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Nonperiodic Inspections to Guarantee

a Prescribed Level of Reliability

C. T. Barker and M. J. Newby

The City University School of Engineering and Mathematical Sciences,
Northampton Square, London, England

Abstract: A cost-optimal nonperiodic inspection policy is derived for complex
multicomponent systems. The model takes into consideration the degradation
of all the components in the system with the use of a Bessel process with drift.
The inspection times are determined by a deterministic function and depend on
the system’s performance measure. The nonperiodic policy is developed by eval-
uating the expected lifetime costs and the optimal policy by an optimal choice
of inspection function. The model thus gives a guaranteed level of reliability
throughout the life of the project.

Keywords and Phrases: Wiener process, Bessel process, regenerative process

9.1 Introduction

The aim of the chapter is to derive a cost-optimal inspection and maintenance
policy for a multicomponent system whose state of deterioration is modelled
with the use of a Markov stochastic process. Each component in the sys-
tem undergoes a deterioration described by a Wiener process. The proposed
model takes into account the different deterioration processes by considering a
multivariate state description Wt. The performance measure Rt of the system
is a functional on the underlying process and is not monotone. Decisions are
made by setting a critical level for the process. Because it is nonmonotone the
performance measure can cross the critical level in both directions but will even-
tually grow without limit. Our decisions are thus based on the probability that
the performance measure never returns below the critical level. By choosing the
critical level appropriately we thus guarantee a minimum level of reliability.

109



110 C. T. Barker and M. J. Newby

9.2 The Model

9.2.1 The considered processes

A system S consisting of N components (or subsystems) is considered. It is
assumed that each component experiences its own way of deteriorating through
time and that the N deteriorations are independent; that is, the deterioration
of any component has no influence on the deterioration of the N − 1 remaining
components. The proposed model takes into account the different N deteriora-
tion processes as follows. Each component undergoes a deterioration described
by a Wiener process. The components are labelled Ci, i ∈ {1, . . . , N} and the
corresponding Wiener processes are W

(i)
t , i ∈ {1, . . . , N}, where

W
(i)
t = µit + σB

(i)
t , ∀i ∈ {1, . . . , N}. (9.1)

The above Wiener processes have different drift terms (the µis) but for sim-
plicity the volatility terms (σ) are assumed identical and each component is
assumed to be new at time t = 0 : W

(i)
0 = 0. The independence is modelled by

considering N independent Brownian motions B
(i)
t s. The next step consists in

considering the following N -dimensional Wiener process:

Wt =
(
W

(1)
t ,W

(2)
t , . . . ,W

(N)
t

)
= µt + σBt

W0 = 0

(9.2)

with

µ =

⎛⎜⎝ µ1
...

µN

⎞⎟⎠ , Bt =

⎛⎜⎝ B
(1)
t
...

B
(N)
t

⎞⎟⎠ . (9.3)

Decisions are based on a summary measure of performance which corre-
sponds to a functional on the underlying process A(Wt), as in Newby and Barker
(2006). In this study the functional used to describe the system’s performance
measure is the Euclidean norm Rt,

Rt = ‖Wt‖2

=

√√√√ N∑
i=1

(W (i)
t )2

. (9.4)
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Rt is the radial part of a drifting Brownian motion starting at the origin; it
therefore corresponds to a Bessel process with drift Bes0(ν, µ) starting at the
origin with index ν and drift µ [Rogers and Pitman (1980)], where:

ν =
1
2
N − 1 and µ =

√√√√ N∑
i=1

µ2
i . (9.5)

Remark 9.2.1 The radial part of a Brownian motion with drift starting from
any other point R0 �= 0 does not correspond to a Bessel process with drift
BesX(ν, µ) [Rogers and Pitman (1980)].

9.2.2 Maintenance actions and nonperiodic inspections

The model proposed in this chapter aims at giving an optimal maintenance and
inspection policy. The efficiency of the policy entirely depends on the inspection
times and the type of maintenance on the system.

