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Abstract. 

In addition to in-vivo and in-vitro experiments, numerical 

analyses of blood flow patterns in the carotid artery (bifurcation) 

play an important role in studies on both the detectability and the 

genesis of atherosclerotic disease. To obtain more insight into these 

flow patterns, numerical analyses, limited to Newtonian incompres

sible flows in rigid-wall geometries, have been carried out. First, 

a Galerkin finite element approximation of the unsteady Havier-Stokes 

equations is formulated and tested for a two-dimensional oscillating 

flow problem between two flat plates and the vortex shedding phenome

non downstream a circular cylinder. Next, the steady and unsteady 

(physiological). flow over a square step in a two-dimensional channel 

has been analysed with special emphasis on the optimization of the 

calculation procedure. In this two-dimensional stenosis model, the 

formation and shape of the reversed flow regions downstream the step 

are used to characterize the flow. After that, the unsteady flow in 

two-dimensional carotid bifurcation models for both normal and steno
sed geometries has been analysed with special attention to the dis

tribution of the reversed flow regions and wall shear stresses. For 

both the square-step stenosis model and the bifurcation model the 

calculated velocity distribution has been validated by laser-Doppler 
measurements in experimental models. Finally, as a first step to a 

three-dimensional analysis of the flow in the carotid bifurcation, 
the steady flow development of the primary and secondary velocity 

fields in a curved tube has been analysed numerically and compared 

with experiments. 

In conclusion the numerical analyses appear to give accurate 
and detailed descriptions of the flow field in simplified models of 

the carotid artery bifurcation. For a complete three-dimensional 
analysis, however, improved computer capacity and more efficient 

solution procedures are needed. 
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CHAPTER 1: GENERAL INTRODUCTION. 

1.1. earotid artery flow And atherosclerosis. 

Atherosclerosis is an arterial disease resulting in localized 

stiffeninq and thickening of the arterial wall, associated with amonq 

other things, smooth-muscle cell proliferation and lipid (choleste

rol) deposition. Atherosclerotic lesions may lead to narrowinq (ste
noses) or even occlusion of the artery affected. A survey dealing 

with the pathogenesis and manifestations of this disease has been 

reported by Ross and Glomset (1976). The frequency distribution of 

the occurrence of atherosclerotic lesions is not uniform, but especi
ally arterial bifurcations and bends are found to be sites of pre

ference (Noon, 1977 and Herem and Cornbill, 1980). Besides coronary, 

femoral and iliac artery bifurcations, the carotid artery bifurcation 

too, is often involved in the atherosclerotic process, and forms a 

aajor cause of cerebral vascular disease. 

Besides biochemical and cytological aspects, hemodynamical 

aspects play an important role in the genesis of atherosclerosis 

(Ciro and Herem, 1973, Caro, 1977, Roach, 1977, Younq, 1979 and Nerem 

and Cornhill, 1980). Different hypotheses have been proposed to . 

relate hemodynamical forces to the location of atherosclerotic le
sions (Fry, 1976 and Caro et al., 1969, 1971 and 1973). In both 

hypotheses the arterial wall shear stress plays an important role. 
According to Fry, early atherosclerotic lesions are to be expected in 

reqions with hiqh wall shear stresses, which were found to induce an 

increasing endothelial surface permeability. According to Caro and 

co-workers early lesions can develop in regions with low wall shear 
stresses due to the shear dependent mass transport mechanism for 

atherogenesis. Without taking a stand in these apparently conflicting 

hypotheses, it is clear that local wall shear stress distributions, 

and thus local velocity distributions, are of importance. Also in the 
hypothesis for atherogenesis, based on oscillatory shear stress and 

increased partial residence times, reported by Ku (1983), local 

velocity and shear stress distributions are of importance. Moreover, 
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the recent developaents in non-invasive ultrasonic techniques to 

aeasure local instantaneous blood flow velocities in-vivo (Peronneau, 
1977, Greene and Histand, 1979 , Hoeks et al., 1981 and Van Merode, 

1986) offer the possibility to detect reliably atherosclerosis at an 
early stage of the disease, and to relate atherogenesis to the local 

flow patterns in arteries in aan. Since no detailed inforaation about 

these patterns can be obtained with ultrasound techniques, presently 

available, iaportant information has to be deterained froa aodel 

studies. To obtain better insight into the local flow patterns, the 

numerical analysis of carotid artery flow in models and its experi

mental validation are dealt with in the present thesis. 

1.2. He!DQdvnamical and geometrical properties and restrictions of the 
models employed. 

Several general characteristics, including rheological proper

ties of blood, distensibility and qeoaetry of the arterial wall and 
the unsteady pulsatile properties of the flow, play an important role 

in the aodelling of the carotid artery flow. 

Blood is a suspension of particles (blood cells, platelets 
~ 

etc.) in a fluid called plasma and exhibits a non-Newtonian behaviour 
at low shear rates. At higher shear rates, as generally found in the 

carotid artery, blood is assumed to behave like an incompressible 
Newtonian fluid with a density slightly higher than water and a 
kinematic viscosity in the range from 3 to 4.5 10-6 m2/s (Young, 1979 
and Pedley, 1980). Also in the models presented here, Newtonian fluid 

behaviour is assumed, although the validity of this assumption is 
debatable especially for flow regions with low shear rates. 

The arterial wall is anisotropic and viscoelastic (Roach, 

1977). Incorporation of these properties in numerical flow models is 

rather complex and thought to be only meaningful if the modelling in 

rigid three-dimensional geometries can be proved to be valid. So, the 
arterial walls in the models employed in the present study are assu
med to be rigid. 

The geometry of the human carotid artery bifurcation shows a 

rather large interindividual variation. The geoaetries used in this 

study are based upon qeoaetry paraaeters given by Bharadvaj et al. 



common 
carotid 
artery 

Bharadvaj 

Ll 1.00 D 
L2 0.91 D 
L3 2.14 D 
L4 1.04 D 
LS 1.11 D 
L6 o. 72 D 
L7 0.69 D 
LB 0.69 D 
L9 0.58 D 
<Pi 25.40 
<Pe 25.1° 
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1.00 D 1.00 D 

1.00 D 1.08 D 
1.03 D 1.11 D 

0.87 D 0.97 D 

10.8° 12.6° 

Fia. 1.1 : Typical geometry of the human carotid artery bifurcation 
(Bharadvaj et al., 1982). 
Table 1.1 : Geometry para11eters as given by Bharadvaj et al. (1982) 
and Reneman et al. (1985). 

( 1982), Ku ( 1983) and Reneman et al. { 1985) . Bharadvaj. and co-workers 

obtained their geometry parameters by means of a large number of 

angiograms of both healthy (with respect to carotid vascular disease) 

and diseased subjects, and derived a 'mean' geometry as given in Fig. 

1.1 . Reneman et al. reported less detailed geometry parameters 

(Table 1.1), but obtained information from two groups (11 younger and 

9 older) healthy volunteers by means of a multigate, pulsed Doppler 
system coupled to a B mode imager. 
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The carotid artery bifurcation consists of a main branch, the 

co .. on carotid artery, which divides into two branches, the internal 

carotid artery, responsible for the blood supply of the brain, and 
the external carotid artery, responsible for the facial blood supply. 

The tip of the flow divider is often referred to as the apex. The 

internal carotid artery is characterized by a widening known as the 

internal carotid sinus (or bulb). The geometry parameters are based 

on a two-dimensional projection of a three-dimensional body, so the 

assumption is made that the branches lie in one plane of symmetry (in 

the remainder indicated as the plane of the bifurcation). Further

more, it is assumed that the cross-sections of the branches are 

circular with a smooth interaediate shape. 

The flow in the carotid artery bifurcation is pulsatile with an 
instantaneous flow rate varying during the cardiac cycle. In this 

study, the flow rate curve in the colDl!lon carotid artery as described 
by Ku (1983) is used (Fig. 1.2). The flow rate consists of a systolic 

phase, in which the flow accelerates to a rate of about 2.5 times its 

mean value, followed by a deceleration after which two small flow 

pulses occur and gradually a steady flow develops towards the end of 

the diastolic phase. The flow is characterized by two dimensionless 

parameters: 

the Reynolds number Re = 000 /v ( 1. 1) 

and the frequency parameter a = R/(w/v) (1.2) 

CD being the diameter of the colllllOn carotid artery, u0 the cross

sectional and temporal mean of the velocity in the common carotid 

artery, v the kinematic viscosity, R=D/2 the radius of the common 

carotid artery and w the angular frequency of the pulsating flow). An 

alternative for the frequency parameter is the Strouhal number 

St=wD/2wU
0

(=2a2/wRe). The average diameter (D) of the colDl!lon carotid 

artery amounts to about 6.2 mm (Ku, 1983 and Reneman et al., 1985) 
whereas the mean flow CQ0> is found to be about 4.5 ml/s (Ku, 1983). 

This yields a mean velocity u0=4Q0/wD2 - 0.145 m/s. Using the flow 

rate curve as given in Fig. 1.2 and assuming a kinematic viscosity of 
3.5 10-6 m2/s, the mean Reynolds number amounts about to 250 and 

varies from about 175 to 650, so laminar flow can be assumed (cf. 



3 
systole 
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diastole 

0.5 

common 
--------- carotid 

artery 

t/T 
1.0 

Fig. 1.2 Flow rate in the co11111on carotid artery as a function of 
time during one cardiac cycle (Ku, 1983). 

Young, 1979). If furthermore a cardiac cycle time of 1s is assumed, 

the frequency para.meter a is about 4. Finally, the flow in the common 

carotid artery is assumed to be fully developed at a few diameters 

upstream of the flow divider. 

1.3. Numerical approximation of laminar incompressible Newtonian 

.f.1.2!!. 

As depicted in the previous section, in first approximation the 

carotid artery flow is regarded as an incompressible Newtonian un
steady laminar flow. This kind of flow is mathematically described by 

the Navier-Stokes equations. Only for simple geometries and simple 

boundary conditions analytical solutions of these equations exist 

(Schlichting, 1979). For complex geometries like the carotid artery 

bifurcation, numerical approximations have to be applied. The most 

important numerical methods available from literature are, firstly, 

the finite difference (Roache, 1972 and Peyret and Taylor, 1982) and 

the closely related finite volume (Patankar, 1980 and Spalding, 1981) 

methods and secondly, finite element methods (Girault and Raviart, 
1979, Thomasset, 1981 and Cuvelier et al., 1986). Until a decade ago, 
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finite difference and finite volume methods were most commonly ap
plied. Besides their mathematical simplicity, an important advantage 

of these methods is the favourable structure of the resulting set of 
equations (often tri-diagonal) enabling efficient nU11erical solution 

procedures. Significant difficulties are encountered, however, in the 

modelling of complex geometries and the application of local grid 

refinements. The use of body-fitted co-ordinate systems offers some 

possibilities with respect to the modelling of complex geometries 

(Gunton et al., 1983), but the great difficulty of application of 

local grid refinements, required especially for an accurate approxi

mation of the flow in regions with large velocity gradients, make 

these methods inattractive for the present application. Although the 

structure of the resulting set of equations is less favourable, but 
still sparse, requiring more computing time and memory capacity, the 

finite element method enables the modelling of complex geometries and 
easily incorparates local grid refinements. Moreover, the finite 

element model can be extended with models of wall distensibility 
because of its applicability to structural mechanical problems. 

Nevertheless, until now, finite element formulations of unsteady flow 
in three-dimensional geometries are still in progress. In this dis

sertation the finite element method is used and part of its progress 

and application to carotid artery flow will be dealt with. 

1.4. Method9loqy employed. 

The study presented here has been performed in several more or 

less distinguishable stages coinciding with the development of the 

numerical method, but also coinciding with some distinct flow proper

ties occurring in the carotid artery bifurcation. 

Initially, in chapter 2, the finite element solution procedure 

for steady and unsteady two-dimensional flow has been studied. In 

section 2.2 the spatial discretisation of the equations using a 
standard Galerkin finite element method is dealt with. After the 

derivation of a penalty function formulation of the equations, a 
short description of the finite element, as available in the finite 

element code used (Segal and Praagman, 1984), is given. soae remarks 

on the aatheaatical background of the method are included in appendi

ces 1 and 2. In the next section (section 2.3), a finite difference 
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time integration method is presented and analysed with respect to its 

accuracy and stability. Then the theoretical observations made are 

confirmed by numerical experiments with calculations of oscillating 

flow between two parallel plates and the Von Karman vortex shedding 

past a circular cylinder. 

In chapter 3, the numerical method described is applied to 

steady (section 3.2) and unsteady (section 3.3) flow over a square 

step. This flow configuration can be considered a two-dimensional 

stenosis model (sections 3.3.1 and 3.3.2), but is mainly used to 

analyse the nuaerical method with respect to its practical applica

tion and the influence of different kinds of boundary conditions and 

mesh distributions (section 3.2). Moreover, laser-Doppler measure

ments of both steady (section 3.2.3) and unsteady (section 3.3.4) 

flows over a square step have been performed and compared with the 

numerical results. 
The analysis of pulsatile flow in two-dimensional carotid 

artery bifurcation models is described in chapter 4. In section 4.2, 

the flow in a two-dimensional geometry and an imposed flow rate as 

given above is described by means of its velocity and wall shear 

stress distribution. In section 4.3, the numerical results are compa

red with both two- and three-dimensional measurements and data ob

tained from literature. In this comparison special emphasis is given 

to the relevance of two-dimensional modelling of three-dimensional 

carotid artery flow. Furthermore, in section 4.4, the influence of a 

small stenosis in the internal carotid sinus on the velocity and wall 

shear stress distribution is analysed. 

Until now calculations of fully three-dimensional carotid 

artery flow are strongly limited with respect to computing time and 

memory, unless more sophisticated (super-)computers are used. As a 

first step to this kind of calculations, three-dimensional steady 
entrance flow in a curved tube, exhibiting properties that resemble 

the flow in the internal carotid artery (Olson, 1971, Brech and 

Bellhouse, 1973 and LoGerfo, 1981), is analysed (chapter 5). Again, 

the results of the numerical aodel are validated by means of compari
son with laser-Doppler aeasurements in an experimental model. 

Final conclusions and a remark on possible progress in this 
study are given in chapter 6. 
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CHAPTER 2: FINITE ELEMENT FORMULATION OF THE TWO-DIMENSIONAL STEADY 

AND UNSTEADY NAVIER~STOKES EQUATIONS. 

2.1.Introduction. 

In this chapter the finite element formulation, as used for the 

calculations of the 2-dimensional steady and unsteady Navier-Stokes 

equations, is evaluated and the results of soae numerical tests are 

discussed. 

In section 2.2 the spatial discretization of the unsteady 

Navier-Stokes equations is dealt with. After the statement of the 

governing equations, the spatial discretization of the equations 

using a standard Galerkin method is evaluated, yielding a set of non

linear ordinary differential equations. A discussion about the exis

tence and uniqueness of the solution of the continuous and the dis

cretized equations is given in appendix 1 and is mainly adopted from 

the studies of Temam (1977), Girault and Raviart (1979) and Raviart 
(1984). A common way to obtain a set of equations which is easier to 

solve, is to introduce a penalized formulation of the continuity 
equation (Bercovier, 1978, Hughes et al., 1979, Engelman et al., 

1982, Oden et al., 1982, Reddy, 1982 , Carey and Krishnan, 1984 and 
cuvelier et al., 1986). In this way the pressure can be eliminated 

from the momentum equations leading to a smaller set of equations. 

After the derivation of this penalized formulation (appendix 2), the 

finite element as used in the calculations is treated. A short des

cription of the definition and accuracy of the extended quadratic 

conforming element as introduced by Crouzeix and Raviart (1973) and 

as available in the finite element code used (Segal and Praagman, 
1984) will be given. 

In section 2.3 a finite difference 9-method, incorporating both 

the Euler implicit and Cranck-Nicolson time integrations, is derived. 

The performances of the Euler implicit and Crank-Nicolson schemes are 

analysed and coapared by means of a simple stability analysis of 

linear parabolic differential equations in general. Attention is also 

paid to the linearization of the convective terms in the momentum 
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equations. The undamped pressure oscillations as aentioned by Sani et 

al. (1981) occuring when the Crank-Nicolson tiae integration is used 

in combination with the penalty function approach, will be related to 
the general properties of this time integration. A slightly different 

formulation will be discusssed resulting in a scheae which is not 

hampered by these pressure oscillations. 

In section 2.4 the theoretical observations as aade in the two 

preceding sections are confirmed by numerical experiments with calcu

lations of oscillating flow between two parallel plates and the Von 
Karman vortex shedding past a circular cylinder. 

Finally in section 2.5 the results obtained are discussed and 
some concluding reaarks are made. 

2.2.Spatial discretization of the unsteady Navier-Stokes equations. 

Goyerning equations. 

The two-dimensional Havier-Stokes equations for incompressible 

Newtonian fluids are given by the momentum equations together with 
the continuity equation for a region Q with boundary r. In cartesian 

co-ordinates these equations read (see for instance Batchelor, 1979): 

~ aui -- nf, + [ ~ o + £ oul. w 
1 at j axj j axj 

au. 
[ --1=0 i=1,2 
j ax. 

J 
j=1,2 ( 2. 1) 

Here o denotes the density, ui the i-th component of the velocity and 

aij the components of the Cauchy stress tensor g 

i=1,2 

j=1,2 (2.2) 

with p the pressure, 6ij the Kronecker delta and q the dynamic visco
sity. The corresponding boundary conditions which specify the 
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Region Q with boundary r. 

physical problem may be for example a combination of prescribed 

velocities and stresses in two independent directions on r (see 

Fig. 2. 1) : 

{ ~.~ = u n .... 
r1 U•t = ut on .... l U•n u n .... 

(a•n)•t at on r2 = .... 
{ <g•nl•n = on .... 

U•t = ut on r3 .... 
{ <g•n)•n = on .... 

<g•n) •t Gt on r4 
(2.3) 

With n the outer normal on rand t the tangential vector on r. 
Furthermore, the initial velocity in Q must be given. 

i=l,2 (2.4) 

For a discussion about the existence and uniqueness of the solution 
of these equations the reader is referred to appendix 1. 
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Spatial discretization. 

In order to discretize (2.1) the standard Galerkin method is 
applied, starting from the variational problem as given in appendix 

(A1.3). For convenience the Dirichlet boundary conditions are ignored 
at this stage i.e. the testfunctions v and q are chosen such that 
vtH1<2> 2 and q~t2 (2) with H1(o) the space of functions which are 
square integrable and have square integrable derivatives and t 2(0) 

the space of square integrable functions. This choice implies that 

some extra equations are added to the system of equations that will 
arise after the discretization. These extra equations can be skipped 

in the solution procedure when the Dirichlet boundary conditions are 
incorporated. The velocity and pressure are approximated by a linear 

combination of time independent basis functions •in resp. •m: 

n=1, ... ,N i=1,2 (2.5a) 

m=1, ... ,M (2.5b) 

After substitution of (2.5), the following set of non-linear ordinary 
differential equations is obtained: 

LY. = Q. (2.6) 

with y a vector of length 2N containing the velocity parameters uin 

(i=1,2 n=1, ... ,N) and 2 a vector of length M containing the pressure 
parameters p

8 
(a=1, ... ,M). ! refers to differentiation of y with 

respect to time. Furthermore: 
Mis the mass aatrix defined as (k=1, ... ,N and 1=1, ... ,N) 

(2.7a) 
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sis the diffusion matrix (k=1, ... ,N and 1=1, ... ,N) 

S =[S11 

821 

512] 
522 with 

sij<k,ll = f~[ ~ <~ a•;1)6 .. + a.ik ~Jd2 
Q a=1 ax ax lJ ax. ax. 

a a. J 1 

N(y)y is the non-linear convection term (k=1, ... ,N, i=1,2l 

Lis the divergence matrix (m=1, ... ,M and 1=1, ... ,N) 

1 is the force vector (k=1, ... ,N) : 

(2.7b) 

(2.7c) 

(2.7d) 

(2.7e) 

and R is the boundary stress vector resulting from integration by 

parts of the diffusive and pressure terms in the momentum equations 

(k=1, ... ,N) : 

Penalty function approach. 

2 
f i: a . . n .cp.kdQ 
r j=1 1J J i 

(2.7f) 

The set of ordinary differential equations (2.6) can be solved 

using a finite difference approximation of the time-derivative ~ (see 

section 2.3). Direct solution of the resulting set of equations is 

time and memory consuming owing to the fact that zero components 
appear on the principal diagonal of the coefficient matrix. These 
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zero coefficients are due to the absence of the pressure in the 

continuity.equation and in general require a partial pivoting proce

dure which disturbes the band structure of the matrix. To overcoae 

this difficulty , the penalty function aethod can be applied (see 

appendix 2) by solving instead of (2.6) 

t + l!. 

(2.8) 

with 

k=1, ... , M 

1=1, ..• ,M (2.9) 

Caray and Krishnan (1984) showed that for the steady Havier-Stokes 
equations the solution of (2.8) converges to the solution of (2.6) 

with the following error bound 

(2.10) 

with C independent of e and Vh=V~x~ , V~ the space spanned by the 

basis functions •ik (i.e. ~=span(•ik;1ikiN} ) and Qh the space 
spanned by the basis functions •k (i.e. Qh=span<•t;1ikiM} ) (see also 

appendix 2). These results are confirmed by nuaerical experiments of 
Reddy (1982). The main advantage of the penalty function method over 
the direct solution of equations (2.6) is, that the pressure is 

eliminated from the momentum equations resulting in a smaller set of 

equations that can be solved without the demand of pivoting proce

dures. 

The extended quadratic conforming (Pi-P1) element. 

In order to construct a finite element approximation of the 
Havier-Stokes equations, the finite dimensional space which spans the 

approximate solution must satisfy the discrete inf-sup (or Brezzi
Babuska) condition in order to guarantee a unique solution (see 
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appendix 1). An overview of elements satisfyinq (and not satisfyinq) 

this condition can be found in the studies of Fortin (1981), Fortin 

and Fortin (1985), Bercovier (1977) and Raviart (1984). Amonq the 

qroup of elements satisfying the discrete inf-sup condition it is 

possible to distinguish between elements with continuous approximate 

pressures (Taylor-Hood-like elements, Taylor and Hood (1973)) and 

eleaents with discontinuous approximate pressures (Crouzeix and 

Raviart, 1973). The latter type of eleaent has the advantage that the 

projection matrix MP (see (2.9) and at the end of appendix 2) is a 

local matrix and can be calculated and inverted element-wise. Discon

tinuous pressure elements therefore are favourable for penalized 

formulations of the equations. The simplest discontinuous pressure 

eleaent in which the velocity is approximated linearly per element 

and the pressure is constant per element (P1-P0, see Fig. 2.2a) does 

not satisfy the Brezzi-Babuska condition (Raviart, 1984). If the 

velocity field is approximated by quadratic functions and the pres

sure is constant per element (P2-P0, see Fig. 2.2b) i.e. : 

span{1) (2.11) 

with ~i the baricentric co-ordinate of a point xsIR2 with respect to 

the vertices of the triangle T, the Brezzi-Babuska condition is 

satisfied and the error bound 

(2.12) 

can be derived for u and p smooth enough (i.e. ueH2(0) and peR1(0) 

and a triangulation of Q with triangles whose diameters are i h 

(Raviart, 1984). A family of elements with important advantages is 
based on the discontinuous pressure elements introduced by Crouzeix 

and Raviart (1973). They enriched the polynomials of deqree 2 of the 

P2-P0 element with a polynomial of degree 3 that vanishes on the 

element boundary (see Fig 2.2c). The Brezzi-Babuska condition then 

can be satisfied for pressures of deqree i1. With the definitions : 
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+ 
P2-P1 

~vel~ity 

~preeeure 
c 

Fig. 2.2 : a) The P1-P0 element, b) The P2-P0 element, c) The 
extended quadratic triangular P~-P 1 element (I: pressure and pressure 
derivatives). 

(2.13) 

with {xc,yc) the co-ordinates of the centroid of the element, an 

error bound : 

+h + h 2 11 u -u 11 h + 11 P -p 11 h iC2h 
v Q 

(2. 14) 

is found if ~ and p are smooth enough (i.e. ~eH3 (o) 2 and peH2(o) ) 

(Raviart, 1984). More specified the error bounds are (Crouzeix and 

Raviart, 1973) 

11uh-~11 2 i c,h3 

L (Q) 

1 lph-pl I 
2 

i c
2
h2 

L (Q) 
(2.15) 
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The advantage of defining the pressure and its first derivatives in 

the centroid of the element is, that, as proposed by Griffiths 

(1979), the P;-P1 element can be reduced to a P2-P0-like element for 

computational purposes by eliminating the velocities and pressure 
derivatives in the centroid (see Van de Vosse et al.,1985 or cuvelier 

et al.,1896). In this way the number of unknowns per element is 

reduced from 17 to 13. This modified (P;-P1l element has proved to 

satisfy the error bounds as qiven in (2.15) for practical test calcu

lations of steady problems (Segal, 1979). 

