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Intermittency on catalysts:
symmetric exclusion
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F. den Hollander 23
G. Maillard *

24th May 2006

Abstract

We continue our study of intermittency for the parabolic Anderson equation du/dt =
kAu + Eu, where u: Z% x [0,00) — R, x is the diffusion constant, A is the discrete
Laplacian, and ¢: Z¢ x [0,00) — R is a space-time random medium. The solution of the
equation describes the evolution of a “reactant” w under the influence of a “catalyst” €.

In this paper we focus on the case where £ is exclusion with a symmetric random
walk transition kernel, starting from equilibrium with density p € (0,1). We consider the
annealed Lyapunov exponents, i.e., the exponential growth rates of the successive moments
of u. We show that these exponents are trivial when the random walk is recurrent, but
display an interesting dependence on the diffusion constant x when the random walk is
transient, with qualitatively different behavior in different dimensions. Special attention
is given to the asymptotics of the exponents for kK — oo, which is controlled by moderate
deviations of £ requiring a delicate expansion argument.

In Gértner and den Hollander [4] the case where { is a Poisson field of independent
(simple) random walks was studied. The two cases show interesting differences and simi-
larities. Throughout the paper, a comparison of the two cases plays a crucial role.
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1 Introduction and main results

1.1 Model

The parabolic Anderson equation is the partial differential equation

0

Eu(m,t) = kAu(z,t) + &(z, t)u(z, 1), reZlt>0. (1.1.1)
Here, the u-field is R-valued, k € [0, 00) is the diffusion constant, A is the discrete Laplacian,
acting on u as

Au(z,t)= > [uly,t) — u(,1)] (1.1.2)

yezd
[ly—=]=1

(|| - || is the Euclidian norm), while
¢ ={&(x,t): we 2t >0} (1.1.3)

is an R-valued random field that evolves with time and that drives the equation. As initial
condition for (1.1.1) we take
u(-,0) = 1. (1.1.4)

In the present paper we focus on the case where £ is Symmetric Ezxclusion (SE), i.e., £
takes values in {0, 1}Zd x [0,00), where £(z,t) = 1 means that there is a particle at x at time ¢
and &(z,t) = 0 means that there is none, and particles move around according to a symmetric
random walk transition kernel. We choose £(+,0) according to the Bernoulli product measure
with density p € (0, 1), i.e., initially each site has a particle with probability p and no particle
with probability 1—p, independently for different sites. For this choice, the ¢-field is stationary
in time.

One interpretation of (1.1.1) and (1.1.4) comes from population dynamics. Consider a
spatially homogeneous system of two types of particles, A (catalyst) and B (reactant), subject
to:

(i) A-particles behave autonomously, according to a prescribed stationary dynamics, with
density p;

(ii) B-particles perform independent random walks with diffusion constant x and split into
two at a rate that is equal to the number of A-particles present at the same location;

(iii) the initial density of B-particles is 1.

Then

u(z,t) = { the average number of B-particles at site x at time ¢

conditioned on the evolution of the A-particles }. (1.1.5)

It is possible to add that B-particles die at rate § € (0,00). This amounts to the trivial
transformation u(z,t) — u(x,t)e%.

In Kesten and Sidoravicius [9] and in Gértner and den Hollander [4], the case was consid-
ered where ¢ is given by a Poisson field of independent simple random walks. The survival



versus extinction pattern (in [9] for § > 0) and the annealed Lyapunov exponents (in [4] for
d = 0) were studied, in particular, their dependence on d, k and the parameters controlling .

Equation (1.1.1) is a discrete heat equation with the ¢-field playing the role of a source.
What makes (1.1.1) particularly interesting is that the two terms in the right-hand side com-
pete with each other: the diffusion induced by A tends to make w flat, while the branching
induced by £ tends to make u irregular. Henceforth we call £ the “catalyst” and u the “reac-
tant”.

1.2 SE, Lyapunov exponents and comparison with IRW

Throughout the paper, we abbreviate 2 = {0, I}Zd (endowed with the product topology), and
we let p: Z¢ x Z? — [0,1] be the transition kernel of an irreducible random walk,

p(a,y) =p(0,y —x) >0 Y,y € 2% Y plx,y) =1V ez
yEZ4 (1.2.1)

plz,z) =0 Vz € ze, p(-,-) generates ze,

that is assumed to be symmetric,

p(z,y) = ply,z) Y,y € Z% (1.2.2)

A special case is simple random walk

1 .
o ifllz—yll=1
zy) =42 * : 1.2.3
p(,9) {0 otherwise. ( )

The exclusion process is the Markov process on €2 whose generator L acts on cylindrical
functions f as (see Liggett [12], Chapter VIII)

LA = D> ply)n@) L —n@IIf @) = f]l= > play) [f @) = f(n)],
x,yE€Z4 {z,y}Czd
(1.2.4)
where the latter sum runs over unoriented bonds {x,y} between any pair of sites z,y € Z9,
and
n(z) if z # .y,
n"Y(z) = < nly) if z =, (1.2.5)
n(x) if z=wy.

The first line of (1.2.4) says that a particle at site  jumps to a vacancy at site y at rate p(x,y),
the second line says that the states of x and y are interchanged along the bond {z,y} at rate
p(x,y). For p € [0,1], let v, be the Bernoulli product measure on € with density p. This is
an invariant measure for SE. Under (1.2.1-1.2.2), (v,),¢[o,1] are the only extremal equilibria
(see Liggett [12], Chapter VIII, Theorem 1.44). We denote by I, the law of & starting from
n € Q and write P, = [, v,(dn) P,.

In the graphical representation of SE, space is drawn sidewards, time is drawn upwards,
and for each pair of sites z,y € Z? links are drawn between = and y at Poisson rate p(z,v).
The configuration at time ¢ is obtained from the one at time 0 by transporting the local states
along paths that move upwards with time and sidewards along links (see Fig. 1).



We will frequently use the following property, which is immediate from the graphical
representation:

E, (1) =Y n@)p(x,y), neQyeZt>0. (1.2.6)

x€Z4

Similar expressions hold for higher order correlations. Here, p(z,y) is the probability that
the random walk with transition kernel p(-,-) and step rate 1 moves from x to y in time ¢.
The graphical representation shows that the evolution is invariant under time reversal and, in
particular, the equilibria (v,),¢[0,1] are reversible. This fact will turn out to be very important
later on.

¢ Yy
T<—
T_
— |1
0 7 7d
X

Fig. 1: Graphical representation. The dashed lines are links.
The arrows represent a path from (z,0) to (y,t).

By the Feynman-Kac formula, the solution of (1.1.1) and (1.1.4) reads

W) = B, (exp [/Ot ds € (X" (s), — S)D , (1.2.7)

where X* is simple random walk on Z% with step rate 2dx and E, denotes expectation with
respect to X" given X*(0) = z. We will often write & (x) and X/ instead of £(z,t) and X"(t),
respectively.

For p € N and ¢ > 0, define
1
Ap(t) = o logE,, (u(0,t)"). (1.2.8)

o Ay(t) = pitlogE,,p <EO,,,,,0(exp [/Ot dség(xg(s),s)D>, (1.2.9)

where X7, ¢ = 1,...,p, are p independent copies of X", Eq o denotes expectation w.r.t.
Xgq=1,...,p, given X{'(0) = --- = X(0) = 0, and the time argument ¢ — s in (1.2.7) is
replaced by s in (1.2.9) via the reversibility of ¢ starting from v,. If the last quantity admits
a limit as t — oo, then we define

Ap = lim A, (t) (1.2.10)

t—o0
to be the p-th annealed Lyapunov exponent.

From Holder’s inequality applied to (1.2.8) it follows that A,(t) > A,_i(t) for all ¢ > 0
and p € N\ {1}. Hence A\, > X\, for all p € N\ {1}. We say that the system is p-intermittent



if A, > A\p—1. In the latter case the system is ¢g-intermittent for all ¢ > p as well (cf. Gértner
and Molchanov [6], Section 1.1). We say that the system is intermittent if it is p-intermittent
for all p € N\ {1}. Intermittent means that the u-field develops sparse high peaks dominating
the moments in such a way that each moment is dominated by its own collection of peaks (see
Gértner and Konig [5], Section 1.3, and den Hollander [4], Section 1.2).

Let (£;)+>0 be the process of Independent Random Walks (IRW) with step rate 1, transition
kernel p(-, -) and state space Q. Let E;™ denote expectation w.r.t. (ét)tzo starting from & = 1,
and write El,f;w = [ vp(dn) E;*. Throughout the paper we will make use of the following
inequality comparing SE and IRW. The proof of this inequality is given in Appendix A and
uses a lemma due to Landim [11].

Proposition 1.2.1 For any K: Z9x[0,00) — R such that either K >0 or K <0, anyt >0
such that 3, cpa [3 ds|K(z,s)| < 0o and any n € 9,

En<exp [%d/o ds K(z,s)fs(z)]> SEI;;W(exp [%d/o ds K(z,s)gs(z)D. (1.2.11)

This powerful inequality will allow us to obtain bounds that are more easily computable.

1.3 Main theorems

Our first result states that the Lyapunov exponents exist and behave nicely as a function of
k. We write A,(k) to exhibit the dependence on x, suppressing d and p.

Theorem 1.3.1 Letd > 1, p€ (0,1) and p € N.
(i) For all k € [0,00), the limit in (1.2.10) exists and is finite.
(11) On [0,00), k — A\p(k) is continuous, non-increasing and convex.

Our second result states that the Lyapunov exponents are trivial for recurrent random
walk but are non-trivial for transient random walk (see Fig. 2).

Theorem 1.3.2 Letd > 1, p€ (0,1) and p € N.

(1) If p(-,-) is recurrent, then A\,(k) =1 for all k € [0,00).

(it) If p(-,-) is transient, then p < A\p(k) < 1 for all k € [0,00). Moreover, Kk +— A\y(K) is
strictly decreasing with lim, .o A\p(K) = p.

Ap(K) Ap(K)
o " 0 "

Fig. 2: Qualitative picture of k — A, (k) for recurrent, respectively,
transient random walk.

Our third result shows that for transient random walk the system is intermittent at x = 0.



Theorem 1.3.3 Let d > 1 and p € (0,1). If p(-,-) is transient, then p — A,(0) is strictly
INCTeasing.

Our fourth and final result identifies the behavior of the Lyapunov exponents for large s
when d > 4 and p(-,-) is simple random walk (see Fig. 3).

Theorem 1.3.4 Assume (1.2.3). Let d >4, p € (0,1) and p € N . Then

lim 2dk[A, (k) — p] = p(1 — p)Gq (1.3.1)

K—00

with G4 the Green function at the origin of simple random walk on Z2.

Fig. 3: Qualitative picture of K — A,(k) for p = 1,2, 3 for simple
random walk in d > 4. The dotted line moving down represents
the asymptotics given by the r.h.s. of (1.3.1).

1.4 Discussion

Theorem 1.3.1 gives general properties that need no further comment. We will see that they
in fact hold for any stationary, reversible and bounded &.

The intuition behind Theorem 1.3.2 is the following. If the catalyst is driven by a recurrent
random walk, then it suffers from “traffic jams”, i.e., with not too small a probability there
is a large region around the origin that the catalyst fully occupies for a long time. Since with
not too small a probability the simple random walk (driving the reactant) can stay inside this
large region for the same amount of time, the average growth rate of the reactant at the origin
is maximal. This phenomenon may be expressed by saying that for recurrent random walk
clumping of the catalyst dominates the growth of the moments. For transient random walk, on
the other hand, clumping of the catalyst is present (the growth rate of the reactant is > p),
but it is not dominant (the growth rate of the reactant is < 1). As the diffusion constant x
of the reactant increases, the effect of the clumping of the catalyst gradually diminishes and
the growth rate of the reactant gradually decreases to the density of the catalyst.

Theorem 1.3.3 shows that if the reactant stands still and the catalyst is driven by a
transient random walk, then the system is intermittent. Apparently, the successive moments
of the reactant, which are equal to the exponential moments of the occupation time of the
origin by the catalyst (take (1.2.7) with x = 0), are sensitive to successive degrees of clumping.
By continuity, intermittency persists for small k.



Theorem 1.3.4 shows that, when the catalyst is driven by simple random walk, all Lya-
punov exponents decay to p as kK — oo in the same manner when d > 4. The case d = 3
remains open. We conjecture:

Conjecture 1.4.1 Assume (1.2.3). Let d=3, p€ (0,1) and p € N . Then

lim 2ds[Ay (k) = p] = p(1 = p)Ga + [2dp(1 = p)*P (1.4.1)
with
—1/2 42|? 2
P= sup ||l(=ar) ™ £2| ~ VR fI3 | € (0,00), (1.4.2)
feH1(23) 2
I fll2=1
where Vs and Ags are the continuous gradient and Laplacian, || - ||2 is the L%(R3)-norm,

HY(R3) = {f: R® = R: f,Vgsf € L3(R®)}, and

1

S 1.4.3)
e =yl (

[ a2 2] = [ an o) [ v

In section 1.5 we will explain how this conjecture arises in analogy with the case of IRW studied
in Gértner and den Hollander [4]. If Conjecture 1.4.1 holds true, then in d = 3 intermittency
persists for large k. It would still remain open whether the same is true for d > 4. To decide
the latter, we need a finer asymptotics for d > 4. A large diffusion constant of the reactant
prevents the solution u to easily localize around the regions where the catalyst clumps, but it
is not clear whether this is able to destroy intermittency for d > 4.

We further conjecture:
Conjecture 1.4.2 In d = 3, the system is intermittent for all k € [0, 00).

Conjecture 1.4.3 In d > 4, there exists a strictly increasing sequence 0 < ko < k3 < ...
such that for p=2,3,... the system is p-intermittent if and only if 0 < Kk < Kp.

In words, we conjecture that in d = 3 the curves in Fig. 3 never merge, whereas for d > 4 the
curves merge successively.

