deterministic

(im-)patience. Baccelli et al. [3, 4] provide necessary and sufficient conditions for the existence

of the virtual waiting time distribution in the G/G/1 + G queue. The latter distribution is

subsequently obtained for M/G/1 + M and M/G/1 + Ek. Finch [18] derives the waiting

time distribution in the G/M/1 + D queue. Stanford [30] relates the waiting time distribution

of the (successful) customers and the workload seen by an arbitrary arrival in G/G/1 + G.

He also considers the distribution of the number of customers, obtaining explicit results for

various special cases. Stanford [31] contains a brief literature review, and [22] provides a useful

approximation for the waiting time distribution in M/G/N+G and several additional references

on multiserver queues with impatience.

1.3 Aim and overview of the paper

Our aim is to study the two-stage group testing queueing system from a purely economic (cost-

decreasing) point of view. The objective is to maximize the expected profit of running the

system, which is composed of the amount earned for items which pass the tests minus costs;

these costs include penalty costs for long delays, fixed daily costs per server and costs for

testing bulks. By an appropriate choice of the decision variables, namely, the batch sizes and

the number of servers at the second service station, one wants to optimize the various trade-offs

involved.

The paper is organized as follows. In Section 2 we present the suggested tandem queue

in detail. In Section 3 we try to get a feeling for the complexity of the last of the two queues

in series, viz., the M/G/S + G queue with batch services. It will turn out that the arguably

simplest version of this bulk service queue with impatience, the M/M/1+M queue with batch

services, already gives rise to serious analytical complications for any batch size larger than

one. We discuss these complications in Section 3.

In view of the fact that we aim to solve realistic optimization problems for blood screening
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procedures, these analytical complications force us to take recourse to either a numerical ap-

proach or to approximations. We have chosen the first option. Section 4 presents a numerical

solution for the queue length distribution in the M/M/S +M queue with batch service. In Sec-

tion 5 we then formulate and solve several optimization problems. In an appendix we discuss

the power-series algorithm, which is an alternative numerical-analytic method of analyzing the

M/M/S + M queue with batch services.

2 The tandem queue

In this section we present a detailed description of the tandem queueing model for the blood

screening procedure.

Station 1

It is quite natural to assume that the arrival process to the first service station is Poisson, with

some rate Λ. The service times at the first station are assumed to be generally distributed. The

resulting M/G/∞ model has been extensively studied. Its queue length distribution is known

to be Poisson with intensity ΛET , where ET denotes the mean service time [33]. It is also

well-known [23] that the output process of the resulting M/G/∞ queue is a Poisson process.

Part of this output will leave the system because it has failed the ELISA test. As each item fails

the test with a fixed probability p, independently of other items, the departure process of items

which have passed the test is also Poisson. Part of that output has surpassed the expiration date.

As this occurs for each item independently of all other items with a fixed probability (viz., the

probability that the service time is larger than the patience time), the resulting input to station 2

still is Poisson.

Station 2

We conclude from the above that the arrival process at the second station is again Poisson, with

rate λ := Λ(1 − p)P (T < Gtot), where Gtot is a generic random variable that indicates the
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total patience of an arbitrary customer (the time until the expiration date is exceeded). The

customers/items which arrive in station 2 still have some time left until their expiration date:

this is the difference between their overall patience Gtot and the service (=sojourn) time in

station 1. We assume for the moment that the remaining patience times are independent and

identically distributed, with some general distribution G(·) with mean 1/γ. In most of our

analysis, however, patience will be assumed to be exp(γ) distributed. This patience in principle

refers to the sojourn time in station 2, in the sense that blood samples are no longer of use

after a certain amount of time. However, an outdated blood sample won’t be removed during

an ongoing service. Hence, in our analysis, we shall let patience relate to the waiting time in

the queue. The probability that a customer who has been taken into service remains ”patient”

during that service equals the probability that the service time is shorter than the remaining

patience time – which in the case of exponential patience is still exp(γ). One may take that into

consideration in an optimization study.

The number of servers at station 2 is S. Service in station 2 is in batches. If a server is free

and there are less than k customers waiting, the free server does not yet start a service. If there

are at least K ≥ k customers waiting, then it takes a batch of size K into service. If the number

of customers waiting is m with k ≤ m < K, then the free server takes a batch of size m into

service. We denote the resulting queueing model by M/G[k,K]/S +G. The parameters S, k and

K are decision variables. There are obvious trade-offs here: e.g., there are costs involved with

having a higher number of servers S, but this leads to a speed-up so that fewer customers will

become impatient.

3 Queue lengths in the case of exponential patience

To get a feeling for the complexity of the M/G[k,K]/S + G model, we consider in this section

the possibly simplest version: the M/M [k,K]/1 + M model. The patience refers to waiting

time in the queue. It will turn out that the determination of the queue length distribution of

this model already gives rise to complicated analytical problems. We assume that service times
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of successive batches are independent, exponentially distributed random variables with mean

1/µ, regardless of the size of the batch. We also assume that patience times are independent,

exponentially distributed random variables with mean 1/γ, independent of the service times

and interarrival times. Let

p(n, 0) := P (n waiting, server idle), n = 0, 1, . . . , k − 1,

p(n, 1) := P (n waiting, server busy), n = 0, 1, . . . .