2.3.Time integration of the equations. 

The time derivative in the discrete Navier-Stokes equations 

(2.6) or (2.8) can be approximated by a finite difference a-method. 

Considerinq the equation 

y=Ay+;f! (2.16) 

this approximation is defined by 

tit 

Oi8i1 (2. 17) 

For 8=0 resp. 8=1 this scheme reduces to the Euler explicit (EE), 
Euler implicit (EI) method respectively, both O(llt) accurate for 

linear equations. For e=0.5 the scheme becomes the Crank-Nicolson 

scheme (CR) which is of O(At2 ) accurate for linear equations. 

In order to mate a proper choice for the value of e, the time 

inteqration of a linear set of ordinary differential equations resul

ting from the discretisation of a parabolic differential equation is 
considered 

j
~=AY.+1 

u.<to> = Yo (2.18) 
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Here A is assumed to be a (NxN) matrix with real coefficients inde

pendent of.time, resulting from a linear elliptic differential opera

tor. Furthermore it is assumed that A is non-defect, i.e. has N 
linear independent eigenvectors. owing to the linear independence of 
the N eigenvectors, a non-singular matrix B with complex coefficients 

exists defined by : 

A B = B A (2.19) 

with A=diag(A1, ... ,AN) and A1, ... ,AN the eigenvalues of A. The dif

ferential equation and also its discretized approximation is called 

stable when a finite error !.a in the initial condition Yo results in 

a finite error 1(t) in y(t), for any t. To evaluate this error propa
gation two cases are considered : 

1) y is a solution of (2.18) with y(t
0

l=JJo 

2) l is a solution of (2.18) with y(to>=Mo+!.o 

with !.a a small perturbation of llo· 

If £ is defined as £=1-y then ~=A£ and £(t0 )=!.o or, since B is non
singular, n=B- 1

£ can be defined and thus : 

1-~ (2.20) 
with 

The solution of (2.20) then can be written as 

i=, ..• ,N (2.21) 

In order that the differential equation is stable, qi must be a non
increasinq function of time, hence : 

(2.22) 

must hold for any i (i=1, •.. ,N). 
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Fig. 2.3 : Stability regions of the a-method for complex and real 
eigenvalues, respectively. 

Numerical time integration schemes generally lead to equations 

for n of the form 

(2.23) 

with G the so-called multiplication matrix and nn=n{tn>· For stabili

ty of the numerical scheme it is necessary that 11Glli1 (with llGll 
any regular vector norm). For the 8-aethod one easily verifies that 

this leads to 

1+(1-B)\11t 
I < 1 

1-8>..illt 
i=1, ... ,N (2.24) 

In Fig. 2.3 the stability regions of >..illt are given for the 

interval Oi8i1. For 0.5i8i1 the scheme appears to be stable for all 
>..4t. For OiBi0.5 the scheme is only conditionally stable. In the case 
that the eigenvalues of A are large (but negative), relative small 

timesteps 4t have to be applied to ensure stability. 

In Fig. 2.4, the amplification factor ci is plotted as a func

tion of Re[>..6t] for 8=1 and 8=0.5 respectively. From these figures it 
can be observed that for 8=0.5 (CN) the amplification tends to -1 for 
large negative eigenvalues, whereas for 8=1 (EI) the amplification 
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Fig. 2.4 : Amplification factor c as a function of (.\tit) for the EI 
(a) and the CN (b) method for complex and real eigenvalues, 
respectively. 

tends to O. The same holds for complex eigenvalues with a dominating 

large negative real part. For an increasing imaginary part of the 

eigenvalues, the amplification factor of the crank-Nicolson method 

increases whereas the Euler-implicit method gives rise to a decrease 

of this factor, resulting in a damping of oscillations related with 
these eigenvalues. 
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Linearization of the convective te;rms. 

Application of the 8-method of time-integration to (2.8) gives: 

n+1 = i,.-1Lun+1 
.12. & p - (2.25) 

(note that the subscript a has been skipped). 

This set of non-linear equations can be solved by one step of a 

Newton-Raphson iteration leading to : 

nn+1 = i..-1Lun+1 
"' £ p -

(2.26) 

with J(yn) the Jacobian of N(yn)Y.n defined by 

i,j,m=1,2 , q,k,1=1, ••. ,N (2.27) 

It can readily be proved that the Newton step (2.26) is equivalent to 
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the linearization 

(2.28) 

Substitution of yn+1=i[yn+B_(1-9)yn] in (2.26) leads to an equivalent 

solution procedure consistinq of two steps : 

1: 

(2.29a) 

(2.29b) 

The first step of equations (2.29) is a Euler implicit step to the 

time level n+B, which is unconditionally stable and has the proper

ties as described in the previous section (ci=1/l1+8At~il). The 

second step of (2.29) is an extrapolation to time level n+1 which is 

only conditionally stable (ci=l1+(1-8)~iAtl ,see Fig. 2.5). The 

amplification factor c after execution of both steps is equal to the 

amplification factor as obtained for the original 8-method. As will 

be elucidated in the next section, this two-step formulation has, 

besides a simpler way of implementation, some advantages above the 

formulation as used in (2.26). 

Finally it is remarked that for the stationary Navier-Stokes 

equations the following Newton-Raphson iteration can be used : 

(2.30) 

v +1 v 
The iteration can be stopped when llY • -y •11 < 6, 6 being the 
required accuracy. 
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Fig. 2.5 : Amplification factor c as a function of (AAt) for the 
extrapolation step in the CM time integration for complex and real 
eigenvalues, respectively. 

2.4 Nwperical test of tbe stability and accuracy of the time inteqra

:.tiJm. 

To predict the behaviour of the 9-method, knowledge of the 

magnitude of the eigenvalues is needed. Although the eigenvalues are 

not known beforehand, it is obvious that, as far as the Stokes equa
tions are concerned, large negative real eigenvalues will occur owing 

to the small penalty parameter in the equations (2.26). From Fig. 2.4 

it follows that the Euler implicit method will damp errors related 

with these eigenvalues because the corresponding amplification factor 

tends to zero. On the other hand the Crank-Nicolson method gives rise 

to amplification factors tending to -1 for these eigenvalues (see 
Fig. 2.4). Errors therefore will be propagated in an oscillatory way 

and will damp relatively slowly. If these oscillations are present in 

the calculated velocity, they will give rise to relatively large 

oscillations in the pressure because of the division by the penalty 
parameter e in equation (2.26). With respect to this phenomenon, the 

modified (two-step) formulation of the 9-method offers some advanta
ges. Since the velocity at time-level n+9 is obtained by a Euler 

implicit step, these velocities will not give rise to oscillations 
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caused by an amplification factor tendinq to -1. In consequence, also 

the pressure at time-level n+e will be free from these oscillations. 

since the pressure at time-level n+1 is not needed to continue the 

time inteqration, one can omit the second step (2.29b) for the pres

sure and evaluate the pressure only for time levels n+9. A confirma

tion of this will be qiven by the numerical tests described below. 

Although preceding analysis only holds for linear equations 

with constant coefficients in tiae and therefore can only be applied 
to the Stokes equations, similar behaviour of the time integration 

can be expected for the Navier-Stokes equations. Besides the beha
viour of the time integration for eigenvalues with a large negative 

real part, also the behaviour for eigenvalues with a dominating 

imaginary part is of interest. These eigenvalues will occur for 

equations with an important contribution of the convective terms. 

These terms give rise to a non-symmetric matrix and complex eigen
values. From Fig. 2.4 it can be seen that the amplification factor of 
the Euler implicit method decreases for an increasing imaginary part 
of the eigenvalues. On the contrary, the Crank-Nicolson method gives 

rise to an increase of the amplification factor and therefore will 

not damp oscillations related with these eigenvalues. Since these 

oscillations are inherent to the physical problem, it is expected 

that the Crank-Nicolson method is preferable for these problems. In 

the next section this will be confirmed by the results of the calcu

lation of a Von Karman vortex street. 

The stability and accuracy of the time integration methods 

described are elucidated by computations of oscillating flow in a 
channel (two parallel plates) and the vortex shedding past a cylin

der. The oscillating channel flow, which can be described by the 
Stokes equations, is chosen because an exact solution can be derived. 

The non-linear convective terms are neglected and only real eigen

values occur. To get an idea of the influence of an imaginary part of 
the eigenvalues on the behaviour of the time integration, also the 
vortex shedding phenomenon is analysed. There the convective terms do 
play an important role. 



u=U(y, t) 

v=O 

-39-

Fig. 2.6 : Geometry and boundary conditions for the oscillating 
channel flow. problem (L=15D), U(y,t)=U

0
(1-(2y/D)2)coswt, a.-s. 

To elucidate the stability and accuracy of the time integra
tions used, the development from rest of oscillating flow between two 

parallel plates was analysed. For convenience an oscillating parabo

lic velocity profile was used as an inflow condition (see Fig. 2.6). 

The exact solution of the fully developed flow can be determi

ned in a similar way as the fully developed oscillating flow in a 

circular cylinder (Schlichting, 1979) and is given by: 

1-K(a:,y) iwt 
u =Re[ o0 t > e ] 

1-P(a) 
I V : 0 (2.31a) 

ap 1 
- = Re[ -iwQ { ---) eiwt) 
ax 0 1-PCa.l 

ap 
, - = 0 

ay 
(2.31b) 

with x=x1/D, y=x2/o, u=u1tu0, Q0 the flow amplitude co0= 5u0o), o the 

channel height, u0 the velocity amplitude, Re[ .. ) is real part of 
[ •• ] r i=!=T and : 

JIY -a.lf.Y 
e + e 

IC(a.,y) = ------- (2.32a) 

P(a.) = -- ----- (2.32b) 

(2.32c) 
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The solution is approximated by solving the unsteady Stokes 

equations for an angular frequency w, a viscosity v and a channel 

height D, such that the frequency parameter a leads to a value of 
a~8, corresponding with certain physiological flows. The length of 

the channel was taken to be 150. As the pressure derivative did not 
change in the first 3 significant decimals in the last and last but 

one element upstream the outlet, the conclusion is justified that the 

assumed channel length is sufficient to guarantee a fully developed 

oscillating flow at the outlet. comparisons of numerical and analyti

cal solutions are made for different e-values in the time integration 

with time steps of 0.2, 0.1 and 0.05 times the cycle period T of the 

flow, respectively, and with the aid of the following error defini
tions: 

1/2 
[ I (u -uh}2dy]1/2 

1
'

2 
2 1/2 [ I u dy J 

0 

ap aph 

ax-~ 

Apx = op I 
1~1 

ax 
x=15 , y=O 

(2.33a) 

(2.33b) 

As expected from (2.24} the time integration was unstable for 

OiB<0.5 for all timesteps used. The large negative eigenvalues resul
ting from the penalty function method would require timesteps of 

order t. Since e-values in the range 0.5<8<1 also results in a first 
order accuracy just like (8=1), only the EI and CN time integrations 
were analysed in detail. 

a) The Euler implicit scheme (EI) : 

Figs. 2.7a and 2.7b show the velocity profiles and pressure 
gradient approximations in the fifth period for At/T=0.2, At/T=0.1 

and At/T=0.05, respectively, together with the exact solution. In 

Fig. 2.7c the relative errors as defined in (2.33) are plotted a
gainst the time for the first five periods of the flow oscillation. 
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u t/T PX 
1 
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Fiq. 2.7 : a) Velocity profiles at the outstrea.m (-: exact, 
*: At/T=0.2, +: 6t/T=0.1, o: 6t/T=0.05) during one flow cycle. 
b) Pressure gradients at the outstream (-: exact, *: 6t=0.2, 
+: 6t=0.1, o: 6t=0.05) during one flow cycle. 

6px 

Au 

c) Relative errors in the velocity and pressure gradients at the 
outstream during 5 flow cycles (6t/T=0.1). 

The timestep used was 6t/T=0.1 . The corresponding errors were avera

ged in time and are given as a function of 6t in Table 2.1. The large 

errors found for the pressure derivatives are attributed to the 

phase-lag between the exact and approximated solutions, as is visible 

in Fig. 2.7b. 

b) The Crank-Nicolson scheme (CN) 

The saae analysis was performed for the case that the CN-scheme 

was used (Figs. 2.8a, 2.8b, 2.8c and Table 2.1). From these results 

it is concluded that the CN-scheme gives considerably better velocity 

approximations but worse pressure approximations. As can be seen from 
Fig. 2.8b , the worse pressure approximations are the result of 

undamped oscillations. These oscillations are the consequence of the 

amplification factor tending to -1 for large negative eigenvalues of 
the coefficient matrix. 
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Crank-Nicolson 
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Fig. 2.9 : a) Velocity profiles at the outstream (At/T=0.1) 
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(-: exact, o: CN with implicit start, A: modified CN) during one flow 
cycle. 
b) Pressure gradients at the outstream (At/T=0.1) 
(-: exact, o: CN with implicit start, A: modified CN) during one flow 
cycle. 
cJ Relative errors in the velocity and pressure gradients at the 
outstream during 5 flow cycles (At/T=0.1) (-: CN with implicit start, 
A: modified CN). 
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c) The Crank-Nicolson scheme with an implicit start (ISCN) 

Better results are obtained when the errors induced by the 

arbitrary initial value (u=O) are damped by an implicit start of the 

CH-scheme. In Fig. 2.9 the results of the ISCN-scheme are given for a 

timestep At/T=0.1 (see for averaged values Table 2.1). In the ISCN

scheme the first period of the flow oscillation was integrated with 

the EI-scheme. The results of the CH-scheme are considerably improved 

when an implicit start is used to damp the errors induced by the 

assU11ed initial value. 

d) The modified Crane-Nicolson method with an implicit start (MCN) 

From Fig. 2.9b,c and Table 2.1 it can be seen that significant 

better results for the pressure can be obtained if the pressure is 

evaluated at the timesteps n+a. In fact this means that only the 

first step of (2.29) is executed for the pressure. Since the pressure 

on time level n+1 is not needed to continue the time integration, the 

second relation.of (2.29b) can be omitted. The pressure now is ap

proximated with about the same accuracy as the velocity for a time

step At/T=0.1. 

Ta.ble 2.1 : Time averaged relative errors in the velocity and the 
pressure gradient for the EI, CN, ISCH and MCN method, respectively. 

method Euler Crank- CN modified CN 
Implicit Nicolson impl.start impl.start 

At/T Au Apx Au Apx Au Ap Au Apx 

0.20 0.16 2.13 0.05 5.15 

0.10 0.09 1.01 0.03 4. 19 0.02 0.57 0.02 0.02 

0.05 0.05 0.40 0.02 0.76 
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Another way of analysing the fully developed oscillating chan

nel flow is using an oscillatory normal stress at the inflow instead 

of the Dirichlet conditions used here. Then only one element in x

direction is needed since the pressure only varies linearly and the 

velocity does not change at all in that direction. However, this has 
two important disadvantages compared with the Dirichlet boundary 

conditions. Firstly the pressure is found to be independent of the 

timestep used. In fact the pressure is prescribed indirectly by the 

normal stresses, so no information on the accuracy of the pressure 

approximation can be obtained. Secondly, a rather long transition 
time of about 20 time cycles was found before the velocity was fully 

developed in time. The errors for the velocity were observed to be of 

the same order as in the problem with the Dirichlet boundary condi

tions. 

To evaluate the behaviour of the two time integration methods 

in a more complicated flow situation, the vortex shedding behind a 

circular cylinder with a diameter D=1 was simulated. The geometry was 
chosen equal to the geometry used by Gresho et al.(1980) and is shown 

in Fig. 2.10. Uniform Dirichlet inflow boundary.conditions 

(u=U0=1,v=Ol and stress~free outflow conditions were used, together 

with moving wall conditions (u=1,v=O) at the upper and lower walls. 

The Reynolds number based on the diameter of the cylinder was taken 

to be 100. Both the Euler implicit and the Crank-Nicolson time inte
gration methods arrived at a steady solution after about 30 timesteps 

of At/t=1 (t=D/U0=1). Owing to the symmetry of the m:sh and boundary 

conditions, the vortex shedding was not generated spontaneously. To 

trigger the vortex shedding, the steady solution was disturbed in one 

timestep by setting the velocity of the cylinder to 0.10
0 

in y-direc

tion. Next, 10 EI timesteps were performed to damp this distortion 
and to avoid hereby a too important influence on the flow field. 

After these implicit steps both integration schemes were applied with 
timesteps At/t=1, r~sultin9 in a periodic shedding cycle as shown in 
Fig. 2.11a, where the velocity component in y direction at 
Cx,yl=(10,0) is plotted as a function of time • With the EI ti.me 

inteqration the amplitude of the velocity coaponent turns out to be 
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u=l v=O 

u=l v=O 

Fig. 2.10: Geometry, mesh and boundary conditions for the vortex 
shedding computation (Re=100). 

an order smaller in magnitude than when the CN scheme was used. 

Furthermore, the amplitude damps rapidly for increasing time. In Fig. 

2.11b this velocity component is given for the CN method. The ampli

tude of this fluctuation agrees with the amplitude found by Gresho et 

al. (1980). The Strouhal number (fD/U0 ) of the vortex shedding is 

predicted to be 0.17. Experiments by Tritton (1959) showed a Strouhal 

number of 0.16 for Re=100. Finally, in Fig. 2.12 the streamline 

pattern during one shedding cycle is given for 6 instants of time. 

The performances of the EI scheme are expected to be better at 

smaller timesteps. Anyhow, it can be concluded that, although the EI 

time integration has its advantages with respect to the numerical 

stability of the solution, this first order scheme is far less 

applicable than the CN scheme in simulations of flows with an 

important convective property like the vortex shedding process. 
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0 20 40 60 t/TBO 

E1g. 2.11 : a) Velocity component in y-direction as a function of 
time : distortion at t/t=1 , O<t/ti10: EI, t/t>10: (A: EI, o: CN), 
At/t=1 I 

b) Velocity component in y-direction as a function of tiae : 
distortion at t/t=1, O<t/t<10: (EI,At/t=1), 10<t/t<40: (CN,At/t=1), 
40<t/ti55: (CN,At/t=0.5), 55<t/ti85: (CN,At/t=0.25). 

Fig. 2.12 : streamline pattern during a shedding cycle (time 
difference 1t > • 
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Fig. 2.13 : a) Pressure at x=(10.0) as a function of time evaluated 
at timelevels n+1 (a) and n+1/2 (b) respectively. 

In Fig. 2.13 the pressure at point (x,y)=(10,0) is given as a 

function of time for time-levels n+1 (a) and n+1/2 (b). From this 

figure it is observed that althouqh an implicit start is used in the 

time inteqration , a chanqe in the magnitude of the timestep can 

cause oscillations in the pressure at time-levels n+1. However, the 

pressure at levels n+1/2 does not show these oscillations, because 

the unstable second relation of C2.29b) is omitted. 

2.5.Concluding remar)ts. 

As far as the spatial discretization of the Navier-Stokes 

equations is concerned, the (P;-P1) Crouzeix-Raviart element provides 

an approximation with a third order of error for the velocity and a 
second order of error for the pressure. 

The behaviour of the Euler implicit and Crank-Nicolson time 

inteqration scheaes for the unsteady Stokes equations usinq a penalty 

finite eleaent method can be explained by a simple stability analysis 

of linear parabolic differential equations in qeneral. In that case, 

the performance of the in'l;egration methods for eigenvalues of the 

system of equations with a larqe neqative real part is important with 

respect to possible numerical oscillations of the solution . The 
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first order EI alg?rithm has an aaplification factor approaching zero 

when the real part of the eigenvalue goes to minus infinity. There

fore errors induced by the coaputation or errors due to the initial 

condition (often a steep velocity gradient in time) damp very quick

ly. On the contrary, the more accurate second order Crank-Nicolson 

rule gives rise to an amplification factor tending to -1, and there

fore an oscillatory propagation of the introduced errors is expected. 

This phenomenon is illustrated by the analysis of the oscillating 
channel flow and the vortex shedding and is mainly visible in the 

worse pressure approximations. If the disturbance of the initial 

value is damped out by a fully implicit time integration, the pres

sure oscillations observed, for the (smooth) boundary conditions used 

here, were reduced significantly. Rowever, as found in the vortex 

shedding calculation, a small disturbance such as a change of the 

magnitude of the timestep can cause a new appearance of these oscil

lations. Omittance of the extrapolation step in the Crank-Nicolson 

algorithm (2.29b) can be used to overcoae this problem. Finally it is 

assumed that the stability properties are thought to be affected 
mostly by the penalty parameter. The non-linear convective teras give 

rise to complex eigenvalues. These are not expected to lead to much 

different stability properties. Rowever, the (physically originated) 

oscillatory properties of the solution of the differential equations 

can be damped incorrectly by the EI scheme. The CN method with an 

implicit start is preferable then. This statement is confirmed by the 

computation of the vortex shedding behind a circular cylinder. 
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CHAPTER 3: STEADY AND UNSTEADY FLOW OVER A SQUARE STEP A TWO

DIMENSIONAL STENOSIS MODEL. 

3.1. Introduction. 

In this chapter the steady and unsteady incompressible New

tonian flow over a square step is analysed by solving the Navier

Stokes equations as described in the previous chapter. Furthermore, 

the numerical approxiaations are validated by comparison with experi

mental data. 

The choice to analyse the flow over a square step has been made 

for different reasons. First, this configuration is suitable to 

evaluate the numerical method for complex flow properties, including 

steady and time-dependent flow separation. Next, this and related 

flow configurations have been investigated intensively in various 

research disciplines, so that a comparison with solution procedures 

and both numerical and experimental data ob~ained from literature can 

be made. Furthermore, the two-dimensional flow over a square step can 

be regarded as a two-dimensional stenosis model from which some 

information on the flow properties at arterial stenoses can be ob

tained. The main purpose of the analysis described in this chapter, 

however, is to analyse the numerical results with respect to the 

boundary conditions and mesh distribution applied and to validate the 

numerical method by means of comparison with experimental results. 

As mentioned above, the flow over steps or in ducts with sudden 

or gradual constrictions has been the subject of many investigations. 

Laminar steady flow over backward-facing steps has been studied 

experimentally by Goldstein et al. (1970), Denham and Patrick (1974), 

Sinha et al. (1981), Durst and Tropea (1983) and Armaly et al. 

(1983). From these studies it follows that the flow separation at the 

step edge results in a recirculation zone downstream of the step. The 

length of this zone (i.e. the distance between the step and the 

reattachment of the separation streamline) increases with the Rey

nolds number.based on the step-height and the ratio between the step

height and the height of the duct, but also depends on the shape of 
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the velocity profile at the step. Furthermore, for increasing Rey

nolds number, flow separation is observed at the wall opposite to the 

step at the same axial location where reattachment occurs at the 

step-side wall. Numerical predictions of steady laminar flow over 

backward-facing steps are reported by Atkins et al. (1980), Hutton 

(1980), Thomas et al. (1981), Armaly et al. (1883) and Ecer et al. 

(1983) and generally a good agreement with the experiments was found 

as long as the flow remains laminar. Steady state numerical approxi

mations of the laminar flow over a square step are reported by Leone 

and Gresho (1981) and Gresho and Lee (1981). 

At higher Reynolds number, transition to turbulence at reat

tachment is observed (Goldstein et al. (1970), Sinha et al (1981), 

Durst and Tropea (1982) and Armaly et al. (1983)). Goldstein (1970) 

derived two criteria that must hold simultaneously for laminar flow. 

The Reynolds number based on the step-height must be less than 520 

and the ratio of the displacement boundary layer thickness at the 

step to the step height must be greater than 0.4 (i.e. (1/h)
0

/
6(1-

u/um)dy > 0.4 , with h the step height, 6 the boundary layer thick

ness, u the axial velocity, um the maximal axial velocity and y the 

cross-sectional direction). Assuming the flow to be fully developed 

at the step, the displacement thickness amounts to D/6h, so that for 

steady flow over a backward facing step no transition to turbulence 

is expected as long as h<0.40 and Reh<520. In this study, stenoses 

are considered with h=0.250 for a flow with Reh<200 and thus no 

turbulence is expected as far as the rough estimate above based on 

the steady fully developed flow over a backward facing step holds. 