1.5 Heuristics behind Theorem 1.3.4 and Conjecture 1.4.1

The heuristics behind Theorem 1.3.4 and Conjecture 1.4.1 is the following. Consider the case
p = 1. Scaling time by  in (1.2.9), we have Ai(rk) = kA (k) with

S

Xi(k) = lim Af(x:f) and A*{(n;t)z%logE,jmo (exp E/otd8§<X(S)’E>D’ (1.5.1)

where X = X! and we abbreviate
E,,o0=E,Eo. (1.5.2)

For large k, the ¢-field in (1.5.1) evolves slowly and therefore does not manage to cooperate
with the X-process in determining the growth rate. Also, the prefactor 1/ in the expo-
nent is small. As a result, the expectation over the £-field can be computed via a Gaussian



approximation that becomes sharp in the limit as kK — oo, i.e.,
ey P L 1 ) _
Al (k;t) /ﬁ_tIOgEV”’O (exp[ﬁ/ods [&’(X(s),ﬁ) p]])
~LlogE L [as [Cavms, (fe(x,2) ol fe(x0. %) )
~togoeXp2H2080uyp£ s)—) = | [E(X (W), —) —p :

(1.5.3)
(In essence, what happens here is that the asymptotics for K — oo is driven by moderate

deviations of the ¢-field, which fall in the Gaussian regime.) The exponent in the r.h.s. of

(1.5.3) equals
%/Ot ds/:du Eyp([£<X(s), 2) —p] [g(X(u), %) —p]>. (1.5.4)

Now, for ,y € Z% and b > a > 0 we have
E,, <[£(:v, a) — p] [£(y,b) — p]> =E,, <[§(w70) —p][&y,b—a) - p]>
= [t o)~ 1 ([0 - ) =11 )
=3 malzaw) [ vl [nfa) = ) [n(z) ~ o

2€74 Q
= p(l - P) pbfa(xvy)v

(1.5.5)

where the first equality uses the stationarity of &, the third equality uses (1.2.6) from the
graphical representation, and the fourth equality uses that v, is Bernoulli. Substituting (1.5.5)
into (1.5.4), we get that the r.h.s. of (1.5.3) equals

%logEo (exp {% /Ot ds /St du puns(x(s),X(u))D ) (1.5.6)

This is precisely the integral that was investigated in Gértner and den Hollander [4] (see
Sections 5-8 and equations (1.5.4-1.5.11) of that paper). Therefore the limit

lim k[A;(k) — p] = lim &2 lim [A’{(n; t) — B] = lim #? lim (1.5.6) (1.5.7)

K—00 K—00 t—o0 K K—00 t—o0
can be read off from [4] and yields (1.3.1) for d > 4 and (1.4.1) for d = 3. A similar heuristics
applies for p > 1.

The r.h.s. of (1.3.1), which is valid for d > 4, is obtained from the above computations by
moving the expectation in (1.5.6) into the exponent. Indeed,

Eo (PuT—s (X(S)uX(U))) = Z P2ds (0, )P2a(u—s) (:c,y)puT_s(:c,y) :p2d(ufs)(1+ﬁ)(ouo)

x,yE€Z4
(1.5.8)
and hence
t t t t—s 1
/0 ds/s du Eg (p%(X(s),X(u)» :/0 ds/o dvadv(Hﬁ)(O,O) NtmGd.
2dk
(1.5.9)



Thus we see that the result in Theorem 1.3.4 comes from a second order asymptotics on £ and
a first order asymptotics on X. Despite this simple fact, it turns out to be hard to make the
above heuristics rigorous. For d = 3, on the other hand, we expect the first order asymptotics
on X to fail, leading to the more complicated behavior in (1.4.1) .

Remark 1: In (1.1.1), the ¢-field may be multiplied by a coupling constant vy € (0, 00). This
produces no change in Theorems 1.3.1, 1.3.2(i) and 1.3.3. In Theorem 1.3.2(ii), (p,1) becomes
(vp,7), while in the r.h.s. of Theorem 1.3.4 and Conjecture 1.4.1, p(1 — p) gets multiplied by
~2. Similarly, if the simple random walk in Theorem 1.3.4 is replaced by a random walk with
transition kernel p(-,-) satisfying (1.2.1-1.2.2), then we expect that in (1.3.1) and (1.4.1) G4
becomes the Green function at the origin of this random walk and a factor 1/0* appears in
front of the last term in the r.h.s. of (1.4.1) with 0% the variance of p(-, ).

Remark 2: In Gértner and den Hollander [4] the catalyst was 7 times a Poisson field with
density p of independent simple random walks stepping at rate 2df, where v, p, 0 € (0,00) are
parameters. It was found that the Lyapunov exponents are infinite in d = 1,2 for all p and
in d > 3 for p > 2df/vGy, irrespective of k and p. In d > 3 for p < 2df/yG4, on the other
hand, the Lyapunov exponents are finite for all x, and exhibit a dichotomy similar to the one
expressed by Theorem 1.3.4 and Conjecture 1.4.1. Apparently, in this regime the two types of
catalyst are qualitatively similar. Remarkably, the same asymptotic behavior for large x was
found (with py? replacing p(1 — p) in (1.3.1)), and the same variational formula as in (1.4.2)
was seen to play a central role in d = 3. [Note: In [4] the symbols v, p, G4 were used instead
of p,0,Gq/2d.]

1.6 Outline

In Section 2 we derive a variational formula for A, from which Theorem 1.3.1 follows im-
mediately. The arguments that will be used to derive this variational formula apply to an
arbitrary bounded, stationary and reversible catalyst. Thus, the properties in Theorem 1.3.1
are quite general. In Section 3 we do a range of estimates, either directly on (1.2.9) or on the
variational formula for )\, derived in Section 2, to prove Theorems 1.3.2 and 1.3.3. Here, the
special properties of SE, in particular, its space-time correlation structure expressed through
the graphical representation (see Fig. 1), are crucial. These results hold for an arbitrary ran-
dom walk subject to (1.2.1-1.2.2). Finally, in Section 4 we prove Theorem 1.3.4, which is
restricted to simple random walk. The analysis consists of a long series of estimates, taking
up half of the paper and, in essence, showing that the problem reduces to understanding the
asymptotic behavior of (1.5.6). This reduction is important, because it explains why there
is some degree of universality in the behavior for kK — oo under different types of catalysts:
apparently, the Gaussian approximation and the two-point correlation function in space and
time determine the asymptotics (recall the heuristic argument in Section 1.5).

2 Lyapunov exponents: general properties

In this section we prove Theorem 1.3.1. In Section 2.1 we formulate a large deviation principle
for the occupation time of the origin in SE due to Landim [11], which will be needed in Section
3.2. In Section 2.2 we extend the line of thought in [11] and derive a variational formula for
Ap from which Theorem 1.3.1 will follow immediately.



2.1 Large deviations for the occupation time of the origin

Kipnis [10], building on techniques developed by Arratia [1], proved that the occupation time
of the origin up to time t,

Tt—/o €(0,s)ds, (2.1.1)

satisfies a strong law of large numbers and a central limit theorem. Landim [11] subsequently
proved that T; satisfies a large deviation principle, i.e.,

1
hmsupz logP,, (T3/t € F) < — ing Vi(a), F C[0,1] closed,
ac

t—o0

1 (2.1.2)
liminf —logP, (T;/t € G) > — inf V4(a), G C [0,1] open,
t—oo t ’ acG
with Wy: [0,1] — [0,00) a rate function that is given by the following formulas. Define the
Dirichlet form associated with the generator L of SE given in (1.2.4),

E(f) = (~Lf, Nyay) = /Q voldn) 5 3 play) [F 050~ S0, f € D). (213)

{z,y}czd

Next, define I;: M;(Q2) — [0, o0] by

dv
Iy(p) =lim  inf — 2.1.4
d(1) elﬁ)lvegju,s)g< dyp>, (2.1.4)
v Up

where M (2) is the set of probability measures on Q (endowed with the Prokhorov metric),
and B(u,¢) is the open ball of radius € centered at p. Then
v = i . 1.
ala) = inf o Ta(n) (2.1.5)
Ja n(O)pu(dn)=a
The function I; is convex and lower semi-continuous. Since ¥y is a minimum of I; under
a linear constraint, it inherits these properties (see e.g. den Hollander [7], Theorem II1.32).

Remark: The function I(p) defined by &(y/du/dv,) if 4 < v, and oo otherwise is not lower
semi-continuous, and therefore does not qualify as a large deviation rate function. This is why
the regularization in (2.1.4) is necessary (see also Deuschel and Stroock [3], Section 5.3).

Landim [11] showed that ¥, has a unique zero at p and satisfies the quadratic lower bound

1

Val0) 2 5 (Va =) (2.1.6)

with G4 the Green function at the origin of the random walk with transition kernel p(-,-). This
bound was obtained with the help of Proposition 1.2.1 with K(z,s) = d¢(z), which implies
that the occupation time for SE is stochastically smaller than the occupation time for IRW
with the same density (see [11], Proposition 4.1). For the latter the rate function can be
computed and equals the lower bound in (2.1.6) for & > p. The same lower bound holds for
a < p, which can be seen by interchanging the role of the states 0 and 1.

Thus, as seen from (2.1.6), for transient random walk the rate function ¥, is non-trivial.
For recurrent random walk ¥, turns out to be zero, so a different scaling is needed in (2.1.2)
to get a non-trivial large deviation principle. This is carried out in Landim [11] for d = 1 and
in Chang, Landim and Lee [2] for d = 2 (when p(-,-) has positive and finite variance). We
shall, however, not need this refinement.
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2.2 Variational formula for \,(x): proof of Theorem 1.3.1

Return to (1.2.9). In this section we show that, by considering § and XT,..., X as a joint
random process and exploiting the reversibility of £, we can use the spectral theorem to express
the Lyapunov exponents in terms of a variational formula. From the latter it will follow that
K — Ap(k) is continuous, non-increasing and convex on [0, 00).

Define
Y(t) = (£(t), X1 (t),..., X, (1), t=0, (2.2.1)
and )
V(n,z1,...,2p) = Zn(wi), neQ, ...z, €L (2.2.2)
i=1

Then we may write (1.2.9) as

Ap(t) = élogEymomo (exp [ /0 t V(Y(s))dsD . (2.2.3)

The random process Y = (Y (t));>0 takes values in Q x (Z4)P and has generator
P
G"=L+rY A (2.2.4)
i=1

in L?(v,®mP) (endowed with the inner product (-,-)), with L given by (1.2.4), A, the discrete
Laplacian acting on the i-th spatial coordinate, and m the counting measure on Z%. Let

5= GF 4V (2.2.5)

By (1.2.2), this is a self-adjoint operator. Our claim is that A, equals % times the upper
boundary of the spectrum of GY;.

Proposition 2.2.1 )\, = I—l),up with p, = sup Sp (GY,).
Proof. The proof is standard. Let (P;);>o denote the semigroup generated by G .

Upper bound: Let Qt1g: = [—tlogt, tlog t]?NZ*. By a standard large deviation estimate for
simple random walk, we have

E.,, 0. .0 <exp [ /0 t V(Y(s))dsD

“E, 0.0 (exp [ /0 tV(Y(s))ds] 1{XF(t) € Qrogs for i = 1,..., p}> + R, 22

with lims_, % log Ry = —oo. Thus it suffices to focus on the term with the indicator.
Estimate, with the help of the spectral theorem (Kato [8], Section VL.5),

E,,0..0 (exp Uot V(Y(s))ds] 1{XF(t) € Quiogs for i = 1,... ,p}>
S X B (oo | [ VO608] 10X € Quge for i =1 )

1,0 Tp€EQYL10g ¢

t 2
= (ﬂ@ﬂogt)m7’t]1<c2mgt>v) :/( A EpL(Q 105 )7 1720 me)
—O0,p
2
< e’ H]l(Qtlogt)pHLQ(l/p@mp)’
(2.2.7)
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where 1(q, ., ,)» is the indicator function of (Q¢10g¢)P C (Z4)P and (E,,),cr denotes the spectral

family of orthogonal projection operators associated with Gf,. Since [|1q “Ogt)pH%Q(yp@mp =

)
|Qt10g¢|P does not increase exponentially fast, it follows from (1.2.10), (2.2.3) and (2.2.6-2.2.7)
that Ay < L.

Lower bound: For every § > 0 there exists an f5 € L?(v, ® mP) such that

(B — Epp—s)fs #0 (2.2.8)

(see Kato [8], Section VI.2; the spectrum of GY, coincides with the set of 41’s for which E,, |5 —
E,_s # 0 for all 6 > 0). Approximating fs by bounded functions, we may without loss of
generality assume that 0 < fs < 1. Similarly, approximating fs by bounded functions with
finite support in the spatial variables, we may assume without loss of generality that there
exists a finite K5 C Z% such that

0 < f5 < Ligy)- (2.2.9)

First estimate

B0 (e [ Vi¥ionas]

> ) E,,p,,,( [/ ds}]l{Xl()—:cl,...,Xg(l)::cp}>

Z1yTpEKs

> Y Eyo.0 HXFQ) =21, X5(1) = 2}
Z1yTpEKs

(2.2.10)

= > piO0,m) . pE0,7p) By, <6Xp[/0t_1V(Y(s))ds]>

z1,...,.xpEKs
t—1
>0 Y By, (exp [ / V<Y<s>>ds]) |
Il,...,IPGK(S 0
where pf(z,y) = P,(X"(t) = y) and Cs = mingeg, pf(0,2) > 0. The equality in (2.2.10) uses

that v, is invariant for the exclusion dynamics. Next estimate

rhs. (2.2.10) > CY /Qyp(dn) Z fs(myz, ..., xp)

T1,..,TpEZLY

X By, (exp [/Otl V(Y(s))dSD fs(Y(t—1)) (2.2.11)

Cy _
C§ (fo: Pe-rfs) = \Ka\p/ M}ew V| Euflza s 0me)
P

2 Cép e(.u'pfis)(t*l ||( tp Eﬂp_é)]%”%Q(Vp@mp)’

where the ﬁrst inequality uses (2.2.9). Combine (2.2.10-2.2.11) with (2.2.8), and recall (2.2.3),
to get \p > - (,up —6). Let 6 | 0, to obtain A, > I%,up. n

The Rayleigh-Ritz formula for p1,, applied to Proposition 2.2.1 gives (recall (1.2.4), (2.2.2)
and (2.2.4-2.2.5)):
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Proposition 2.2.2 For all p € N,

Ap = %up —1—1) ||f||Lz(S,,1:§mp)=1( v f) (2.212)
with
(GV [, f) = Ai(f) — A2(f) — rAs(f), (2.2.13)
where
P
Ai(f) = /Q vp(dn) ) [Zn(zo] fon 2, 2)7,
21,..,2p€ZY Li=1

AZ(f)_/QVp(d’I?) > % Y. P ) [f0™ 2 z) = f )P (2.2.14)

21,..,2p€ZY  {z,y}CZ?

p
TNER ECOND DI DI DI U IS B RS
Z1y..02p€LY =1 y;ezd

lly; —=; =1

and z; — y; means that the argument z; is replaced by y;.