The global balance equations are:

p(0, 0)λ = p(1, 0)γ + p(0, 1)µ, (3.1)

p(n, 0)(λ + nγ) = p(n− 1, 0)λ + p(n + 1, 0)(n + 1)γ + p(n, 1)µ, n = 1, . . . , k − 2,

p(k − 1, 0)(λ + (k − 1)γ) = p(k − 2, 0)λ + p(k − 1, 1)µ,

p(0, 1)(λ + µ) = p(1, 1)γ +
K∑

j=k

p(j, 1)µ + p(k − 1, 0)λ, (3.2)

p(n, 1)(λ + µ + nγ) = p(n− 1, 1)λ + p(n + 1, 1)(n + 1)γ + p(n + K, 1)µ, n = 1, 2, . . . .

Remark 1.

Next to these global balance equations, one immediately sees that the following balance equa-

tion between the ‘0’ states and the ‘1’ states should hold:

p(k − 1, 0)λ =
k−1∑
j=0

p(j, 1)µ. (3.3)

Equation (3.3) follows from the above global balance equations by taking an appropriate sum-

mation.

Now let us introduce the generating function

P (z) :=
∞∑

n=0

p(n, 1)zn, |z| ≤ 1. (3.4)
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It readily follows from (3.2) that

P (z)(λ + µ) + γz
d

dz
P (z) = λzP (z) + γ

d

dz
P (z)

+ µ

K∑

j=k

p(j, 1) + λp(k − 1, 0) + µz−K

∞∑
n=1

zn+Kp(n + K, 1), (3.5)

so, using (3.3),

d

dz
P (z) = (

λ

γ
+

µ

γ

1− z−K

1− z
)P (z) +

µ

γ

K−1∑
j=0

p(j, 1)
zj−K − 1

1− z
. (3.6)

The solution of the homogeneous differential equation reads:

P (z) = De
λ
γ

zz−
µ
γ e

µ
γ
[
PK−1

j=1
1

jzj ]
, |z| ≤ 1,

with D a constant. Variation of constants subsequently gives the complete solution of (3.6):

P (z) = DeA1(z) +

∫ z

0

A2(u)eA1(z)−A1(u)du, (3.7)

where

A1(z) :=
λ

γ
z − µ

γ
ln(z) +

µ

γ

K−1∑
j=1

1

jzj
, (3.8)

and

A2(z) :=
µ

γ

K−1∑
j=0

p(j, 1)
zj−K − 1

1− z
. (3.9)

Letting z → 0 in (3.7) and taking into account the behaviour of A1(z) for z → 0, shows that

we must take D = 0 in order for P (0) to be finite. We still have several unknown constants.

The three equations (3.1) allow us to express the unknown p(n, 0), n = 0, 1, . . . , k − 1 into the

k unknowns p(j, 1), j = 0, 1, . . . , k − 1.

We now consider a few special cases. The main purpose is to reveal the mathematical difficulties

which occur in determining the K + 1 unknown constants.

Case 1: k = K = 1; i.e., no batches.
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Now (3.7) simplifies to:

P (z) =
µ

γ
p(0, 1)

∫ z

0

1

u
(
u

z
)µ/γe

λ
γ
(z−u)du

=
µ

γ
p(0, 1)

∫ 1

0

v
µ
γ
−1e

λ
γ

z(1−v)dv

=
µ

γ
p(0, 1)

∞∑
n=0

zn

(λ
γ
)n

n!

∫ 1

0

v
µ
γ
−1(1− v)ndv

= p(0, 1)
∞∑

n=0

zn(
λ

γ
)n

Γ(µ
γ

+ 1)

Γ(µ
γ

+ 1 + n)
. (3.10)

Here we have used that
∫ 1

0
vx−1(1− v)y−1dv =: B(x, y) = Γ(x)Γ(y)

Γ(x+y)
.

This shows that

p(n, 1) = p(0, 1)(
λ

γ
)n

Γ(µ
γ

+ 1)

Γ(µ
γ

+ 1 + n)
.

Indeed, for K = 1 we have detailed balance equations λp(n− 1, 1) = (µ + nγ)p(n, 1), leading

to the above relation between p(n, 1) and p(0, 1).

The unknown constants p(0, 1) and p(0, 0) are obtained by using (3.3) – which reduces to

p(0, 0)λ = p(0, 1)µ – and the normalization condition p(0, 0) + P (1) = 1.

Case 2: k = 1, K = 2.

We discuss this case to point out a mathematical difficulty in studying P (z) for K ≥ 2. Equation

(3.7) reduces to:

P (z) = p(0, 1)

∫ 1

0

v
µ
γ
−1(1 +

1

zv
)e

λ
γ

z(1−v)+µ
γ

1
z
(1− 1

v
)dv

+ p(1, 1)

∫ 1

0

v
µ
γ
−1e

λ
γ

z(1−v)+µ
γ

1
z
(1− 1

v
)dv. (3.11)

Notice that, because of the 1/z in the exponent, it becomes harder to pick out the zn coefficient;

also notice that we need one more equation to determine the three unknowns p(0, 0), p(0, 1) and

p(1, 1), next to (3.3) and the normalization condition. To handle the 1/z in the exponent, one

might use the substitution y = −λ
γ
z(1− v) −µ

γ
1
z
(1− 1

v
), leading to

v =
γ

2λz
[y +

λ

γ
z +

µ

γ

1

z
− ((y +

λ

γ
z +

µ

γ

1

z
)2 − 4

λ

γ

µ

γ
)1/2].
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Expression (3.11) now transforms into

P (z) = p(0, 1)

∫ ∞

0

e−yH1(y, z)dy + p(1, 1)

∫ ∞

0

e−yH2(y, z)dy, (3.12)

where H1(y, z) and H2(y, z) involve powers of the above square root term. The missing third

equation might be obtained by using the analyticity of P (z) inside the unit circle, via a careful

study of the singularities of H1(y, z) and H2(y, z); we leave this problem to a further study.