Particularly the assumption of fully developed flow does not hold for 

the flow over a step (i.e. a converging and diverging duct) and in 

virtue of Goldsteins second criterion transition to turbulence is 

expected at lower Reynold numbers with respect to backward-facing 

steps. The steady flow in ducts with local constrictions has been 

studied experimentally by Forrester and Young (1970), Azuma and 

Fukushima (1976), Yongchareon and Young (1979), D'Luna et al. (1982) 

and Ahmed and Giddens (1983a'b). From these studies it is known that 

poststenotic flow instabilities and turbulence may develop for in

creasing Reynolds number and increasing stenotic area reduction. The 

steady flow through an axisymmetric steno~is (following a cosine 

curve) with 25\ area reduction, however, remains laainar and stable 
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for Reynold numbers, based on the diameter of the vessel, up to 1000 

(Ahmed and Giddens, 1983a'b). On the other hand, the flow over step

like stenoses is less stable than that over a smooth constriction 

(Yongchareon and Young, 1979), so instabilities can. be expected at 

lower Reynolds numbers. 
Even more complicated is the unsteady flow over a step. Experi

mental studies of Azuma and Fukushima (1976), Khalifa and Giddens 

(1978,1981) and Yongchareon and Young (1979), show that under un

steady flow conditions poststenotic development of instabilities and 

turbulence may occur depending on the shape and size of the stenosis, 

the Reynoldsnumber, the time dependence of te flow rate and the 

frequency parameter u=D/(2vf/v), with f the frequency of the flow 

period and v the kinematic viscosity). The studies referred to above 

deal with rather large Reynolds numbers based on aortic flow and with 

rather severe stenoses. Although not negligible beforehand, less 
important flow disturbances are expected for the flow in the carotid 
artery. Khalifa and Giddens (1981) observed in a 25\ smooth stenosis 

geometry under pulsatile flow conditions (500<Re<2400) that all flow 

disturbances are periodic and no transition to turbulence occurs, so 

that no turbulence is expected in the range of the Reynolds number 

used in this study (200<Re<800). Numerical studies of unsteady flow 

through stenoses deal with laminar and stable flow in geometries with 

axial symmetry (Daly, 1976, Bordon et al., 1978, Padmanabhan, 1980 

and Wille and Wall~e, 1981), or with transition to a steady state in 

two-dimensional asymmetric square step models (Bercovier and Engelman 

(1979), Hughes et al. (1979) and Yang and Alturi (1984) ). From these 

studies it follows that the reversed flow region downstream of the 

step strongly varies with time and exhibits properties which deviate 
significantly from a quasi-static approach. As far as is known, no 

numerical analyses of unsteady laminar flow in asymmetric step geome
tries are reported yet. 

In section 3.2 the steady flow over a step is de.alt with. In 

order to optimize the numerical method with respect to its practical 
application, the emphasis lies on the incorporation of the in- and 

outflow boundary conditions and the influence of the coarseness of 

the finite element mesh applied on the velocity and pressure distri
bution obtained. In order to determine whether the solution is in
fluenced by the sharp corners of the square step, also the steady 
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flow over a step with rounded corners is calculated. Next the in

fluence of the Reynolds number on the calculated velocity field is 

analysed for Reynolds numbers lying in the range from 100 to 800. In 
order to validate the numerical method and to examine whether the 
flow which is modelled remains laminar, laser-Doppler measurements in 

an experimental model with s~ady flow over a square step have been 

performed. Since flow instabilities are observed in the experiments, 

an attempt is made to simulate these instabilities by solving the 
instationary Navier-Stokes equations with steady and slightly pertur

bed boundary conditions. 
In section 3.3 the analysis of a time-dependent pulsatile flow 

over a square step is described. First the fully developed flow 

between two flat plates, on which the {physiological) flow rate 

function as obtained from the study of Ku (1984) is imposed, is 
calculated. Next, the flow over a step is analysed using the fully 

developed flow as inflow condition. Also here the numerical approxi

mation is validated experimentally. For a pulsating sinusoidal flow, 

with non-zero mean, over a square step, calculations are compared 

with results of laser-Doppler measurements. Special attention is paid 

to the development and break-down of reversed flow regions downstream 

the step at both the step-side wall and the non-step-side wall. 

The analyses of the steady and unsteady flow over a square step 
will be discussed separately in sections 3.2.4 and 3.3.5, respecti
vely. 

J.2. Steady flow oyer a step. 

3.2.1. Intr9duction. 

From the study of Leone and Gresho (1981) and Gresho and Lee 

{1981) it is known that spurious in- and outlet wiggles in the velo

city can occur depending on the in- and outflow boundary conditions 
and .the coarseness of the mesh near the step. With regard to the 
inlet wiggles they distinguished two situations. For relative low 
Reynolds number flow they suggested to use a fully developed parabo

lic velocity profile as inlet condition to avoid a leading edge 

singularity as, for instance, introduced by a uniform inlet flow 

(un=1,ut=O). For advection dominated flows the cause had to be sought 
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in too coarse a mesh near the step, unable to capture the steep 

velocity qradient. A local mesh refinement then is advised by them to 

be the best way to overcome these inlet wiqqles. The outflow condi

tion may also lead to numerical oscillations. As outflow condition 

would be usable a fully developed flow condition (an=O, ut=O) at a 

location far from the step. However, in practice this leads to the 

introduction of many deqrees of freedom in a reqion that is not of 

interest. On the other hand, application of this outflow condition at 

locations which are too short downstrelllll the step, may cause outlet 

wigqles. A way to overcome these wiqqles is to use a less restrictive 

stress-free condition (an=O,ot=O) (Leone and Gresho, 1981). 

To evaluate the possibility of wiqgles in the flow problem 

considered here and on the other hand to optimize the calculation 

procedure with respect to its practical application, as a preparation 

for the more complicated flow problems described in chapters 4 and 5, 

first several numerical tests have been performed. So, in section 

3.2.2 the influence of the stress-free outflow condition, which is 

incompatible with fully developed flow, is described. Furthermore, 

the influence of the coarseness of the mesh and the shape of the 

inflow velocity profile is analysed. To indicate whether the velocity 

and pressure fields are strongly influenced by the sharp corners of 

the step, the results are compared with the results of calculations 

of the flow over a rounded step. Also, the influence of the Reynolds 

number on the velocity and pressure distributions is analysed. 

Finally, in section 3.2.3 the numerical results are compared to 
experinental data and discussed in section 3.2.4. 

3.2.2. Influence.of bouruiary conditions. 1esh-size. step geometry and 

Reynolds number. 

For the numerical tests the qeometry and element distribution 
as shown in Fig. 3.1 are used. The height (D) of the channel is 4h 

and at 9h from the inlet a step is present with a heiqht and lenqth 

of 1h. The Reynolds number based on the height of the channel is 400. 

At the inlet a fully developed velocity profile (u =parabolic,u =0) n t 
was assumed. No slip boundary conditions (u =O,u =0) were used at the 

n t 
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Fig. 3.1 : Eleaent distribution (272 elements, 609 nodes) and 
streamlines for different channel lengths and outflow boundary 
conditions for the steady flow over a square step (Re=400). 
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upper and lower boundaries. To analyse the influence of the outflow 

boundary condition on the upstream flow field, the outflow condition 

was prescribed at x=30h,.x=15h and x=8.25h. As a quideline for the 

length of the longest channel, half the entrance lenqth for fully 

developed channel flow (L=0.04*Re*D, Schlichtinq,1979) was chosen. At 

these three outflow locations stress-free (on=O,ot=O) as well as the 

more restrictive fully-developed outflow condition {on=O,ut=O) were 
applied. 

In Fig. 3.1 the streamline plots are given for the three dif

ferent channel lengths; they show a large downstream eddy and a 

relative small upstream eddy. A reattachment lenqth, defined by the 

intersection of the dividing streamline with the lower boundary, of 

about 10.6h is found for both the stress-free and the fully-developed 

outflow conditions. Even for the shortest channel, the different 

outflow conditions do not seem to have much influence on the stream

line patterns although a small spurious vortex downstream of the step 

is found when the fully-developed outflow condition is used. 

More quantitative information about the influence of the out

flow conditions can be obtained from the axial and cross-sectional 

velocity profiles for the cross-section x=3h, where the reversed flow 

region reaches about its maximal cross-sectional extension (see 

Fig.3.2). The computational results in case of the stress-free out

flow condition are given in Figs. 3.2a and 3.2c, whereas the results 

for the fully developed outflow condition are given in Figs. 3.2b and 

l~2d. Here the circles, triangles and asterisks refer to the results 

for the long, intermediate long and short channel, respectively. The 

computation with the stress-free outflow condition in the longest 

channel is used as reference situation and is given in solid lines in 
all graphs. From the axial velocity profiles (Figs. 3.2a and 3.2b) it 

is observed that for the long channel the applied outf.low condition 

is indifferent. The computations with the stress-free outflow condi

tions (Fig. 3.2a) do not show any influence of the channel-length 

upon the axial velocity profiles, even if the outflow is located 
upstream the reattachllent point of the eddy. Better visible dif

ferences are found in the profiles of the velocity in cross-sectional 
direction {Figs. 3.2c and 3.2d). Outside the recirculation area 

(y>1.1h) this velocity component is negative, in other words the flow 

is directed to the step-side wall of the channel. In case of the 
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Fia. 3.2 : Influence of the outflow boundary conditions for the 
steady flow over a square step (Re=400) : 

4 

Axial and cross-sectional velocity profiles at cross-section x=3h and 
centerline pressure values as calculated with a lonq, intermediate 
lonq and short channel for stress-free and fully developed outflow 
conditions. 
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shortest channel combined with fully developed (unidirectional) 

outflow conditions, this velocity component is then underestimated 

siqnificantly. In Fiqs. 3.2e and 3.2f the pressure is given as a 

function of the axial co-ordinate for locations on the centerline 

(y=2h) of the channel for both outflow conditions applied. These 

centerline pressure values show a relatively good agreement for all 

situations, even the large pressure drop at the step location and the 

outflow pressure qradient differs little for both situations. 

To examine the influence of the mesh coarseness on the approxi

mation of the velocity and pressure field, three different element 
distributions were qenerated (see Fiq. 3.3a). The calculations were 

performed assuminq stress-free outflow conditions while at the inlet 

a fully developed flow was prescribed. The Reynolds number of the 

flow is 400 and the length of the channel is 15h. 
The calculated streamline distributions are given in Fiq. 3.3b. 

In agreement with the observations made by Leone and Gresho (1981), 

an underestimation of the length of the recirculation zone and a 

tendency of a spurious splitting up of this zone can be observed for 

fine 

intermediate 

coarse 
b a 

Fig. 3.3 Influence of the coarseness of the mesh on the steady 
flow over as square step (Re=400) : a) Finite element meshes as used 
to analyse the influence of the coarseness of the mesh. 
b) Streaalines for the different meshes. 
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4 

cross-sectional velocity profiles at cross-section x=Jh and 
pressures, for the fine, intermediate fine and coarse 

the coarsest mesh. Besides, it is noted that the small upstream eddy 

disappears when the finest mesh is applied. 

A more quantitative impression of the influence of the coarse
ness of the mesh is obtained from the velocity profiles at the cross

section x=Jh and from the centerline pressure values (Fig. 3.4). In 

Fig. 3.4a the axial velocity profiles are given for the three meshes. 
The calculations with the finest mesh, indicated by the solid line, 

show a smooth axial velocity profile with a reversed flow region with 
a width of about .75h. The axial velocity profile as obtained with 

the intermediate fine mesh (dots in Fig. J.4a) is in good agreement 

with these results. The coarse mesh, however, results in an under-
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estimation of the maqnitude of the reversed flow and an overestima

tion of the width of the reverse flow reqion. As observable from Fiq. 

3.4b, the cross-sectional component of the velocity is even more 

sensitive to the coarseness of the mesh. Larqe differences with 

respect to the fine mesh are found for the coarse mesh (asterisks) 

and larqe qradients of the cross-sectional component of the velocity 

occur. Althouqh not neqliqible, these differences are siqnificantly 

smaller when the intermediate fine mesh (dots) is applied. Besides, 

only sliqht influence of the coarseness of the mesh is found on the 

centerline pressure distributions (see Fiq. 3.4c). 

Since the imposed inflow condition in numerical models of 

practical flow confiqurations is mostly based on either physical 

experience or experimental information, it is of importance to have 

an idea of the influence of the inflow condition on the calculated 

velocity and pressure distribution downstream. Here two inflow condi

tions will be evaluated for the problem of a steady flow over a step: 

a fully developed parabolic axial velocity profile and a uniform 

axial velocity profile, both combined with zero cross-sectional 

velocity. The Reynolds number is 400, stress-free outflow conditions 

were applied and the finest mesh shown in Fiq. 3.3a was used. The 

inlet conditions are prescribed at x=-9h and the outlet conditions at 

x=15h. 

' In Fiq. 3.5 the axial and cross-sectional velocity profiles at 

the cross-section x=Jh are qiven. The solid lines represent the 

profiles as calculated with a parabolic axial inlet profile, whereas 

the dots represent the profiles for a uniform axial inlet profile. 

For both the axial and cross-sectional velocity components only 

sliqht differences are found between both cases. The differences are 

mainly visible in a more flattened axial velocity pro~ile at the 

centre of the channel in case of the uniform inflow condition. The 

reversed flow at the lower wall shows for both cases a similar be

haviour for both the axial and the cross-sectional velocity compo

nents. From Fiq. 3.5c, where the centerline pressure values are qiven 
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Fig. 3.5 : Influence of the inflow velocity profile on the steady 
flow over a square step (Re=400) : 
Axial and cross-sectional velocity profiles at cross-section x=3h and 
centerline pressures, for the parabolic and uniform inlet velocity 
profiles. 

for. both inlet conditions, the most striking difference in the pres

sure approximation is found to be the larger pressure drop upstream 

the step for the uniform inflow condition. Also here a quite similar 

behaviour is found downstream the step location. 

The geometrical modelling of a stenosis with a square step is 

rather arbitrary and obviously not in accordance with the situation 

in vivo. In order to obtain an idea if, in particular, the sharp 

corners of the square step give rise to large differences in coapari

son with, for instance, rounded corners, also a computation in a 
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square rounded 

a b 

Fig. 3.6 : Influence of the step geometry on the steady flow over a 
square step (Re=400) : 
Streamlines and isobars for the flow over a square and a rounded 
step. 

geometry with a rounded step (see Fig. 3.6) was performed. At the 

inlet a parabolic axial (and zero cross-sectional) velocity was 

described and at the outlet stress-free outstream conditions were 

used. The Reynolds number amounts to 400, the length of the channel 

downstream the step is 15h and the finest mesh shown in Fig. 3.3a was 

used. 
In Fig. 3.6 the streamlines and the isobars are given for the 

square as well as the rounded step configuration. As indicated by the 

streamlines, the boundary layer in the rounded step configuration 

separates closer to the wall of the channel. This results in a smal

ler recirculation zone in both the axial and the cross-sectional 

directions, and in consequence, in a lower pressure drop over the 

step. The pressure maximua at the proximal side of the step and the 
pressure minimum at the upper side of the step, as visible in the 

isobars are spread in case of the rounded step configuration but 

still exhibit the same characteristics as in the case of the square 

step. These observations are quantified in Fig. 3.7, where the axial 
and cross-sectional velocity profiles at x=3h and the centerline 
pressures are given for the square step (solid lines) and the rounded 

step (dots) geometries. For the rounded step the reversed flow velo

cities are found to be lower and restricted to a smaller region in 
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Fig. 3.7 : Influence of the step geometry on the steady flow over a 
square step (Re•400) : 
Axial and cross-sectional velocity profiles at cross-section x•lh and 
centerline pressures, for the flow over a square and rounded step. 

cross-sectional direction. Nearly similar profiles of the cross
sectional velocity component are found. The resulting overall pres
sure drop is smaller for the rounded step configuration. 

The physiological range of the Reynolds number in the common 
carotid artery is from Re=200 to Re=SOO. To get an impression whether 
the physiological (unsteady) flow (see section 3.3.3) can be aodelled 
by a quasi static flow, the influence of the Reynolds number on the 
velocity and pressure distribution was analysed. Again a parabolic 
axial velocity profile together with zero cross-sectional velocity 
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Fiq. 3.8 : Influence of the Reynolds number on the steady flow over 
a square step : 
Streaalines in the recirculation zones of the flow over a square step 
for different Reynolds nuabers. 

was used at the inlet and stress-free outflow conditions were assu
med. The length of the outflow channel is 15h. Since the stress-free 
outflow conditions exhibit only little influence on the velocity 
distribution upstream, it is assumed that this channel.length is 
sufficient for all Reynolds numbers used. 

In Fig. 3.8 the streamline plots of the recirculation zones are 
given for Re=100, 300, 500 and 700 respectively. The axial extent of 
this zone increases almost proportional to the Reynolds number. 
Hence, a suitable parameter to describe the flow characteristics as a 
function of the Reynolds number is the length of the reversed flow 
region. This parameter was determined from the axial velocity pro
files at several cross-sections of the channel and obtained by linear 
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Fig. 3.9 : Detenaination of the length of tbe reversed flow region 
from the axial velocity profiles. 

Fig. 3.10 : Length of the reversed flow region of the steady flow 
over a square step as a function of the Reynolds number. 

1000 

interpolation using the velocity profiles at two successive cross
sections, one oh which reversed flow and one on which forward flow 

was found near the wall (see Fig. 3.9). Note that at the downstream 

face of the step, the width of the reversed flow region was assumed 

to be equal to h/2. In Fig. 3.10, the length of the reversed flow 
region is given as a function of the Reynolds number. In accordance 
with the reattachment lengths, an alaost linear relationship is found 
between the length of the reversed flow region and the Reynolds 
number of the flow. 
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3.2.3~ Experiaental validation. 

To validate the finite element analyses as described in the 
previous subsection, a comparison is made with laser-Doppler measure

ments in an experimental model of the flow over a square step for one 
specific situation (Van de Vosse et al.,1985). In essence the experi
mental model consists of a channel with a rectangular cross-section 
with a height to width ratio of 1:4. A variable flow can be generated 
from which the axial velocities are measured with a one-component 
laser-Doppler equipment. Halfway the channel a step is present with a 
height equal to a quarter of the channel height. care was taken to 
create a fully developed flow in height direction upstream the step. 
Axial velocity profiles in height-direction at various axial posi
tions in the centerplane perpendicular to the width direction were 
determined for a steady flow with a Reynolds number equal to 660. To 
increase the measurement accuracy, the measurements were repeated 10 
times and averaged. Furthermore, 95\-confidence intervals were calcu
lated from a Student-t distribution. A more extended description of 
the experimental set-up and measurement procedure is given in appen
dix 3. Numerical approximation of the flow was performed with inflow 
conditions using the experimental data for the axial component and a 
zero cross-sectional component of the velocity at the inlet at 9h 
upstream the step. Stress-free outflow was assumed at 30h downstream 
the step. 

The measured and calculated axial velocity profiles are presen
ted in Fig. 3.11 for several cross-sections in the channel. The 
measured velocity profiles are indicated by dots representing the 95\ 
confidence intervals. At a location of 9h upstream the step, the flow 
is found to be almost fully developed. The influence of the step is 
hardly noticable up to 2h upstream. A downstream reversed flow region 
is found with a length that amounts to about 13h. Also at the non
step-side wall of the channel, the flow tends to separate starting at 
the location where the above aentioned reversed flow region ends. 
Globally speaking the calculated velocity profiles (indicated by the 
solid lines) are similar to the experiaental data. However, the 
reversed flow region as found in the experiaents is larger, while 
also larqer negative axial velocities are found there to occur. 
Relative large differences are found downstreaa the eddy, where the 



"-68-

DDDDlJ!PPPPPPDDDDDD 
-10h Oh 23h 

2U 
~ 

Fig. 3.11 : Experimental and numerical axial velocity profiles for 
the steady flow over a square step (Re=660). 

axial velocities obtained from the experiments are smaller than the 

computed velocities. 

The differences found between the experimental and numerical 

results are thought to be caused by two flow phenomena present in the 

experiments. In the first place, the flow in the experimental model 
is not fully two-dimensional but also three-dimensional effects are 

found. This is observable from the axial velocity profiles in Fig. 
3.11 , where the integrals of the experimental velocity profiles over 

the different cross-sections are not constant and decrease for loca
tions downstream the step. A second phenomenon present in the experi

ments, is the occurrence of spatial flow instabilities downstream the 
step. In Fig. 3.12 the measured axial velocities at several axial 

locations downstream the step at y=h, are plotted as a function of 

time. At axial locations up to 7h, the fluctuations are small and 

random. From the locations 9h to 21h, the amplitude of the fluc

tuations increases considerably and a mean frequency of about 0.25Hz 
is found. This corresponds to a Strouhal number, defined as Sr=fh/U0, 

of about 0.125. A possible explanation for these flow instabilities 

lies in the shape of the velocity profiles near the reversed flow 

region. These profiles feature points of inflection, from which it is 

known (Schlichting,1979) that they are connected with the so-called 

Tollmien-Schlichting waves. 

Since spatial flow instabilities are described by the unsteady 

Navier-Stokes equations, also an atteapt was made to simulate the 
instabilities found in the experiments, by solving the same problea 

with the time dependent solution procedure described in chapter 2. 

The time was made dimensionless with a characteristic time T=h/U =1. 
0 

First, the transition of the flow starting fro• rest was siaulated. 
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Fiq. 3.12 : Measured axial velocity (arbitrary units) as a function 
of tiae for several locations on the axis y=1h for the flow over a 
aqua.re step (Re=660). 



-70-

After 2 Euler implicit timesteps to damp the oscillations related to 

the steep jump in the flow induced by the initial value, 118 Crank

Nicolson steps with a timestep 6t/t=0.5 were performed. The solution 

converges only very slowly to a steady state, which is not yet 

reached after 120 timesteps (t/t=60). No spontaneous oscillatory 

behaviour of the flow was found. Similar to the triggering of the 

vortex shedding behind a circular cylinder (chapter 2), the cross

sectional velocity component of the step was set to a value of o.1u0 
during one timestep starting from the steady state solution of the 

problem. In Fig.3.13a, the streamfunction contours are given for 

t/t=O, 12, 24, 36, 48 and 60. The distortion at t/t=0.5 induces a 
temporal splitting up of the large eddy downstream the step and the 

formation of a small eddy at the opposite side of the channel. At 

t/T=O 

t/T=12 

t/T=24 

t/T:36 

t/T=48 

t/T=60 
a 

I y=1h 
11 

a 
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Fig. 3.13 : Time dependent solution of the flow over a square step 
with a distortion at t=0.5T for Re=800: a) Streaafunction contours. 
for t=O, 12, 24, 36, 48 and 60. b) Calculated axial velocity 
component as a function of time in several points on the axis y=1h. 
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Fig. 3.14 : Flow over a square step with perturbed inflow condition 
(u=U0 (1+o.02sin(2wft)) : 
Calculated axial velocity component as a function of time in several 
points on the axis y=2h. 
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t/t=60 (after 120 timesteps) the initial state is reached aqain. In 

Fiq.3.13b, the axial velocity component at x=S, 10 and 15h is plotted 

as a function of time. They clearly do not show the periodic oscilla

tions and spatial qrowth as found in the experiments. Therefore, also 

the sensitivity of the flow field for perturbations in the inflow 

velocity was determined. For this purpose, the parabolic inflow 

profile was multiplied by a factor (1+o.02sin2wft). The frequency f 

was taken to be equal to the frequency of the flow instabilities 

found in the experiments. After a transition from the steady state a 

periodic solution is now found. In Fiq. 3.14, the axial velocity is 

qiven as a function of time for several locations at the centerline 

of the channel. The oscillations found have the same frequency as the 
perturbation of the inflow condition. A growth of the amplitude of 

the oscillations is found up to 5 step heiqhts downstream the step, 
whereafter the amplitude decreases aqain and the distortion becomes 

less sinusoidal. If the frequency of the inflow perturbation is 

doubled, almost the same features are found. The amplitude of the 
oscillations is then found to be slightly smaller in maqnitude and 
the frequency again is equal to the frequency of the inflow 

perturbation. 