We are now ready to give the proof of Theorem 1.3.1.

Proof. The existence of A, was established in Proposition 2.2.1. By (2.2.13-2.2.14), the r.h.s.
of (2.2.12) is a supremum over functions that are linear and non-increasing in x. Consequently,
Kk — Ap(k) is lower semi-continuous, convex and non-increasing on [0,00) (and, hence, also
continuous). |

The variational formula in Proposition 2.2.2 is useful to deduce qualitative properties of
Ap, as demonstrated above. Unfortunately, it is not clear how to deduce from it more detailed
information about the Lyapunov exponents. To achieve the latter, we resort in Sections 3 and
4 to different techniques, only occasionally making use of Proposition 2.2.2.

3 Lyapunov exponents: recurrent vs. transient random walk

In this section we prove Theorems 1.3.2 and 1.3.3. In Section 3.1 we consider recurrent random
walk, in Section 3.2 transient random walk.

3.1 Recurrent random walk: proof of Theorem 1.3.2(i)

The key to the proof of Theorem 1.3.2(i) is the following.

Lemma 3.1.1 If p(-,-) is recurrent, then for any finite box Q C Z°,

1
Jim ~logP,, <§(x,s) —1Vsel0,fVae Q) = 0. (3.1.1)
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Proof. In the spirit of Arratia [1], Section 3, we argue as follows. Let

HtQ = {:1: € Z%: there is a path from (z,0) to Q x [0,] in the graphical representation} .
(31.2)

0 T Zd

Fig. 4: A path from (z,0) to @ x [0,¢] (recall Fig. 1).

Note that Hg2 = (@ and that t — HtQ is non-decreasing. Denote by P and &, respectively,
probability and expectation associated with the graphical representation. Then

P, (f(x,s) —1Vse|0,fVae Q) — (P®w,) (Hf? - 5(0)) : (3.1.3)

where £(0) = {z € Z: &(x,0) = 1} is the set of initial locations of the particles. Indeed,
(3.1.3) holds because if £(z,0) = 0 for some z € HtQ , then this 0 will propagate into @) prior
to time ¢ (see Fig. 4).

By Jensen’s inequality,
Paw,) (HE Ce0)) =& (pHC) > pF1H1 3.1.4
P t P P
Moreover, HtQ - UyeQHt{y}, and hence

£|HE| < |Q||H"). (3.1.5)

Furthermore, we have
e|H"| =E2IR,, (3.1.6)
where R, is the range after time ¢ of the random walk with transition kernel p(-, -) driving £ and

Eg("') denotes expectation w.r.t. this random walk starting from 0. Indeed, by time reversal,
the probability that there is a path from (x,0) to {0} x [0,¢] in the graphical representation
is equal to the probability that the random walk starting from 0 hits x prior to time ¢. It
follows from (3.1.3-3.1.6) that

%logPVp <§(x,s) =1Vsel0,t]Va e Q) > —|Q| log (%) {%Eg("')Rt} . (3.1.7)

Finally, since lim; . %Eg("')Rt = 0 when p(-,-) is recurrent (see Spitzer [13], Chapter 1,
Section 4), we get (3.1.1). |

We are now ready to give the proof of Theorem 1.3.2(i).
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Proof. Since p — A, is non-decreasing and A, < 1 for all p € N, it suffices to give the proof
for p=1. For p =1, (1.2.9) gives

Ar() = %ngymo <exp [/Otf(X“(s),s) dSD . (3.1.8)

By restricting X* to stay inside a finite box Q C Z? up to time t and requiring £ to be 1
throughout this box up to time ¢, we obtain

E.,0 (exp [/Oté(X“(S)a 5) dSD (3.1.9)

>e' Py, (ﬁ(x,s) =1Vsel0,t]Va e Q) PO(X“(S) €EQVse [0,15]).
For the first factor, we apply (3.1.1). For the second factor, we have
o1
Jim —log Py (X“(s) EQVse [O,t]) ) (3.1.10)

with A*(Q) > 0 the principal Dirichlet eigenvalue on @ of —kA, the generator of the simple
random walk X*. Combining (3.1.1) and (3.1.8-3.1.10), we arrive at

)\1 = tli)rélo Al(t) Z 1-— )\K(Q) (3.1.11)

Finally, let Q — Z¢ and use that limg_,z4 A"(Q) = 0 for any &, to arrive at A\; > 1. Since,
trivially, A1 <1, we get A\; = 1. ]

3.2 Transient random walk: proof of Theorems 1.3.2(ii) and 1.3.3

Theorem 1.3.2(ii) is proved in Sections 3.2.1 and 3.2.3-3.2.5, Theorem 1.3.3 in Section 3.2.2.
In Section 3.2.6 we make a link between Section 2.1 and Proposition 2.2.2 for k = 0 that
provides further background for Theorem 1.3.3. Throughout the present section we assume
that the random walk kernel p(-,-) is transient.

3.2.1 Proof of the lower bound in Theorem 1.3.2(ii)
Proposition 3.2.1 \,(k) > p for all k € [0,00) and p € N.

Proof. Since p — A,(k) is non-decreasing for all &, it suffices to give the proof for p = 1. For
every € > 0 there exists a function ¢.: Z¢ — R such that

S o@?=1 and Y (b)) < (3:21)

ren s
Let 1+ en(a)

en(x d

fe(n,x) = T 2 O ¢e(z), neQ zezld (3.2.2)

Then
2 _ [1 + en(x)
||feHL2(up®m) —/va(dﬁ) Z m %Z:d de(x)” = 1. (3.2.3)
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Therefore we may use f. as a test function in (2.2.12) in Proposition 2.2.2. This gives

M= ey, 1R (3.2.4)

with
I / voldn) 37 n(2) L+ en(2)? de(2)? = (14 26+ )p 3 () = (14 26+ 3)p (3.2.5)

@ 2€74 2€74
and
1= / RODIED IR "Y(2) — p(2) ()
zeZd x,yEL?
1 2 2 2
=5 [uan Y ple) @) —n) o.la) (3.2
x,yE€Z4
=p(1—p) Y p(x,y) de(z)* < Ep(1 - p)
and

III—%/updn Yo A+ en@)e(z) - [1+ enw)oe )}

x yeZd
[lz—yll=1

o AL+ e+ A)plloe(@)® + ¢e(y)?] = 2(1 + €p)* b () () }

e (3.2.7)
=L@t Y o) o)+ —p) Y e
la—yll=1 Hw*yllzl
< 1+ (26 + e + 2 p(1 — p).

In the last line we use that ¢.(2)¢(y) < 3¢(z)? + 2¢c(y)?. Combining (3.2.4-3.2.7), we find

1+ 2e + O(€?)

ML=z p 1+ 2ep+ O(e2)’ (3.2.8)

Because p € (0, 1), it follows that for € small enough the r.h.s. is strictly larger than p. [ |
3.2.2 Proof of Theorem 1.3.3
Proof. For k =0, (1.2.9) reduces to

Ap(t) = pitlogEyp (exp [p /Otg(o, s)ds}) = ]%logEyp (exp [pT3]) (3.2.9)

(recall (2.1.1)). In order to compute \,(0) = lim;—.o A,(t), we may use the large deviation
principle for (7})¢>0 cited in Section 2.1 due to Landim [11]. Indeed, by applying Varadhan’s
Lemma (see e.g. den Hollander [7], Theorem III.13) to (3.2.9), we get

1

Ap(0) = Earg[%)i] [pa — ¥g4()] (3.2.10)
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with W4 the rate function given in (2.1.5). Since W, is lower semi-continuous, (3.2.10) has at

least one maximizer oy:

A(0) = ap %\I!d(ozp). (3.2.11)

By Proposition 3.2.1 for k = 0, we have A\,(0) > p. Hence o, > p (because ¥,(p) = 0). Since
p(-,-) is transient, we may use the quadratic lower bound in (2.1.6) to see that ¥;(cy,) > 0.
Therefore we get from (3.2.10-3.2.11) that

Apt1(0) > —— [ap(p+ 1) — Ta(ay)] = ap—

> Valay) > ap— %\yd(ap) — 2\, (0). (3.2.12)

p+1
Since p is arbitrary, this completes the proof of Theorem 1.3.3. |

3.2.3 Proof of the upper bound in Theorem 1.3.2(ii)

Proposition 3.2.2 \,(k) <1 for all k € [0,00) and p € N.

Proof. By Theorem 1.3.3, which was proved in Section 3.2.2, we know that p — ,(0) is strictly
increasing. Since A,(0) < 1 for all p € N, it therefore follows that A,(0) < 1 for all p € N.
Moreover, by Theorem 1.3.1(ii), which was proved in Section 2.2, we know that x — A\,(k) is
non-increasing. It therefore follows that A,(x) < 1 for all x € [0,00) and p € N. |

3.2.4 Proof of the asymptotics in Theorem 1.3.2(ii)

The proof of the next proposition is somewhat delicate.
Proposition 3.2.3 lim,_.. A\p(k) = p for all p € N.

Proof. We give the proof for p = 1. The generalization to arbitrary p is straightforward and
will be explained at the end. We need a cube @ = [—R, R]d N Z% of length 2R, centered at
the origin and ¢ € (0,1). Limits are taken in the order

t—o00, k—o00, 610, Q1Z (3.2.13)

The proof proceeds in 4 steps, each containing a lemma.
Step 1: Let X™® be simple random walk on @ obtained from X* by suppressing jumps

outside of Q. Then (&, X/ ’Q)tzo is a Markov process on €2 x ) with self-adjoint generator in
L*(v, ® mq), where mg is the counting measure on Q.

Lemma 3.2.4 For all Q finite (centered and cubic) and k € [0, 00),

t t
E.,o0 (exp [ /0 dsé(X:,s)D <WE, (exp [ /0 dS{(XS’Q,s)]), oo (32.14)

Proof. We consider the partition of Z¢ into cubes Q, = 2Rz + @, z € Z%. The Lyapunov
exponent Ai(k) associated with X" is given by the variational formula (2.2.12-2.2.14) for
p = 1. It can be estimated from above by splitting the sums over Z? in (2.2.14) into separate
sums over the individual cubes @, and suppressing in A3(f) the summands on pairs of lattice
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sites belonging to different cubes. The resulting expression is easily seen to coincide with the
original variational expression (2.2.12), except that the supremum is restricted in addition to
functions f with spatial support contained in ). But this is precisely the Lyapunov exponent
)\(fg(m) associated with X®@. Hence, A1 (k) < )\(fg(m), and this implies (3.2.14). n

Step 2: For large x the random walk X"*® moves fast through the finite box @ and therefore
samples it in a way that is close to the uniform distribution.

Lemma 3.2.5 For all Q finite and 6 € (0,1), there exist € = €(k,0,Q) and Nog = Ny(6,¢),
satisfying limy o0 €(K, 0, Q) = 0 and limg -9 No(0,€) = No > 1, such that

Eu,0 (exp Uot dsg(ngQ,s)D < o(1) + exp [((1 + i+§>6N0|Q| + 5+§>(t+6)}

xE,,ﬂ(exp [/Ot+6ds@25(y,s)]), t — oo0.

yeR
(3.2.15)

Proof. We split time into intervals of length > 0. Let I; be the indicator of the event that
¢ has a jump time in @ during the A-th time interval. If Iy = 0, then {5 = {_1)5 for all
s € [(k—1)6,kd). Hence,

ks kb
/ ngS(X?Q) S/ ds &1y (X ’Q) + 01, (3.2.16)
(k—1)é (k—1)8

and, consequently, we have for all z € Z9 and k = 1,...,[t/d],

Ex<exp [/Oédsgk Dos (X5 vQ)D < e‘H’“EI<exp [/Oédsn(xng)D, (3.2.17)

where we abbreviate {;,_1)s = 1. Next, we do a Taylor expansion and use the Markov property
of X%, to obtain (sog = 0)

el o) (L ) (o)

n=0

< i (f[ /5 dsl> <f[ max B, (n(Xffsm_l))>

m=1

<[ as maym 0 <o [ [ s e (n(0x:9))]

é
< exp [1—_5 n(y)/o ds maXEx<5y (XSQ)>

(3.2.18)

T€Q ’

where we use that maxzeg E, (f dsn(Xs Q)) < 5. Now, let p?(-,-) denote the transition
kernel of X%, Note that

1
Kli_}rgopg’Q(x,y) = Tl for all s >0, Q finite and z,y € Q. (3.2.19)
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Hence

1
lim E, (5 (xr Q)) g forall s> 0, Q finite and 2,y € Q (3.2.20)

Therefore, by the Lebesgue dominated convergence theorem, we have

é
li d E (5 X0 ) 5L forall >0, Q finite and . 3.2.21
Kl_)r{.loo Sgleaé( 2 0y (X5F) ] or all § >0, Q finite and y € Q ( )
This implies that the expression in the exponent in the r.h.s. of (3.2.18) converges to
3.2.22
g (3:222)

yeR

uniformly in 7 € Q. Combining the latter with (3.2.18), we see that there exists some & =
e(k,0,Q), satisfying lim,_~ (&, d, Q) = 0, such that for all z € @,