Maintenance actions are determined by comparing the observed system state
Rt with a critical level ξ. However, rather than considering the first hitting time
at this threshold, decisions are based on the last exit time from this critical level.
For a general process Xt the last exit time is

Hx
ξ = sup

t∈R+

{Xt ≤ ξ|X0 = x}.

In a monotone process both the first hitting time and last exit times are stopping
times and the distributions of these times are relatively straightforward to ob-
tain. The Bessel process Rt describing the performance measure is nonmonotone
so that the last exit time is not a stopping time but the probability P[H0

ξ ≤ t]
is known.

Decision rules for maintenance are made with the help of a maintenance
function. In our particular case, the process chosen is the Euclidean norm of
an n-dimensional Wiener process which corresponds to a Bessel process only
when the process starts from the initial state 0. Hence it is a necessity to always
consider the process starting from state 0. This rules out the usual repair model,
that describes the effect of maintenance on the system by determining a new
starting point for the process. The problem is tackled by considering changes
in the value of the critical threshold ξ, rather than a new starting point for the
process, and hence affects the time taken to traverse the distance to the critical
threshold. After a repair the system is described by the same process starting
from zero but with the critical threshold reduced to the distance between the
repaired state and the original threshold. We introduce a repair function which
models the amount by which the threshold is lowered after undertaking a repair
on the system. The function introduced is denoted by d and if {τ1, τ2, . . .} refer
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to the inspection times, d may be defined as

d : R+ → R+ Rτi �→ d (Rτi) . (9.6)

It is a function of the performance measure of the system at inspection times.
The choice for d is made among the set of bijective functions. The bijective
property for d is required when the derived cost functions are numerically eval-
uated with an appropriate choice of quadrature points. The idea is that rather
than considering Rt starting from a new initial state after the maintenance ac-
tion with the same threshold value ξ, we reset the value Rτi to 0 and consider
a lower threshold ξ

′
= ξ − d (Rτi). This may also be regarded as a shift of the

x-axis of amount d (Rτi) upwards. As far as the decision problem is concerned,
the Markov property of the process is exploited and allows a copy of the original
process to be considered:

P[Rt < ξ |R0 = x] = P[R′
t < ξ − x |R′

0 = 0] (9.7)

with

Rt = ‖Wt‖2
R′

t = ‖Wτ+
i + t −Wτ+

i
‖2

. (9.8)

Recall that Wt is the n-dimensional process describing the state of the system.
The process observed to be in state Wτi is repaired instantaneously and restarts
in state Wτ+

i
where ‖Wτ+

i
‖2 = x: the repair undertaken on the system can

therefore be interpreted as a componentwise repair. R′
t is an equivalent process

with the same probability structure and starting at the origin. In the more usual
notation

Px[Rt < ξ] = P0[R′
t < ξ − x] (9.9)

with the superscript indicating the starting point.
The proposed model considers a nonperiodic inspection policy, the reason

for this being that it is a more general approach and often results in policies with
lower costs, particularly in cases where high costs of lost production are taken
into consideration. Rather than considering a dynamic programming problem
as did Newby and Dagg (2004), the optimization problem is simplified by using
an inspection scheduling function m as introduced in Grall et al. (2002). The
scheduling function is a decreasing function of d (Rτi), the amount by which
the threshold is decreased, and determines the amount of time until the next
inspection time

m : R+ → [mmin,mmax]
d (Rτi) �→ m [d (Rτi)] .

(9.10)

With τi (i ∈ N) denoting the times at which the system is inspected and Rτi

its performance, the next inspection time τi+1 is deduced using the relation

τi+1 = τi + m [d (Rτi)] . (9.11)
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Consequently, it is the state of the performance measure that determines the
next inspection time. The choice for m is made among the set of decreasing
functions

∀ i, j ∈ N : d (Rτi) ≤ d
(
Rτj

)
⇔ m [d (Rτi)] ≥ m

[
d
(
Rτj

)]
. (9.12)