3.2.4. Discussion. 

From the observations made from the computations for different 
outflow conditions and channel lengths in section 3.2.2, it is con

cluded that the stress-free outflow condition exhibits less upstream 

influence than the fully developed outflow condition. Furthermore it 

is found that at a Reynolds number of 400 an outflow channel length 

of 15h combined"with stress-free outflow conditions gives a predic

tion of the velocity and pressure distribution which is not different 

from predictions obtained from calculations where a larqer outflow 

channel is used. Stress-free outflow conditions seem therefore fa

vourable especially when the outflow boundary is chosen at a rela
tively short location downstream the step. It is assumed that also 
for unsteady flow calculations beinq described in the next section, 

the stress-free outflow conditions have the same advantaqe. This'is 

confirmed by the calculations of the vortex sheddinq behind a circu

lar cylinder as described in the previous chapter, where the wave in 
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the streaalines leaves the computational domain without beinq inf lu

enced by the outflow boundary condition. 
Assuminq that the differences between the calculations with 

different mesh coarseness will be smaller when further mesh-refine

ment is applied, it is justified to state that the finest mesh is 
fine enouqh to approximate the steady velocity and pressure distribu

tion for this step confiquration. 
Obviously the location of the step is so far from the inflow 

that orily little influence of the inflow condition on the velocity 

and pressure distribution is found downstream the step. It is clear 

that this conclusion only holds if the inflow channel is long enouqh. 

It is disputable to extend this conclusion to the unsteady flow 
confiquration. As observed from the calculations with sliqhtly per

turbed inflow conditions, these small perturbations may lead to 

relatively large disturbances downstream. 

Although a more extensive study of the influence of the step 
geometry is needed to give a more solid conclusion, it can be assumed 

that, as far as the area reduction of the stenosis is chosen realis
tically, the modelling with a square step will not give significantly 

different characteristics as when geometrically more realistic models 

of the stenosis are used. For quantitative analyses, however, the 
geometry of the stenosis must be taken into account. Also with 

respect to the development of post-stenotic flow instabilities, the 
shape of the stenosis modelled is of interest (Yongchareon and Young, 
1979). 

Similar to the flow over backward facinq steps (Goldstein et 
al., 1970, Denham and Patrick, 1974, Thomas et al., 1981, Durst and 
Tropea, 1982, Ecer et al., 1983 and Armaly et al., 1983) the length 
of the recirculation zone downstream the step is almost proportional 

to the Reynolds number, but is found to be about 3h larqer in magni

tude for the entire range of the Reynolds number. This larger reat
tachment lenqth for the flow over a square step is probably a result 

of the direction of the velocity at the step location. In the back
ward-facing step geometry, the flow near the step location has an 
axial direction, whereas in case of the square step geometry used 

here, this flow is directed to the upper wall of the channel, due to 

the influence of the front face of the step, acting as an obstruction 
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in the flow. Besides, the reattachment lenqth of the flow over back
ward-facing steps not only depends on the Reynolds number but also on 
the boundary layer thickness at the step (Goldstein et al., 1970), so 
a qualitative comparison of these reattachment lengths with those 
found in this study is difficult. 

The length of the reversed flow reqion is thought to be a aore 
suitable paraaeter to describe the flow downstream a step than the 
reattachment length. The former parameter keeps its physical meaninq 
in case of unsteady flow analysis. This in contrast with the stream
lines , and thereby the reattachment length, that are difficult to 
interpret for unsteady flow. 

Furthermore, relatively good agreement exists between the axial 

velocity profiles obtained from the experiments and calculations. The 
flow instabilities that occur in the experillents show resemblance 
with the poststenotic flow disturbances with discrete oscillation 
frequency reparted by Ahmed and Giddens (1983a'b) • Although a spa

tial (downstream) growth of inflow perturbations is predicted, the 

flow instabilities could not be simulated satisfactorily by solving 
the time dependent Havier-Stokes equations. It is not clear whether 
further mesh refinement and smaller tiaesteps are needed, or that the 
three-dimensional effects in the experiments have to be taken into 

account to simulate the flow instabilities with the finite element 
approximation. 

3.3. Unsteady flow oyer a step. 

3.3.1. Introduction. 

In this section the unsteady flow over a square step is analy
sed. This is motivated by the fact that the physioloqical flow rate 
strongly varies with time (see chapter 1). The same geometry as in 

the steady flow analysis is used. In section 3.3.2 the fully develop
ed unsteady flow in a straight channel is dealt with, scaled upon the 
situation in the collllOn carotid artery. The dimensions and flow rate 
are adopted from the study of Ku (1983), who studied the physiologi
cal flow in an experimental model of the carotid artery bifurcation 
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(see also chapter 1). The results of the fully developed flow calcu

lations then are used as inflow condition for the computation of the 

time-dependent flow over a square step, simulating a 25\ stenosis in 

the common carotid artery (section 3.3.3). In particular the axial 

velocity profiles and the development of the induced reversed flow 

regions during the flow cycle are analysed and compared with data 

following from a quasi-static model of the flow. Finally in section 

3.3.4, the unsteady flow calculations are validated with laser

Doppler measurements for the case of a sinusoidal flow with a static 

component 

3.3.2. Unsteady flow in a straight Channel. 

In order to obtain fully developed inflow conditions for the 
calculation of the unsteady flow in a stenosis model, the fully 

developed flow in a straight channel is computed. The geometry and 

flow rate were scaled on the flow in the common carotid artery (see 

chapter 1). The channel has a length of 7.5 times its height. The 

Reynolds number varies between 175 and 650 with a mean of 250, the 
frequency parameter a (=0/(2s/vT) ) is equal to 4. Velocity profiles 

of the fully developed flow were computed by imposing a time depen

dent uniform axial velocity with zero cross-sectional velocity compo

nent corresponding with the flow given in Fiq.3.15a. Fully developed 

flow conditions (on=O, ut=O) were used at the outflow of the channel. 

The calculations were performed with a Crank-Nicolson time integra
tion with 100 timesteps per cardiac cycle and an implicit start of 
the first cycle. 

Because of the relatively long period of almost steady flow in 
the diastolic phase, one cardiac cycle is sufficient to damp distur

bances induced by the transition from the initial state. 

The calculated outflow, axial velocity profiles in the third 

cardiac cycle are given in Fig.3.15b for several insta~ts of time 

(see Fig. 3.15a) in the systolic and diastolic phases of the flow. 

During the systolic acceleration phase, the axial velocity profile 
develops to a flattened profile. The maximum velocity value then is 

about three times larger than the maximum of the parabolic profile at 

the end of the diastolic phase. In systolic deceleration, a short 

period with reversed flow at the walls is observed. In the diastolic 



y/D 

0 

systole 

t/T 

3 

0 

0.32 

20 

D.p/Po 

10 

systole 

2U 
i-.e. 

systole 

-76-

diastole 

0.5 t/T 

a 

diastole 
1 

y/D: 

0 
0.40 t/T 

0.96 

b 

i 

1 diastole 

c 

Fig. 3.15 : Fully developed physiological flow in a straight channel 
(175<Re<650, u=4) : 
a) Flow as a function of tiae (Ku,1983). 
b) Fully developed axial velocity profiles for systolic and diastolic 
flow phase, respectively. 
c) Pressure drop over a channel with a length of 10 times its height. 
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phase, the axial velocity distribution slowly develops to a parabolic 

profile again. In Fig. 3.15c the pressure gradient at the outflow of 

the channel is given as a function of time. To enable a comparison 
with the calculations of the unsteady flow over a step (see next 

section) this pressure gradient is scaled such that it corresponds 

with the pressure drop over a channel with a length of 10 diameters. 

In agreement with the observations made by Womersley (1955), the 

systolic pressure gradient pulse precedes the flow pulse by about 

half the pulse tiae. 

3.3.3. Ynsteady flow over a square step. 

The numerical two-dimensional stenosis aodel consists of a 

straight channel with a height of 4h and a length of 40h. The steno

sis, modelled with a square step with a length and height of 1h, is 

located at 9 step heights from the inlet. The axial velocity profiles 
of the fully developed flow calculation described in the previous 

section, were used as inflow condition. Similar to the steady flow 
calculations, a stress-free outflow condition was used. The applied 

finite element mesh is given in Fig. 3.16. Since a more coaplicated 

velocity field with relatively large velocity gradients was expected, 
the mesh has been refined with respect to the steady flow calcula

tions. Moreover, the outflow length has been enlarged with 10 step 

heights. Again a Crank-Nicolson time integration with 100 tiaesteps 
per cardiac cycle and an implicit start in the first calculated cycle 
was used. 

In Fig.3.17 the calculated axial velocity profiles for several 

cross-sections of the channel are given at various instants of time 
in both the systolic and diastolic phases of the flow. During the 

systolic acceleration of the flow (t=OT - t=O.OST) a reversed flow 

region is formed downstream of the step and flattened axial velocity 

Fiq. 3,16 : Finite eleaent mesh as used in the unsteady flow 
calculations (660 elements, 1445 nodes). 
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Fig. 3.17 : Axial velocity profiles at several times in both the 
systolic and diastolic phase of the unsteady flow (175<Re<650, tt=4l. 

profiles are observed at all cross-sections. During the systolic 

deceleration (t=0.08T - t=0.32TJ a complex flow field arises with 
reversed flow regions at both the step-side and non-step-side walls. 
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These reqions aove downstream and disappear at the end of the systo

lic phase. In the diastolic phase a gradual recovery to a steady flow 

takes place. 
A more detailed picture of the appearance and behaviour of the 

reversed flow regions is given in Fig. 3.18. Here the axial locations 

of reversed flow (i.e. negative wall shear stress) at the step-side 

wall as well as the non-step-side wall are given as a function of 

time during the entire cardiac cycle. For clearness the flow curve is 

given at the top of this figure. From this figure it is observed that 
at the beginning of the systolic acceleration, only one reversed flow 

region, starting from the downstream face of the step, is present 

which has a length of about Sh. In the following this reversed flow 

region will be denoted as the primary step-side reversed flow region. 

During the onset of the systolic acceleration (t=0.01T), this region 

disappears completely after which it recovers again and grows to a 

length of about 7h at the end of the systolic acceleration. During 

the systolic deceleration the primary step-side reversed flow region 

grows in length and covers a small region with positive axial veloci

ty. At the same time a primary non-step-side reversed flow region 

appears starting at about the same axial location as where the prima
ry step-side reversed flow region ends c~7h). Subsequently, both a 

secondary step-side and non-step-side reversed flow region appear, 

leading to the situation in which alternating reversed flow regions 

exist at both walls. During the onset of the diastolic phase all 

reversed flow regions except for the primary step-side region disap

pear. Another striking phenomenon at the end of the systolic phase 

and the onset of the diastolic phase is the splitting up of the 

primary step-side reversed flow region during the small flow accele
rations. The most distal separated reversed flow regions then move 

downstream and disappear later on. At the same time the primary step
side reversed flow region recovers again. 

The length of the step-side reversed flow region is also deter
mined from the steady flow calculations given in section 3.3.3. Since 

this length appeared to be almost proportional to the Reynolds num
ber, the quasi-static length curve in Fig. 3.18 follows the flow 

curve. This curve only matches the curve of the primary step-side 

reversed flow region at the end of the diastolic phase of the flow. 
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Fig. 3.18 : Zones with negative axial velocities at both the step
side and opposing-side wall as a function of time during one flow 
cycle of the unsteady flow over a square step (175<Re<650, a=4). 

This indicates that the instationary inertial effects induce a much 

more complicated flow field than expected from a quasi-static model. 

Finally the pressure drop over the channel is given as a func

tion of time during the cardiac cycle and compared with the pressure 

drop as obtained in a channel without a step (Fig. 3.19). No essen

tial differences are found between both cases. Hence, the pressure 

drop fluctuations induced by the unsteady flow appear to be much more 

important than the pressure drop caused by the step. The latter seems 

to have only a local influence on the pressure distribution. 
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Fig. 3.19 : Pressure drop over a straight and stenosed channel as a 
function of tiae during one period of the unsteady flow (175<Re<650, 
a.=4). 

3.3.4.Experimental yalidation. 

As in the steady flow analysis, a comparison is made with 

laser-Doppler measurements performed in an experimental model (Van de 

Vosse et al.,1985) to validate the finite element analysis. In Fig. 

J.21a the flow as used in the experiments is given as a function of 

time for two flow cycles. This flow nearly is sinusoidal with a mean 

Reynolds number (Re=U0D/v) of about 550 varying from about 200 up to 

800. The cycle time T was taken to be such that the frequency parame
ter a. (=D/(2w/vT)) amounts to about 16. This is 4 times larger than 

used in the calculations with the physiological flow rate in order to 

obtain a better adjustment with the systolic flow pulse. To increase 

the measurement accuracy, the experiments were repeated 10 times, 

from which after averaging, the 95\ confidence intervals were deter

mined. The computations were performed on the mesh of Fig. 3.16 with 

a Crank-Nicolson time integration with 70 timesteps per cycle period 
of the flow. The inflow velocity profiles in the computation were 

taken equal to the measured velocity profiles, whereas stress-free 

outflow conditions were applied. 

In Fig. 3.20 the measured axial velocity profiles for several 

cross-sections are given. The 95\-confidence intervals are indicated 

with dots. The inlet profiles resemble qualitatively the profiles of 



-82-

·10 -6 1 3 5 7 9 11 13 17 23 

D ~ n DPPPP~~ } ~ ~ L_ 

t/T=O 

D I) n PDl)Di/DD ~· ·~ ·~ 
t/T=l/6 

D t) n P)JJJJ) !) l)t= 
t/T=l/3 

D D n QJJ))J) D i)c 
t/T=1/2 

D D n P~?:JJ~ ~ D ~ 
t/T=2/3 

~ D n PPPPJ)~<tp 1V ~ c 
t/T=S/6 

2U 
t-S2.i 

Fig. 3.20 : Axial velocity profiles at several times in both the 
acceleration and deceleration phase of the experimental flow over a 
square step (200<Re<800, a=16). 

a fully developed oscillating flow between two flat plates (see 

chapter 2) superimposed to a steady parabolic profile. The suppressed 

steady component is so large that no reversed flow occurs at this 

site, but the phase-lag between the velocities near the wall and in 
the center of the channel illustrates the unsteady effect. At an 

axial location of 1h downstreaa the step, the reversed flow is alaost 

stationary with in the deceleration phase a tendency to forward flow 

near the wall. The region of reversed flow moves slightly towards the 
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center of the channel in this period of time. At locations up to 

x=9h, the flow is characterized by a gradual growth and break-down of 

the step-side reversed flow region. At the non-step-side a reversed 

flow region is formed in the deceleration and resolved in the accele

ration phase. At axial locations from 11h up to the outflow of the 
channel, a sudden change in the velocity profiles is found at the 

onset of the deceleration of the flow. This change is accompanied 

with a significant increase of the magnitude of the confidence inter
vals, pointing to flow instabilities. In the acceleration phase, the 

flow stabilizes again, resulting in smooth profiles with relatively 

small confidence intervals at the end of the acceleration. The pro

files at the axial location 23h, show a recovery towards the develop

ed profiles as measured at the inflow, except for the period of time 

at the end of the deceleration and the onset of the acceleration. 

Bere the outflow profiles are disturbed as a result of the instabili
ties generated upstream. Furthermore, it is observed that at the 

onset of the acceleration, the total flow along the outflow cross

section has decreased with respect to the inflow, pointing to three

dimensional effects in the experimental model. 

In Fig. 3.20, also the calculated velocity profiles are given. 

A relatively good ag:te~tmt with the expe:dment& is found during the 
t ' , ·, , . ' ' ' . ~ 

entire flow cycle as' fa:f as: axial locatio~s. up\ to 9h downstream, the 

step are considered •. R~!atively large differences are found there and 
then where flow instabilities occur in,the experiments. 

For a more detailed comparison of the zones of reversed flow, 
in Fig. 3.21 the locations with negative axial velocities close to 

the walls are given as a function of time for both the experimental 

(Fig. 3.21b) and numerical (Fig. 3.21c) models. In the experiments a 
gradual increase of the primary step-side reversed flow region from 

about 2h at the onset of the acceleration to about 12h half-way the 

deceleration, is found. The same characteristic is found in the 

computations, although the length of the reversed flo~ region is 

smaller during the entire flow cycle. Half-way the deceleration of 
the flow a primary non-step-side reversed flow reqion is formed at 

about the same axial location where the primary step-side reqion 

ends. This non-step-side region resolves at the end of the decelera

tion phase of the flow. In the computations, this region is formed 

earlier in time and continues to exist for a lonqer period of time. 
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Fig·. 3.21 : Zones with negative axial velocities at both the step
side and non-step-side wall as a function of time during two flow 
cycles of the experiaental flow over a square step (200<Re<800, 
a=16). 

The secondary and even tertiary reversed flow regions, found during 

the deceleration phase of the flow in the numerical model, are not 

observed in the exp~riments, probably because of the flow instabili

ties and three-dimensional effects ocurring in that period of time 
and at those locations. Besides, the splitting-up of the primary 
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step-side reversed flow reqion is observed to start earlier in time 

in the computations than in the experiments. 

Finally, it is remarked that the characteristics of the calcu

lated pulsating flow are quite similar to those of the calculations 
with the physiological flow rate during the systolic phase (cf. Fig. 

3.18 and Fig. 3.21). 

3.3.5. Discussion. 

Comparing the steady and unsteady analyses of the flow over a 

square step the following comments are made. In the steady flow case, 

an almost proportional relation is found between the length of the 

reversed flow region downstream of the step and the Reynolds nuaber. 

This completely differs from the unsteady flow over a step which 
leads to a relatively complex flow field. Quasi-static modelling 

appeared then to be only valuable for the end of the diastolic phase. 

During the systolic acceleration, the reversed flow region downstream 

of the step grows gradually but is significantly smaller than expec

ted from a quasi-static analysis. During the systolic deceleration 

this region splits up and a reversed flow region is formed at the 

non-step-side wall and subsequently secondary and even tertiary 

reversed flow regions are formed at both the step-side and non-step

side walls. These reversed flow regions disappear during the diasto

lic phase of the flow. Only the primary step-side reversed flow 

region remains to exist although it almost completely vanishes at the 

onset of the systolic acceleration, where the instationary inertia 

terms seem to dominate the advective terms. 

Quite similar characteristics are found in the calculation with 
the experimental pulsatile flow curve. With respect to the comparison 

with the experimental data, the influence of the three-dimensionality 
and instabilities in the experiments are even more confusing than in 
the steady flow analysis. A qualitative agreement is found between 

the experiments and the calculations for both the primary step-side 

and non-step-side reversed flow reqions. Discrepancy is found down
stream from the regions where flow instabilities and three-dimen
sional effects occur in the experiments. 

The reqions with negative axial velocities (i.e. negative wall 

shear stresses) exhibit well definable characteristics during the 
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acceleration and deceleration phases of the flow and are suitable to 

qualify the flow downstream a stenosis. Therefore, they will also be 

used in the next section to describe the two-dimensional steady and 
unsteady flow characteristics in bifurcation models. 
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CHAPTER 4: PULSATILE FLOW IN TWO-DIMENSIONAL CAROTID BIFURCATION 

MODELS. 

4.1. Intro4uction. 

The numerical analysis of the flow in bifurcation models has 
been the subject of many investigations. Until now, fully three
dimensional time-dependent computations are limited by the required 

computer capacity. As far as we know, fully three-dimensional compu
tations have only been reported by Wille (1984), who simulated the 
flow inside a model of the aortic bifurcation under steady flow 
conditions (Re=10) by means of a finite element method. In consequen

ce, only two-dimensional numerical analyses will be reviewed here. 
They will be compared with experiments in three-dimensional configu
rations to get an idea of the relevance in physiological applica

tions. 
Computations of steady flow in two-dimensional bifurcation 

9eo11etries are reported by Kandarpa and D&vids.(1976), Kawa9uti and 
Hamano (1979), Wille (~980), Liepsch et al. {1982) and Friedman and 
Ehrlich (1984). From these steady flow analyses, the following cha-. 
racteristics can be derived : 
i ) boundary layer separation along the non-divider-eide wall, 

resulting in a revereed flow region which extends into the 
daughter branch(e&) of the bifurcation. 

ii the length of this reversed flow region increases with in• 
creasing Reynolds nUllbers and depends on the flow rate or area 
division ratio (Kandarpa and Davids, 1976, Rawaguti and Haaano, 
1979, Wille, 1980 and Liepsch et al., 1982). The localization of 

the upstream end of this region for a given geometry, flow rate 
and area division ratio , however, is nearly unaffected by the 
Reynolds number (Randarpa, 1976). 

iii) at the divider side wall a peak in shear stress is observed at 
the apex which drops to an asymptotic value in the downstream 

direction (Kandarpa and Davids, 1976 and Friedman and Ehrlich, 
1984). 
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iv reduction of the branch angles diminishes the reversed flow area 

at the non-divider-side wall, but does not significantly affect 

the peak apex stress values (Kandarpa and Davids, 1976, Wille, 

1980 and Kawaguti and Hamano, 1979). 
These steady flow observations were confirmed by the results of two

dimensional experiments of Mark et al. (1977) and Liepsch et al. 
(1982). 

The importance of unsteadiness of the flow has been pointed out 

by Friedman et al. (1975), O'Brien et al. (1976), Fernandez et al. 
(1976), Ehrlich and Friedman (1977), Florian and Perktold (1982), 

Perktold and Gruber(1983) and Perktold and Hilbert (1986), all of 

whom studied numerically the flow in two-dimensional bifurcation 

models under both steady and unsteady flow conditions. From these 

studies it follows that the unsteadiness of the flow implies temporal 
variations in the localization and length of the reversed flow 
regions, and in the wall shear stress values, which are significantly 

larger than their mean values. These variations depend on the tempo
ral variations of the flow rate distribution. The experimental study 

of two-dimensional unsteady flow in bifurcation geometries of Mark et 
al. (1977) partly confirms the above mentioned observations. 

The most important shortcoming of two-dimensional analyses iS 
the neglig~nce of secondary velocity coinponentS occurring in three

dimensional geometries. Until· now, insight into the characteristics 
of this secondary flow field and its influence on the axial velocity 

distribution in bifurcation geometries could only be obtained from 
experimental studies. Steady flow studies were performed in symmetri

cal (Ferquson and Roach, 1972, Rodkiewicz and Roussel, 1973, Brech 

and Bellhouse, 1973, Fu~restein at al., 1976 and Siouffi el al., 
1984) and asymmetrical (LoGerfo et al., 1981, Liepsch et al., 1981, 

Karino et al., 1982, Bharadvaj et al., 1982 and Zarins et al., 1983) 
models of planar (all branches located in one plane of symmetry) 

bifurcation geometries. Unsteady flow in three-dimensional bifurca

tion models has been studied by Ferguson and Roach (1972), Brech and 

Bellhouse (1973), LoGerfo (1981), Walburn and Stein (1981), Battan 
and Nerem (1982), Ku and Giddens (1983), Ku (1983), Siouffi et al. 

(1984) and Ku et al. (1985). An additional characteristic of three

dimensional flow, as compared to two-dimensional flow, is the helical 
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flow pattern in the daughter branches induced by the secondary velo

city distribution, which is found to have properties similar to those 

observed in three-dimensional bend flow (Brech and Bellhouse, 1973, 

LOGerfo, 1981). Because of this secondary flow, fluid from the non

divider-side wall of the daughter branch, which has a small or even 
negative axial velocity component at the entrance, is transported to 
the center of the branch. Fluid from the divider-side wall, which has 
a relatively large axial velocity component, is transported along the 
walls of the branch towards the non-divider side. It is clear that 
this flow phenomenon, related to the centrifugal forces acting at 

this site of the bifurcation, influences the axial velocity distribu
tion in the plane of SYJllletry and that deviations from two-dimen
sional models can be expected. Still, the axial velocity and wall 
shear stress distributions show characteristics similar to those 
described above for two-dimensional flow. 

The influence of the presence of a small stenosis in bifurca
tion geometries has been studied less extensively. Clark et al. 

(1983) derived numerical approximations of the pulsatile flow in a 
two-dimensional bifurcation geometry with stenoses of 0\, 25\ and 50\ 

area reduction proximal to the flow divider of a symmetric branching 
and observed significant differences in velocity, pressure and wall 
shear stress distribution. The presence of a stenosis causes a large 
increase in wall shear stress and negative pressure excursion at the 

site of maximal area reduction, which increases with the severity of 
the stenosis. Gruber and Perktold (1983) only studied the influence 

of severe stenoses (>75\ area reduction) in the femoral artery by 

means of a two-dimensional finite element analysis. Laser-Doppler 
measurements of steady axial velocity profiles in the plane of sym
metry of a model carotid bifurcation, havin9 a qeometry as proposed 
by Bharadvaj et al. (1983), have been reported by Corver et al. 
(1985). In these experiments it was found that a smooth filling-in of 

the non-divider side of the internal carotid sinus exh~bits only 
small deviations in axial velocity profiles as compared to measure
ments in a non-stenosed geometry. 