1)
Ex<exp [/ dsn(X?’Q)]> < exp ]Q\ Z for all 0 € (0,1) and Q@ finite.
0
(3.2.23)
Next, similarly as in (3.2.16), we have
1 ko
S Y Er-s(y) < / Z Es(y) + 6. (3.2.24)
@l = |Q| =

Applying the Markov property to X*®©, and using (3.2.16) and (3.2.23-3.2.24), we find that

! © 1+¢ d+e€
E.,0 (exp [/0 ds{(stQ,s)]) SEVp<exp[<1+1 5)5Nt+5+1 5(15-1—5)}

/OM g 2. & )

yeQ
where NV, is the total number of jumps that £ makes inside @ up to time t + §. The second
term in the r.h.s. of (3.2.25) equals the second term in the r.h.s. of (3.2.15). The first term
will be negligible on an exponential scale for § | 0, because, as can be seen from the graphical
representation, Nyys is stochastically smaller that the total number of jumps up to time t 4§
of a Poisson process with rate |@Q U 9Q)|. Indeed, abbreviating

1+4¢ S+e¢ t+o
— (1 = M= — E 2.2

(3.2.25)

X exp

we estimate, for each N,

rhs. (3.2.25) = E (eaNt+a+b(t+a>+Mt+a)
Vp

< e(0+1)(¢+9) Ez/p (eaNtJrJ 1{N; s > N|Q|(t + 5)}) + e(aN|Q[+b)(t+96) E,,p (eMtJré) ]

(3.2.27)
For N > Ny = Ny(a,b), the first term tends to zero as t — oo and can be discarded. Hence

rhs. (3.2.25) < e@NlQHOEHI (ebMt+6) : (3.2.28)
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which is the desired bound in (3.2.15). Note that a | 0, b | 1 as 4, | 0 and hence Ny(a,b) |
No > 1. [ |

Step 3: By combining Lemmas 3.2.4-3.2.5, we now know that for any @ finite,

Tim (k) < tli)r&%logEyp<exp [/ el PR AC ]) (3.2.29)

YeQ

where we have taken the limits K — oo and § | 0. According to Proposition 1.2.1 (with

K(z,5) = (1/1Q))1q(2)),
Ew(exp[/ ,Q‘y%gs ])sEIiW<exp[/ ‘Q’y%fs D (3.2.30)

where (ét)tzo is the process of Independent Random Walks on Z? with step rate 1 and tran-
sition kernel p(-,-), and IEI;’;W = fQ vp(dn) EFY. The r.h.s. can be computed and estimated as
follows. Write

AP f)(@) =D pla,y)fly) - f@)], xez, (3.2.31)

y€ezZ4

to denote the generator of the random walk with step rate 1 and transition kernel p(-,-).

Lemma 3.2.6 For all QQ finite,

r.h.s. (3.2.30) < e exp / d.s@ Zw z,s)| , (3.2.32)

where w?: Z x [0,00) — R is the solution of the Cauchy problem

w®
%(w,t) = APy®(z,1) + {ﬁ@@:)} Wz, t)+1],  w?(-,0)=0, (3.2.33)

which has the representation

w?(z,t) = E™W (exp Uot ds ﬁm(}g)b ~1>0, (3.2.34)

where Y = (Y3)i>0 is the single random walk with step rate 1 and transition kernel p(-,-), and
EXW denotes the expectation w.r.t. to'Y starting from Yy = x.

Proof. Let
A, ={x ez nx)=1}, neq. (3.2.35)

Then

r.h.s. (3.2.30) /QVP dn) EIRW exp [/ dS@ Z Z 1y(§:s,x)}

veAn YeQ (3.2.36)

o I 57 (o [

TEAy

20



where é s,c 18 the position at time s of the random walk starting from 5071 = z (in the process
of Independent Random Walks & = (&)¢>0). Let

|
v9(z,t) = ERW (exp [/ ds @ (YS)]) . (3.2.37)
By the Feynman-Kac formula, v%(x,t) is the solution of the Cauchy problem
o9 1
%(m) = APQ(z 1) + {@1Q(x)} W@z, t),  v?(,0)= 1. (3.2.38)

Now put
w®(z,t) = v (x,t) — 1. (3.2.39)

Then (3.2.38) can be rewritten as (3.2.33). Combining (3.2.36-3.2.37) and (3.2.39), we get

r.hs. (3.2.30) = /Q vo(dn) [ (1+w®(,t) = /Q vo(dn) T] (1 +n(@)w?(z,t))

z€EA, zeZd
(3.2.40)

= H (1+,0wQ(x,t)) < exp pz w?(z,t) |,

xeZ4 reZd

where we use that v, is the Bernoulli product measure with density p. Summing (3.2.33) over

74, we have
d
E( > w ) > = |Q| +1. (3.2.41)

xeZ4 z€Q

Integrating (3.2.41) w.r.t. time, we get
> we / ds Y — |Q| +t. (3.2.42)
x€Z4 Tz€Q

Combining (3.2.40) and(3.2.42), we get the claim. |

Step 4: The proof is completed by showing the following:

Lemma 3.2.7

lim hm — ds— w”(x, s) 3.2.43
Q1Zd t—oo t QI £ Z ( )

Proof. Let G denote the Green operator acting on functions V: Z? — [0,00) as

=Y GayVly), wez, (3.2.44)
y€eZ4

where G(z,y) = [;° dtpi(z,y) denotes the Green kernel on Z4. We have

o= e

(3.2.45)
o0 ZEGZd yEQ ’Q‘
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The r.h.s. tends to zero as Q T Z9, because G(z,y) tends to zero as ||z — y|| — oo. Hence
Lemma 8.2.1 in Gértner and den Hollander [4] can be applied to (3.2.34) for @ large enough,
to yield

sup w?(z,s) <e(Q) 10 as Q179 (3.2.46)

zczd

s>0

which proves (3.2.43). n

Combine (3.2.29-3.2.30), (3.2.32) and (3.2.43) to get the claim in Proposition 3.2.3.

This completes the proof of Proposition 3.2.3 for p = 1. The generalization to arbitrary
p is straightforward and runs as follows. Return to (1.2.9). Separate the p terms under the
sum with the help of Holder’s inequality with weights 1/p. Next, use (3.2.14) for each of
the p factors, leading to %log of the r.h.s. of (3.2.14) with an extra factor p in the exponent.

Then proceed as before, which leads to Lemma 3.2.6 but with w® the solution of (3.2.33) with
ﬁlQ(x) between braces. Then again proceed as before, which leads to (3.2.40) but with an

extra factor p in the r.h.s. of (3.2.42). The latter gives a factor e’?! replacing e* in (3.2.32).
Now use Lemma 3.2.7 to get the claim. |

3.2.5 Proof of the strict monotonicity in Theorem 1.3.2(ii)

By Theorem 1.3.1(ii), & — A,(k) is convex. Because of Proposition 3.2.1 and Proposition
3.2.3, it must be strictly decreasing. This completes the proof of Theorem 1.3.2(ii).

3.2.6 Relation between Proposition 2.2.2 and (3.2.10)

Let kK =0 and p = 1. The generalization to arbitrary p is straightforward.
For k =0 and p =1, (2.2.12-2.2.14) in Proposition 2.2.2 read

MO = sp Y [ [ vatanntz) 5627 ~ et z))} , (3.2.47)
HfHL?(up@m):l 274 Q
where we recall (2.1.3). Split the supremum into two parts,
M(0) = sup s YA [ [ wtnyntz) .0 - 5(1@)} L (3248)
91122 (my =1 M=l L2,y =1V 2€27 L0 @
where f.(n) = f(n,2)/9(z) with g(2)* = [ v,(dn) f(n,2)?. The second supremum in (3.2.48),
which runs over a family of functions indexed by z, can be brought under the sum,
MO = s Y@ s | [y rer-e0)]. 62
||9||L2(m):1 2€74 ||f2||L2(l,p):1 Q

By the shift-invariance of v,, we may replace 7(z) by n(0) under the second supremum in
(3.2.49), in which case the latter no longer depends on z, and we get

nO = s | [l 7 - )

2, =1

(3.2.50)
- { / Vp(dn)n(o)f(n)2—Id(f%)]-
||f||L2(,,p):1 Q

22



Here note that the smoothing in (2.1.4) can be removed under the supremum in (3.2.50) (recall
the remark made below (2.1.5)). But the r.h.s. of (3.2.50) is precisely the r.h.s. of (3.2.10) for
p =1, where we recall (2.1.4-2.1.5) and put f(n)? = (du/dv,)(n).

4 Lyapunov exponents: transient simple random walk

This section is devoted to the proof of Theorem 1.3.4, where d > 4 and p(-,-) is simple
random walk given by (1.2.3), i.e., £ is simple symmetric exclusion (SSE). The proof is long
and technical, taking up half of the present paper. In Sections 4.2-4.7, we give the proof for
p = 1. In Section 4.8, we indicate how to extend the proof to arbitrary p.

4.1 Outline

In Section 4.2, we do an appropriate scaling in . In Section 4.3, we introduce an SSE+RW
generator and an auxiliary exponential martingale. In Section 4.4, we compute upper and
lower bounds for the Lh.s. of (1.3.1) in terms of certain key quantities, and we complete the
proof of Theorem 1.3.4 (for p = 1) subject to two propositions, whose proof is given in Sections
4.6-4.7. In Section 4.5, we list some preparatory facts that are needed as we go along.

As before, we write X7, &;(z) instead of X"(s),&(x,s). We abbreviate
k] =1+ —, (4.1.1)
and write {a,b} to denote the unoriented bond between nearest-neighbor sites a,b € Z? (recall
(1.2.3)—(1.2.4)). Three parameters will be important: ¢, x and 7. We will take limits in the

following order:
t— o0, k—o00, T — o00. (4.1.2)

4.2 Scaling

We have X[ = X, t > 0, where X = (X});>0 is simple random walk with step rate 2d, being
independent of (&);>0. We therefore have

E.,o <exp [/Ot ds & (X;)D —E,0 <exp E /Ont ds ¢ (XS)D. (4.2.1)

Define the scaled Lyapunov exponent (recall (1.2.9-1.2.10))

t
Xi() = lim Aj(s:t) with A;(m;t):%ng%O <exp E /O ds ¢ (XS)D. (4.2.2)

Then A\ (k) = kAj(k). Therefore, in what follows we will focus on the quantity

1 I
Ai(k) — 2 = lim Z1ogE, o (exp —/ ds (gi(xs) —p) (4.2.3)
K t—ooot ” K Jo "
and compute its asymptotic behavior for large k. We must show that
lim 2dx? [x;(m) - g] = p(1 - p)Ga. (4.2.4)
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4.3 SSE+RW generator and an auxiliary exponential martingale

For t > 0, let
7= (61.%)) (43.1)

and denote by P, , the law of Z starting from Zy = (n,z). Then Z = (Z;)i>0 is a Markov
process on § x Z% with generator

A= %L +A (4.3.2)

(acting on the Banach space of bounded continuous functions on © x Z?, equipped with the
supremum norm). Let (P;):>0 be the semigroup generated by A. The following lemma will
be crucial to rewrite the expectation in the r.h.s. of (4.2.3) in a more manageable form.

Lemma 4.3.1 Fix x > 0 and r > 0. For all t > 0 and all bounded continuous functions
: Qx Z% — R such that ¢ and exp [(r/r)y] belong to the domain of A, define

My = L utzy - vz - [ as vz "
3.3
NI = exp [M[ - /Ot ds [(e7r0Aer?) = A (Lo))] (ZS)} .

Then:
(i) M" = (M{)i>0 is a Py z-martingale for all (n,x).
1) Fort >0, let PV be the operator defined by

t

(PR f)(n,2) = e *VOO R, <exp [— /0 s (e—ime%w) (zs)] (eiw f) (Zt)) (4.3.4)

for bounded continuous f: Q x Z* — R. Then (Pr")e>0 is a strongly continuous semigroup
with generator

(A ) (,2) = [e7RP A (e f) = (770 Aex?) £ (n,2). (4.3.5)
119 = >0 15 a Py .-martingale for all (n,x).
N" = (N})¢> P, le for all
(iv) Define a new path measure PpSY by putting
dprey )
— ((Zs)o<s<t) = N{, t>0. (4.3.6)
AP, »

Then, under PpSY, (Zt)i>0 is a Markov process with semigroup (PP )i>o-

Proof. The proof is standard.

(i) This follows from the fact that A is a Markov generator and ¢ belongs to its domain (see
Liggett [12], Chapter I, Section 5).

(i) Let n € Q, z € Z% and f: Q x Z¢ — R bounded measurable. Rewrite (4.3.4) as

(PE™ 1)) =B (e o020~ £ - /0 is (cEvaci) @] 120) (43.7)
=B (N[ /(21)).
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This gives
(Pe™ f)(n,z) = f(n, z) (4.3.8)

and

38l NT
(Pt ), x) =Ep o (Nf 41, f (Zty44,)) = E e (Ntrl ;\lfthf(Zh-I—tQ))
b (4.3.9)

—Eys (Ng“IEZtl (N,gf(ZtQ))) = ( tﬂeW(Pgve))(nw)a

where we use the Markov property of Z at time ¢; (under I, ,) together with the fact that
N{, 1, /N{, only depends on Z; for t € [t1,t;+1t2]. Equations (4.3.8-4.3.9) show that (P*")i>o
is a semigroup which is easily seen to be strongly continuous.
Taking the derivative of (4.3.4) in the norm w.r.t. ¢t at t = 0, we get (4.3.5). Next, if f =1,
then (4.3.5) gives A"Y1 = 0. This last equality implies that
1
A

Since Ald — A"V is invertible, we get

(Ad — A¥)1=1 VA>0. (4.3.10)

(Ad — Av)~1 1 = % V>0, (4.3.11)
ie.,
/OOO dt e prevy — % VA S 0, (4.3.12)
Inverting this Laplace transform, we see that
PY1=1 Vt>0. (4.3.13)

(ili) Fix ¢ > 0 and h > 0. Since Ny is Fi-measurable, with F; the o-algebra generated by
(Zs)o<s<t, we have

Epe (Nfyp|Fe)
=NE,. <exp [M[+h M- /tt+h " Ke_gquegqp) A (£¢>] (Zs):| ‘ft> ' (4.3.14)

K
Applying the Markov property of Z at time ¢, we get

r

”" h T T
By (Va1 50) = N7 B (o0 o) - Dotz - [ as (eieacie) 2]} (oo
_ N7 (PP () = N,

where the third equality uses (4.3.13).