This allows us to model the fact that the worse the performance of the system
is (and hence the lower the value for the new critical threshold after repair
is) the more frequently it needs to be inspected. We note that the great ad-
vantage with this approach is that it preserves continuity within the model.
The approach here is to optimize the total expected cost with respect to the
inspection scheduling function. The inspection functions form a two-parameter
family and these two parameters, a and b, are allowed to vary to locate the
optimum values. The function can be thus written m [ . | a, b] leading to a total
expected cost function vξ (a, b) which is optimized with respect to a and b. The
two parameters are defined in the following way,

m [0 | a, b] = a,

m [Rt | a, b] = α, if Rt ≥ b,
(9.13)

for some fixed chosen value α ∈ [0, a]. From the above, we may deduce that
mmin = α and mmax = a. These parameters have physical interpretations:

(i) Parameter a corresponds to the amount of time elapsed before the first
inspection (i.e., when the system is new)

(ii) Parameter b controls changes in frequency of inspections.

As the choice of inspection scheduling functions is made among the set of
decreasing functions, one may deduce

∀ i ∈ N, τi+1 − τi ≤ a.

(That is, the amount of time between any two consecutive inspections will
not exceed a.) Moreover, the parameter b sets a lower bound for the process
Rt below which the system’s performance is assumed to be insufficient; this
therefore justifies a periodic inspection of the system of period α.

To ensure tractability of the optimization and of the effects of the chosen
function on the optimal cost, choices for m are confined within the set of poly-
nomials of order less than or equal to 2. We note, however, that the proposed
models are not restricted to this choice of inspection scheduling functions and
can be extended to any other type of function. Particular attention is paid to the
convexity or concavity property of m; this allows different rates of inspections
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as time passes to be considered. The following three expressions for m are in-
vestigated,

m1 [x| a, b ] = max
{

1, a− a− 1
b

x

}
(9.14)

m2 [x| a, b ] =

⎧⎨⎩ (x− b)2

b2
(a− 1) + 1, 0 � x � b

1, x > b
(9.15)

m3 [x| a, b ] =

⎧⎨⎩ −
(√

a− 1
b

x

)2

+ a, 0 � x � b

1, x > b

(9.16)

with a > 1 in all cases. Note that if a = 1 the policy becomes a periodic
inspection policy with period τ = a = 1 and in the case where a < 1 the policy
inspects less frequently for a more deteriorated system.

Remark 9.2.2 In the rest of the chapter, the notations m (x) and vξ−x are
used rather than m (x|a, b) and vξ−x (a, b), for clarity.

The function m1 resembles the inspection scheduling function considered in
the numerical example section of Grall et al. (2002) and constitutes a reference
for our numerical results. Note that whereas the time until the next inspection
decreases rather quickly when dealing with m2, m3 allows greater time between
the inspections when the state of the system is still small. The function m2

might be thought appropriate for a system experiencing early failures (infant
mortality), whereas m3 is more appropriate for a system that is unlikely to fail
in its early age.

9.2.3 Features of the model

Model assumptions

1. Without loss of generality, it is assumed that the system’s initial perfor-
mance is maximum (i.e., R0 = 0) with initial critical threshold ξ.

2. Inspections are nonperiodic, perfect (in the sense that they reveal the true
state of the system), and they are instantaneous.

3. Maintenance actions are instantaneous.

4. The system’s performance is only known at inspection times, however, the
moment at which the performance does not meet the prescribed criteria is
immediately known (self-announcing): the system is then instantaneously
replaced by a new one with cost Cf .

5. Each inspection incurs a fixed cost Ci.
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6. Each maintenance action on the system incurs a cost determined by a
function Cr. It is a function of the performance of the system at inspection
time.

Settings for the model

1. The state space in which the process Rt evolves is partitioned by the
critical threshold ξ as follows.

R+ = [0, ξ) ∪ [ξ,+∞) . (9.17)

Because the process Rt is nonmonotone, the first time at which the process
hits the threshold ξ is not considered as the time at which the system fails.
Instead, we use the transience and positivity properties of the process to
define the system as unsafe when it has escaped from the interval [0, ξ).
This time is the last exit time H0

ξ = supt∈R+{Rt ≤ ξ|R0 = 0}.