Most of the three-dimensional experimental studies mentioned 
above indicate that the results of two-dimensional analyses have to 

be interpreted with care, when applied to the physiological situation 
in-vivo because secondary flow is not considered. In spite of this it 
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is assumed that two-dimensional analyses do give qualitative insight 

into some important characteristics of the axial velocity and wall 

shear stress in the plane of sy11111etry of the flow pattern in three

dimensional geometries. 

In section 4.2 of this chapter, some general properties of 
pulsatile flow in a two-dimensional asymmetric bifurcation (Bharadvaj 

geometry) will be described. The description will be based on the 
computed axial velocity profiles, wall shear stresses and reversed 

flow regions in several phases of the cardiac cycle. Then in section 
4.3 the calculations will be validated by means of a comparison with 

the results of Laser-Doppler measurements of unsteady flow in a two

dimensional experimental model. Furthermore, a comparison will be 

made between the axial velocity profiles as recorded in the plane of 

the bifurcation of a three-dimensional model, and the results of two
dimensional calculations. Besides, in section 4.4, observations made 

on the influence of a small stenosis on the flow pattern in two
dimensional bifurcation geometries are described and discussed. In 
the concluding discussion (section 4.5), the results obtained from 

the computations and measurements will be discussed with emphasis on 

the relevance to the physiological situation. 

4.2. General properties of pulsatile flow in a two-dimensional model 

of the carotid artery bifurcation. 

4.2.1. Introduction. 

In order to ·describe the general flow field in a two-dimen
sional model of the carotid artery bifurcation, the time-dependent 

Navier-Stokes equations are solved for the bifurcation geometry 
described by Bharadvaj et al. (1982) (see chapter 1). The geometry 

and mesh distribution as used in the computation are given in Fig. 

4.1. , where the dimensions are scaled with regard to the diameter 
CL1=DJ of the co111110n carotid artery. 

The inflow conditions used were the full~ developed velocity 
distributions in a straight channel as described in the previous 

chapter with the same mean Reynolds number (Re=250J and the same 
frequency parameter (tt=4). Stress-free outflow conditions for both 

the internal and external carotid arteries were imposed, whereas no-
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Fig. 4.1 : Geometry and mesh of the two-dimensional bifurcation 
model after Bharadvaj (700 elements, 1511 nodes). 

slip conditions were used at the walls. The solution of the steady 
Navier-Stokes equation for the flow rate value at the end of diastole 

was used as initial condition for the time-dependent calculation. A 
Crank-Nicolson time inteqration scheme (see chapter 2) was used with 

a timestep equal to 0.01T (i.e. 100 timesteps in one cardiac cycle). 

From the flow rate curve (Fig. 4.4a) it is observed that the flow in 

the internal and external carotid arteries mimics the total flow rate 

curve and that the difference in flow rate between the internal and 
external carotid arteries is constant during the entire flow cycle, 

except for a small period of time during systolic deceleration, where 

both flow rates are almost equal. The mean flow division ratio 

between the internal and external carotid arteries was found to be 
about 0.60:0.40. 
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In the remainder of this section detailed properties of the 

calculated flow field in various parts of the bifurcation are des

cribed by means of the axial velocity profiles, the wall shear stres

ses and the distribution of the reversed flow regions during the 
cardiac cycle. 

The wall shear stresses were calculated from the velocity 

derivatives au.fax. Ci=1,2 and j=1,2) which were calculated from the 
. 1 J 

velocity with the use of the following formula 

aui = ~ ~ 
axj axj k=1 

N 

u.k"'k = I: 
1 1 k=1 

i,j=1,2 {4.1) 

with "ik the basis functions as used for the finite element approxi

mation, uik the nodal velocity in node k, and N the number of nodal 
points. In order to obtain the velocity derivatives in the nodal 
points, formula (4.1) was applied element by element. Since these 

velocity derivatives are discontinuous over the element boundaries, 

an averaging over the elements, in which the node concerned is loca

ted, was performed to obtain uniquely defined values in the nodal 

points. Since on the boundary of the elements, the derivatives of the 

basis functions are linear functions, the velocity derivatives were 
only evaluated in the vertices of the elements. The wall shear stress 

lw=v{3ut/anJ at the midpoints of the elements (node k) was then 

calculated from 

au 
v.::.:t. = v 
an 

2 2 
[ [ 

i=1 j=1 
(4.2) 

with t=[t 1 ,t2]~ the tangential vector and n=[n1,n2]T the outer nor

mal, both defined by the co-ordinates of the vertices. The wall shear 

stress was scaled with the value 6vu0/o, which is equal to the wall 

shear stress for a parabolic profile in the common carotid artery at 

a flow rate corresponding with the mean Reynolds number. 

Axial velocity profiles were calculated at 4 equidistant CO.SD) 
cross-sections in the common carotid artery starting at 0.5D from the 
apex of the flow divider. In the internal carotid artery 9 cross

sections at distances of 0.25D apart, 2 cross-sections at distances 

of 0.5D apart and 2 cross-sections at a distance of 1D apart were 
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used. Finally, in the external carotid artery, 5 cross-sections at 

distances of 0.5D apart and 2 cross-sections at a distance of 1D 

apart were used. In Fig. 4.2, the axial velocity profiles are qiven 

for t/T=0.00 (end diastole), t/T=0.08 (peak systole) , t/T=0.16 

(half-way systolic deceleration) and t/T=0.32 (end systole), respec

tively. As the diastolic flow is almost stationary its axial velocity 

profiles can be well described by the transient from the profiles 

qiven for t/T=0.32 to those given for t/T=0.00. In Fiq. 4.3 the wall 

shear stresses for the various walls are qiven as a function of x/D 

for the times t/T=0.00 (end diastole), t/T=0.08 {peak systole), 

t/T=0.16 (half-way systolic deceleration) and t/T=0.32 (end systole). 

In these graphs, the wall shear stresses of the internal-side wall at 
the common carotid artery and of the non-divider side-wall at the 

internal carotid artery are marked with circles in Fiq.4.3a, the wall 

shear stresses of the external-side wall and the non-divider-side 

wall of the external carotid artery are marked with circles in Fiq. 

4.3b. The wall shear stresses at the divider-side walls at the inter

nal and the external carotid arteries are marked with asterisks in 

Fig. 4.3a and 4.3b, respectively. 

4.2.2. Detailed description of the flow field. 

The velocity profiles (Fig. 4.2) at the two most upstream 

cross-sections do not show significant differences with the fully 

developed inflow velocity profiles. These profiles are almost parabo

lic at the end of the diastolic phase (t/T=0.00) of the flow. Then 
the velocity rapidly increases during systolic acceleration resulting 

in a flattening of the profiles. During systolic deceleration the 

profiles show a tendency to flow reversal at both walls and finally 
develop again to the parabolic shape at the end of the diastolic 

phase of the flow. In this entrance region, the wall shear stress 
(Fig.4.3) is observed to be equal for both the internal- and exter

nal-side walls. At the end of diastole (t/T=0.00) its value is about 

0.7. This equals approximately the value of a parabolic profile at 

end-diastolic flow rate. At peak systole (t/T=0.08) the wall shear 

stress is about 7 times hi9her and about twice as high as can be 
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Fig. 4.2 : Axial velcity profiles for t=O.OOT, t=0.08T, t=0.16T and 
t=0.32T respectively as calculated in the two-dimensional Bharadvaj 
qeometry (175<Re<650, u=4). 

expected from a parabolic profile at peak systolic flow rate. Durinq 

systolic deceleration (t/T=0.08 to t/T=0.32) the wall shear stress in 

the entrance region of the common carotid artery rapidly recovers its 

end-diastolic value. 
At the cr·oss-section located 10 proximal to the apex, the axial 

velocity distribution is influenced by the widening of the common 
carotid artery resulting in reversed flow at the walls and a decrease 

of the wall shear stress at the end of the systolic deceleration. 
This phenomenon is found even more pronounced at the cross-section at 

O.SD upstream of the apex. As the common carotid artery divides 
asymmetrically, the reversed flow occurring at the internal-side wall 

is larger and covers a larqer region than that at the external-side 

wall. As a result a larqer decrease of the wall shear stress is found 

at the internal-side wall. During diastolic flow the reversed flow, 
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caused by the widening of the common carotid artery, is small. During 

systolic acceleration no reversed flow is found at all but a rela

tively large decrease of the wall shear stress can be observed, 

whereas during systolic deceleration the reversed flow in this region 

reaches its maximum value and a negative wall shear stress is found. 

The distribution of the wall shear stress along the wall of the 

widening, however, is globally the same as at peak systole. The 

upstream influence of the apex of the flow divider is hardly notice

able in the velocity profiles, even at the nearest cross-section. 

The flow in the internal carotid artery shows a relatively 

complex behaviour in place and time. At the end of the diastolic 

phase of the flow (t/T=0.00), the axial velocity in the carotid sinus 

features a region with small negative velocities at the non-divider 

side and positive velocities at the divider side of the cross-sec
tions. In the downstream direction these profiles develop to parabo

lic profiles similar to those found in the common carotid artery. In 

consequence, relatively large values of wall shear stress are found 

at the divider-side wall, rapidly decreasing in downstream direction, 

whereas relatively small or negative values are found at the non

divider-side wall. At peak systolic flow (t/T=0.08), the reversed 

flow vanishes and the profiles are more or less blunted, though the 

maxima of the profiles are still located at the divider-side wall. 

The wall shear stresses are relatively high at both the divider- and 

the non-divider-side walls. A small local maximum is observed in the 

most distal part of the sinus where the walls converge maximally and 
develop into the parallel wall section of the internal carotid ar

tery. During systolic deceleration (t/T=0.16) large differences in 

the axial velocities are found in the carotid sinus. Relatively large 

negative velocities with relatively large negative values of the wall 

shear stress occur at the non-divider-side wall up to 1.5D downstream 

of the apex. The region of reversed flow occupies up to 30\ of the 

local diameter and is associated with high positive velocities at the 
divider-side wall where a large peak is found in the wall shear 

stress. At the cross-section located 1.5D downstream of the apex, the 
reversed flow is located at the divider-side wall whereas positive 
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Fig. 4.3 Dimenionless wall shear stress along the common-internal 
(o) ,divider-side internal (*), common-external (o) and divider-side 
external(*) walls for t=O.OOT, t=0.08T, t=0.16T and t=0.32T 
respectively, as calculated in the two-dimensional Bharadvaj geometry 
(175<Re<650, u=4). 
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axial velocities are found on the non-divider sides of the cross

sections. The wall shear stress at this site shows a local minimum on 

the divider side and a rapid increase on the non-divider side both 

followed by a local maximUll in the converging part of the sinus. 

Downstream of the carotid sinus, the profiles gradually recover a 

parabolic shape. Near the end of the systolic deceleration phase 

(t/T=0.32), the axial velocity profiles in the carotid sinus become 

even more complicated. At the entrance of the sinus the axial veloci

ty profiles are characterized by a relatively large region with small 

negative velocities at the non-divider side wall, similar to the 

pattern at end-diastolic flow (t/T=0.00). At the cross-sections at 

0.75D to 1.50, however, the reversed flow region moves away from the 

wall, resulting in a-situation with negative axial velocities in the 

centre of the sinus. Further downstream the reversed flow region 

reattaches to the wall. Downstream of the carotid sinus the profiles 

recover to a parabolic shape. This recovery features a shift of the 

maximum of the profiles from the divider-side to the non-divider-side 

wall between JD and 40 downstream of the apex. In accordance, the 

wall shear stresses show complex spatial oscillations at both walls. 

The axial velocity profiles and wall shear stresses in the 

external carotid artery globally show the same characteristics as 

found in the internal carotid artery. Yet reversed flow is found at 

the non-divider side wall at the end of the diastolic phase of the 

cardiac cycle (t/T=0.00). This region, however, is smaller in both 

axial and cross-sectional directions and lower wall shear stresses 
are found. At peak systole (t/T=0.08) flattened velocity profiles are 

found with a maximum at the divider-side wall whereas -no reversed 

flow occurs. During systolic deceleration (t/T=0.16) flow reversal at 

the non-divider-side wall is found in the external ca~otid artery. In 
contrast to the internal carotid artery, at the end of systolic 

deceleration (t/T=0.32) the axial velocity profiles do not show a 

deviation of the reversed flow region from the non-divider-side wall. 
Furthermore, the local maxima in the wall shear stress, as found at 

the transition from the carotid artery sinus to the parallel wall 

section have no counterpart in the external carotid artery. 
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Although the four phases of the pulse cycle used to describe 

the variations of the velocity profile and the wall shear stress are 
thought to be characteristic of the changes that take place during 

the cardiac cycle, they do not give a complete picture of the complex 
flow properties during the entire cardiac cycle. More insight into 

these complex properties can be obtained from the development and 

break-down of the reversed flow regions. 

In Fig. 4.4 , the locations of reversed flow along the common

internal wall and the divider-side wall of the internal carotid 
artery are given as a function of time during one cardiac cycle. The 

flow rate curves for the common, internal and external carotid ar

teries are given at the top of this Figure to relate the properties 

of the reversed flow regions with the rate of flow. 
From Fig. 4.4 it may be concluded that during the second half 

of the cardiac cycle (t/T>0.5) a reversed flow region exists at the 

common-internal wall covering the region from the diverging part of 

the common carotid artery (x/D=3) to the distal part of the internal 
carotid sinus (x/D=S). This reversed flow region is resolved by the 

systolic acceleration of the flow (t/T=0.00). Shortly after the peak 
systolic flow rate (t/T=0.08), a new reversed flow region starts at 
the widening of the common carotid artery, which gradually grows in 

both the upstream and downstream directions. Half-way the systolic 

deceleration (t/T=0.20) this reversed flow region covers a small 

region of forward flow at the entrance of the internal carotid ar
tery. At the same time, reversed flows are observed in the co111110n 
carotid artery and at the distal part of the divider-side wall of the 

internal carotfd sinus. Subsequently, the reversed flow regions in 

the common carotid artery and the divider-side wall of the internal 

carotid artery vanish, whereas the reversed flow regions at the non

divider-side wall of the carotid sinus move in upstream direction. At 
the end of the systolic deceleration (t/T=0.32) the reversed flow 

region at the divider-side wall of the internal carotid sinus disap

pears, whereas the ~eversed flow region at the non-divider-side wal.l 
still moves in downstream direction. Furthermore, a new region of 

reversed flow is formed at the diverging part of the common carotid 
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Fia. 4.4 : Flow rate in the co .. on, internal and external carotid 
artery as a function of tiae and locations of flow separation along 
the internal carotid walls as computed in the two-diaensional 
Bbaradvaj geoaetry (175<Re<650, u=4}. 

artery. Similar to the formation of the reversed flow region after 
peak systolic flow, the formation of this new region of reversed flow 
takes place at the onset of a deceleration of the flow.. The two 
existing reversed flow regions at end systolic flow phase both move 
in downstream direction. During the third acceleratio~ of the flow, 
the most distal reversed flow region disappears, whereas the other 
reversed flow region is restricted to the central part of the carotid 
sinus. At the onset of the third deceleration of the flow, again a 
new reversed flow region is foraed at the diverging part of the 
common carotid artery. Meanwhile, the region of reversed flow in the 
carotid sinus disappears. Subsequ&ntly, the new formed reversed flow 
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region grows in downstream direction up to the parallel wall section 

of the internal carotid artery. This reversed flow region then does 
not undergo significant changes during the rest of the diastolic flow 
period. 

4.3. Experimental validation. 

i.3.1. Introduction. 

In order to validate the numerical model, laser-Doppler 

measurements have been performed in both a two- and three-dimensional 

model of the carotid artery bifurcation. In the two-dimensional 
model, axial velocity profiles at several cross-sections in the 

bifurcation are determined. The results of the measurements are 
directly compared with corresponding velocity profiles obtained from 

calculations performed on the basis of equivalent flow rate condi

tions (Rindt et al.,1987). This comparison gives a good insight into 

the possible shortcomminqs of the numerical method. The comparison 

with measurements in the three-dimensional model of the carotid 

artery bifurcation (Versteijlen,1985) has been carried out to obtain 

an insight into the value of the two-dimensional modelling of the 

flow in a three-dimensional bifurcation. To this end, the axial 
velocity profiles in the plane of symmetry are compared with those 

obtained from two-dimensional calculations. The comparison with the 

measurements in the two- and three-dimensional models will be des

cribed in the sections 4.3.2 and 4.3.3, respectively. In these sec
tions only little emphasis will be laid on the experimental method 
used. For a more extended treatment of this aspect, the reader is 

referred to appendix 3. In section 4.3.4, the results of the study of 
Ku (1983), who performed Laser-Doppler velocity measurements in a 

comparable but three-dimensional bifurcation geometry under the same 

flow rate conditions as in the two-dimensional calculations described 

in section 4.2, are used to relate the two-dimensional numerical 
results with fully three-dimensional experimental flow. 
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4.3.2. A comparison with measurements in a two-dimensional model. 

In the measurement section of the two-dimensional experimental 

model,a relatively long rectangular entrance channel with a height of 

1D and a width of GD was used. This ensured the flow proximal to the 

bifurcation to be fully developed with respect to the height direc

tion. The dimensions of the bifurcation in height direction corres

pond with the bifurcation geometry described in chapter 1. How

ever,the angle between the axes of the common and the external ca

rotid arteries was 30 instead of 25 degrees. Also relatively long 

outflow channels were used to ensure no upstream influence of the 

outflow configuration (see appendix 3). The flow rate, defined as the 

mean cross-sectional velocity times the diameter D, varied almost 

according to a sinus-function. owing to the non-linearities in the 

transference between the stop-cock movement, used to impose the 

unsteady component of the flow, and the final flow rate, no pure 

sinusoidal flow rate was generated in the set-up used. This resulted 
in a flow rate as plotted in Fig. 4.5, where the Reyolds-number, 

based on the mean cross-sectional velocity in and the height of the 

common carotid artery, varies from 250 to 770 with a mean value of 

about 560. The frequency parameter u approximately equals 8. The flow 

rate division ratio between the internal and external carotid ar

teries is observed to be about 0.65:0.35 throughout the entire flow 

cycle. The axial velocities were measured at 40 equidistant points in 

time in one cycle of the flow (see appendix 3). The measuring accura
cy was increased by averaging over 10 flow cycles. 

In the calculations, the measured axial velocity at the cross
section located 2.5D upstream the apex of the flow divider was impo

sed as inflow condition, together with zero cross-sectional velocity. 

Per flow cycle 20 equidistant timesteps were used. In order to damp 

oscillations in the solution caused by the initial solution (u=v=O) a 

Euler-implicit time integration was used during the first flow cycle. 

Then two flow cycles were calculated with a Crank-Nicolson time 

integration, resulting in a solution which is not changing in the 

third significant number between two successive flow cycles. 

In Fig. 4.6 the measured and calculated axial velocity profiles 

are given separately for the common (a), internal (b) and external 

(c) carotid arteries, respectively. For each branch, the profiles are 
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Fiq. 4.5 Flow rate as a function of time as used in the two-
dimensional Laser-Doppler experiments (250<Re<770, u=8). 

given for ten equidistant instants of time, starting from the moment 

with minimum flow rate (see Fig. 4.5). The calculated profiles are 

given by solid lines, whereas the circles represent the measurements. 

Small discrepancies between the geometries of the experimental and 

numerical models are visible at the entrances of the internal and 

external carotid arteries. 

The velocity profiles in the common carotid artery are given 

for 5 equidistant cross-sections at distances of 0.50 apart, with the 

most upstream cross-section at a distance of 2.50 from the apex of 

the flow divider (Fig. 4.6a). 

At the entrance of the common carotid artery, the profiles are 

found to be symmetrical with respect to the axis of the channel 

during the entire flow cycle. Also, no significant changes are found 

in downstream direction until the walls of the common carotid artery 

diverge. The differences between calculations and measurements are 

relatively small and observed to be maximal during the onset of the 

acceleration phase of"the flow (t/T=0.10 and t/T=0.20). As distinct 

from the pulsatile flow situation as described in the previous sec

tion, reversed flow is found even in the entrance region of the 

common carotid artery at the end of flow deceleration (t/T=0.90 and 
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Fiq. 4.6a : Two-diaensional experi•entai (o) and numerical (-) axial 
velocity profiles for the co .. on carotid artery (250<Re<770, u=8). 

t/T=0.00). On the other hand, the diverqence of the walls at the 

downstream side of the common carotid artery exhibits_similar influ
ences on the axial velocities, resultinq in reversed flow at these 
walls during the deceleration phase of the flow. In these regions the 
differences found between the calculations and the measurements are 
slightly larger, partly due to the discrepancies in geometry. 
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Fig. 4.6b : Two-dimensional experimental (o) and numerical (-) axial 
velocity profiles for the internal carotid artery (250<Re<770, u=8). 

The velocity profiles in the internal carotid artery are given 
for 6 equidistant cross-sections with distances equal to 0.50. Here 
the most upstream cross section is located at the apex of the flow 
divider (Fig.4.6b). 
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The axial velocity profiles resemble the ones found for the 

systolic phase of the flow described in the previous section. During 

flow acceleration, the reversed flow region at the· non-divider-side 

wall, as formed in the deceleration phase of the flow, is resolved 

and velocity profiles with their maximum at the divider-side wall and 

low velocities at the non-divider-side wall, are observed. The flow 

characteristics connected with the transient to the steady-state flow 

in the diastolic phase of the pulsed flow configuration have not 

their counterpart in the 'sinusoidal' flow configuration described 

here, although, the separation of the reversed flow region at the end 

of the deceleration phase of the flow recurs in the measured veloci

ties at the onset of the acceleration (t/T=0.20). Reversed flow at 

the divider-side wall.is only found at the end of the deceleration 

phase of the flow at x/D=2.5. In general a good agreement is found 

between the experiments and the calculations. Similar to the si

tuation in the common carotid artery, also here the largest differen

ces between the measured and calculated velocities are found during 

the flow acceleration. Furthermore, it is observed that the devia

tions between the experiments and calculations in the large velocity 

gradient region at the divider-side wall are relatively small in 

comparison with those found in the regions with low and negative 

velocity gradients at the non-divider-side wall. Nevertheless, the 

successive development and break-down of the reversed flow regions 

are similar for both the experimental and numerical methods. 

In Fig. 4.6c the axial velocity profiles in the external caro
tid artery are given for 5 equidistant cross-sections at 0.5D apart 

starting from apex location. The shape of these profiles shows resem

blance with the shape of the profiles in the internal carotid artery. 

Also here the largest differences between experimental, and numerical 

data are found during the acceleration phase of the flow. The rever

sed flow regions, however, are approximated even better than in the 
internal carotid artery. 
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external carotid artery 

t/T=0.3 

Fig. 4.6c : Two-diaensional experiaental (o) and nuaerical (-) axial 
velocity profiles for the external carotid artery (250<Re<770, u•8). 

4.3.3. A comparison with measurements in a three-dimensional m9del. 

The dimensions of the three-dimensional model were, as far as 
the plane of symmetry of the bifurcation is concerned, equivalent to 

those of the two-dimensional model described above. Except for the 

transition region from the common carotid artery to the two daughter 

branches, the cross-sections were circular. In the transition region, 
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Fig. 4.7 Flow rate as a function of time as used in the three-
diaensional Laser-Doppler experiments (200<Re<800, u=6). 

care was taken for a smooth intermediate shape. The flow rate, defi
ned as the mean cross-sectional velocity in the plane of symmetry 
times the diameter D, varied sinusoidally (see Fig. 4.7), resultinq 

in a mean Reynolds number, based on the diameter D and the cross
sectional and temporal mean velocity in the plane of symmetry, of 

about 500 and an amplitude equal to approximately 300. The frequency 

parameter u is equal to 6. The flow rate division between the inter
nal and external carotid arteries was measured by means of two elec

tromaqnetic flow meters (see appendix 3) and amounts to approximately 

0.70:0.30. At 40 equidistant points of time per flow cycle, the axial 

velocities in the plane of symmetry of the bifurcation were measured. 

Similar to the two-dimensional measurements described above, the 

measurement accuracy was increased by averaqinq over 10 flow cycles. 