(iv) This follows from (iii) via a calculation similar to (4.3.9). n
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4.4 Proof of Theorem 1.3.4

In this section we compute upper and lower bounds for the r.h.s. of (4.2.3) in terms of certain
key quantities (Proposition 4.4.1 below). We then state two propositions for these quantities
(Propositions 4.4.2-4.4.3 below), from which Theorem 1.3.4 will follow. The proof of these

two propositions is given in Sections 4.6-4.7.
For T > 0, let 1: Q x Z% be defined by

T
bl z) = / ds (Pug) () with  (n.2) = n(z) — p, (4.4.1)

where (P¢)e>0 is the semigroup generated by A (recall (4.3.2)). We have

v = [ s (0(2.) - / 5By Y paaalnn) (62 () - o). (44.2)

0 yEZ

where ps(x,y) is the probability that simple random walk with step rate 1 moves from x to y
in time ¢ (recall that we assume (1.2.3)). Using (1.2.6), we obtain the representation

T
vino) = [ s Y v an:) o) (4.4.3)

2€74

where 1[x] is given by (4.1.1). Note that ¢ depends on x and T'. We suppress this dependence.
Similarly,

T
A= /0 ds (—AP,$) =  — Pro, (4.4.4)
with
(Pré)(n.@) = Ega (6(Z1)) = By (§2(X7) = ) = > paarip(z,0) () = o (4.45)
2€74

The auxiliary function ¢ will play a key role throughout the remaining sections. The
integral in (4.4.1) is a regularization that is useful when dealing with central limit type behavior
of Markov processes (see e.g. Kipnis [10]). Heuristically, 7' = oo corresponds to — Ay = ¢.
Later we will let T" — oo.

The following proposition serves as the starting point of our asymptotic analysis.
Proposition 4.4.1 For any s, T > 0,

Xi(w) = 2 2 e ) + (s, T), (4.4.6)

IV IA

where

Ik, T) = %hmsup logE,, 0 (exp [i—q /t ds [(efgw/leglg - A (fq/))} (Zs)}>,
0

qd t—oco

1 2q ([
LYk,T) = 2_q h?iigp ; logIE,,p, (exp [;q/o ds (Pro) (ZS)]),

(4.4.7)
and 1/r+1/q =1 for any r,q > 1 in the first inequality and any ¢ < 0 < r < 1 in the second

inequality.
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Proof. Recall (4.2.3). From the first line of (4.3.3) and (4.4.4) it follows that

L7+ ot20) = 2z = - [ sl Az =+ [ asolz) -+ [as ro) 2.

K
(4.4.8)
Hence

S0 (oo |1 [ 5012

~Bupo (o0 | 207 + 20(z0) — 1wz + - | s Proyz|)  449)

1
— Eymo(exp |:Utr + ;V;r]>

with
o =1 [ as [(emact) - a (Zo)] 20+ 2 (vt - w(z) + 1 [ ds roy (2
(4.4.10)
and
V= M _/0 s [ (=0 aex?) - A (L0 (2. (4.4.11)

By Hélder’s inequality, with r,¢ > 1 such that 1/r + 1/q = 1, it follows from (4.4.9) that

1 [t 1/r
E,, (exp [E/o ds gb(Zs)]) < (Eup,o(exp [V[])) (Eyp,o(exp [qU[]))
1/q
= (Bu,0(exp [a7]))
where the second line of (4.4.12) comes from the fact that N/ = exp[V}] is a martingale, by

Lemma 4.3.1(iii). Similarly, by the reverse of Hélder’s inequality, with ¢ < 0 < r < 1 such
that 1/r +1/q = 1, it follows from (4.4.9) that

1 t 1/r
E,, (exp [— / ds¢<zs>]) > (Evo(exo V1)) (Eu,0(exp [a7]))
K Jo
1/
= (E,,mo(exp [qUtT])) !
The middle term in the r.h.s. of (4.4.10) can be discarded, because (4.4.3) shows that —pT" <

1 < (1—p)T'. Apply the Cauchy-Schwarz inequality to the r.h.s. of (4.4.12-4.4.13) to separate
the other two terms in the r.h.s. of (4.4.10). n

1/q

(4.4.12)

1/q

(4.4.13)

Note that in the r.h.s. of (4.4.7) the prefactors of the logarithms and the prefactors in the
exponents are both positive for the upper bound and both negative for the lower bound. This
will be important later on.

The following two propositions will be proved in Sections 4.6-4.7, respectively. Abbreviate

limsup = lim sup lim sup lim sup . (4.4.14)

t,k, T —00 T—oo K—00 t—00
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Proposition 4.4.2 If d > 3, then for any a € R and r > 0,

2

t
lim sup %logEymo <exp [%/ ds [e_ﬁwAeﬁw _ A<£¢)] (Zs)]> <arp(l-— p)iGd.
0

t,k,T—00 K 2d
(4.4.15)
Proposition 4.4.3 Ifd > 4, then for any a € R,
K2 a [t
limsup — logE,jmo(eXp [—/ ds (Pro) (ZS)}) <0. (4.4.16)
t,k,T'—00 13 K Jo

Picking o = 2¢ in Proposition 4.4.2, we see that the first term in the r.h.s. of (4.4.6)
satisfies the bounds

1
limsup limsup &% 17 %(k, T) < rp(1 — p)==Gq if r > 1,

T=oo w00 21d (4.4.17)
liminf liminf 217 (K, T) > rp(1 — p)==Gq ifr < 1.
T—o0 K—00 2d

Letting r tend to 1, we obtain

1
lim lim &*17%k,T) = p(1 — p)=—Gy. (4.4.18)

T— 00 K—00 2d

Picking oo = 2¢q in Proposition 4.4.3, we see that the second term in the r.h.s. of (4.4.6) satisfies

limsup limsup %15k, T) =0 if d > 4. (4.4.19)

T—oo K—00

Combining (4.4.18-4.4.19), we see that we have completed the proof of Theorem 1.3.4 for
d>4.

In order to prove Conjecture 1.4.1, we would have to extend Proposition 4.4.3 to d = 3 and
show that it contributes the second term in the r.h.s. of (4.4.16) rather than being negligible.

4.5 Preparatory facts and notation

In order to estimate I7Y(k,T) and Iy%(k,T), we need a number of preparatory facts. These
are listed in Lemmas 4.5.1-4.5.4 below.

It follows from (4.4.3) that

T
¢(777 b) - ¢(777 a) = /0 ds Z (desl[n} (Zv b) - p2dsl[n](zv a)) ["7(3) - p] (451)

2€7Z4

and

T
w(a) = vno) = [ ds F panag(ea) [14) = )]
2€74 (452)

T
- /0 @5 (paastfe)(bs ) — Paap (@, 2)) [n(a) — (b))

where we recall the definitions of 1[x] and 7®? in (4.1.1) and (1.2.5), respectively. We need
bounds on both these differences.
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Lemma 4.5.1 For anyn € Q, a,b,xz € Z* and r, T > 0,

[0 (n,b) — ¥(n,a)| < 2T, (4.5.3)
‘w(n“’b,x) — w(n,x)‘ <2Gy < 00, (4.5.4)

and
Z <¢(na,b’x) — ¢(77,x)>2 < %Gd < 00, (4.5.5)

{a,b}

where Gg is the Green function at the origin of simple random walk.

Proof. The bound in (4.5.3) is immediate from (4.5.1). By (4.5.2), we have

T
‘¢(na’bax) - ?/)(77@)‘ < /0 ds |p2dsl[n](bvx) _desl[m}(a7x)| : (4'5'6)

Using the bound pi(x,y) < p¢(0,0) (which is immediate from the Fourier representation of
the transition kernel), we get

‘¢(na7bax) - 7/)(77755)‘ < 2/0' dsp?dsl[n}(oao) < 2Gg. (457)

Again by (4.5.2), we have

> (vtt0) ~ wn)” = X ) =0 ([ s (s 0.2 —pmslww,x)))?

{a,b} {a,b}
T T
< 2/0 du / dv Z <p2du1[l€](bux) _deul[m}(aax)) <p2dv1[n}(bux) — P2dvl[x] (%@)

“ {a,b}

T T
= —2/0 du/ dv Z P2dut[x)(a; T) |:A1p2dv1[m](a7‘r)}

a€Zd

2 (T T 0
= —m/o du/u dv Z P2dullx) (@ T) [%mdm[n}(aw)}

a€Zd

9 T
= —m/o du Z P2dul[x] (a,7) (deTl[n} (a,) — DP2dul[x] (a,x))

a€Zd
2

T
2
< M/ du Z p2du1[fe](a’x)

0 a€Zd
2

o 1
< — e — < —
>~ 1[,€] /0 dup4du1[l€] (07 0) 2d(1[l€])2Gd(0) = 2de7

(4.5.8)
where A1 denotes the discrete Laplacian acting on the first coordinate, and in the fifth line
we use that (0/0t)p; = (1/2d)A1p;. |

For & € Z%, let 7,: © — Q be the z-shift on Q defined by

(em)(2) =n(z +2), e 2L (4.5.9)
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Lemma 4.5.2 For any bounded measurable W: Q x Z¢ — R,

t
hmsup logE,,p <exp[/ ds W(fs,Xs)])
O K

e . (4.5.10)
< limsupzlogEyp(exp [/ ds W(&s,O)]),
t—o00 0 ”
provided
W(n,z) =W(rmn,0) ¥neQ, veZs (4.5.11)

Proof. The proof uses arguments similar to those in Sections 2.2 and 3.2.6. Recall (4.3.1).
Proposition 2.2.2 with p = 1, applied to the self-adjoint operator G, = %L + A+ W (instead
of GY; in (2.2.4-2.2.5)), gives

t
lim ~logE,, 0 (exp [/ dsW(ZS)]) — sup (Bl(f) L —B3(f)> (4.5.12)
oot 0 1122 pmm =1 "

with

By(f) = /Q voldn) 3 W(n, 2) Fn, 2)2,

z€74

Ba) = [nln 5 S plenlfor )~ Sl

zeZd {z,y}Cz

Bs(f) = /Vpdnz S If f(n,2)?.

z€74 yezd
[ly—=z]l=1

An upper bound is obtained by dropping Bs(f), i.e., the part associated with the simple
random walk X. After that, split the supremum into two parts,

s (Bi(f) = BaA)))

||f||L2(Vp®m):1

2
— sup sup E g(z) /Vp(dn)
||g||L2(7n):1 ||fz||L2(Vp):1vzezdz€Zd Q (4514)

(W 0P -5 X peal e - LR,

{z,y}czd
where f.(n) = f(n,2)/9(z) with g(2)* = [, v,(dn) f(n,2)?. The second supremum in (4.5.14),

which runs over a family of functlons indexed by z, can be brought under the sum. This gives

r.hs. (4.5.14) = sup Z g(2)*  sup / vp(dn)
gl L2 (my=1 74 I£=0L2(,,) =179

(W 0P -5 X peal e - LR,

{z,y}czd

(4.5.15)
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> playlf ™) — f))?

By (4.5.11) and the shift-invariance of v,, we may replace z by 0 under the second supremum
in (4.5.15), in which case the latter no longer depends on z, and we get

[ votan) [ w0y 12 - 5
@ {z,y}Cczd

r.hs. (4.5.15) = sup
”f”LQ(Vp):l

1 t
~ Jim SlogE,, (exp [/0 ds W(gi,o)D,

(4.5.16)
where the second equality comes from the analogue of Proposition 2.2.2 with self-adjoint

operator <L + W (-,0) (instead of Gf,).
Lemma 4.5.3 For any p € (0,1),
1 2 Py
- — — = ~ 0. 4.5.17
[nax [vﬁ T (VB - p) ] "o, ~ 7 @ (4.5.17)
Proof. A straightforward computation shows that the maximum in (4.5.17) is attained at
B=—2"L o1 (4.5.18)
(1—2Gqv)
|

for small enough ~. Substitution yields the claim.
(4.5.19)

C

Lemma 4.5.4 There exists C > 0 such that, for allt >0 and x,y € Z¢,

pe(w,y) < 7
(1+1)2
Indeed, we can decompose the transition kernel of simple

Proof. This is a standard fact.
random walk with step rate 1 as
d
N, o
paley) = [[pV @), o=t 2,y =), (4.5.20)
j=1
where pgl)(:c,y) is the transition kernel of 1-dimensional simple random walk with step rate
1. In Fourier representation,
s
P (z,y) = 5 / dlc b =) =12(k) (k) = 1 — cosk. (4.5.21)
—Tr
The bound in (4.5.19) follows from (4.5.20) and
1 (7 5
m(:c,y) < pgl)(0,0) = —/ dik e 1) < -, t>0,z,yec 2zl (4.5.22)
2 -7 (1 =+ t)§

D
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4.6 Proof of Proposition 4.4.2

The proof of Proposition 4.4.2 is given in Section 4.6.1 subject to four lemmas. The latter
will be proved in Sections 4.6.2—4.6.5, respectively. All results are valid for d > 3.