2. The system is inspected at inspection times {τ1, τ2, . . .}. The time between
inspections τi−1 and τi is Ti, i ∈ N and is determined by using an inspec-
tion scheduling function m, described in Section 9.2.2. The sequence of
inspection times (τi)i∈Z+ is strictly increasing and satisfies:

τ0 = 0

τi =
i∑

k=1

Tk

Ti = τi − τi−1, i ≥ 1.

(9.18)

At inspection time τi, the corresponding system’s state is Rτi and ap-
propriate maintenance action (repair or do nothing) is undertaken. Let
τ∗
i denote the times at which the system is replaced: at such times the

process (Rt)t≥0 is reset to zero. These times are regeneration times and
allow us to derive an expression for the total expected cost of inspection
and maintenance.

3. At inspection time t = τ (prior to any maintenance action), the system’s
performance is Rτ .

4. Given that the system’s initial performance is maximum (i.e., R0 = 0),
decisions on the level of maintenance (replacement or imperfect mainte-
nance) are made on the basis of the indicator function 1{H0

ξ >τ}. By this it
is meant that decisions on whether to replace the system are taken on the
basis of the process having definitively escaped from the interval [0, ξ).



116 C. T. Barker and M. J. Newby

5. Deterministic maintenance at inspection time is modelled with the use of
the following maintenance function,

d (x) =

⎧⎨⎩ x, x < ξ
K

kx, x ≥ ξ
K

(9.19)

with corresponding cost function

Cr (x) =

⎧⎨⎩ 0, x < ξ
K

100, x ≥ ξ
K

(9.20)

with constants k ∈ (0, 1] and K ∈ (1,+∞). The constant k determines
the amount of repair undertaken on the system; K is arbitrarily chosen
and sets the region of repairs for the system.

9.3 Expected Total Cost

In this section we propose an expression for the expected total cost of inspec-
tions and maintenance. The Markov property of the Bessel process allows the
total cost to be expressed via a recursive approach: a conditioning argument
on the threshold value is considered. The notation Vξ−x is used to denote the
total cost of maintenance, where ξ− x refers to the threshold value. The main-
tenance decisions are made using the exit time from the region of acceptable
performance. The time H0

ξ−x can never be known by observation because ob-
serving any up-crossing of the threshold reveals a potential exit time but there
remains the possibility of a further down-crossing and up-crossing in the fu-
ture. This is the meaning of the fact that H0

ξ−x is not a stopping time. In a
nonprobabilistic context, the process H0

ξ−x is described by a noncausal model.
The difficulty is readily resolved because the probability that the last exit time
occurs before the next inspection is known. In the light of these observations
the decision rules are formulated as follows.

• 1{H0
ξ−x>m(x)} = 1: performance of the system (evaluated with respect to

the last time the process hits the critical threshold) meets the prescribed
criteria until the next scheduled inspection. Upon inspection, the system’s
performance is Rm(x). The system is inspected, and a cost of inspection
Ci is considered. The maintenance brings the system state of degradation
back to a lower level d

(
Rm(x)

)
with cost Cr

(
Rm(x)

)
. Future costs enter by

looking at the process starting from the origin and with the new critical
threshold set up equal to ξ−d

(
Rm(x)

)
. The system is then next inspected

after m
[
d
(
Rm(x)

)]
units of time.
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• 1{H0
ξ−x>m(x)} = 0: the performance fails to meet the prescribed criteria

between two inspections. The system is replaced with cost Cf and the
process restarts from the origin. Future costs are then taken into consid-
eration by looking at the process starting from the origin and with the
new critical threshold set up equal to ξ.

9.3.1 Expression of the expected total cost

We first give the expression for the total cost and then take the expectation.
This is done by considering the above different scenarios

Vξ−x =
(
Ci + Vξ−d(Rm(x)) + Cr

(
Rm(x)

))
1{performance acceptable}

+ (Cf + Vξ)1{performance not acceptable}

=
(
Ci + Vξ−d(Rm(x)) + Cr

(
Rm(x)

))
1{H0

ξ−x>m(x)}

+ (Cf + Vξ)1{H0
ξ−x≤(x)}.