Since only little deviation is found between the experimental 
flow rate and a purely sinusoidal flow rate with a non-zero mean, the 

fully developed axial velocity profiles of such a flow in a straiqht 

channel were used as inflow condition for the calculations. The mean 

Reynolds number was taken to be 500, whereas the ampl~tude of the 
superimposed sinusoidal flow rate was equal to 300. Per flow cycle 64 

equidistant timesteps were used. Similar to the strateqy used for the 

computations described in the previous section, three flow cycles 
were calculated, of which the first has been performed with a Euler 

implicit and the last two with a Crank-Nicolson time inteqration. The 
same element distribution as used in the calculations described in 
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Fig. 4.8a : Three-diaensional experimental (o) and two-diaensional 
numerical (-) axial velocity profiles for the common carotid artery 
(200<Re<800, u=6). 

section 4.3.2 was applied. The measured and calculated axial velocity 
profiles are given in Fig. 4.8, separately for the common (a), inter

nal (bl and external (c) carotid arteries. The profiles are given for 

8 equidistant points of time throughout the flow cycle. The first 

point of time corresponds with minimal flow rate (see Fig. 4.7). The 
calculated profiles are given by the solid lines, whereas the experi
mental data are indicated by the circles. 
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The velocity profiles in the common carotid artery are given 

for 4 equidistant cross-sections located at 0.5D apart. The most 

upstream cross-section is located at 20 from the apex of the flow 

divider. Despite the small discrepancies in the geometry and in the 

flow rate, mainly caused by a small phase shift (see Fig. 4.7), and 

despite the fact that three-dimensional measurements are compared 

with two-dimensional computations, relatively good agreement is found 

between the axial velocity profiles throughout the entire flow cycle. 

In Fig. 4.8b, the velocity profiles in the internal carotid 

artery are given for 8 cross-sections at 0.25D apart. In this part of 

the bifurcation, the differences between two-dimensional numerical 

and three-dimensional experimental results are observed to be most 

important. The most striking deviations are found in the reversed 

flow regions. Except for the entrance region of the internal carotid 

artery, the reversed flow obtained from the computations covers 

cross-sectional regions which are about 50\ of the regions as found 
in the experiments and exhibits negative axial velocities which are 

significantly larger. However, the lengths of the reversed flow 

regions found in the two-dimensional numerical model do not differ 

much from those observed in the three-dimensional experiments. Fur

thermore, relatively good agreement is found at the divider-side wall 
during the entire flow cycle. 

The axial velocity prO'files in the external carotid artery are 

plotted in Fig. 4.8c. Here 3 cross-sections at a distance of 0.50 
apart are used. Similar remarks as made for the internal carotid 

artery can be made here, and also here a relatively good agreement is 

found between the three-dimensional experimental results and the two
dimensional calculations. 
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Fig. 4.8b : Three-dimensional experimental (o) and two-dimensional 
numerical (-) axial velocity profiles for the internal carotid artery 
(200<Re<800, a=6). 
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Fig. 4.8c : Three-dimensional experi•ental (o) and two-dimensional 
numerical (-) axial velocity profiles for the external carotid artery 
(200<Re<800, a=6). 
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4.3.4. A comparison with measurements of Ku. 

The calculations of the two-dimensional bifurcation flow des
cribed in section 4.2 are performed with a flow rate distribution and 
a geometry (in the plane of symmetry) similar to those of the three
dimensional measurements of Ku (1983). Since comparison of the axial 
velocity profiles obtained from both models is difficult because of 
the large amount of data, the comparison bas been made by means of 
the axial wall shear stresses. Ku (1983) obtained the wall shear 
stresses from the measured axial velocities at three locations near 
the wall. In Fig. 4.9, the wall shear stresses at several locations 
on the wall are given as a function of time. For both models, the 
values have been scaled with the mean value in time found in the 

common carotid artery (location 1). The solid lines represent the 
experimental wall shear stresses, whereas the computed values are 
marked with circles. 

In the common carotid artery (location 1 in Fig. 4.9), the wall 
shear stress follows the flow curve and good agreement is found 
between the experiments and calculations. At the entrance of the 
carotid sinus, the wall shear stress at the non-divider side (loca
tion 5 in Fig. 4.9) shows a relatively small increase at systolic 
deceleration followed by occurrence of negative values during the 
deceleration of the flow. In Ku's measurements the same features are 
found but they occur at an earlier time in the flow cycle. A similar 

time-dependence of the wall shear stress is found in the middle of 
the non-divider-side sinus-wall, although larger fluctuations are 
found. The two-dimensional (numerical) model predicts larger negative 
wall shear stresses than found in the three-dimensional (experimen

tal) model. At the most distal location (location 7) on the non
divider-side sinus-wall, a relatively larqe peak in the wall shear is 
observed durinq systole for both models. In the two-dimensional 
model, this peak is followed by a second peak at the onset of dias
tole. In the mean, the wall shear stress found at this site in the 
three-diaensional model is larqer than in the two-diaensional aodel. 
At the divider-side wall of the internal carotid sinus, relatively 
large values of the wall shear stress are found decreasing in down
stream direction (locations 2,3 and 4 in Fig. 4.9). At the apex 
(location 2) and in the middle of the divider-side sinus-wall qood 
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Fig. 4.9 : Dimensionless wall shear stress as a function of time for 
severeal locations in the common and internal carotid artery as 
calculated in the two-dimensional Bharadvaj qeometry (o-o) compared 
with data obtained from the three-dimensional experiments of Ku (-) 
(175<Re<650, u=4). 

aqreement is found between both models, althouqh a second oscillation 

in the wall shear stress of the two-dimensional model is found at the 

latter location. Relatively larqe values of the wall shear stress are 

observed at the most distal location (location 7) for the three

dimensional model. The shape of this curve, however, is quite similar 

to the one obtained from the, two-dimensional calculations. 

The essentials of the comparison are summarized in Table 4.2 

(p 122, columns 2 and 3), where the minimum, maximum and mean wall 

shear stresses at several locations in the bifurcation are qiven and 

compared with the Ku's results (1983). In qeneral it is concluded 

that relatively qood aqreement is found in the comaon carotid artery 

and in the entrance reqion of the carotid sinus. More downstream the 

differences become more serious, especially at the divider side wall. 
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4.4. Observations on the influence of a stenosed, sinus baled on tyo

diaensional coaput&tions. 

The influence of the presence of a small stenosis (25\ diameter 
reduction) in the internal carotid sinus on the velocity distribution 
and wall shear stress, bas been analysed. Results of such an analysis 
can be useful for studies "dealinq with the detectability,of athero

sclerotic lesions froa blood flow velocity patterns obtained froa in
vivo measureaents. As regards the detectability of atherosclerotic 
lesions, it is of importance to have an idea to what extent the 
influence of the stenosis on the flow field can be distinguished froa 
inter-individual variations in geoaetry. Therefore, calculations were 

performed for two different qeoaetries both with and without a ste
nosis in the internal carotid sinus, which is a co11110n location for 
stenoses to occur. The geometries chosen are based on the diaensions 
obtained by Reneaan et al. (1983), who studied the velocity patterns 
in subjects of various ages by aeans of in-vivo ultra-sound pulsed 
Doppler measurements. They distinquished between two qroups (younger 
and older subjects) with small but characteristic differences in 
qeoaetry of the carotid artery bifurcation. In Table 4.1 these cha
racteristic dimensions are given together with those used in the 
Bharadvaj-qeometry as used in section 4.2 . All diaensions are scaled 
to the diameter of the co .. on carotid artery. The most characteristic 
difference between the two groups is found in the diaaeters of the 
internal carotid artery downstream the sinus (L10). In the group of 
younger subjects (group I) these diameters were observed to be saal
ler (0.870) than in the group of older subjects (group II) (0.97D). 
In the Bharadvaj geometry, these diameters were significantly 811aller 
and equal to 0.72D. For the anqle of the axis of the internal with 
the common carotid artery, a aean value of about 12.5° was found for 
both groups (twice as saall as the value given by Bbaradvaj et al. 
(1982)). Since in Reneaan et al. (1983) no diaensions of the external 
carotid artery are reported, the geometry of this branch was taken to 
be equal for both groups. 

The stenosis consists of a sllOOth fill-in of the upstreaa part 
of the non-divider-side wall of the sinus and a rounded step-like 
transition at the downstream side, resulting in a aaxillUll diameter 
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Tlble 4.1 : Geoaetry paraaeters for the Bharadvaj geoaetry and 
'Reneaan geoaetries as used in the two-dimensional calculations (see 
also Fig. 4.1). 

Bbaradvaj Reneaan I Reneman II 

L1 1.00 1.00 1.00 

L2 1.50 1.00 1.00 

L3 2.00 2.68 2.68 

L4 0.91 1.50 1.50 

LS 1.49 0.50 0.50 

L6 5.60 5.50 5.50 

L7 1.04 1.00 1.08 

L8 1. 11 1.03 1.11 

L9 0.72 0.87 0.97 

L10 0.72 0.87 0.97 

L11 1.00 1.00 1.00 

L12 5.00 5.00 5.00 

L13 0.69 0.60 0.60 

L14 0.58 0.60 0.60 

L15 0.58 0.60 0.60 

PBii 25.0° 12.5° 12.5° 

PBie 3o.o0 20.0° 20.0° 

reduction of about 25\ of the local diameter, assuming to be a pos
sible stenosis qeoaetry. 

The boundary conditions and solution strategy were similar to 
those for the calculations with the Bbaradvaj geometry (see section 
4.2). 

The results of the calculations for both geometries with and 
without stenosis will be compared by means of the axial velocity 
profiles, wall shear stresses and reversed flow regions. Despite the 
difference in flow rate between group I (flow division ratio of about 
0.75:0.25) and group II (flow division ratio of about 0.85:0.15), the 
axial veloci~y profiles are quite siailar for all situations and 



group I 

-118-

non 
stenosed 

t/T=0.16 

2U 
~ 

21)JD!:1 .. 
! '. i 
- ' 

group II 

Fig. 4.10: Axial velcity profiles for t=0.16T as calculated in the 
two-dimensional Reneman qeoaetries for both non-stenosed and stenosed 
confiqurations (175<Re<650, u=4). 

resemble the axial velocity profiles as found in the Bharadvaj qeo

metry. The larqest differences are observed during systolic decelera

tion (t/T=0.16) in the internal carotid sinus (Fiq. 4.10). The rever

sed flow at the non-divider-side wall of the sinus is smaller than in 
the Bharadvaj geometry and almost identical for both groups for both 

the non-stenosed and the stenosed geoaetries. Here the influence of 

the stenosis is expressed most clearly at the first cross-section 

downstream the stenosis, where reversed flow is found in the stenosed 

geometries, whereas in the non-stenosed geometries the axial velocity 

rema.ins positiYe for this cross-section. 
The wall shear stresses are almost equal for geometry I and 

geometry II for both the non-stenosed and stenosed geometries (see 

Table 4.2, p 122). Maximal deviation is found at the apex (location 

2). Furthermore, the wall shear stresses in the non-stenosed geo

metries do not show features different from those observed in the 
Bharadvaj geoaetry. 

The influence of the stenosis is expressed in an increase of 

the wall shear stress proximal to the location of maximal diameter 

reduction (location 6). This increase is accompanied with a sudden 
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Fig. 4.11 : Dimenionless wall shear stress along the coamon-internal 
(o) and divider side internal (*) walls for t=0.08T and t=0.32T, 
respectively, as calculated in the two-diaensional Ren~aan geometrie 
(group I) for both non-stenosed and stenosed configurations 
(175<Re<650, u=4). 
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decrease downstream the stenosis (location 7) (see also Fiq. 4.11 

where the wall shear stress in the internal carotid artery is qiven 

for two points of time in systolic deceleration). At the end of the 

systolic deceleration {t/T=0.32), it is observed that the oscilla

tions of the wall shear stress alonq both walls of the internal 
carotid artery as found in the Bharadvaj geometry, also occur in the 

geometries used here. At the non-divider-side wall, these oscilla
tions are smaller in amplitude especially for the stenosed geometries 

(see Fig. 4.11). In Fig.4.12, the wall shear stresses at several 

locations in the co1111on and internal carotid arteries are qiven as a 

function of time and compared with those obtained from a stenosed 
geometry. From these graphs it is observed that the upstream influ

ence of the stenosis is negligible (locations 1, 2 and 5). The lar

gest differences between the wall shear stresses in the stenosed and 

in tile non-stenosed geometries are found durinq systolic decelera

tion. At the non-divider-side sinus-wall (location 6), the wall shear 
stress is slightly larger for the stenosed geometries but still 

similar characteristics are found for both stenosed and non-stenosed 

geometries. Further downstream (location 7), the situation is quite 

opposite: the wall shear stress in the stenosed geometry is now 

slightly smaller. At the divider-side wall, the most striking dif

ference between the flows in the stenosed and in the non-stenosed 

geometries is observed at the distal part of the sinus (location 4) 

dur:~nq systolic deceleration. At this site, neqative wall shear 

str1E;sses are found in the non-stenosed qeometries, whereas in the 
stenosed geometries the wall shear stress remains positive. 

The locations of reversed flow along the common-internal wall 
anC: the divider-side wall of the internal carotid artery are given as 

a ~unction of time in Fig. 4.13 for geometry I-non-stenosed (a), 

geometry I-stenosed (b). Geometry II does not give different informa
tion. At the top of these pictures the flowrate in the common carotid 

ar;;ery is given as a function of time. The development and break-down 
of the reversed flow regions in the non-stenosed geometries exhibit 

properties comparable to those observed in the Bharadvaj geometry. In 
contrast with the situation in the Bharadvaj geometry, the reversed 
flow reqion in the sinus of the internal carotid artery disappears 

during the diastolic phase of the flow. The development and break
down of the reversed flow regions in the stenosed geometries show 
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Fia. 4.12 Diaensionless wall shear stress as a function of time for 
severeal locations in the coaaon and internal carotid artery as 
calculated in the two-di.aensional Reneman qeometrie (qroup I) for 
both non-stenosed and stenosed confiqurations (175<Re<650, u=4). 

som.e striking deviations fro• the situation in the Bharadvaj and the 
non-stenosed geometries. Durinq the systolic flow acceleration, a 

reversed flow reqion is formed downstream the stenosis. Subsequently, 
this region qrows in downstream direction and covers an axial distan
ce of approximately 1D half-way the systolic deceleration of the 
flow. Hereafter, this reqion resolves rapidly, simultaneously with 

the reversed flow in the cOlllllOn carotid artery. Furthermore, except 
for a small period of time at the end of systolic deceleration, no 
reversed flow is observed at the divider-side wall of the internal 
carotid artery. Also the reversed flow region as found at the non
divider-side sinus-wall durinq the diastolic phase of the flow, has 
no counterpart in the stenosed geometries. On the other hand, a SD1all 
region of reversed flow is observed downstrea.a the stenosis. 
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Table 4.2 : Mean, maxiaa.l end miniaa.l wall shear stress at several 
locations in the common and internal carotid artery (the wall shear 
stresses are made dimensionless by division with the mean value in 
the common carotid artery). 

Bharadvaj Reneman 

Ku Bh NI SI NII sn 
location JD 2D 2D 2D 2D 2D 

exp. num. num. num. num. num. 

mean 1.0 1.0 1.0 1.0 1.0 1.0 

1: COIDlllUnis max 3.6 4.7 4.9 4.9 4.9 4.9 

min 0.4 0.0 -0.1 -0.1 -0.1 -0.1 

int.car. mean 3.2 3.0 2.0 2.0 1.2 1.3 

2: sinus max 6.3 7.2 4.4 4.7 3.5 3.4 

prox.div. min 2. 1 1. 7 1. 1 1. 1 0.6 0.6 

int.car. mean 0.0 0.0 0.0 0.0 0.1 0.1 

5: sinus max 0.5 0.9 1.3 1. 5 1.3 1. 4 

prox.non. min -0.8 -1. 7 -1.1 -1.5 -1.0 -1.4 

int.car. mean 2. 1 1.7 1. 9 2.0 1.8 1.8 

3: sinus max 5. 1 3.7 4.2 5 .1 4. 1 5.9 

midp.div. min 1.2 1.0 1.0 1. 1 0.9 1.0 

int.car. mean -0.1 -0.3 -0.2 0.2 ,-Q,2 0.2 

6: sinus max 1.0 1.5 1.5 2.8 1 .5 2.5 

midp.non. min -1. 7 -3.B -3.2 -2.5 -3. 1 -2.5 

int.car. mean 5.8 1.5 1. 7 1.8 1.5 1.6 

4: sinus max 13.6 5.5 5.3 5.2 4.4 4.3 

dist.div. min 4.4 -1.4 -0.6 0. 7 -0.5 0.6 

int.car. mean 2.5 1. 5 0.9 0.5 0.7 0.3 

7: sinus max 6.1 5.0 4.2 2.7 3.7 2.2 

dist.div min 2.0 0.4 -1.0 -0.5 -1. 7 -1.0 
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Fiq. 4.13 : Flow rate in the co11110n, internal and external carotid 
artery as a function of time and locations of flow separation along 
the internal carotid walls as computed in the two-dimensional Reneman 
geoaetrie (group I) for both the non-stenosed and stenosed 
configurations (175<Re<650, u=4). 
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4.5. Conclusions and discussion. 

The results of the calculations presented in the precedinq 

sections have qiven an indication of the complexity of the flow in 

two-dimensional carotid artery bifurcation qeometries. From the two

dimensional experimental validation it is concluded that the numeri

cal method used provides an accurate approximation of the spatial and 

temporal velocity distributions of unsteady flow in riqid two-dimen

sional bifurcation qeometries. 

As the results of the numerical two-dimensional models must be 

regarded carefully because they give only a partial picture of the 

flow situation in three-dimensional qeometries, in this section these 

results will be discussed and related to properties which are thouqht 

to be of importance for the in-vivo situation. As far as possible, a 

comparison will be made with information obtained from literature, 

and the deviation from three-dimensional flow will be indicated. 

Furthermore, cautious conclusions concerninq the influence of a small 

stenosis in the internal carotid artery sinus will be given. 

~!2~~!~!~~-~~~-~~~~!2!22!~~!_!~!~Y~~~~-2!_~~~-!!2~-!~-~~2:~!!~~~!2~~! 
~!!~!~~~!2~_!Q~~!~· 

From the computations of the flow in the two-dimensional 

Bharadvaj qeometry the following qeneral properties can be derived. 

At the entrance reqion of the ~ carotid artery, the in

fluence of the bifurcation is not detectable and fully developed flow 

occurs. The axial velocity profiles are nearly parabolic at the· end 

of diastolic flow, show a rather blunted shape at peak systole and 

qradually develop to a parabolic shape durinq systolic deceleration 

and the diastolic phase of the flow. The wall shear stress at this 

site is observed to increase with increasinq flow rate and attains 

relatively low values at the end of systolic deceleration, where a 

tendency to flow separation is found. Similar properties were obser

ved by Ku (1983) for three-dimensional flow. Also the aqreement 

between two-dimensional calculations and three-dimensional measure

ments (see section 4.3.3) confirms the validity of two-dimensional 

modellinq at this site of the bifurcation. 
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The sli.!i.tl! part of the ~ carotid artery is characterized 

qeometrically by a wideninq of the vessel. This widening is clearly 

expressed in the decrease of the wall shear stress and features flow 

reversal at end diastolic flow rate. Durinq the acceleration phase of 

the flow, this tendency is opposed by the influence of the instatio

nary inertia forces, resultinq in relatively larqe wall shear stres

ses, whereas during flow deceleration, this tendency is intensified 

by the influence of the instationary inertia forces. Also at this 

site, the aqreement between two-dimensional calculations and three

dimensional aeasurements (see section 4.3.3) indicates that the two

dimensional model still provides valuable information with respect to 

three-dimensional confiqurations. 

Most complex flow properties are observed to occur in the 

carotid artery ~. At this site, three geometrical factors are of 

importance. First, the internal carotid sinus exists of a widening 

and taperinq of the vessel. Secondly, the transition from the common 

to the internal carotid artery exhibits curved tube-like properties. 

Lastly, the flow is influenced by the flow divider. At the end of 

diastole, the flow is almost steady and instationary inertia forces 

are thought to be less important. The flow divider and bend-like 

property of the transition from common to internal carotid artery 

qive rise to axial velocity profiles with a maximum at the divider 

side of the sinus and therefore to relatively larqe values of the 

shear stress at the divider side wall. The wideninq and taperinq of 

the sinus is most clearly expressed in the local minimum of the wall 

shear stress at the midpoint of the sinus. At the proximal part of 

the non-divider side of the sinus, all above mentioned qeometrical 

properties co-operate to induce low and even neqative axial veloci

ties. At the distal part, the taperinq of the sinus qives rise to a 

small increase of the wall shear stress with a maximum at the tran

sition to the parallel wall section of the internal carotid artery. 

Since this transit is modelled with a relatively sharp corner, the 
importance of the maqnitude of this maximum must not be overestima

ted. At peak systole, more or less blunted axial velocity profiles 

are observed, although their maxima are still located at the divider 

side. No reversed flow is found then and the wall shear stresses are 

relatively large at both the divider-and non-divider-side walls. The 
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wall shear stress distribution along the sinus walls shows charac

teristics similar to those observed at the end of diastole, although 

shifted to larger values. During systolic deceleration, the flow 

through the proximal part of the sinus is characterized by negative 

axial velocities at the non-divider-side wall and relatively large 

positive axial velocities at the divider-side wall. At the distal 
part, also reversal flow develops at the divider-side wall. Conse

quently, the wall shear stresses attain relatively large negative 

values at the non-divider-side wall and high values at the divider

side wall. At the end of systolic deceleration, the reversed flow 
region at the non-divider-side wall separates from the wall, resul

ting in an oscillating wall shear distribution along this wall. 

From the comparison between the two-dimensional calculations 

and the three-dimensional velocity measurements (see section 4.3.3) 

it is observed that in the proximal part of the carotid artery sinus 
a relatively good agreement exists, whereas in the distal part sig

nificant deviations are found especially in the reversed flow region. 

Here the negative axial velocities obtained from the numerical model 

are larger and cover a smaller cross-sectional distance. This numeri

cal overestimation of the negative axial velocities also follows 
from the comparison of the calculated wall shear stresses in the 

sinus with Ku's measurements. As the secondary velocity distribution 

in the three-dimensional flow affects the axial velocity component, 

the deviation between two- and three-dimensional flows at this site 

of the sinus is not inexplicable. Namely, from the experimental 
studies of Olson (1971), Brech and Bellhouse (1973) and LoGerfo 

(1981), it follows that these secondary velocity components exhibit 

properties resembling the entrance flow in a curved tube (see also 

Chapter 5). Combined with the axial velocity components, this gives 

the fluid a helical motion, transporting fluid along the side walls 
to the plane of SYD1111etry, back to the divider-side wall. In conse

quence, fluid with a relatively large axial velocity is transported 
along the side walls to the non-divider side wall and fluid with a 

relatively small axial velocity is transported towards the centre of 
the vessel. Depending on the magnitude of the secondary velocity 

components, this results in a reversed flow region with a larger 

cross-sectional extension and smaller negative velocities. At the 

proximal part of the carotid sinus, however, the secondary flow is 
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not yet developed and its influence is still restricted to a small 

region; therefore it exhibits less important effects on the axial 

velocity at this site. 
The parallel-wall section of the internal carotid artery gene

rally shows a gradual recovery to fully developed flow as observed in 
the entrance region of the co11110n carotid artery. At the end of the 
systolic deceleration, however, this recovery is accompanied by a 
shift of the aaxiallll of the axial velocity profiles from the divider

side wall to the non-divider-side wall. This shift is also expressed 
in the wall shear stress, exhibiting spatial and temporal oscilla

tions. In Ku's three-diaensional experiments (1983) this phenomenon 

is found less pronounced. 
The flow in the external carotid artery globally shows similar 

characteristics as the flow in the internal carotid artery, although 

less pronounced. The most striking deviation from the internal caro
tid flow is found at the end of systolic deceleration, where the flow 
in the sinus features a separation of the reversed flow region from 

the non-divider-side wall and a relatively large reversed flow in the 
distal part. 
Quite similar flow properties as described above have recently been 
reported by Perktold and Hilbert (1986), who approximated the two
dimensional flow in the Bharadvaj geometry for a slightly different 
flow rate form with a mean Reynolds number of 100 (varying from about 
50 to 300) by means of a finite element method. 

Although not always insignificant deviations between the flows 
~ in two- and three-dimensional models of the carotid artery bifurca

tion are found, it is thought that the two-dimensional numerical 
analyses can contribute to the interpretation of the three-dimension
al flow field and give a reliable picture of some important features 
as wall shear stress and reversal flow. 