4 The second station: Balance equations

Due to the analytical difficulties pointed out in the previous section, we discuss a numerical

solution to the more general M/M [k,K]/S + M model in this section. As before, patience

relates to the waiting time in the queue. First, we generalize the global balance equations (3.1)

and (3.2) to the multiserver case with the batch sizes restricted to multiples of a kit size b. We

assume that k and K are multiples of b, k = mb, K = Mb. Note that all batch sizes between

k and K are allowed if b = 1 so that the model of the previous section is included. Then, we

solve these equations by truncation and iterations, and express various performance measures

of interest in terms of the state probabilities. The resulting algorithm forms the basis for the

optimization study in the next section. In Appendix B an alternative approach using power-

series expansions is described which did not work out well for the present model.

Define p(n, s) as the probability that n customers are waiting in the queue, n = 0, 1, 2, . . . ,

while s servers are occupied with a bulk of customers of an unspecified size, s = 0, 1, . . . , S.

For states with s = 0 (all servers idle) the global balance equations read (cf. (3.1)): for n =

0, 1, . . . , k − 1,

(λ + nγ)p(n, 0) = λI{n>0}p(n− 1, 0) + (n + 1)γI{n<k−1}p(n + 1, 0) + µp(n, 1); (4.1)

here I{·} denotes an indicator function. For states with s = 1, . . . , S − 1, the global balance

equations read (cf. (3.2)): for n = 0, 1, . . . , k − 1,

(λ + nγ + sµ)p(n, s) = λI{n>0}p(n− 1, s) + λI{n=0}p(k − 1, s− 1)

+ (n + 1)γI{n<k−1}p(n + 1, s) + (s + 1)µp(n, s + 1); (4.2)
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while for s = S (all servers occupied) the global balance equations read: for n = 0,

(λ + Sµ)p(0, S) = λp(k − 1, S − 1) + γp(1, S) + Sµ

M∑

h=m

p(hb, S); (4.3)

for n = 1, 2, . . . , b− 1,

(λ + nγ + Sµ)p(n, S) = λp(n− 1, S) + (n + 1)γp(n + 1, S) + Sµ

M∑

h=m

p(n + hb, S); (4.4)

and for n = b, b + 1, . . . ,

(λ + nγ + Sµ)p(n, S) = λp(n− 1, S) + (n + 1)γp(n + 1, S) + Sµp(n + K,S). (4.5)

Summing the global balance equations for fixed s, s = 0, 1, . . . , S−1, over n, n = 0, 1, . . . , k−
1, yields with induction the following balance equations for transitions between the levels s and

s + 1, cf. (3.3):

λp(k − 1, s) = (s + 1)µ
k−1∑
j=0

p(j, s + 1), s = 0, 1, . . . , S − 1. (4.6)

The average size of a service batch B can be computed as the quotient of the total rate at which

batches of various size start over the rate at which services start. Batch services start when the

queue length process is in states (k − 1, s), s = 0, 1, . . . , S − 1, with rate λ at which arrivals

occur and then have the minimum size k, in states (n, S) with n = hb + j, h = m, . . . ,M − 1,

j = 0, . . . , b − 1, with rate Sµ at which a server becomes available and then have size hb, and

in states (j, S), j = K,K + 1, . . . , with rate Sµ at which a server becomes available and then

have the maximum size K. Hence,

E{B} =
λk

∑S−1
s=0 p(k − 1, s) + Sµ

∑M−1
h=m hb

∑b−1
j=0 p(hb + j, S) + SµK

∑∞
j=K p(j, S)

λ
∑S−1

s=0 p(k − 1, s) + Sµ
∑∞

j=k p(j, S)
.

(4.7)

Using the balance equation (4.6) between levels s and s + 1, s = 0, 1, . . . , S − 1, the first terms

in the numerator and the denominator of (4.7) can be replaced, and the factor µ can be canceled:

E{B} =
k

∑S
s=1 s

∑k−1
j=0 p(j, s) + S

∑M−1
h=m hb

∑b−1
j=0 p(hb + j, S) + SK

∑∞
j=K p(j, S)

∑S
s=1 s

∑k−1
j=0 p(j, s) + S

∑∞
j=k p(j, S)

.

(4.8)
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The denominator represents the average number of busy (occupied) servers, to be denoted by

E{O}:

E{O} =
S∑

s=1

s

k−1∑
j=0

p(j, s) + S

∞∑

j=k

p(j, S).