4.6.1 Proof of Proposition 4.4.2

Lemma 4.6.1 Uniformly inn € Q and x € Z%, as k — 00,

2

(v aes) — 4 (L) o) = £ %:1 (1&(?7,:1:—1—6)—1&(77,:1:))2—1—0((%)3>. (4.6.1)
Lemma 4.6.2 For any x,T >0, a € R and r > 0,

- 2/ ds Z (¢(§ X, +e>—¢(§%,Xs>>2]>

:lefl=1

<l1msup2—logEyp<eXp[ / ds Z K(’;laTg ( Z)_p)2]>

lim sup log Eu,o0 < exp

t—o0

t—o0

2€7Z4
+h§risolip2ilogEyp<eXp[ /ds ZZdK (21,22 (5 (21) — p)(ﬁ;(@)—p)]),
e (4.6.2)
where
Kil= Y (zto-x)"
e: |lel|=1
(4.6.3)
Kl ez) = Y (xa+e) —x) (e +0) = (), 21 # 2,
e:llel|=1
with .
@) = [ dupsau©.2) (4.6.4)
0

Lemma 4.6.3 For any o € R and r > 0,

2 2 1
lim sup ’% logE,, <exp [ / ds Z Kglgg ( (z) — p) ]) <arp(l-— p)EGd. (4.6.5)

t,k, T —00 Le7d

Lemma 4.6.4 For any o € R and r > 0,

lim sup %210gE,,p <exp [ / ds Z Koff 21, 22) (fi(zl) — p) (5%(22) — p)]) <0.

t,k, T —00 d
21,29 €L
21722

(4.6.6)
Combining Lemmas 4.6.1-4.6.4, we obtain the claim in Proposition 4.4.2.
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4.6.2 Proof of Lemma 4.6.1

Lemma 4.6.1 is immediate from (4.3.2) and the following two lemmas.

Lemma 4.6.5 Uniformly inn € Q and x € Z¢, as k — o0,

% (e #re) — 1 (L) o) = 0 (%) : (4.6.7)

Lemma 4.6.6 Uniformly inn € Q and x € Z¢, as k — o0,

[(e*vaci?) = a (S9)] o) = % 3 (¢(n,x+e)—¢(n,x))2+0 (%) . (46.8)

e: [lell=1
Proof of Lemma 4.6.5. By (1.2.3-1.2.4), we have

(-551) -1 ()] o

1 r a,bx _ z T a
= 5 2 (ROt =@l 1 - St ) - v, 2)]) .

K
{a,b}

(4.6.9)

Taylor expansion of the r.h.s. of (4.6.9) gives that uniformly in n € Q and x € Z¢,

Fl(mene) 1 ()] ) = g 3 (060 vt =0 (5.
6

4.6.10)
where we use (4.5.4-4.5.5). |
Proof of Lemma 4.6.6. By (1.1.2), we have

_r r r
[(Frae) -4 (o) o)
(4.6.11)

_ Z (eﬂw(n,wre)*w(n,x)] 1= %[w(n’x + 6) — w('mx)]) .

: Jlell=1

Taylor expansion of the r.h.s. of (4.6.11) gives that uniformly in n € Q and z € Z¢,

2

(ae) —a (L) o) = oy 3 (vnate)—v0n2) +Rer(na) (4612)

2K?2
e:[lef=1
with
3 8dr?
’RK,T(Tlv S Z ‘lb nx + 6 ¢(777x)‘ 60(1) S WTE}eO(I)a (4613)
e [lef=1
where we use (4.5.3). Combining (4.6.12-4.6.13), we arrive at (4.6.8). ]
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4.6.3 Proof of Lemmas 4.6.2

Proof. By (4.4.3), we have for all n € Q and = € Z¢,

Z (w(n,x + e) — ¢(n,x))2

e: [lel=1
T T
= du dv wlle] (21, T 4+ €) — Paguire (21, T
e:%l zl,;Zd/o /O <p2d ! }( 1 e ! }( 1 )> (4.6.14)
X <p2dyl[n}(22,9«“ +e) _p2dv1[n](327x)> [77(21) - P} [77(22) - P]
= > K"(z1,20) [n(z1 +2) = p] [n(z2 + =) — p)],

21,220€74

where K®7: 74 x 74 — R is given by

KT () = 3 (W +e) = x(@) (Xl + €)= x(z2)). (4.6.15)

elle]|=1

Therefore, for all k,T > 0,

liiriiglp%logE,,pp(exp l%/otds 3 (¢<§%,Xs+e>—w<§%,Xs>)2]>

elle]|=1

. 1 ar [t T
_l1msupglogEVp70(exp [w/o ds Z K™ (21, 29)

t—o0
21,22 cz7d

X (fi(h + X) — P) (f%(@ + Xs) — P)])

t
SlimSUP%IOgEVpGXP [%/Ods > K5T(z1,2) (5:(21)—,0)@;(22)—0)]),

=00 21,22€7Z%
(4.6.16)
where in the last line we use Lemma 4.5.2 with
ar
W(n,z)= 92 Z K21, 20) [n(z1 + ) — p] [n(22 + ) — p], (4.6.17)

21,29€7Z4

which satisfies W (n,x) = W (7,1, 0) as required in (4.5.11). Splitting the sum in the r.h.s. of

(4.6.16) into its diagonal and off-diagonal part and using the Cauchy-Schwarz inequality, we
arrive at (4.6.2). []

4.6.4 Proof of Lemma 4.6.3

The proof of Lemma 4.6.3 is based on the following two lemmas. Recall (2.1.1).
Lemma 4.6.7 For any T > 0 there exists C > 0, satisfying limp_..o Cr = 0, such that

1
. r,T o
/-ch—{go ”KdiagH1 = EGd + Cr. (4618)
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Lemma 4.6.8 For anyT >0, a € R and r > 0,
. K> ar kT
lim sup - logE,, | exp ?(1 = 20)| K gingl1 Tty | | < arp(1 = 2p) hm | K. 1agH . (4.6.19)

t,k—00

Before giving the proofs of Lemmas 4.6.7-4.6.8, we first prove Lemma 4.6.3.
Proof of Lemma 4.6.3. By Jensen’s inequality, we have

E, <exp[ /dsZKlag GO p)2]>

z€Z%
dl ar T
< 3 pom (ew | IR [ s (e:) )
zezd 1P diagll1 (4.6.20)
ar t 2
_E, <exp [ H dlagul/ ds (£:(0) — p)
ar T ar )T t/k
= €exXp |:_2p HKdlag”lti| EV{) exp _(1 - 2p)”Kdlag”1 dSéS(O) ’
K K 0
where the first equality uses the shift-invariance of v,. Therefore
R o 2
M}lTrgooTlogEyp exp ds Z K g (7 ( (z) — p)
zezs (4.6.21)
2
. K, T .
< R%rnoo arp HKdlang + M}lTrgoo " logE,, (exp [ (1—2p)| dlangTt]).
Now use Lemmas 4.6.7-4.6.8 to obtain (4.6.5). n

Proof of Lemma 4.6.7. By (4.6.3), we have

HKdlag =2 Z/ du/ dU deul[n}(O Y) — P2duifx) (0, CC)) (p2dv1[n](0 Y) — P2dv1[x) (0, 90))
{z.y}

= —4/ du/ dv Z deul[h} 0 X [A1p2dv1[n](0 .CI?)]

x€Z4

0
= _—/ du/ dv Z P2du1] Ii] 0 &z |:avp2dvl[fi}(07x):|a

x€Z4
(4.6.22)

where we recall the remark below (4.5.8). After performing the integration w.r.t. the variable
v, we get

4 T T
HKdlagH = m (/O du Z p%dul[n](oux) _/O du Z deul[fﬂ(Oux)deTl[fﬂ (O,CE))

x€Z4 x€Z4

4 T T
= / du Padur[x] (0, 0) _/ du paa(u+1)1(x)(0,0) |-
1[x] 0 0
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Hence

. 1 2dT 4dT
tim K5 = / du py(0,0) — / du pa(0,0) |, (4.6.24)
Ree 0 2dT
which gives (4.6.18). []

Proof of Lemma 4.6.8. To derive (4.6.19), we use the large deviation principle for (7}):>0
stated in Section 2.1. By Varadhan’s Lemma we have, for all k,T" > 0,

) 1 ar
lim sup n logE,, (exp [—(1 —2p)|| dlaguth/"”v])

t—o0
1
= max [T = 29| K 108 — wa(8)] (4.6.25)
1 Kk, T 1 2
< pax { (1 = 20)[| K iag 15 — @(\/ﬁ —Vp) ]

where we use the quadratic lower bound in (2.1.6). By Lemma 4.6.7, (1/“)||K§1aTgH1 1 0 as

k — oo for any 7' > 0. Hence Lemma 4.5.3 can be applied to get (4.6.19). n

4.6.5 Proof of Lemma 4.6.4

The proof of Lemma 4.6.4 is based on the following two lemmas. Recall (4.6.3). For 21, 29 € Z¢
with z1 # 29 and v € R, let

Boon(21, 22) = limsup ¢ logEup<exp [7 /tds CIIEICIEY —p)] )

t—o0

. . (4.6.26)
= limsup — logE,, (exp [1/ ds (fs(zl) — p) (53(22) - p)} >
t—o0 K/t K 0
Lemma 4.6.9 For all k, T > 0,
K5 | < 8dT?. (4.6.27)
Lemma 4.6.10 For any 2,z € Z% with 2, # 2, and any v € R,
lim sup #%h (21, 22) < 0. (4.6.28)

K—00

Before giving the proof of Lemmas 4.6.9-4.6.10, we first prove Lemma 4.6.4.
Proof of Lemma 4.6.4. Let Kgf’fT;Jr and Kgf’fT;* denote, respectively, the positive and negative
part of Kgf’fT. By the Cauchy-Schwarz inequality, we have

logE,, <exp [ / ds Z T (21, 29 (55(2’1) — p) (52(22) - p)])

21, ngZd
21772

%ngyp <exp [20” Z Kgfva§+(Zl,ZQ) /Ot ds (55(,21) - p) (55(22) - p)])

21, ngZd
z1#29

+%logEy,,<exp[ 20” Z K5 zl,zQ)/Otds(fz(zl)—p)(fz(zg)—p)])

21, ngZd
21772

(4.6.29)
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We estimate the first term in the r.h.s. of (4.6.29). For R > 0, let

Br = {(z1,2) € Z4 x 2% : || 21| + ||22|| < R}. (4.6.30)
Then
2ar
Eyp(eXp [ / ds Y Kl ’+(Z1,Z2)(€5(Z1) - ,0) (ég(@) —p)])
21, ngZd
z17#22
2|alrt kT
< exp [ - Z K +(21722)] (4.6.31)
(21,22)€BR
z1#29
2ar o T
XEV/J(eXp [ / ds Z KOlng’Jr(zl,Zz)(f%(Zl)—P) (55(22)—/))]).
(z1, Zi)eBR
zl 22

Applying Jensen’s inequality, we get

o, (o0 |27 [0 5 ki (e - 0) (e -0)|

21, ZQGZd
21722
5 K KR 21, %2
S 2|CM|T Z K:fvafi'(Zla 22) + t/_/{/ log Z %
(21,22)63% (21,22)€EBR HKOHR Hl
z1#29 21#29
t/k
ar T
e (o (22t [ (et - ) (et 0)] )
0
(4.6.32)
where
T 5
[Riers RJrH1 Z K (21, 22). (4.6.33)
(21,22)€BR
z1#29

By Lemma 4.6.10 (with v = QQT\\K:HTR+\\ ), the second term in the r.h.s. of (4.6.32) is
asymptotically bounded by above by zero (as t — oo) for any x,7 > 0, « € R and r > 0, and
any R finite. The first term in the r.h.s. of (4.6.32) does not depend on ¢ and, by Lemma 4.6.9,
tends to zero as R — oo. This shows that the first term in the r.h.s of (4.6.29) yields a zero

contribution. The same is true for the second term by the same argument. This completes
the proof of (4.6.6). n

Proof of Lemma 4.6.9. The claim follows from (4.6.3-4.6.4). n

Proof of Lemma 4.6.10. The proof of Lemma 4.6.10 is long, since it is based on three further
lemmas. Let 21, 29 € Z% with z =% z9. Without loss of generality, we may assume that

z21€H™ and z€ HT (4.6.34)

with
H-={zez% 2* <0} and HT ={zez% 2! >0} (4.6.35)
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Let
o
hyw(21) = hmsup—logE‘RW< exp —;p/o ds 5;(21)]),

t—o0o 3 t

1 [ 3y [t
hZ . (z2) = limsup T logEIRW(exp —%p/ ds §j(zg)] >, (4.6.36)
i 0

t—o00 Kt

1 [ to -
BE (21, 20) = hmsupﬂlogEmW(exp 2 [ as @(zl)f:(@)] )
LK Jo

t—o00 K

where (§~t_ )e>0 and (§~t+ )t>0 are independent IRW’s on H~ and H ™, respectively, with transition
kernels p~(-,-) and p™(-,-) corresponding to simple random walks stepping at rate 1 such that
steps outside H~ and H™, respectively, are suppressed.

Lemma 4.6.11 For allxk >0, z1 € H, 20 € H' and v € R,
Y _
o (21, 22) < E,ﬂ +h e (21) + T (22) + BT (21, 22). (4.6.37)

Lemma 4.6.12 For all v € R,

limsup x> sup h (1) < —yp* and limsupk? sup h w(22) < —yp2. (4.6.38)

K—00 z1€EH~ K—00 z9€HT

Lemma 4.6.13 For all v € R,

limsup k2 sup hin(zl,zg) < yp*. (4.6.39)
K—00 2 €H—
z9€Ht
Combining (4.6.37-4.6.39), we get (4.6.28). n

Proof of Lemma 4.6.11. Similarly as in the proof of Lemma 4.5.2, by cutting the bonds
connecting H~ and H™" in the analogue of the variational formula of Proposition 2.2.2, we get

os(er,2) < timoup LiogE, (exp [ [ s (65 1) — ) (65 o) — )

vzt 22) < lmsup S log oy, { exp o f - ds & (1) —p) (& (22) —p
t

_hmsupﬁ—logEVp<exP [7/ ds (p2_pgs_(zl)-i-pfj(m)+£S_(zl)§j(z2))]>a

t—00
(4.6.40)
where (£, );>0 and (&, )i>0 are independent exclusion processes in H~ and H™, respectively,
obtained from (&);>0 by suppressing jumps between H~ and H". Applying Holder’s inequal-
ity in the r.h.s. of (4.6.40) to separate terms, we obtain

1 r t
hw /@(ZLZQ) < —P +11msup%10gEVp< Xp -_3%[)/0 ds 55(2’1)] >

t—o0

t—o0

F g .
—|—l1msup3—10gIEVp< Xp —lp/ ds {j(@)]) (4.6.41)

+hmsup3—10gxayp( w |2 dsgs (21)&5 (= >D

t—oo | K
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In order to get (4.6.37), we apply Proposition 1.2.1 to the last three terms in the r.h.s. of
(4.6.41). For the first two terms, pick, respectively K(z,s) = —(3v/k)pl;, and K(z,s) =
—(3v/k)pls,(2). For the last term, we have to apply Proposition 1.2.1 twice, once for the
exclusion process (& );>0 on HT with K(z,5) = —(37/k) &7 (21) 1., (2) and once for the ex-
clusion process (£ )i>0 on H~ with K(z,s) = —(37/k) €5 (22) 1., (2). Here, we in fact apply
a modification of Proposition 1.2.1 by considering (£, );>0 and (£ );>0 on Z¢ with particles
not moving on H' and H~, respectively. See the proof of Proposition 1.2.1 in Appendix A
to verify that this modification holds true. [ |

Proof of Lemma 4.6.12.  We prove the second line of (4.6.38). The first line follows by
symimetry.