The most important shortcoming of the two-dimensional analysis 
seems to be the neglect of the secondary flow compone~ts, resulting 
in an overestiaation of the magnitude and an underestimation of the 
cross-sectional extension of the reversed flow, especially in the 
distal part of the. carotid artery sinus. 
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From the computations of the flow in the two bifurcation geo

metries, it is concluded that the geometry variation does not lead to 

different flow characteristics for stenosed and non-stenosed geo

metries. The influence of the stenosis is most clearly expressed in 

the velocity downstream the stenosis, where especially at peak systo

lic flow rate, reversed.flow and relatively large negative wall shear 

stresses are found. Furthermore, it is observed that the spatial and 

temporal oscillations of the wall shear stress at the distal part of 
the sinus are smaller in the case of a stenosed geometry, especially 

at the divider-side wall. This seems to be in contrast with the in

vivo pulsed Doppler observations made by Van Merode (1986) who men

tioned an increased probability of the occurrence of flow reversal at 
the divider side-wall for stenosed geometries. 

For two-dimensional geometries, it is hardly possible to dis
tinguish between the influence of the stenosis and the influence of 

the geometry variation, and no striking deviations in flow charac

teristics are found. From this two-dimensional analysis it can be 

stated that the outlook for the usability of in-vivo measurements of 
the axial velocity for detection of minor stenoses is not very promi

sing. However, fully three-dimensional analyses must be performed to 

obtain information needed to prove whether this statement is correct. 
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CHAPTER 5: STEADY ENTRANCE FLOW IN A CURVED TUBE. 

5.1. Introduction. 

In this chapter the steady entrance flow in a curved tube is 

dealt with. The analysis of this flow confiquration may be viewed as 

a first step towards a fully three-dimensional calculation of carotid 

artery flow, which is impracticable on the computer systems used 

sofar (PRIME 750 and APOLLO DSP90) because of the large amount of 

computing time and memory needed. Moreover, as mentioned in the 
preceding chapter, the flow in the internal carotid artery exhibits 

properties that resemble the entrance flow in a curved tube. Con
sequently, the analysis of this flow configuration contributes to the 

understanding of carotid artery flow. Furthermore, the calculations 
of the flow in a curved tube form a non-trivial way to evaluate the 

finite element approximation for three-dimensional flow, including 

non-negligible secondary flow components. 

If the Navier-Stokes equations are rewritten in an orthogonal 
curvilinear toroidal co-ordinate system (see Fig. 5.1), two important 

dimensionless parameters are found (Ward-Smith, 1982) : 

the curvature ratio 6 = a/R (5.1) 

and 

the Dean number K = Re/6 (5.2) 

with a the radius of the tube, R the curvature radius and Re the 

Reynolds number based on the diameter of the tube and the mean axial 

velocity (Re=WD/v). The Dean number can be interpreted as the ratio 
of the square root of the convective inertial forces times the cen

trifugal forces to the viscous forces, i.e. : 

K = (5.3) 
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Fig. 5. 1 Toroidal co-ordinate system (r,.,9). 

In this study a curvature ratio .6=1/6 is chosen. This value approxi-

11ately corresponds with the curvature of the intermediate section 

between the co .. on and internal carotid arteries. With Reynolds 

numbers in the range 100 < Re < 800 this leads to Dean numbers in the 

range 40 < K < 330. 
Experimental analyses in the range of 6 and K considered, using 

a uniform inlet flow profile, were made by Olson (1971), Agrawal et 

al. (1978), Choi et al. (1979) and Olson and Snyder (1983 and 1985). 

In the case of a uniform inlet flow, i .. ediately downstream of the 

entry in the bend a secondary flow is set up, which is dominated by 

the build-up of an axial boundary layer. Further downstream, two 

helical vortices develop as a result of the interaction between 

convective, centrifugal and viscous forces. Considering laminar flow, 

a fully developed parabolic velocity profile is a more convenient 

inlet flow for several reasons. In contrast with a uniform inlet 
flow, fully developed inlet flow can be achieved more easily in an 

experimental set-up and is well defined. The importance of a well 

defined inlet flow is underlined by the observations made by Olson 

and Snyder (1985), who found a far downstream influence of the inlet 

condition. Furthermore, a fully developed inlet flow is more con

venient for numerical analyses, since leading edge singularities are 

avoided. Finally, with respect to the modelling of the flow in the 

carotid artery, fully developed flow is more relevant because of the 

relatively long co .. on carotid artery. As far as is known, the de

velopaent from a parabolic entry velocity profile has only been 
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reported by Olson (1971), who presented the development of the axial 

velocity profiles in the plane of symmetry of the bend (1/16<6<1/4.66 

and 45< K<756), and Bovendeerd et al. (1987), who presented both 

axial and secondary velocity distributions at several cross-sections 

(6=1/6 and K=286). Numerical flow investiqations have been carried 

out only for uniform inlet flows (Sinqh, 1974, Yao and Berqer, 1975, 

Liu, 1976, Stewartson et al., 1980 and Soh and Berqer, 1984). They 

used finite difference or analytical approximations, transforminq the 

problem into toroidal co-ordinates. 

In this chapter the results of· a finite element approximation 

of the development from a parabolic entry velocity profile will be 

qiven. For one value of the Reynolds number (Re=300) the numerical 

results are compared with the results of laser-Doppler measurements. 

First, in section 5.2, the 27-noded brick element used will be dealt 

with. In order to make possible the extension of the numerical model 

to three-dimensional flow problems in bifurcation qeometries, carte

sian co-ordinates are used to formulate the numerical approximation. 

In section 5.3, the results of the calculations will be presented and 
compared with the results attained from the experiments. Only a 

qlobal description will be qiven of the experimental method, for 
which the reader is referred to appendix 3 or Bovendeerd et al. 

(1987). Finally, in section 5.3, the results will be discussed and 

some concluding remarks will be made. 

5.2. The 27-noded hexaheslral 102:::1.11 eleaent. 

The finite element formulation as given in chapter 2 for two 

dimensions can readily be extended to three dimensions and yields the 

same set of equations when the matrix definitions given by (2.7) are 

extended to three dimensions. A survey of finite elements for the 

three-dimensional Havier-Stokes equations is given by Fortin(1981) 

and Fortin and Fortin (1985a'b). Just as in the two-dimensional case, 

the Brezzi-Babuska condition and the applicability of a penalization 

formulation (i.e. a discontinuous pressure approximation) are of 

importance for the choice of an element. The simplest element, which 

is at least second order accurate and which satisfies the above 
mentioned conditions, is the full quadratic velocity - linear pres
sure (Q~27 >-P 1 ) element (see Fiq. 5.2). Similar to the two-diaen-
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Fig. 5.2 The 27-noded hexahedral (Q2-P 1> element. 

sional (P;-P1) element, the pressure is approximated by its value and 
its derivatives in the centroid of the element and thereby is discon

tinuous over the element boundary. The number of unknowns per element 

is 81 for the velocity and 4 for the pressure.· Also here the velocity 

and the pressure derivatives in the centroid can be eliminated, 
reducin9 the number of unknowns per element from 85 to 79. This 

reduction is relatively less important than in the two-dimensional 

case. In literature only little experience with three-dimensional 

elements is reported. With respect to the (Q2-P1> element the fol
lowinq note can be made (Fortin and Fortin, 1985a,b) : since the 

pressure imposes only 4 constraints on the 81 de9rees of freedom in 

velocity, the diverqence-free condition can perhaps not be applied 

stron9ly enough and may lead to a too compressible element. Never

theless, an O(h3) accuracy in the velocity approximation was found 

for a simple test example {Seqal, 1986). Since the development of 

three-dimensional elements in the finite element code used (Segal and 
Praaqman, 1985) was still in proqress at the time when the study 

described here was performed, neither the elimination of the velocity 
and the pressure derivatives in the centroid nor the calculation of 

the pressure from the solution of the momentum equation with penalty 
function were available and hence here only approximations of the 

velocity distribution are given. In the next section the CQ2-P1) 

element will be applied to the flow in a 90-deqree curved tube and 

the results will be compared with data obtained from laser-Doppler 

experiments. Although no predictions about the order of accuracy can 

be made, this flow configuration is thought to be complex enough for 

evaluation of the applicability of the element to complex three
dimensional flow problems. 
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5.3. Results. 

The entrance flow in a curved tube with curvature ratio 6=1/6 

was calculated for Re=100, 300 and 500 (K•41, 122 and 204). To this 

end a finite element mesh was generated as depicted in Fig. 5.3. 

Upstream of the entrance (0=0) and downstream of the exit (6=w/2l of 

the 90°-bend, an in and an outlet section with a length of twice the 

tube diameter were used. A parabolic velocity distribution was im

posed as inflow condition, whereas stress-free outflow conditions 

were used. 

Experiments were performed in a perspex model with an internal 

radius of 4mm and a curvature radius of 24mm (6=1/6). The outer 

surfaces of the model were chosen in such a way that the three velo

city components were measured with the optical axis of the employed 

laser-Doppler anemometer perpendicular to the outer surface (see 

appendix 3 or Bovendeerd, 1987). A long inlet section of 0.4m ensured 
a fully developed parabolic flow at the entrance of the bend. Also 

downstream the bend a long straight glass pipe was present. The 
Reynolds number of the flow was kept at Re=300 (K=122). The velocity 

components were measured at 5 cross-sections in the bend (0=0 (w/8) 

s/2 ) corresponding with the element boundaries in the finite element 
mesh (see Fig. 5.3). For a more detailed description of the measure

ment procedure the reader is referred to appendix 3. 

Fia. 5.3 : Geometry and finite element mesh as used in the calcula
tions (220 elements, 2205 nodes). 
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Fiu. 5.4 : Axial velocity in the plane of SY!llletry of the curved 
tube (6=1/6) as calculated for Re=100, 300 and 500 (K=41, 122 and 
204) and aeasured (o) for Re=300 (K=122). 

Axial yelocities. 

In Fig. 5.4 the development of the axial velocity in the plane 

of SY!llletry is qiven. for Re=100, 300 and 500. Moreover the aeasured 

values of the axial velocity at Re=300 are given and indicated by 

circles. At the first two velocity profiles (8=0 and 8=w/16) hardly 

any influence of the curvature is visible, althouqh a sliqht shift 
towards the inner bend is observable at 8=0. Further downstream, the 

11axiaua of the axial velocity profile is shifted towards the outer 

bend. At biqher Reynolds nuabers this shift is aore pronounced and a 

plateau in the profiles develops near the inner bend. Only at Re=100, 

the flow seems to be fully developed at 8=w/2. Despite an overall 
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Fig. 5.5 : Isovelocity contours (level difference Aw/W=0.2) of the 
axial velocity in the curved tube (6=1/6) as calculated for Re=100, 
300 and 500 (K=41, 122 and 204) and measured for Re=300 (K=122). 

over-estimation of the axial velocity (probably due to a measurement 

inaccuracy of the imposed flow value) the calculations agree well 

with the experiments at all cross-sections. 
In Fig. 5.5 , a more complete picture of the axial flow de

velopment is given. Here the axial velocity distribution is qiven by 

isovelocity contours at several cross-sections in the tube. An almost 

parabolic axial velocity distribution is observed at 9=0. This para
boloid, however, is shifted slightly towards the inner bend. The 

experimental isovelocity contours at this axial position show a shift 
from the 'upper' wall, probably due to the inaccuracy in the determi-
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nation of the wall position. At 9=w/8 the isovelocity contours shift 

towards the outer bend of the tube and no significant deviation is 
found for the different Reynolds numbers. Halfway the bend (e=v/4) 
the shift towards the outer bend has continued and large wall shear 

rates occur at the outer bend of the tube. At higher Reynolds number 
flow, a 'C-shaped' isovelocity contour is found for t~e high velocity 

region. At the cross-sections a=lw/8 and e=w/2, the 'C-shaped' con
tours further develop and for Re=100 at first sight an almost fully 
developed axial velocity distribution is found. The agreement between 
the experiaents and the calculations at Re=300 is fair. 
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Fig. 5.6 : Normalized secondary velocity vectors in the curved tube 
(6=1/6) as calculated for Re=100, 300 and 500 (K=41, 122 and 204) and 
aeasured for Re=300 (K=122). 

Secondary yelocities. 

In Fiq. 5.6 the development of the secondary velocity field is 

given for Re=100, 300 and 500, respectively. These velocities are 

normalized with respect to the mean axial velocity W. At the entrance 
(8=0) the upstream influence of the bend is visible in a unidirectio

nal secondary flow from the outer bend towards the inner bend, which 
amounts to about 5\ of the mean axial flow. The same upstream in

fluence of the bend was found in the experiments. At 9=v/8 a vortex 

has developed which near the plane of sy11111etry is directed from the 
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inner bend towards the outer bend and at the upper wall from the 

outer bend back to the inner bend. The center of this vortex is 
approxiaately located at (x/a=O, y/a=0.65). Hardly any influence of 
the Reynolds number on the shape of the vortex is observable at this 

axial location. However, the normalized secondary velocity components 

are larqer at the hiqher Reynolds numbers. Althouqh direct comparison 
with the experiments is difficult because of the different locations 
at which the velocities are determined, qood aqreement is found at 

this axial station. At e=w/4, the layer with circumferential flow 
along the upper wall has intensified, especially at the higher 

Reynolds number flows. Near the plane of symmetry the secondary 
velocities are found to be slightly lower than at 9=w/8. For Re=SOO, 
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a shift of the vortex center towards the inner bend is found. Also at 

this axial. station the experiments agree well with the calculations 

although in the experimental case the center of the vortex is 

observed to be located somewhat closer to the upper wall. Next, at 

0=3w/8, the influence of the Reynolds number on the secondary flow 

field is clearly visible. For the low Reynolds number case (Re=100), 

the vortex found has approximately the same shape and strength as 

those found at the two axial locations upstream. For Re=300 and 

Re=500, however, the secondary velocities are significantly lower, 

especially near the plane of symmetry. The center of the vortex has 

moved further in the inner bend direction while, moreover, a 

deformation of the shape of the vortex has taken place. A similar 

behaviour is found in the experiments. At 0=w/2, the same charac

teristics are found but also an extra outer bend directed fluid 

motion is observed, superimposed on the vortex flow. The same 
phenomenon is found experimentally. 

More quantitative but less detailed information of the secon

dary flow field can be obtained from the circulation r or the mean 

axial vorticity Ec: 

E = r/A =. U•ds I A 
c s 

(5.3) 

with S a path along the plane of sy111111etry and the upper tube wall, 

surrounding a surface A (= va2/2). Following Olson and Snyder's 

procedure (Olson and Snyder, 1985), this quantity is best used in the 

form: 

E a 
E' = ..:L 63/2 

c w (5.4) 

In Fig. 5.7 the dimensionless mean axial vorticity E' is plotted as a c 
function of 0/6. Due to the overall flow to the inner bend at 0=0, 
the curves start at negative values. Then a large increase is found 

coinciding with the development of the secondary vortex. For the 

higher Reynolds numbers this increase is larger but also reaches its 

maximum at smaller angles 9. Hereafter, the circulation decreases 

again to a value which is smaller for larger Reynolds numbers. The 

upstream effect of the straight outflow tube is expressed in a sudden 
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Fia. 5.7 : The dimensionless mean axial vorticity in the curved tube 
(6=1/6) as a function of 8/6 as calculated for Re=100, 300 and 500 
(K=41, 122 and 204) and aeasured for Re=300 (K=122) together with the 
results of Saith (1976), Olson and Snyder (1985) and Bovendeerd et 
al. ( 1987). 

increase of the circulation. Although the axial and secondary veloci
ty distributions sugqest that the flow at Re=100 seems to be fully 
developed at e=w/4, the mean axial vorticity curve in Fig. 5.7 does 
not reach an asyaptotic value. The mean axial vorticity as calculated 
from the experimental data completely agrees with the numerically 

obtained results. 

5.4. Discussion. 

In the preceding section the results of calculations of the 
entrance flow in a curved tube have been presented by_means of the 
axial and secondary velocity distributions. The results of the cal
culations for Re=JOO agree well with the experimental results. Com
bining the infonaation separately described in the preceding section, 
the following remarks are made. At e=O the secondary flow is directed 
towards the inner bend and also the maxiaum of the axial velocity is 
shifted slightly in this direction, both pointing to an upstream 
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influence of the bend. The same upstream influence is found in the 

experiments. At e=w/8 the flow experiences the interaction of con

vective inertial, viscous and centrifugal forces (cf. Berger et al., 

1983). In the central core of the tube, where the axial velocities 

are large, the centrifugal force dominates resulting in a secondary 

flow towards the outer bend. Near the walls of the tube the centri

fugal forces are less important and a circumferential back flow to 

the inner wall is found. In consequence of this phenomenon the maxi

mum of the axial velocity shifts towards the outer bend. In accor

dance with the analytical approximation for 9/6<1 made by Smith 
(1976), this initial behaviour is nearly independent of the Reynolds 

number. The initial increase of the circulation found here agrees 

quite well with the solution of Smith (see Fig. 5.7). At 9=w/4, the 

influence of the secondary motion as described above is clearly 

visible in the axial velocity distribution. The maximum of the axial 

velocity is convected further to the outer bend. At higher Reynolds 

numbers, where the convective terms are more important, 'C-shaped' 

axial isovelocity contours are found in accordance with the obser

vations of, for instance, Agrawal et al. (1978) and Olson and Snyder 

(1985). At the next axial station (9=3w/8) the dependence on the 

Reynolds number becomes even more clear. For Re=100, the velocity 

distribution does not differ much from the one found at the preceding 
axial location and an almost fully developed flow is found. For the 

higher Reynolds numbers (Re=300, 500) the 'C-shaped' axial velocity 

profiles have become more pronounced. Furthermore, the secondary 

fluid motion is mainly restricted to a small boundary layer along the 
upper wall of the bend. similar Reynolds-dependence is reported by 

Soh and Berger (1984). Finally, at 9~v/2 the velocity distribution is 

strongly influenced by the upstream influence of the straight outflow 

region of the model. Here, the secondary velocity distribution is 
characterized by an increase of the velocity component towards the 

outer bend ; a reversed effect as found at the entrance region of the 

bend. As seen in Fig. 5.7 this increase does not conform with the 

general observations (100<K<500, 4.66<1/6<8) made by Olson and Snyder 
(1985) for a 300-deqrees bend, enablinq the flow to 9et fully de

veloped. The mean axial vorticity distribution found indicates that 

at small angles 9 the increase of the axial vorticity is nearly 

Reynolds-independent. The initial axial vorticity values agree with 
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the solution of Smith (1976). With increasinq Reynolds number, the 

maximum axial vorticity increases and, furthermore, is reached at 

smaller axial positions. The experiments of Bovendeerd et al. (1987) 

and the observations made by Olson and Snyder (1985) confirm this 

observation. 
With respect to the applicability of the numerical model to 

three-dimensional flow problems, the followinq remarks are made. The 

agreement between the experimental and numerical results indicates 

that the finite element method applied offers an accurate tool for 

three-dimensional flow simulations. Although a relatively coarse mesh 

was used and although the amount of the pressure unknowns, and thus 

of the constraints for divergence freedom (4), is small compared with 

that of the velocity (84), the results seem to be quite accurate. At 

Re=500, however, the solution becomes slightly wiqgling (see Fig. 

5.5) and for higher Reynolds numbers (Re=700) the solution procedure 

failed to converge at all, so finer meshes should be applied in that 

case. For the finite element mesh applied here, about 25 hours CPU 

and about 2 days I/O were needed per Newton iteration (11 Newton 

iterations were needed to reach Re=500) on a mini-computer (APOLLO 

DSP90). Therefore, application of this solution procedure for three

dimensional bifurcation models demands more sophisticated computer 

capacity, like array processing or super-computers. 
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CHAPTER 6: SUMMARY AND CONCLUSIONS. 

In the present study a finite element model for incompressible 

Newtonian flow and its application to the modelling of carotid artery 

flow is analyzed. Moreover, the numerical model has been validated 

experimentally for several flow configurations. 

The penalty function finite element method employed, proved to 

be well suitable for spatial discretization of the two-dimensional 

steady and unsteady Navier-Stokes equations. The (P;-P1} Crouzeix

Raviart element used has a third order accuracy for the velocity and 

second order of accuracy for the pressure. Next, a second order 

modified Crank-Nicolson time integration scheme has been derived. 

This scheme is found to be free of numerically generated oscilla

tions, as may occur in a standard Crank-Nicolson time integration. 

Moreover, this scheme is to be preferred above the first order Euler 

implicit scheme, which may lead to an incorrect damping of flow 

oscillations which may occur in flows with dominating convective 

properties. The theoretical results mentioned above have been confir
med by computations of oscillatory flow between two flat plates and 

Von Karman vortex shedding behind a circular cylinder. 

From the analysis of the steady flow over a square step it is 

found that stress-free outflow conditions exhibit less upstream 
influence than fully developed outflow conditions and therefore make 

possible a significant reduction of the computational domain at 

outflow sites. Similar to the flow over backward-facing steps, a 

recirculation zone downstream of the step is found with a length 
almost proportional to the Reynolds number of the flow. The axial 

velocity profiles, as calculated for the steady flow over a square 

step, agree with those obtained from laser-Doppler experiments. The 

flow instabilities observed in the experiments, however, could not be 

simulated satisfactorily by solving the time-dependent Navier-Stokes 

equations. It is not clear yet whether further mesh refinement and 

smaller timesteps are needed, or that the three-dimensional effects 

in the experiaents have to be taken into account to simulate the flow 
instabilities nllllerically. 
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The unsteady flow over a square step completely differs from 

the steady flow situation. Reversed flow regions, strongly depending 

on the instantaneous flow rate, have been found at both the step-side 

wall and the non-step-side wall of the channel. Quasi static model
ling is only valuable at the end of the diastolic phase of the car

diac cycle. With respect to the comparison with the experimental 

data, the influence of the three-dimensionality and instabilities in 
the experiments is even more confusing than in the steady flow ana

lysis, and only qualitative agreement between the experiments and the 

calculations has been found. 

From the experimental validation of the computation of the 

pulsatile flow in a two-dimensional bifurcation model, it is conclu

ded that the numerical model used provides an accurate approximation 

of the spatial and temporal velocity distributions. In general the 

pulsatile flow in two-dimensional bifurcation models can be charac
terized as follows. Reversed flow regions are observed at the non
divider-side walls of both the internal and external carotid arte

ries. Due to the larger flow rate and the presence of the sinus, the 

axial and cross-sectional extents of the reversed flow region in the 
internal carotid artery are larger than in the external carotid 

artery. The unsteadiness of the flow is accompanied by rather complex 

spatial and temporal velocity distributions and leads to temporal 

variations of the location and length of the reversed flow regions. 

In consequence, strong spatial and temporal variations of the wall 

shear stress are found. At the non-divider-side walls the wall shear 

stress is relatively low and exhibits an oscillatory behaviour in 

space and time. At the divider-side walls the wall shear stress is 
relatively large and approximately follows the flow rate distribution 

in time. 

Comparing the calculated two-dimensional velocity profiles with 

those from three-dimensional experiments, it is observed that in the 

common carotid artery and in the proximal parts of the internal and 
external carotid arteries the two-dimensional numerical model pro

vides valuable information with respect to the three-dimensional 
configuration. In the more distal part of especially the internal 

carotid artery, deviations are found between the results of the two
dimensional numerical model and those of the three-dimensional expe

rimental model. These deviations can mainly be attributed to the 
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neqlect of the secondary vel~city distribution in the two-dimensional 

model. Besides, a relatively good qualitative agreement is found 
between the calculated axial wall shear stress distribution and 

experimental data obtained from a three-dimensional experimental 
model (Ku, 1983). In the two-dimensional numerical model the in

fluence of a minor stenosis in the internal carotid artery is hardly 
distinguishable from a minor qeometry variation. Fully three-dimen
sional analyses of the influence of minor stenoses are needed to 
prove numerically that in-vivo measurements of the axial velocity 

distribution are useful in the detection of minor stenoses. 
Finally, as a first step towards fully three-dimensional calcu

lation of carotid artery flow, the steady entrance flow in a curved 
tube has been analyzed (6=1/6, 100<Re<500, 41<K<204). The calcula
tions of both the axial and secondary velocity distributions for 
Re=JOO (K=122) agree well with the experimental results obtained from 
laser-Doppler anemometry and indicate that the finite element model 
applied offers an accurate tool for three-dimensional flow analyses. 
For higher Reynolds numbers (Re=700), however, the solution procedure 
failed to converge, and less coarse finite element meshes should be 
applied. Also the application of the solution procedure to three

dimensional bifurcation models would require finer mesh distributions 
and would take the calculations beyond the reach of mini-computers 
used until now. More sohisticated computer capacity like array pro
cessing or super-computers are needed here. For further development 
of the numerical method, reformulation of the numerical problem into 
a form to which iterative solution procedures, like the (pre-con
ditioned) conjuqated gradient methods (Axelsson and Barker, 1984 and 

Meijerink and Van der Vorst, 1977), can be applied, can offer some 
advantages with respect to this aspect. Because of the small penalty 
paraaeter introduced, these iterative solution procedures are expec
ted to converge too slowly for the penalization formulation used in 
the present study. Pressure-correction schemes, as successfully 

applied in finite difference approximations (Chorin, 1968, Van Kan, 
1985), seem to be quite suitable, but in the formulations developed 
until now for finite eleaent methods (Donea et al., 1982 and Mizukami 
and Tsuchiya, 1984), difficulties are encountered in correctly incor
porating the inverse of the mass-matrix. 
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ARP£MDIX 1; Finite element formulation of the CNavier)-Stokes 

equations. 