The rate at which customers renege is

γ
S∑

s=0

∞∑
n=1

np(n, s) = γE{Q};

here, E{Q} denotes the average number of customers waiting in the queue for service. Hence,

the fraction of customers that is lost due to reneging is

Ploss =
γ

λ
E{Q}. (4.9)

The rate at which served customers leave the system is λout = λ[1 − Ploss]. Since Ploss ≤ 1,

(4.9) implies that for all parameter values,

E{Q} ≤ λ

γ
. (4.10)

By Little’s law, the mean time in queue of the customers is E{W} = E{Q}/λ, but this includes

both customers who renege and those who are ultimately served. For the mean number of

customers in the system, E{N}, Little’s law implies E{N} = λE{R}, with E{R} the mean

time in system. The difference of these relations yields

E{N} − E{Q} = λE{R−W} =
λ

µ
[1− Ploss],

since R−W represents the time in service, and this has a mean of 1/µ if a customer gets served

and of 0 for a reneging customer. Hence, with (4.9),

E{N} =
λ

µ
+

(
1− γ

µ

)
E{Q}. (4.11)

Note that if γ = µ we have for all S, k and K,

E{N} =
λ

µ
.

From (4.11) and (4.9) it follows that the mean sojourn time can be written as

E{R} =
1

µ
+

(
1

γ
− 1

µ

)
Ploss. (4.12)
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Table 1: A case study with bulk sizes between k and K; λ = 12, µ = 2, γ = 0.2, pb = 0.001.

S k K E{Q} E{N} Ploss E{R} ES{R} E{B} E{O} λout λgood

1 6 6 9.75 14.78 0.1626 1.232 1.325 6.00 0.84 10.05 9.99
1 6 12 5.37 10.83 0.0894 0.902 0.946 7.56 0.72 10.93 10.84
1 6 18 4.90 10.41 0.0817 0.868 0.907 7.81 0.71 11.02 10.92
1 6 24 4.80 10.32 0.0800 0.860 0.899 7.87 0.70 11.04 10.93
1 12 12 6.59 11.93 0.1098 0.994 1.060 12.00 0.45 10.68 10.55
1 12 18 6.31 11.68 0.1052 0.974 1.036 12.46 0.43 10.74 10.60
1 12 24 6.25 11.63 0.1042 0.969 1.031 12.56 0.43 10.75 10.61
2 6 6 2.93 8.63 0.0488 0.720 0.744 6.00 0.95 11.43 11.36
2 6 12 2.75 8.48 0.0459 0.707 0.730 6.20 0.92 11.45 11.38
2 6 18 2.74 8.47 0.0457 0.706 0.729 6.21 0.92 11.45 11.38
2 12 12 5.62 11.06 0.0937 0.922 0.977 12.00 0.45 10.88 10.75
3 6 6 2.53 8.28 0.0421 0.690 0.711 6.00 0.96 11.49 11.42
3 6 12 2.52 8.27 0.0420 0.689 0.711 6.01 0.96 11.50 11.43
3 12 12 5.61 11.05 0.0935 0.921 0.976 12.00 0.45 10.88 10.75
4 6 6 2.51 8.26 0.0418 0.688 0.709 6.00 0.96 11.50 11.43

The computation of other characteristics of the sojourn time distribution than its mean is more

involved. This is illustrated in Appendix A, where also the computation of the conditional mean

sojourn time ES{R}, given that the customer is eventually served, is explained.

It is assumed that each item (customer) is of bad quality with probability pb. The result of

testing a bulk of items is either good — if all items in the bulk are good — or bad otherwise.

Hence, a bulk of hb items passes the test with probability (1− pb)
hb, h = m, . . . , M . The rate

at which items, which have passed the test, leave the system will be denoted by λgood. This rate

is found in a similar way as (4.7):

λgood = λk(1−pb)
k

S−1∑
s=0

p(k−1, s)+Sµ

M−1∑

h=m

hb(1−pb)
hb

b−1∑
j=0

p(hb+j, S)+SµK(1−pb)
K

∞∑
j=K

p(j, S).

(4.13)

Table 1 contains a few cases evaluated by truncating the number of waiting customers at 100.

Here, the arrival rate of λ = 12, the service rate of µ = 2 and the reneging rate γ = 0.2 are

fixed, and the number of servers S, the minimum bulk size k and the maximum bulk size K

are varied. We take b = 1 but restrict ourselves to k, K values which are multiples of 6 as kits

of size 6 are often used in practice. The finite set of balance equations is solved by iteration,
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Table 2: A case study with bulk sizes multiples of 6; λ = 12, µ = 2, γ = 0.2, pb = 0.001.

S k K E{Q} E{N} Ploss E{R} ES{R} E{B} E{O} λout λgood

1 6 12 6.00 11.40 0.1000 0.950 1.002 7.14 0.76 10.80 10.71
1 6 18 5.61 11.05 0.0936 0.921 0.970 7.30 0.75 10.88 10.78
1 6 24 5.53 10.98 0.0922 0.915 0.963 7.33 0.74 10.89 10.80
1 12 18 6.42 11.78 0.1070 0.981 1.046 12.28 0.44 10.72 10.58
1 12 24 6.38 11.74 0.1063 0.979 1.042 12.34 0.43 10.72 10.59
2 6 12 2.83 8.55 0.0472 0.712 0.737 6.09 0.94 11.43 11.36
2 6 18 2.82 8.54 0.0471 0.712 0.736 6.10 0.94 11.44 11.36
3 6 12 2.53 8.27 0.0421 0.689 0.711 6.00 0.96 11.49 11.43

until the sum of the absolute differences between the jth and the (j−1)st iterant is smaller than

ε = 10−10. The truncation error is smaller than this ε with the foregoing truncation level. To

compute a value for λgood, the probability of a bad item is taken as pb = 0.001. Note that in the

case S = 1, k = K = 6, the system would be unstable if customers did not renege. To increase

λout and λgood starting from this boundary case, adding a second server has a stronger influence

on the performance of the system than changing the minimum and maximum bulk sizes, but

adding a third server only leads to a minor increase. Further, it seems best in this example to set

the minimum batch size at k = 6. For S ≥ 2 and k = 6, increasing the maximum batch size K

only leads to minor improvements of λgood.