Let
+ = +. —
H ={re H": n(x) =1}, n e Q. (4.6.42)

Fix z € Ht. Then

e (o[- [(as&ra] ) = [vtan T B3 (o[- 225 [as.00)]).

xefﬂf
(4.6.43)
where E;" " is expectation w.r.t. simple random walk Y+ = (Y;");>0 on HT with transition
kernel pT(-,-) and step rate 1 starting from Y;" = 2 € HT. Using that v, is the Bernoulli
product measure with density p, we get

t ~
B (e |2 [as &) )

3y t
= / vo(dn) [ EFVY (exp [—n(w)—p / ds 1z(Ys+)]> (4.6.44)
& z€HT . 0
= 1] (1 —p+ pv(x,t)) < exp [p > (vlat) - 1)}
zeHt zeHt
with
RW,+ 3 ! +
v(x,t) =EY" T exp | — —p [ ds 1.(Y,")| ). (4.6.45)
Kk Jo
By the Feynman-Kac formula, v: HT x [0,00) — R is the solution of the Cauchy problem
0 1 3y
= = — A" - =pl S0)=1 4.6.4
Sow ) = gpatete )~ { L oL} e, w0 =1, (4.6.46)
where
Ato@,t)= Y [oy.t)—v(xt), zeH (4.6.47)
yeEH+
ly—=zl=1
Put
w(z,t) =v(x,t) — 1. (4.6.48)

Then w: HT x [0,00) — R is the solution of the Cauchy problem

ow

2 (a.t) = L Atz t) — {3% plz(x)} fw(z,t) +1],  w(-0) =0, (4.6.49)

2d
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Since Y- cpy+ AT f(z) =0forall f: HT — R, (4.6.49) gives

% Z w(;p7t) = —3% p[w(z,t) + 1] (4650)

z€EHT

After integrating (4.6.50) w.r.t. ¢, we obtain

t
Z w(z,t) = _3_’th - Slp/ ds w(z,s). (4.6.51)
zeHt 0

Combining (4.6.36), (4.6.44), (4.6.48) and (4.6.51), we arrive at
t

1
+ < _l 2 1 _
hy . (2) < pold (1—|—thré1O A ds w(z,s)). (4.6.52)

The limit in the r.h.s. exists since, by (4.6.45) and (4.6.48), w(z,t) is monotone in ¢.

We will complete the proof by showing that the second term in the r.h.s. of (4.6.52) tends
to zero as k — o0o0. This will rely on the following lemma, the proof of which is deferred to
the end of this section.

Lemma 4.6.14 Let G*(z,y) be the Green kernel on H™ associated with p; (x,y). Then
|G loo < 2G4 < 0.

Return to (4.6.45). If v > 0, then by Jensen’s inequality we have
3y [ + 3y +
1>v(x,t) >exp | ——p | dspl(z,z)| >exp| ——pl|G" |loo|, (4.6.53)
K 0 K

where ||GT |0 < 0o by Lemma 4.6.14. To deal with the case v < 0, let G* denote the Green
operator acting on functions V: H* — [0,00) as

G@"V)@) = > GHa,yV(y), zecH" (4.6.54)
yeHt
We have 5 3| |
v gl
\g*(——plz)\ Ml (46.55)
K 00 K

The r.h.s. tends to zero as k — co. Hence Lemma 8.2.1 in Gértner and den Hollander [4] can
be applied to (4.6.45) for k large enough, to yield

1
1 <wv(z,t) <

< 11 as k— . (4.6.56)
3
1= 200G

Therefore, combining (4.6.53) and (4.6.56), we see that for all v € R and § € (0, 1) there exists
ko = ko(,9) such that
lv = 1]|oo <6 VK> K. (4.6.57)

v (4.6.48-4.6.49), we have
3 [ RW,+ + +
w(z,t) =——p [ ds EEVT [ 1(Y,")v(Y,",t—s) ). (4.6.58)
K Jo
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Via (4.6.57) it therefore follows that

t
—Slp(l +0)GT(2,2) < lim 1 ds w(z,s) < —Slp(l FO)GT(z,2) VK> ko, (4.6.59)
K K

t—o00 0

where the choice of 4+ or — in front of 4 depends on the sign of «. The latter shows that the
second term in the r.h.s. of (4.6.52) is O(1/k). This proves (4.6.38). n

Proof of Lemma 4.6.13. The proof is similar to that of Lemma 4.6.12. Let

H;:{xEH‘F:n(:c):l}, n € €,
(4.6.60)
Hy ={zeH :n(x)=1}, neQ.

Fix z; € H- and 2 € H'. Then

e (o [2 [ s & ér )] )

3y [t (4.6.61)
— /Q vo(dn) [T I E ER* <exp [? /0 ds 1(21722)(};—,1?)]),

€ H, yeH,

where Y~ on H~ and Y on H* are simple random walks with step rate 1 and transition
kernel p~(-,-) and p*(-,-) starting from Y; =z € H~ and Y, =y € H™, respectively. Using
that v, is the Bernoulli product measure with density p, we get

B (e |2 [ s i) )

- /Q vo(n) [] T ESVEG™F (eXp [n(w)n(y)% /0 s 1(z1,zz)(3@_73@+)D

x€H— yeH*
= H H (1—p2+p2v(2’17227 ) <exp[ Z Z v(z1, 295t 1)}
z€H- yeHt x€eH- yeHt
(4.6.62)
with
3,)/ t t
v(zl,ZQ;t):EZW’_EIZW’+(exp [—/ ds / ds 1(21722)(1@—&?)}). (4.6.63)
K Jo 0

By the Feynman-Kac formula, v: (H~ x Ht) x [0,00) — R is the solution of the Cauchy
problem

vt = 5 (A A% )+ {2 1w b e, o0 =1, (60)

where

A o(zit)= Y [y.t)—v(zt)], zeH,
IISEﬁ\;l

Ato(zst)= Y [v(y,t) —v(a,t), zeH'
Wy

(4.6.65)
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Put

w(z,y;t) = v(x,y;t) — 1. (4.6.66)
Then, w: (H™ x HT) x [0,00) — R is the solution of the Cauchy problem
ow + 3’7/
X 1) = 5o+ Al )+ D1 ) et 11, w50 =0
(4.6.67)
By (4.6.65) and (4.6.67),
3
Z Z (z,y;t) = l;y[ w(z1, z2;t) + 1]. (4.6.68)
er yeHT
After integrating (4.6.68) w.r.t. ¢, we obtain
3 3
Z Z w(z,y;t) —7 t+ dtl ds w(z1, 22; S). (4.6.69)
reH— yeHT K Jo
Combining (4.6.36), (4.6.62), (4.6.66) and (4.6.69), we arrive at
l 1t
hin(zhzz) S <1 —|—thm — [ ds w(z1, 22; s)) (4.6.70)

The limit in the r.h.s. exists, since w(z1, z2; s) is monotone in s.

We will complete the proof by showing that the second term in the r.h.s. of (4.6.70) tends
to zero as k — 0o0. Return to (4.6.63). If v < 0, then by Jensen’s inequality we have

3 o _
2 otagit) 2 o | = 200 [ s g o) 05 20| 2 e | = 2 (167 1 1167 |
0

(4.6.71)
where ||G™|loo; |GT|lo < 00 by Lemma 4.6.14. To deal with the case v > 0, let G denote
the Green operator acting on functions V: H~ x HT — [0,00) as

G*V)(@,y) = > GE(zyia,b)V(a,b), ze€H ,yeHT, (4.6.72)
hen+
where -
Gyab) = [ ds o (oa)pl (020) (4.6.73)
0
We have 5 5 5
Y Y Y _
(10| < 2 16% 10 < 2 (167 I n ). a6

The r.h.s. tends to zero as k — co. Hence Lemma 8.2.1 in Gértner and den Hollander [4] can
be applied to (4.6.63) for k large enough, to yield
1
1 <w(zx,t) < 3 11 as k— oo. (4.6.75)
1= 2 (16 loe A IG*1c)

Therefore, combining (4.6.71) and (4.6.75), we see that for all v € R and § > 0 there exists
ko = ko(,9) such that
lv = 1]|oo <6 VK> K. (4.6.76)
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By (4.6.66-4.6.67), we have

t
w(z1, z2;t) = 3% / ds B BT T (1(%22)(1;—, Y oY, Yt — s)>. (4.6.77)
0

Via (4.6.76) it therefore follows that for all kK > ko,

3 1/t
l(l ié)Gi(Zl,Zl;ZQ,ZQ) < tlim = | dsw(z1,22;8) <
K

3V (1 5 )G (21, 215 29, 20). (4.6.78)

Combining (4.6.70) and (4.6.78), we arrive at (4.6.39). n
Proof of Lemma 4.6.14. We have G (z,y) = > > p}(z,y), x,y € H", with p}(z,y) the
n-step transition probability of simple random walk on H+ whose steps outside H' are sup-

pressed (i.e., the walk pauses when it attempts to leave HT). Let p,(x,y) be the n-step
transition probability of simple random walk on Z¢. Then

i (z,y) < 2pn(z,9), z,y € H", n € Ny. (4.6.79)

Indeed, if we reflect simple random walk in the (d — 1)-dimensional hyperplane between H™
and its complement, then we obtain precisely the random walk that pauses when it attempts
to leave HT. Hence, we have p}(z,y) = pn(x,y) + pu(z,y%), v,y € H, n € Ny, with y* the
reflection image of y. Since p,(z, y*) < pp(x,y), ,y € HT, the claim in (4.6.79) follows. Sum
on n, to get Gt (z,y) < 2G(x,vy), ,y € H. Now use that G(z,y) < G(0,0) = Gy, =,y € Z%.

|

4.7 Proof of Proposition 4.4.3

The proof of Proposition 4.4.3 is given in Section 4.7.1 subject to three lemmas. The latter
are proved in Sections 4.7.2-4.7.4, respectively. The first two lemmas are valid for d > 3, the
third for d > 4.

4.7.1 Proof of Proposition 4.4.3

Lemma 4.7.1 Forallt >0, k,T >0 and a € R,

B |2 [ s Pro) 2] ) <Bo((ew [0 [t 3 muarg (i) ),

x€Zd
(4.7.1)
where w® : 79 % [0,t) — R is the solution of the Cauchy problem
ow® 1 o
o (,) = 5 A (@) % g (X )0, s) +1, wO(,0) =0 (472)

Lemma 4.7.2 For allt >0, k > 0, T large enough and o € R,

a t
Eo(exp [;P/O ds Z p?dTl[n}(Xtsax)w(t)(xas)])

zeZd (473)
2(12 t t
< Eo<eXP [?P/O ds / dupu=s | 4q71[s) (quXS):|>’
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Lemma 4.7.3 Ifd > 4, then for any a € R,

12 22 [t t
lim TlogE()(exp [?p/o ds/s dupumerZldTl[K](Xu,Xs)}) =0. (4.7.4)

Tk, t—00

Lemmas 4.7.1-4.7.3 clearly imply (4.4.16).

4.7.2 Proof of Lemma 4.7.1
For all t >0, k,7 >0 and o € R, let v®: Z? x [0,£) — R be such that
v (z,s) = w®(z,s) + 1, (4.7.5)

where w®) is defined by (4.7.2). Then v®) is the solution of the Cauchy problem

o) L Ap® o ® )
W(xvs) = %A’U (x,s) + ;p2dT1[/~t](Xt—sax)v (xvs)a v (70) =1, (476)

and has the representation

v® (2, s) —EY;W(eXp [9 / du P (Xt_s+u,Yu>]). (4.7.7)
K Jo K

Proof. By (4.3.1) and (4.4.5), we have

Eyp,o(exp [% /Ot ds (Pr¢) (Zs):|> = Eup,o(exp {% Z /Ot ds paari(x) (Xs, ) (5%(2) - P)])

2€74
(4.7.8)
Therefore, by Proposition 1.2.1 (with K (2, s) = apagris)(Xks; 2)), We get
o [t
Eupp(exp [E/ ds (Pro) (Zs):|>
0
o' t >
< EOEIVRPW<6XP [; Z p2dT1[n](Xsaz)/ ds (5%(2) - P)})
2€74 0
a a t
< exp [——Pt] Eo / vp(dn) H E§W<6Xp [— Z deTl[K](Xsaz)/ dsd, (Yz)})
: @ T€EAp : 2€74 0
¢
_ e RW o :
—eXP{ F&Pt] Eo /QVp(dﬁ) xg,,Ex (eXP [/‘”v/o dsdeTl[n]<X5uY;>:|>a
(4.7.9)
where A4, = {z € Z¢ : n(x) = 1} and EV is expectation w.r.t. to simple random walk

Y = (Y)i>0 on Z% with step rate 1 starting from Yy = z. Using that v, is the Bernoulli
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product measure with density p, we get

o ew [ | ds (Pro) @))

o A
< exp |——pt /Vp dn)E < H Y (eXP[ (z)— / ds paari[x] (X37Y5>:|>
- Je z€Zd 0
o -
= exp |——pt / vp(dn)Eq ( H [1 + n(z) wh (z, t)])
- Je z€ZY
T a
= exp —;pt EO( H [1 —|—pw(t)(g;’t)}) < exp [—Ept} E0<exp [p Z w(t)(x,t)]>,
) ' zeZd z€Z4
(4.7.10)
where w(® : Z% x [0,t) — R solves (4.7.2). From (4.7.2) we deduce that
0 o'
& Z w(t) (LU, 8) = ; Z P2dr1i[x] (Xt—sa x) [1 + w(t) (ilf, 8)] : (4711)
xeZd zeZd
Integrating (4.7.11) w.r.t. s and inserting the result into (4.7.10), we get (4.7.1). n

4.7.3 Proof of Lemma 4.7.2

Next, we consider v(Y) and w®) as defined in (4.7.5-4.7.7), but with |a| instead of .