A1.1 Variational formulation of the Nayier-Stokes equations. 

For completeness, in this appendix a brief description of the 

variational formulation of the Navier-Stokes equations is qiven. 

Consider the unsteady Navier-Stokes equations in D dimensions CD=2,3) 

in cartesian coordinates (see chapter 2): 

au. aui --
0__,J,, + o r u. ofi + 
at j 1 axj 

au. 
r ---1 = o 
j 

axj 

with boundary conditions 

and initial condition 

on 2 

on 2 

on r 

on 2 (A 1. 1) 

where 1 and u0 are prescribed functions, and Q denotes a bounded 

domain in IRD with a Lipschitz continuous boundary r. 
To formulate a weak form of (A1.1) the Hilbert space t 2

(Q) and 

the first order Sobolev space H1Co) are introduced and defined as : 

L2Co) = { v I I v2do < •} 
Q 

with inner product : (u,v)= J u v dQ 
g 

and norm llvll 2= (v,v>
1
' 2 

L 
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av 
{ v Ive t 2un, - e t 2CQ), i=1, ... ,D} 

oxi 

au av 
with inner product (u,v) 

H1 
= (U, V) + r c-,-> 

i axi ax. 
l. 

and norm I lvl I 
1/2 = (V r V) 1 H1 H 

(A1. 2) 

Let the space V be a Sobolev space of functions satisfying the homo

geneous boundary conditions ,i.e. V=(H6(Q))D , with H6(Q)={v Ive 

H1(o),vlr = 0}. Furthermore let Q be the space of square integrable 

functions Q=lqlqet2(2)}. The weak form of {A1.1) is obtained by 

taking the inner product of the momentum equation with a function ;ev 
and the inner product of the continuity equation with a function qeQ. 

After applying Green's formula this yields : 

Find a pair (u,p) e VxQ satisfying the initial condition such 

that : 

au. au. au. 
J o ---*v.dQ + I r n< -..1. + __i 

a at i 2 j axj axi 

au. 
- J r --1 qdQ = o 

o j axj 

on 2 

Together with the definitions 

au .. 
<g-,v> 

at 

au. 
r I o---*v.do 
i 2 at 1 

1iiiD I 

HHD (A1.3) 
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a(u,v) = [ I 
au. ~ 

11( ___... + ) 
i,j Q axj axi 

av. 
b(v,q> = - I r --1 qd2 

Q j axj 

au. 
c(w,u,v) = r I ow.~.do 

i, j 2 Jax. i 
J 

<l,v> = r J ofivi.d2 
i Q 

this leads to 

av. 
__..!. dQ 
ax. 

] 

Find a pair (u,p)eVxQ such that 

au 
<g~,v> + a(u,v) + b(v,p) + c(u,u,v) 

at 

b(it,q) = 0 

(A1.4) 

d,v> 

CA 1. 5) 

Boundary conditions different from homogeneous Dirichlet boun

dary conditions as imposed in (A1.1) give variational problems which 

are similar to (A1.5). Inhomogeneous Dirichlet boundary conditions 

lead to an extension of the right hand side <!,v> and a continuity 

equation given as b(u,q)=<y,q> in which y is a given function. Pre

scription of normal and/or tangential stresses give rise to an exten

sion of the right hand side <I,v> which incorporates the boundary 
integrals resulting from the application of Green's formula. A more 

extended treatment of the incorporation of boundary conditions is 

given in cuvelier et al. (1986). 

In the next section, variational problems as given by (A1.5) 
are treated and conditions for existence and uniqueness of its solu

tion are given. 
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A1.2. Existence and uniqueness of solutions of the !Navier)-Stokes 

equations. 

This section is a short summary of the existence and uniqueness 

results for saddle-point problems in general. Proofs of these results 

are to be found in the studies of Brezzi {1974) and Girault and 

Raviart (1979). The results are well adapted to study the solution of 

the steady Stokes equations and form an important fra11ework for the 

construction of finite elements for these equations. From (A1.5) it 

is seen that they can be written in the following variational formu

lation : 

Find a pair (u,p)EVxQ such that 

a(ti,v) + b(v,p) 

b(ti,q) VqeQ (A1.6) 

In order to find necessary and sufficient conditions for the problem 

to be well posed, a new space vcv is introduced as : , 
v = {VEVlb{v,q)=<1,q>,VqeQ} , 

Furthermore v0 is defined as 

Vo = (VeVlb{v,q)=O,VqeQ) 

(A1.7) 

(A1.8) 

Now with problem (A1.6) the following problem can be associated 

Find ueV such that , 
a(u,v) = <l,v> 

If the following hypotheses are assumed 

i) a is v0-coercive, i.e. 

(A1.9) 
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.. .. .. 2 
3 .. v a(v,v) l ul lvl Iv 

u>O vev0 

ii) b satisfies the inf-sup condition 

3 inf sup 

11>0 qeQ veV 

b<v,q> 
-----111 
I lvl lvl lql 10 

(A1 .10) 

(A1.11) 

then problem (A1.6) has a unique solution (u,p)eVxQ (Girault and 

Raviart, 1979). The v0-coerciveness is needed to ensure that problem 

(A1.9) has a unique solution ueV
1 

provided that V
1

# 0. The inf-sup 

condition (or Brezzi-Babuska condition, Brezzi, 1974) implies that 
v; 0 and ensures that a solution ~ev of (A1.9) leads to a unique y y 
solution peQ of : 

b(v,p) = <t,v> - a(u,v) vvev (A1.12) 

In case of the Stokes equations (i.e. a and bare qiven as in (A1.4)) 

it can be proved (Temam, 1974, Girault and Raviart, 1979) that the v0 
-coerciveness of a as well as the inf-sup condition hold and that 

therefore the Stokes problem as formulated in the previous section is 

well posed. 
For non-linear problems {Navier-Stokes equations) an analysis 

as qiven in this section is much more complicated and the reader.is 

referred to the studies of Temam (1974) or Girault and Raviart 

(1979). In qeneral the uniqueness of a solution of the Navier-Stokes 

problem can only be proved for viscosities which are 'sufficient' 

larqe and body forces which are 'sufficient' small. However, the inf

sup condition still must bold to ensure a unique solution peQ for 
each solution uev . 

y 

A1.3. Existence and uniquepess of tbe approximated solutions of 

CNayier->Stokes equations. 

In order to approximate the solution of the variational problem 

{A1.6), two finite dimensional spaces vl\:v and olt.o are defined. 

Problem (A1.6) then can be approximated by : 
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h = <y,q > 

in which h is a discretisation parameter tending to zero. 

(A1.13) 

Similar to the continuous case, the spaces V~cvh and v:;cvh are 

defined as 

h +h h +h h h h V0 = {V cV lb(v ,q )=0,Vq cQ J )A1.15) 

Since QhcQ;~ in general, V~tv and V~¢V in general. 
The discrete analogue of (A1.10) and (A1.11) can be stated as 

follows. 
Under the assumptions that: 

(A1.16) 

* ii) 3 inf sup l P (A1.17) 
p*>o qhf.Qh ;hcvh I l;hl lvl lqhl IQ 

(Girault and Raviart, 1979), in which c
1

>0 ,and only depends upon 
* * 

11 ,p , I lal I and I lbl I and independent of h. 

If the finite dimensional spaces vh and Qh are chosen such 

that 

.. +h 
I lu-v 11 = 0 v (A1.19) 



lim inf 
h+O h Qh q e 

. h 
I lp-q 11 = o 

Q 
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the approximation converges to the exact solution i.e. 

(A1 .20) 

(A1.23) 

In conclusion it is stated that two important conditions must 

hold for the construction of finite dimensional approximations for 

the Navier-Stokes equations. In the first place, the approximation 
. f , .... ) . h must be such that the v0-coerciveness o a u,v carries over to a v0-

coerciveness of a(tih,vh), i.e. leads to a positive definite matrix. 

In the second place, the approximations of the velocity and pressure 

must be such that the discrete inf-sup condition (A1.17) holds i.e. 
vh and Qh can not be chosen arbitrarily. In general this inf sup 

condition is not always easy to check from (A1.17). owing to the 

property that each qeL~(Q) can be associated with a veH6(Q)D with 

div v = q in Q 

llvll 1 Di cllqll 2 H (Q) L (Q) 
(A1.22) 

(see Girault and Raviart, 1979), it is possible to construct the· 

following condition which implies the discrete inf-sup condition for 

the Stokes equations (Fortin, 1977) : 

If there exists a linear continuous operator lh : e6(Q)D,.yh and 
* . • 1 D a constant c >O independent of h such that for all veH0(2) : 

f qhdiv<v-1h;>d2 = o 
Q 

.. * .. lllhvll 1 0 i c llvll 1 0 H (Q) H (Q) 

(A1 .23a) 

(A1.23b) 

* Then the discrete inf-sup condition holds with ~ >O independent of h. 

Using this condition, it can be proved (Cuvelier et al., 1986 and 
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Raviart, 1984) that the (P;-P1) element used in this study, satisfies 

the Brezzi-Babuska condition. 

The remarks made in the last paragraph of the preceding sec

tion, concerning the analysis of the non-linear Havier-Stokes equa

tions, also apply here. For further details the reader is referred to 

the studies of Temam (1974) and Girault and Raviart (1979). 
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APPUDIX 2: The penalty method for the (Rayier-)Stokes Equations. 

to obtain a si•pler problem to solve, a penalty method to 
eliminate the pressure p can be used. Therefore the continuity equa
tion is perturbed with a continuous bilinear form (p,q) multiplied by 
a penalty parameter e which will tend to zero. the following problem 
will be considered : 

Find a pair (ue,pe) in VxQ such that : 

I 

.. .. 
a(ue,v) 

-e(pe,q) 

... b(u ,p > e e 

+ b(u ,q> e 

v'1ev 

= «y,q) VqeQ 

If the linear operator BeL(V,Q) is defined as 

cs;,q> = bC'1,q> Vvt:V , Vqe:Q 

the variational problem (A2.1) then can be written as 

WeV 

P = 1csu -l> e t: e 

Under the assumptions that : 

.. .. .. .. .. 2 3 a(v,v> + (Bv,Bv) l allxllv 
a>O 

V~eV 

(A2. 1) 

(A2.2) 

(A2.3) 

(A2.4) 

(A2.5) 

and that the inf-sup condition (A1.11) holds, it can be proved 
CBercovier, 1978) that (A2.3) has a unique solution and 

(A2.6) 

with c independent of e. 
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Deriving the discrete variational fora, the following approxi

mate problem is obtained : 

(A2.7) 

Since Qh is a proper subspace of Q, the second equation of (A2.7) 

becomes : 

h 1 -+h 
p =-oh(Bu -1) 

£ £ £ 
(A2.8) 

with oh the orthogonal projection operator from Q onto Qh. Problem 
(A2.6) then can be written as : 

h 1 -+h p =-p (Bu -1) 
£ E h £ 

(A2.9) 

In a similar way as in the continuous formulation it can be proved 

that under the assumptions that : 

and that the discrete inf-sup condition (1.17) holds, problem (A2.9) 

has a unique solution and : 

(A2. 11) 

h Error bound (A2.11l does not hold if pe: is written as 

(A2.12) 
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(i.e. a direct discretisation of (A2.2)), which is a wrong way of 

using the penalty formulation. However, in some cases equation 

(A2.12) can be used in combination with a suitable reduced integra

tion technique for which the wrong penalty formulation is equivalent 
to the good one (Raviart, 1984, Bercovier, 1978). In fact then the 

numerical integration rule must be such that 

(A2.13) 

In literature ohB is often referred to as Bh (Engelman et al., 1982, 

Fortin and Fortin, 1985). 

Also for the, non-linear , Navier-Stokes equations error bounds 

as given in (A2.6) and (A2.11) can be given (Reddy, 1982, Carey and 

Krishnan, 1984). The element used in this study (see chapter 2) is 

based on the penalized formulation as given in {A2.9). The projection 

operator oh corresponds with the matrix Mp in equation (2.9). 
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APPENDIX 3; Laser-Doppler experiments material and aetbods. 

As a supplement to the sections 3.2.3, 3.3.4, 4.3 and 5.3, in 

this appendix the measurement methods and experimental set-ups used 

in the two-dimensional {square step and bifurcation) and three-dimen
sional (bifurcation and curved tube) experiments will, be described. 

Since for all these measurements quite similar methods are used, they 

are not described separately. 

Laser-Doppler anemometry. 

In the last two decades laser-Doppler anemometry has become an 

accurate method to measure fluid velocity without disturbing the 

flow. An extensive description of the physical aspects of this method 

and the different measurement configurations are given by Drain 

(1980). In the measurements described here, a forward scattering 

reference beam configuration (see Fig. A3.1) was used. This configu

ration is composed of a fixed source emitting laser light with a 

frequency w0 . This light is scattered by moving particles with a 

velocity ~ inducing a Doppler shift wd=2ksin(1/2)u<<w0 (with k the 

wave number and 1/2 the angle between the main beam and the direction 
of the scattered light). Additionally, a second laser beam with 

frequency w0+ws is used as a reference beam (w
5

<<w0). At the photo 

detector only the difference in frequency w
5

-wd is detected. The 

x 

optical 
--~~~~~~~Nft!!fiP"'<::-~-H-......,..,.-~~~ax=is 
y 

beam 

Fiq. A3.1 : The reference beam forward scattering configuration in 
laser-Doppler anemometry. 
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photo detector output signal then has the following form 

from which the velocity component u can be derived as 

with A the wave length of the laser light. 

taser Doppler equipment. 

Although a different (more advanced) laser-Doppler equipment 

was used for the three-dimensional experiments than for the two

dimensional ones, the essence of both equipments was the same. In 

Fig. AJ.2 the configuration of laser-Doppler equipments as used in 

the experiments is shown schematically. A 5mW He-Ne laser was used 
producing a laser beam with a frequency w0 ~ 5 1014ez. This beam was 

split by means of a beam splitter device which was different for the 
two equipments used. In the first equipment this beam splitter con

sisted of a rotating grating which induced a zeroth order beaa, two 

first order beams and higher order beams. Optical lenses are used to 

converge the zeroth order beam and one of the first order beams in 

the measurement volume. Due to the rotating of the grating, the first 

order beams were shifted in frequency with about 820kHz. In the 
second equipment the beam was split by means of several prisms, 

whereas the frequency shift (40MHz) was induced by a Bragg cell. 
The resulting measurement volume (an ellipsoid) had a length of 

about 0.511111 and a diameter of about 0.0511111 for both equipments. The 
photo detector signal was fed to a frequency tracker converting the 

signal to a direct voltage proportional to the velocity component 

perpendicular to the optical axis. Using a 12-bit analog to digital 

converter and a microcomputer, taking on-line samples, finally the 
signal was fed into a minicomputer for further processing. 
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Fiq. A3.2 Laser-Doppler equipment as used in the experiments. 

Fluid circuits. 
In Fig. AJ.3 the fluid circuit and measurement sections as used 

in the two-dimensional flow experiments are shown schematically. The 

fluid used was water in which some milk was dissolved to make pos

sible appropriate scattering of the laser liqht. Before entering the 

flow channel, the water was passed through a buffer vessel (B) to 

break up any vortices present. A three- and a two-dimensional con

tractor (C3 and C2) at the end of the vessel ensured the velocity 
profile to be flat at the entrance of the flow channel. The length of 

the flow channel upstream of the measurement section was chosen ~uch 
that the flow was fully developed before entering the measurement 

section. Downstream , the length was taken to be so large that no 

upstream influence of the outflow of the channel was expected. With a 

stop-cock SC1 the mean flow was adjusted. A pulsating volume-flow was 

created with regulator R and stop-cock SC2. The measurements were 

performed in the centerplane marked in the figures. By traversing the 

laser-Doppler equipment, mounted on a three-dimensional traversing 

system with an accuracy of about 0.01mm, the measurement volume was 

located at any desired location in the fluid. 
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S1 

Fig. A3.3 : Fluid circuit as used in the two-dimensional flow experi
ments together with the measurement section of the square step con
figuration and the two-diaensional bifurcation model. 

In Fig. A3.4 the fluid circuit and measurement sections as used 
in the three-dimensional flow experiments are given schematically. In 

the square step and bifurcation flow experiments water with a seeding 

of milk was used, whereas in the curved duct flow experiments a 
mixture of oil and kerosine was used as circulating fluid. The latter 

fluid makes possible exact matching of the index of refraction to 
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RM 

RM 

R --- p 

Fig. AJ.4 : Fluid circuit as used in the three-dimensional flow 
experiments together with the measurement sections of the three
dimensional bifurcation model.and the curved tube. 

that of the perspex model. The oil mixture was seeded with silicagel. 

By means of a voltage controlled gear pump the fluid was pumped from 

the reservoir R into an inlet section consisting of a long circular 

pipe to ensure a fully developed flow at the entrance ·Of the measure

ment section. With the aid of a three-dimensional stepper-motors 

device with an accuracy of about 0.03mm, the model was traversed in 

the desired position. 

Data acquisition. 

The data acquisition was controlled by a micro-computer. First 

a measurement cycle is initiated by a trigger pulse originated from 
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the terminal (steady flow measurements), the stop-cock (two-dimen

sional unsteady flow measurements) or the pump (three-dimensional 

unsteady flow measurements). Next, from the digitized signal, a 

number of samples were taken with timesteps equal to a multiple of 

250µs and a maximum of 3000 per measurement cycle. When the intake 

from one measurement cycle was completed, the data were transported 

to the minicomputer and stored on disk. Hereafter, the micro-computer 

stands by for a new trigger pulse. In a post-processor program on the 

mini-computer averaging over the measurement cycles and calculation 

of the 95\-confidence intervals from a Student-t distribution were 

performed and the data were displayed in several foraats. 

References. 
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samenvattinq. 

De nWRerieke analyse van bloedstrolling in de halsslagader 
(vertakking) speelt naast in-vitro en in-vivo experiaentele analyses 
een belangrijke rol in studies naar diagnostiek en onstaan van athe
rosclerose. Om aeer inzicht te verkrijgen in deze strominq, is onder
zoek vericht naar de nuaerieke analyse van Newtonse incompressibele 
stroaingen in halsslagadermodellen met starre wanden. 

Een Galerkin eindiqe elementen formulering van de instationaire 
Navier-Stokes vergelijkingen is geformuleerd en getest aan de hand 
van twee-dimensionale oscillerende strominq tussen twee vlakke platen 
en de von Karaan wervelafschuddinq achter een cylinder. Vervolgens is 
de stationaire.en instationaire stroming over een rechthoekige stap 
in een twee-diaensionaal kanaal geanalyseerd. Hierbij is speciale 
aandacht uitgegaan naar de optiaalisering van de rekenprocedure. 
Tevens kunnen bovenqenoemde berekeningen gezien worden als een een
voudige twee-dimensionale modellering van een vernauwing in de hals
slagader. De ontwikkeling en vorm van terugstroom gebieden achter de 
stap, die sterk tijdsafhankelijk blijken te zijn, worden hierbij 
qebruikt om de stroming te karakteriseren. Vervolgens is de stroming 
in twee-dimensionale vertakkinqsmodellen voor zowel noraale als 
vernauwde geometrie~n geanaliseerd. Naast de distributie van de 
wandschuifspanning is ook bier speciale aandacht uitgegaan naar de 
analyse van de terugstroom gebieden. Zowel voor het (blokvormig) 
vernauwings model als voor het vertakkings model zijn de berekende 
snelheids verdelingen qevalideerd aan de hand van de resultaten van 
laser-Doppler snelheidsmetingen in analoge in-vitro modellen. Tot 
slot is een eerste stap naar volledige drie-dimensionale anlyse van 
de stroming in de halsslagader vertakking verricht. Hiertoe is de 
stationaire inlaatstroming in een bocht-vormige pijp geanalyseerd. De 
resultaten van de berekeningen van axiale aaar ook secundaire snel
heidsverdelingen zijn vergeleken met experiaentele geqevens. 

Uit de studie volgt dat de nuaerieke analyse een gedetailleerde 
en nauwkeuriqe beschrijvin9 geeft van snelheids en wandschuifspan
nings verdelingen in vereenvoudigde aodellen van de halsslagader 
vertakking. Voor coaplete drie-diaensionale analyses is verdere 
uitbreiding van computer capiciteit en vervolgonderzoek naar meer 
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eff icienter numerieke oplosprocedures voor de Navier-Stokes ver
geli jkingen· noodzakelijk. · 
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STELLINGEN 

Behorende bij het proefschrift 

NUMERICAL ANALYSIS OF CAROTID ARTERY FLOW 

1. Bij een quantitatieve analyse van de stroming in de halsslagader 

verta.kkinq is een drie-dimensionale modelvorming essentieel. 

Hoofdstuk 4 van dit proefschrift 

2. De druk-correctie methode voor de discretisatie van de 

tijdsafhankelijke Navier-Stokes vergelijkingen zoals voorgesteld 

door Charin {1968) is alleen efficient toepasbaar in eindiqe 

elementen formuleringen indien de massamatrix diagonaliseerbaar is 

binnen de orde van nauwkeuriqheid. 

Charin A.J., 'Numerical solution of the Havier-Stokes 

equations.•, ffath. Copp., 12, p 745-762 {1968). 

3. Het gebruik van toroidale coordinaten systemen voor berekeningen 

van de inlaatstrominq in een geboqen pijp (Soh en Berger, 1984) 

maakt het opleqgen van fysisch correcte randvoorwaarden uiterst 

moeilijk. 

Soh W.Y. and Berger S.A.,'Laminar entrance flow in a curved 

pipe'., J. Fluid Mech., ..tii, p 109-135 {1984). 

Bovendeerd P.H.M., van Steenhoven A.A., van de Vosse F.N. and 

Vossers G.,'Steady entrance flow in a curved pipe.', J. Fluid 

~,in press (1987). 



4. Toepassing van de 'karakteristieke' methode in combinatie met een 

eindiqe elementen formulering van de Navier-Stokes vergelijkinqen 

(Pironneau, 1982) is niet toepasbaar bij problemen met Neumann 

randvoorwaarden. 

Pironneau o., 'On the transport-diffusion algorithm and its 

application to the Navier-Stokes equations.', Num. Ma.th., Jl, 
p 309-332 (1982), 

5. De motivering van Brooks en Hughes (1982) om streamline-upwind/ 

Petrov-Galerkin formuleringen voor de discretisatie van de Navier
Stokes vergelijkingen te gebruiken, is gebaseerd op berekeningen 
met een te grove meshverdelinq en hierdoor niet overtuiqend. 

Brooks A.N. and Hughes T.J.R., 'Streamline upwind/Petrov
Galerkin formulations for convection dominated flows with 
particular emphasis on the incompressible Navier-Stokes 
equations.', Comp. Meth. Appl. Mech. Eng., 12., p 199-259 

(1982). 

6. Eliminatie van de snelheden en drukafgeleiden zoals voorgesteld 

voor bet twee-dimensionale P;-P1 element (Griffiths, 1979) en 

tevens mogelijk voor bet drie-dimensionale o2-P1 element heeft 

voor bet laatst qenoemde element nauwelijks zin. 

Griffiths D.F., 'Finite elements for incompressible flow.•, 

Ma.th. Meth. Appl. Sci., 1, p 16-31 (1979). 

7. Een kunstwerk is nooit abstract, kunst altijd. 

8. De dwanq waarmee vele promovendi stellingen moeten formuleren 
draaqt niet bij tot hun methodologische ontwikkeling. 

9. Het hoge geluidsvolume van de muziek in cafe's en discotbeken is 

wellicht een belanqrijke aanleidinq tot bet draqen van kledij met 
opschriften. 

Eindhoven, januari 1987 Frans van de Vosse 