Table 2 considers the same cases as Table 1 but with the restriction that the bulk sizes can

only be multiples of the kit size b = 6. Of course, if k = K there is no difference between

the systems. It turns out that this more restricted system performs worse (more congestion and

more reneging) with comparable parameter settings, as could be expected.

Remark 2

The approach of the present section can be extended to the case of phase-type service times, at

the expense of added complexity and a state-space explosion.
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Table 3: Optimal values for S, k and K for the case µ = 4, γ = 0.3, pb = 0.001, G = 100, Cp = 32,
Cs = 50, Cb = 5, Ci = 1, b = 1, for various values of λ.

λ S k K C(S, k,K) Gλgood CpλgoodE{R} CB CsS

30 2 6 24 2418.42 2888.05 318.12 51.52 100.00
60 4 6 24 5019.47 5877.33 551.39 106.47 200.00

300 9 12 24 26056.45 29454.45 2527.97 420.03 450.00
600 15 12 24 52542.58 59041.96 4911.79 837.59 750.00

3000 48 18 24 264231.45 294276.73 23825.40 3819.88 2400.00
6000 92 18 24 529226.15 588863.71 47391.45 7646.12 4600.00

5 Performance optimization

The M/M/S system with bulk services and deadlines will be optimized with respect to the num-

ber of servers S, the minimum bulk size k and the maximum bulk size K. The latter are

restricted to the values 6 ≤ k ≤ K ≤ 24, while k and K are six folds but b = 1. This means

that for each value of S, 10 combinations of k and K will be considered. The objective is to

maximize profit per day. It is assumed that an amount G is earned for each item in a bulk that

passes the test. To compensate for long responses and, consequently, rather useless items, a

penalty cost of Cp is included per expected number of days in the system per item. By taking

Cp ≈ G/3.5 nothing will be earned if E{R} ≥ 3.5 days (leaving 0.5 day for the first phase

of testing). Further costs are a fixed daily cost Cs per server, and a cost Cb + Cib for testing

a bulk of size b, k ≤ b ≤ K. Note that the average cost of a bulk is Cb + CiE{B}, while

λout/E{B} bulks are tested per day, on the average. Hence, CB
.
= (Cb + CiE{B})λout/E{B}

is the average daily cost of testing the bulks. Summarizing, we have the following daily profit:

C(S, k,K) = Gλgood − CpλgoodE{R} − CsS − (Cb + CiE{B})λout/E{B}. (5.1)

Table 3 shows the optimal values of S, k and K, and the corresponding maximum profit, for

the case µ = 4, γ = 0.3, pb = 0.001, G = 100, Cp = 32, Cs = 50, Cb = 5, Ci = 1, for various

values of the arrival rate λ. For higher values of λ a higher truncation level is required to keep

the truncation error below, say, 10−8, up to 1000 for λ = 6000. This last case took more than

8 minutes cpu time to evaluate about 300 parameter settings for models with up to 3200 states.
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Table 4: Sensitivity analysis on base case with λ = 600, µ = 4, γ = 0.3, pb = 0.001.

λ S k K C(S, k, K) Gλgood CpλgoodE{R} CB CsS

base case 15 12 24 52542.58 59041.96 4911.79 837.59 750.00
pb = 0.01 31 6 6 49128.35 56387.32 4610.94 1098.02 1550.00
Cs = 200 10 18 24 50721.59 58512.15 5035.21 755.35 2000.00
Cb = 25 12 18 24 51676.88 58651.08 4954.10 1420.10 600.00
Ci = 10 15 12 24 47160.05 59041.96 4911.79 6220.12 750.00
Cp = 16 15 12 24 54998.47 59041.96 2455.89 837.59 750.00
G = 50 14 12 24 23032.52 29493.10 4929.53 831.05 700.00
G = 25 11 18 24 8364.01 14651.82 4978.18 759.63 550.00

µ = 2 26 12 24 47200.39 58967.75 9637.83 829.53 1300.00
γ = 0.1 15 12 24 52646.01 59168.44 4933.22 839.21 750.00

multiple 6 15 12 24 52535.16 59040.16 4916.65 838.34 750.00
deadline 3 14 12 24 52698.08 59198.13 4966.40 833.65 700.00

We restrict the search to combinations with SK ≥ λ/µ because models which would not be

stable without reneging are expected to be far from optimal. Further, the maximum profit over

all k and K for fixed S seems to be a concave function of S. We stopped the search when S is

four more than the current best S to be safe. It seems that taking K as large as possible is best

in all cases. Further, the best values for k and, of course, S are increasing with the arrival rate

λ.