(9.21)

Taking the expectation leads to:

vξ−x = E[Vξ−x]

= E

[
(Cf + Vξ)1{H0

ξ−x≤m(x)}
]

+ E

[(
Ci + Vξ−d(Rm(x)) + Cr

(
Rm(x)

))
1{H0

ξ−x>m(x)}
]

= (Cf + vξ) E

[
1{H0

ξ−x≤m(x)}
]

+ E

[(
Ci + Vξ−d(Rm(x)) + Cr

(
Rm(x)

))
1{H0

ξ−x>m(x)}
]

= (Cf + vξ) P
[
H0

ξ−x ≤ m(x)
]

+
∫ +∞

0

(
Ci + Cr (y) + vξ−d(y)

)
P
[
H0

ξ−x > m(x)
]
f0

m(x) (y) dy

= (Cf + vξ) P
[
H0

ξ−x ≤ m(x)
]

+
∫ +∞

0

(
Ci + Cr (y) + vξ−d(y)

)
P
[
H0

ξ−x > m(x)
]
f0

m(x) (y) dy.

(9.22)

Using the density of the last hitting time h0
ξ and the transition density f0

t

of the process Rt

vξ−x = (Cf + vξ)
∫ m(x)

0
h0

ξ−x (t) dt

+
∫ +∞

0

(
Ci + Cr (y) + vξ−d(y)

)(
1−
∫ m(x)

0
h0

ξ−x (t) dt

)
f0

m(x) (y) dy
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= Ci

(
1−
∫ m(x)

0
h0

ξ−x (t) dt

)
+ (Cf + vξ)

∫ m(x)

0
h0

ξ−x (t) dt

+

(
1−
∫ m(x)

0
h0

ξ−x (t) dt

)∫ +∞

0
Cr (y) f0

m(x) (y) dy

+
∫ +∞

0
vξ−d(y)

(
1−
∫ m(x)

0
h0

ξ−x (t) dt

)
f0

m(x) (y) dy. (9.23)

In (9.22) the expected value E

[
Vξ−d(Rm(x))1{H0

ξ−x>m(x)}
]

is required. The

expected value is derived by using the conditional independence of H0
ξ−x and

Rτ . The independence allows the factorization of the integrals as shown in the
appendix.

Rearranging (9.23) above gives

vξ−x = Q (x) + λ (x) vξ +
∫ d−1(ξ)

0
vξ−d(y)K {x, y} dy, (9.24)

where

λ (x) =
∫ m(x)

0
h0

ξ−x (t) dt

Q (x) = (1− λ (x))
(

Ci +
∫ +∞

0
Cr (y) f0

m(x) (y) dy

)
+ Cfλ (x)

K {x, y} =

(
1−
∫ m(x)

0
h0

ξ−x (t) dt

)
f0

m(x) (y) .

(9.25)

Note that now the limit in the integral in (9.24) is finite. The justification for
this change of limit is that the expected cost vξ−x is assumed to be zero when
the critical threshold is negative. Indeed, a negative threshold in the model
would either mean that the system never reaches a critical state or that it is
always in a failed state; hence no maintenance action needs to be considered,
setting the expected cost of maintenance to zero.