Table 4 contains a sensitivity analysis of the optimum for the case λ = 600 with respect

to each of the other parameters of the system. If the fraction of bad items pb increases, the

optimal number of servers strongly increases while the maximum bulk size decreases to reduce

the waste of good items. If the cost per server Cs increases, the optimal number of servers

decreases while the minimum bulk size increases to let the servers handle larger bulks. Note

that nevertheless the bulk cost per day CB decreases due to a larger fraction of reneging cus-

tomers. If the fixed cost per bulk Cb increases, the optimal minimum bulk size increases while

the number of servers decreases. If the item-dependent cost Ci increases, the optimal strategy

does not change, only the maximum profit becomes lower. If the penalty cost for congestion

Cp decreases, the optimal strategy does not change, only the maximum profit becomes higher.

If the gain per item G decreases to 50, the optimal number of servers slightly decreases. If it
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further decreases to 25, the optimal number of servers more strongly decreases because the gain

no longer dominates the costs as strongly as in other cases. If the mean service time 1/µ in-

creases, the optimal number of servers strongly increases. If the average deadline 1/γ increases

from 31
3

day to 10 days, the optimal strategy does not change while the maximum profit slightly

increases since less customers renege. If the bulk sizes are restricted to multiples of the kit size

6, the optimal number of servers is the same and the maximum profit is slightly less. Finally, if

the (exponential) reneging rate is set equal to 0, but a finite buffer is chosen of 3KSµ — so that

the time in queue of an item that arrives when the queue is almost full is 3 days with a small

variance, mimicking a constant deadline —, the optimal number of servers slightly decreases

(but the profit with 15 servers is very close: 52697.97). In comparison to the base case, the dif-

ference in performance stems from changing γ; the loss probability is negligible in both cases.

Remark 3

The factor E{R} in the objective function (5.1) includes items that have reneged. The mean so-

journ time ES{R} of items that are actually tested could be computed as indicated in Appendix

A. However, the computation of ES{R} takes much more time than the numerical solution of

the global balance equations, and this burden increases with λ. It might be expected that the

optimum will not differ since it is quite insensitive to the penalty cost Cp. Indeed, replacing

E{R} by ES{R} in (5.1) leads for λ = 30 up to λ = 600 to the same optimal values of S, k

and K with a slightly smaller maximum profit than in Table 3.

Remark 4

It should be noticed that station 1 plays no direct role in the optimization problem, due to its

behaviour as a delay system (infinite server system). Its role is confined to a reduction of the

arrival rate from Λ to λ (at station 2), and an adaptation of the patience at station 2 (by subtract-

ing the time spent in station 1).
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Remark 5

We have tried to apply successive overrelaxation (cf. Tijms [35], Appendix D) to speed up the

computation of the steady-state distribution. A factor 1.2 gave divergence in all experiments, a

factor 1.1 gave a speed-up in some cases but divergence in other cases. So for reliability’s sake

we have used plain Gauss-Seidel iteration to generate the tables.

Remark 6

In this paper we have mainly concentrated on the case of exponential patience. If patience at

the second station were deterministic (which is a reasonable assumption in the case of blood

testing), then we’d like to suggest the following approximation, which is based on an idea that

was developed in [15] to approximate loss probabilities in multiserver queues with impatience.

Let us assume that patience is deterministic D, and that D is considerably larger than the mean

service time 1/µ; otherwise a large percentage of the customers would even become impatient in

light traffic. Our first observation is that we may assume that customers who eventually become

impatient, are rejected immediately. Consider a tagged customer C who finds j customers

waiting upon arrival. C’s waiting time is the sum of b j
K
c + 1 exp(µ) service times, which is

Erlang(b j
K
c + 1, µ) distributed. Our second observation is that such an Erlang distribution can

be quite accurately approximated by a deterministic (degenerate) distribution if b j
K
c + 1 is not

too small. This implies that there will be a sharp distinction between (b j
K
c + 1) 1

µ
< D and

(b j
K
c + 1) 1

µ
≥ D. In the former case, C is likely to remain patient, and in the latter case he is

likely to become impatient (i.e., be rejected immediately). Hence we propose to approximate

the queue length distribution in the M/M [k,K]/1 + D system by that in the M/M [k,K]/1/R

system with finite waiting room R, where R = KdµD− 1e. The latter system has been studied

in [10], which paper allows the service time distribution to be general and depending on the

batch size. As a final remark, we’d like to refer to [22] for approximations for performance

measures of the M/G/N + G queue. It may be worthwhile to adapt their approach to the case

of batch service.
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A Sojourn times for served customers

The distribution of the waiting time W (time in queue) can be obtained both for customers

who are eventually served and for those who renege by conditioning on the state in which they

find the system upon arrival (using PASTA). The conditional waiting time given the state upon

arrival is equivalent to the time until absorption into either the service state S or the reneging

state R of a possibly infinite-state Markov process, cf. e.g. Neuts [28, Section 3.9]. Let Q+
A be

the number of customers in the queue and let S+
A be the number of busy servers just after the

arrival of a tagged customer. Then, the joint probability that this tagged customer has a waiting

time less than t and is served can be written as

P{W ≤ t,S} =
S−1∑
s=0

p(k − 1, s) +
S−1∑
s=0

k−2∑
n=0

p(n, s)q̃Sn+1(t) +
∞∑

n=0

p(n, S)qSn+1(t); (A.1)

with

q̃Si (t) = P{W ≤ t,S|Q+
A = i, S+

A < S}, qSi (t) = P{W ≤ t,S|Q+
A = i, S+

A = S}. (A.2)

Similarly, the joint probability that this tagged customer has a waiting time less than t and

reneges can be written as

P{W ≤ t,R} =
S−1∑
s=0

k−2∑
n=0

p(n, s)q̃Rn+1(t) +
∞∑

n=0

p(n, S)qRn+1(t); (A.3)

with

q̃Ri (t) = P{W ≤ t,R|Q+
A = i, S+

A < S}, qRi (t) = P{W ≤ t,R|Q+
A = i, S+

A = S}. (A.4)

Case 1: S+
A < S

The situation when a customer finds at least one server idle is relatively simple. In this case the

number of busy servers is irrelevant, because the new arrival will either renege or become part

of the first formed batch (of size k). The Markov process to be considered for the conditional

waiting time has transient states {1, 2, . . . , k−1}, representing the number of customers present

in the queue, and absorbing states S, entered with rate λ from state k − 1, and R, entered with

rate γ from all transient states {1, 2, . . . , k − 1}. Let Q̂(t) be the number of customers in
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the queue and let Ŝ(t) be the number of busy servers at time t after the arrival of the tagged

customer. The auxiliary functions for the transient states,

q̃i(t, n) = P{Q̂(t) = n, Ŝ(t) < S|Q̂(0) = i, Ŝ(0) < S}, i, n = 1, . . . , k − 1, (A.5)

satisfy the forward differential equations: for i, n = 1, . . . , k − 1,

d

dt
q̃i(t, n) = λI{n>1}q̃i(t, n− 1) + nγI{n<k−1}q̃i(t, n + 1)− (λ + nγ)q̃i(t, n). (A.6)

The conditional waiting time probabilities are then determined by: for i = 1, . . . , k − 1,

d

dt
q̃Si (t) = λq̃i(t, k − 1);

d

dt
q̃Ri (t) = γ

k−1∑
n=1

q̃i(t, n). (A.7)

The conditional mean waiting times can be computed as follows. First, write the forward dif-

ferential equations (A.6) for the transient states in the matrix-vector form

d

dt
q̃i(t) = Aq̃i(t). (A.8)

Then, solve ωi from A2ωi = ei, with ei the ith unit vector of length k − 1. Finally,

E{W,S|Q+
A = i, S+

A < S} = λωi(k − 1), E{W,R|Q+
A = i, S+

A < S} = γ

k−1∑
n=1

ωi(n). (A.9)

Case 2: S+
A = S

The situation when an arriving customer finds all servers busy is more complicated. In this case

we have to keep track of the total number of customers in the queue to determine whether or

not a batch can be formed, and of the rank in the queue of the tagged customer to determine

whether this customer becomes part of a batch or not. So the Markov process has transient states

{(r, n), 1 ≤ r ≤ n} with all servers busy plus {1, 2, . . . , k − 1} with at least one server idle

(here, the number of idle servers and the rank of the tagged customer become irrelevant again),

and absorbing states S and R. The service state S is entered with rate λ from state k − 1 with

an idle server and with rate Sµ from states (r, n) with all servers busy, if r ≤ K and n ≥ K, or

if n = hb+ j, h = m, . . . ,M − 1, j = 0, . . . , b− 1 and r ≤ hb. The reneging stateR is entered

with rate γ from all transient states. Let R̂(t) be the rank in the queue of the tagged customer
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at time t after the arrival of this customer. The auxiliary functions for the transient states, for

i = 1, 2, . . . , r = 1, . . . , i, n = r, r + 1, . . . ,

qi(t, r, n) = P{R̂(t) = r, Q̂(t) = n, Ŝ(t) = S|R̂(0) = Q̂(0) = i, Ŝ(0) = S}, (A.10)

and for i = 1, 2, . . . , n = 1, . . . , k − 1,

qi(t, n) = P{R̂(t) ≤ Q̂(t) = n, Ŝ(t) < S|R̂(0) = Q̂(0) = i, Ŝ(0) = S}, (A.11)

satisfy the forward differential equations: for i = 1, 2, . . . , r = 1, . . . , i, n = r, r + 1, . . . ,

d

dt
qi(t, r, n) = λI{n>r}qi(t, r, n− 1) + SµI{n<b}

M−1∑

h=m

qi(t, r + hb, n + hb)

+ SµI{r+K≤i}qi(t, r + K,n + K) + rγI{r<i}qi(t, r + 1, n + 1)

+ (n + 1− r)γqi(t, r, n + 1)− (λ + nγ + Sµ)qi(t, r, n); (A.12)

and for i = 1, 2, . . . , n = 1, . . . , k − 1,

d

dt
qi(t, n) = λI{n>1}qi(t, n−1)+nγI{n<k−1}qi(t, n+1)+Sµ

n∑
r=1

qi(t, r, n)−(λ+nγ)qi(t, n).

(A.13)

The conditional waiting time probabilities (A.4) are then determined by: for i = 1, 2, . . . ,

d

dt
q̃Si (t) = λqi(t, k − 1) + Sµ

M−1∑

h=m

b−1∑
j=0

hb∑
r=1

qi(t, r, hb + j) + Sµ

∞∑
n=K

K∑
r=1

qi(t, r, n); (A.14)

d

dt
q̃Ri (t) = γ

k−1∑
n=1

qi(t, n) + γ

m∑
r=1

∞∑
n=r

qi(t, r, n). (A.15)

The conditional mean waiting times can be computed in a similar way as (A.8) and (A.9),

but to write the forward differential equations (A.12) and (A.13) for the transient states in a

matrix-vector form the states have to be put on a row: first the states {1, 2, . . . , k − 1} with at

least one server idle, and then the states (1, 1), (1, 2), . . . , (1, T1), (2, 2), (2, 3), . . . , (2, T2), . . . ,

(i, i), (i, i + 1), . . . , (i, Ti) with all servers busy; here, Tr are suitable truncation levels, r =

1, . . . , i. Further details are left to the reader.