9.3.2 Obtaining the solutions

The equation (9.24) is solved numerically: an approximation to the continuous
problem is constructed by discretizing the integrals giving a set of linear matrix
equations. The discrete problem is solved using the methods described in Press
et al. (1992). First, note that at t = 0 the system is new. Under this condition,
we rewrite Equation (9.24) as follows.

vξ−x = Q (x) + λ (x) vξ−x +
∫ d−1(ξ)

0
vξ−d(y)K {x, y} dy. (9.26)
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Yielding to the following Fredholm equation,

{1 − λ (x)}vξ−x = Q (x) +
∫ d−1(ξ)

0
vξ−d(y)K {x, y} dy. (9.27)

Rewriting (9.24) as (9.27) does not affect the solution to the equation and will
allow the required solution to be obtained by a homotopy argument based on ξ.
Indeed both Equations (9.24) and (9.27) are identical when x = 0; we therefore
solve Equation (9.27) and get the solution for x = 0. The Nystrom routine with
the N -point Gauss–Legendre rule at the points yj, j ∈ {1, . . . , N} is applied to
(9.27); we get

{1− λ (x)}vξ−x = Q (x) +
N∑

j=1

vξ−d(yj)K {x, yj}wj . (9.28)

We then evaluate the above at the following appropriate points xi = d (yi)
and obtain:

{1− λ (xi)}vξ−xi
= Q (xi) +

N∑
j=1

vξ−d(yj)K {xi, yj}wj , (9.29)

which, because vξ−xi
and vξ−d(yi) are evaluated at the same points, can be

rewritten in the following matrix form,

(D−K)v = Q, (9.30)

where:

vi = vξ−xi

Di,j = (1− λ (xi))1{i=j}
Ki,j = K {xi, yj}wj

Qi = Q (xi) .

(9.31)

Having obtained the solution at the quadrature points by solving inversion of
the matrix D − K, we get the solution at any other quadrature point x by
simply using Equation (9.28) as an interpolatory formula.

Remark 9.3.1 K{x, y} in (9.25) is the product of a density function by a
survival function hence it is bounded by the maximum of the density which,
by the Fredholm alternative, ensures that the equation in (9.30) has a solution
(i.e., D−K is invertible).

Because we are interested in a system which is new at time t = 0, we just
choose the quadrature point xi = 0, which justifies that rewriting (9.24) as
(9.27) does not affect the solution to the equation.
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9.4 Numerical Results and Comments

This section presents results from numerical experiments. The values of the
parameters for the process used to model the degradation of the system and
the different costs used were chosen arbitrarily to show some important features
of the inspection policy. The initial value for the critical threshold is ξ = 5,
the Bessel process considered is Bes0 (0.5, 1), and the values for the cost of
inspection and the cost of failure are Ci = 50 and Cf = 200.

The corresponding costs of repair are chosen to be dependent on the state
of the system found at inspection as follows.

Cr (y) =

⎧⎨⎩ 0, y < ξ
2

100, y ≥ ξ
2 .

(9.32)

The purpose of the present model is to find an optimal inspection policy
for the expected total cost of inspection and maintenance of the system. Three
different types of inspection policies are considered with the use of the three
inspection scheduling functions m1, m2, and m3 defined in Section 9.2.2. The
expected total costs are minimized with respect to the two parameters a and b.

The numerical results for the case of small maintenance on the system
(k = 0.9) are shown in Figure 9.1. In the case of a large amount of mainte-
nance (k = 0.1), the numerical results are shown in Figure 9.2. The optimal
values a∗i , b∗i , and v∗i (i = {1, 2, 3}) for a, b, and vξ, respectively, in the different
scenarios, are summarized in Table 9.1.

We first note that the surfaces obtained clearly show the presence of an
optimal policy for each inspection function considered. In the case k = 0.1 with
inspection function m2, the optimal inspection policy seems to strongly depend
on parameter a only, which is the first time of inspection of the system. The
choice for b does not seem to be of much importance.

Even if the optimal inspection policy gives a value b∗ which is less than ξ,
we note that the choice b > 5 (≡ ξ) is not meaningless: indeed the value Rτi of
the process at inspection time τi may be greater then ξ: it is the last hitting
time of ξ by the process that defines the process as unsafe.

From Table 9.1, we note that the optimal costs are smaller for k = 0.1 than
for k = 0.9. This makes sense, because in both cases the same values for the costs
were considered: the case k = 0.1 corresponding to more repair, the system will
tend to deteriorate slower and therefore will require less maintenance resulting
in a smaller total cost. In both cases k = 0.9 and k = 0.1, we note that the value
for v∗ increases with the convexity of the inspection function: v∗3 < v∗1 < v∗2.