Once the conditional mean waiting times like (A.9) have been computed, the conditional

mean waiting times ES{W}, given that a customer is eventually served, and ER{W}, given
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that a customer reneges, can be computed with the aid of (A.1) and (A.3). The conditional

mean sojourn times then follow from ES{R} = ES{W} + 1/µ and ER{R} = ER{W}. As a

check, it should hold that (1− Ploss)ES{R}+ PlossER{R} = E{R}, cf. (4.12).

B Power-series expansions

An option for numerical analysis of the M/M/S queue with batch services and deadlines that we

have considered is the power-series algorithm (PSA) as summarized in Blanc [13]. The PSA

has proven to be a very useful analytic-numerical method for the analysis of multi-dimensional

Markov chains. In principle, it can be applied to any Markov chain that satisfies some mild reg-

ularity conditions; see also Hooghiemstra and Koole [20]. Its main limitations are the storage

requirements for the coefficients of the power-series expansions of the joint queue-length prob-

abilities (but this is not an issue in this one-dimensional model) and the fact that some technical

parameters have to be tuned by trial and error for proper convergence of the power series and

for avoiding numerical inaccuracy.

Because arrivals occur one by one, the stationary state probabilities for the current model

allow the following power-series expansions with θ = λ:

p(n, s) = θn+sk

∞∑

`=0

θ` b(`; n, s), n = 0, 1, . . . , k − 1, s = 0, 1, . . . , S − 1; (B.1)

and

p(n, S) = θn+Sk

∞∑

`=0

θ` b(`; n, S), n = 0, 1, . . . . (B.2)

Substitution of these power-series expansions into the global balance equations leads after some

rearrangements to a set of recursions for the coefficients b(`; n, s). The coefficients b(`; 0, 0)

which are not included in the above scheme because the factor in front of this coefficient van-

ishes, are determined by the requirement that the probabilities sum to one. The efficiency of

the algorithm is further enhanced in [13]. A peculiarity of the current system with reneging

customers is that it is stable for all λ > 0. If a system is stable for all positive values of the

arrival rate, then the bilinear mapping discussed in [12] for obtaining convergence of the series
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Table 5: Some test results with the PSA.

λ µ S k K γ E{Q} p(0, 0) Ploss E{B} E{O} G H L

0.95 1.0 1 1 1 1.0 0.3367 0.3867 0.3545 1.00 0.61 0.00 1.0 20
0.95 1.0 1 1 1 0.1 1.6376 0.2138 0.1724 1.00 0.79 0.28 1.0 25
0.95 0.5 1 2 2 0.5 0.7856 0.2319 0.4135 2.00 0.56 1.00 0.54 25
0.95 0.5 1 2 2 0.1 2.0689 0.0990 0.2178 2.00 0.74 1.00 0.1 40
0.95 0.5 1 1 2 0.5 0.8475 0.1783 0.4460 1.28 0.82 0.00 1.0 25
0.95 0.5 2 1 1 0.5 0.4833 0.1496 0.2544 1.00 1.42 0.00 1.0 20
0.95 1/8 2 2 4 0.1 2.9192 0.0086 0.3073 2.88 1.83 1.00 0.1 60
0.95 1/12 2 6 6 1/12 3.5336 0.0050 0.3100 6.00 1.31 1.00 0.07 120

(B.1) and (B.2) is not suitable. In such cases a bilinear mapping of the following form may be

useful:

θ =
λ

H + Gλ
, λ =

Hθ

1−Gθ
. (B.3)

This maps λ = ∞ to θ = 1/G. Table 5 displays some results obtained with the PSA; here, G

and H are the parameters of the mapping (B.3) and L is the level (power of θ) at which the sum-

mations in (B.1) and (B.2) have been truncated. As is illustrated in this table, suitable values for

these parameters, which have to be found by trial and error, vary strongly with the parameters

of the model. And in contrast to other applications of the PSA, minor deviations of the stated

values of G and H make the PSA unstable in the sense that adding more and more terms does

not improve the convergence of the series due to loss of accuracy, even in conjunction with the

epsilon algorithm, cf. [13]. The reason for the problem may lie in an interplay of the effects of

reneging customers and batch services. On the one hand, entire functions like e−λ (in the case

γ = µ = 1, k = K = S = 1) may appear in the queue-length distribution of systems with

reneging customers. Rational functions produced by the PSA with the epsilon algorithm will all

fail to be good approximations for large enough values of λ. In this case, the version of the PSA

with postponed normalization (PSA/N) as introduced in [20] suffers the same problem since

it has to approximate the function e+λ. On the other hand, the queue-length distributions of

M/M/1 systems with batch services are known to possess branch points as function of λ, which

may lie close to the origin λ = 0. Branch points can be approximated by rational functions,

but their presence close to the origin influences good choices for G and H . Unfortunately, this
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makes the PSA in its present forms unsuitable for optimization of the current system whereby

the performance has to be evaluated for a variety of parameter settings, in contrast to the suc-

cessful optimization in, e.g., Blanc and Van der Mei [14].
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