Plots of the optimal inspection functions in Figure 9.3 show that the smallest
value for a is a3, corresponding to the first inspection time for a new system
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Figure 9.1. Surface representations of the expected total costs with different
inspection scheduling functions, k = 0.9.
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Figure 9.2. Surface representations of the expected total costs with different
inspection scheduling functions, k = 0.1.
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Table 9.1. Optimal values of the parameters a and b for the three inspection
scheduling functions

Inspection Policies k = 0.9 k = 0.1
a∗1 5.9 4.5

m1 b∗1 2.3 2.3
v∗1 1176.6 628.73

a∗2 6.1 4.5
m2 b∗2 3.8 4.7

v∗2 1310.8 631.71

a∗3 5.6 4.3
m3 b∗3 2.3 1.9

v∗3 1089.3 625.67

when inspection function m3 is used. However, when the value of the process
reaches some value (rather close to 0), the function m3 crosses m1 and m2 to lie
above them. It then crosses m2 a second time to return below it. We may deduce
that for this process an optimal policy is first to allow a long time between the
inspections, then to change strategy drastically to a small interval or an almost
periodic inspection policy of period 1. This change of inspection decision within
the same policy m3 happens earlier when k = 0.1.

9.5 Conclusion

The proposed model provides optimal nonperiodic inspection policies for a com-
plex multicomponent system whose state is described by a multivariate Wiener
process. Decisions are made on the basis of the state of a performance measure
defined by the Euclidean norm of the multivariate process and the last exit time
from an interval rather than the first hitting time. The models are optimized
in the sense that they result in a minimum expected maintenance cost, whose
expression uses a conditioning argument on the critical threshold’s value. The
nonperiodicity of the inspection times is modelled with the use of an inspection
scheduling function, introduced in Grall et al. (2002), which determines the
next time to inspect the system based on the value of the performance measure
at inspection time. The numerical results obtained show the presence of a cost-
optimal inspection policy in each of the six cases, where different inspection
functions and different amounts of repair are considered. Attention is paid to
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Figure 9.3. Optimal inspection scheduling functions.

the influence of the convexity of the inspection function on the optimal expected
total cost: the value for the optimal cost v∗ increases with the convexity of the
inspection function.

Appendix

Let fRm(x),H
0
ξ−x

be the joint probability density function of the process at time
m (x) and the last exit time from the interval [0, ξ − x). We may deduce:

E
[
Vξ−d(Rm(x)) × 1{H0

ξ−x>m(x)}
]

=
∫ +∞

0

∫ +∞

0
vξ−d(y) × 1{t>m(x)}fRm(x),H

0
ξ−x

(y, t) dydt

=
∫ +∞

0

∫ +∞

0
vξ−d(y) × 1{t>m(x)}fRm(x)|H0

ξ−x=t (y)h0
ξ−x (t) dydt

=
∫ +∞

m(x)

∫ +∞

0
vξ−d(y)fRm(x)|H0

ξ−x>m(x) (y)h0
ξ−x (t) dydt
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=
∫ +∞

m(x)
h0

ξ−x (t)
∫ +∞

0
vξ−d(y)fRm(x)|H0

ξ−x>m(x) (y) dydt

=
∫ +∞

m(x)
h0

ξ−x (t) dt

∫ +∞

0
vξ−d(y)fRm(x)

(y) dy

=

(
1−
∫ m(x)

0
h0

ξ−x (t) dt

)∫ +∞

0
vξ−d(y)fRm(x)

(y) dy

=

(
1−
∫ m(x)

0
h0

ξ−x (t) dt

)∫ +∞

0
vξ−d(y)f

0
m(x) (y) dy.

The conditional independence allows the replacement of fRm(x)|H0
ξ−x>m(x) by

fRm(x)
: as H0

ξ−x > m (x), the process may still be in the region [0, ξ − x) and
hence the region of integration remains [0,+∞).
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