Proof. We begin by showing that, for T' large enough and all =, s, ¢t and X ), we have
v®(z,5) < 2.

Do a Taylor expansion, to obtain (sg = 0)

v® (2, 5) = (|a|> <H /SZ 1dsl> ERW (ﬂli[lpngl[n] (th+sm,YsTm)>. (4.7.12)

In Fourier representation the transition kernel of simple random walk with step rate 1 reads

ps(z,y) = ?{dk etk (y=a) o—sP(k), (4.7.13)

where § dk = (27)~¢ f[_ﬂ e dk and

2d Z ( - M) ke l-mm? (4.7.14)

II:vll 1
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Combining (4.7.12-4.7.13), we get

wen -5 (1 #)

n=0 =1 - m=1
x E§W<exp [zi (Ve = X1, ) k:p] exp {— (2a71[4]) i @(kq)D
p=1 q=1
- TLZ:;) <%>" (ll—[l /é:1 d81> (ﬂ!—:[l}z{dk:m> exp [— szl (thersp x) k:p]
X exp [— <2dT1[/<;]> n @(kq)] ERY <exp [z . Yer k:D
! = (4.7.15)

where in the last line we did a spatial shift of Y by z. Because Y has independent increments,
we have

ERO"V(exp [ziY k]) —E%W<exp [ii<kr+“'+’“n) (v _Y)D

r=1 r=1
=11 E%W(exp [i(k:r ot k) Yeos, 1D
= (4.7.16)
= H Z Psr—s,_1(0,2) exp [i(ky + -+ + kn) - 2]
r=1zezd "
_Hexp[_Sr_Sr—l A(kr+ +kn):|,
r=1

where the last line uses (4.7.13). Since the r.h.s. is non-negative, taking the modulus of the
r.h.s. of (4.7.15), we obtain

o< (WY (I a) (11 o)
X exp [ - <2dT1[/<;]> Z:@(k:q)] ERY <exp [z Z: Yo - k;]) (4.7.17)

S (i) -)

n
dSl) E%W (H P2dr1[x] (07 Yg;”)) )
m=1
where the last line uses (4.7.13). Thus

« S o
v (z,s) < E%W(GXP [%/0 du pagr1x] (0,Yg>]) < E%W(GXP [’a\/o dup2dT1[n](OaYu)]>'
(4.7718)

S

Si—1

Next, let G denote the Green operator acting on functions V: Z¢ — [0, 00) as

GV)(z)=> GyV(y), wzez' (4.7.19)

yezZ
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With p; denoting the function p;(0, -), we have

| =lal sup / ds 3 pu(@,y) ot (0,9) < [alGoarrpy  (4.7.20)
o0 QCEZd 0 yEZd

Hg(|a|p2dT1[n}>

with ~
Gt —/ ds ps(0,0) (4.7.21)
t
the truncated Green function at the origin. The r.h.s. of (4.7.20) tends to zero as T" — oc.

Hence Lemma 8.2.1 in Gértner and den Hollander [4] can be applied to the r.h.s. of (4.7.18)
for T' large enough, to yield

1
v® (2, 5) <

< 11 as T — oo, uniformlyin s > 0. (4.7.22)
1- HgOa!Pszlm)Hm

Thus, for T" large enough and all z, s, ¢, £ and X ), we have o® (z,s) < 2, as claimed earlier.
For such T, recalling (4.7.5), we conclude from (4.7.2) that w® < @® where @® solves

Aw® 1

_ 2|« _
55 (@8) = MAw(” (2,5) + %pww (Xi_s,z),  wP(.,0)=0, (4.7.23)

The latter has the representation

_ 2lal [° 2lal [°
w(t)(x,s) = %/0 du Z p% (.CC,Z) P2dr1[x] (thuaz) = %/O dups%“JerTl[,{} (-ruthu)-
z€Z4
(4.7.24)
Hence,
o [t
EO(eXp [—P/ ds Z P2dr1i[x] (Xt—sa x) w(t) (xv 5):| )
o Jo x€Z
o t
< Eo(eXp [%P/O ds Z Poarifs)(Xi—s, x) @D (a, 5)}) (4.7.25)
zE€Z?
2042 t s
= Eo(eXP [Fp/o ds /0 dup$+4dT1[,d (Xt37Xtu):|>7
which proves the claim in (4.7.3). ]

4.7.4 Proof of Lemma 4.7.3

The proof of Lemma 4.7.3 is based on the following lemma. For ¢t > 0, « € R and a, k,T > 0,
let

1 4042 t s+ar3
Ao(t;a, 5, T) = o5 logEo(eXp [?p/o ds / du Pu=s | 4aT1[x] (XU,XS)]> (4.7.26)

and
Aa(a, k,T) = limsup Ay (t;a, K, T). (4.7.27)

t—o00
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Lemma 4.7.4 If d > 4, then for any o € R and a,T > 0,

lim sup £?Ao(a, &, T) < 2a%p Guar, (4.7.28)

K—00

where G; is the truncated Green function at the origin defined by (4.7.21). Before giving the
proof of Lemma 4.7.4, we first prove Lemma 4.7.3.

Proof of Lemma 4.7.3. Return to (4.7.4). By the Cauchy-Schwarz inequality, we have

2 202 t t
_logEo(exp [—Qp/ ds/ dupu+4dT1[ﬁ](Xu,Xs)}>

H2 stak?
?logEo(exp[ 5 p/ ds/ du pu-s stTl[n}(Xu,X )}) (4.7.29)

12
+ 2—tlogE0<exp [?p/o ds /S+(m3 du p%+4dT1[n}(Xst)]>'

Moreover, by Lemma 4.5.4 and the fact that d > 3, we have

1
= ds/ 3du Du=s “+4dT1[n](XwX ) < —/ ds/ 3du Pu=s 5(0,0)
+ak +ak ~ (4 7 30)
C & 1 C o
< —t du T < ——t
K ak? (1 —|—u)§ a2 K2

with C,C > 0. Combining (4.7.29-4.7.30) and Lemma 4.7.4, and letting a — oo, we get
(4.7.4). n

The proof of Lemma 4.7.4 is based on one further lemma. For v > 0 and a,k,T > 0, let

1 akrK [e.e]
Ay (a,T) = limsup — logEo<l2 / ds / du pu=s | yqp1 (XS,Xu)>. (4.7.31)
K= Jo s ~

k—oo AR
Lemma 4.7.5 Ifd > 4, then for any v > 0 and a,T > 0,

A,Y(CL, T) < vy G4dT~ (4732)

Before giving the proof of Lemma 4.7.5, we first prove Lemma 4.7.4.
Proof of Lemma 4.7.4. Split the integral in the exponent in the r.h.s. of (4.7.26) as follows:

t s+ak
/OdS/ dupuT—s+4dT1[,€](XuaXs)

[t/ax®]  [t/ar®] Lard stak (4733)
= Z Z /(k Dt ds / du pu—s | 471 () (Xur Xs).
even odd

Note that in each of the two sums, the summands are i.i.d. Hence, substituting (4.7.33) into
(4.7.26) and applying the Cauchy-Schwarz inequality, we get

t/ak s+a/€
Ao(t;a, 5, T) < (/ i lo gEo(exp [ 5 p/ ds / du Pu—s s 4 44T | K] X, })
7.34)
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Letting t — oo and recalling (4.7.27), we arrive at

1 80&2 s+akr
Aala,k,T) < e logE0<exp [?p/o ds / du p%+4dT1[K](Xu,XS)}). (4.7.35)

Combining this with Lemma 4.7.5 (with v = 8a2p), we obtain (4.7.28). n

The proof of Lemma 4.7.5 is based on two further lemmas.

Lemma 4.7.6 For any 8 >0 and M € N,

M oo
Eo <6Xp [52/ ds ps 4 4qr1[x) (Uk-1(0), Ukl(s))] )
k=170

(4.7.36)
M k—1
S 1€H1y17...12?}i€ZdEO<exp [ﬁ;/o ds pa& lJr +4dT1[I€](O’X‘S +yl) )7

where Uy(t) = X (45ar3 + s), k € Ny and yo = 0.

Lemma 4.7.7 For any 3 >0, M €N, k € Ny, and yo,- - -,y € Z%,

k—1 16 Zf—o G a2,
=0 ar2 14 4dT1[k]
EO(eXp [/BZ/O dS paﬁ l+ +4dT1[ ](07X5+yl) > Sexp ll—ﬁzk (];I ]’
1=0 1=0 " ar2 ) 4qT1 (k]

(4.7.37)

(recall (4.7.21) ), provided that

k
BY G w2y g < T (4.7.38)
=0

The proofs of Lemmas 4.7.6-4.7.7 are similar to those of Lemmas 6.3.1-6.3.2 in Gartner and
den Hollander [4]. We refrain from spelling out the details. We conclude by proving Lemma
4.7.5.

Proof of Lemma 4.7.5. As in the proof of Lemma 6.2.1 in Gértner and den Hollander [4],
using Lemmas 4.7.6-4.7.7 we obtain

1 v ak? o
ElogEO exp F/O dSL du p$+4dT1[,§}(X57Xu)

M—1 (4.7.39)
72150 G‘MQ 2 |+ 4dT1[x]

<
T
L= 2Zimo G“N x> |+ 4dT1[x]

9

provided that

o M-
M Z x4 4dT1R) S L. (4.7.40)
1=0
But (recall (4.7.21))
M-1 M—1
G a2 1 4dT1[k] = < Guaripm + Z Gan (4.7.41)

=0
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From Lemma 4.5.4 we get Gy < C’/tgfl. Therefore

G if d = 3,
M-1 a?
Cy 1 : _
% 3 Gz, <{ awloeM ifd=4, (4.7.42)
=t G ME2 s
a%,l rd—3 1 - %

for some Cy > 0, d > 3. Hence, picking 1 < M < Ck?, (4.7.40) holds for x large enough
when d > 4, and so the claim (4.7.32) follows from (4.7.39) and (4.7.41-4.7.42). n

4.8 Extension to arbitrary p

In Sections 4.2-4.7 we proved Theorem 1.3.4 for p = 1. We briefly indicate how the proof can
be extended to arbitrary p.

As in (4.2.2), after time rescaling we have, for any p € N,
1 1t &
* % *( : *( 4
(k) = tlirglo Aj(k;t)  with  Aj(k;t) = 7 logE,,p707...70<exp [;/0 ds Z{z (X;As))})
We are interested in the quantity

A~ £ = tliglo%logla,,mo,_.,o(exp E /Ot ds zpj (€ (Xu(s)) p)D. (4.8.2)

k=1

As in (4.4.1), for T > 0 let 1, Q x (Z%)P be defined by

T p
¢(777‘7717 T 7$p) = /O ds (fp‘sgp)gﬁp) (7775617 s 7xp) with ¢p(777$17' o 7xp) = Z [n(xk) - p]’

k=1
(4.8.3)
where (ng )) s>0 1s the semigroup with generator (compare with (4.3.2))
w_lp.y
p) — =
AP = —L + D A (4.8.4)
k=1
Using (1.2.6), we obtain the representation (compare with (4.4.3))
T P P
¢p(n7x17“' 7xp) = / ds Z ZPQdSI[K](Z7xk) [77(2) _p] = Z¢(Uaxk) (485)
0 Lezdk=1 k=1
Let (compare with (4.3.1))
ZP) = (55’)(1(8)7 e Xp(s)). (4.8.6)

First, we have the analogue of Proposition 4.4.1:

50



Proposition 4.8.1 For any p e N, x,T > 0,

Ay (k) — g i %limsup%logﬂi,,p,o(exp [% /Ot ds K@*%lﬁpfle%wp> A (Z¢p)] (ng))]>

t—o00

dq (' (p) »)
+4_qh?iigp logE,,m (exp [;/0 ds (PT qbp) (ZP1 ), .

where 1/r + 1/q = 1, for any r,q > 1 in the first inequality and any ¢ < 0 < r < 1 in the
second inequality.

Next, using (4.8.5), the bound

(wp( y X1, vxp) —Pp(n, a1, axp))Q Spi (w(na’bvxk) —¢(Uaxk)>27 (4.8.8)
k=1
and the estimate in (4.5.4), we also have the analogue of Lemma 4.6.1:
Lemma 4.8.2 Uniformly inn € Q and x1,--- ,x, € VA
(585 (20t o
p
“53 Y (vmro-via) +0((2))

k=le: |le||=1

(4.8.9)

Using Holder’s inequality to separate terms, we may therefore reduce to the case p = 1 and
deal with the first term in the r.h.s. of (4.8.7) to get the analogue of Proposition 4.4.2.

For the second term in (4.8.7), using (1.2.6) we have

p
(PP bp) (w1, 2 Z > poarip (2, 7k) =S (Pré) (). (4.8.10)
k=1

k=1 zez4

Using Holder’s inequality to separate terms, we may therefore again reduce to the case p =1
and deal with the second term in the r.h.s. of (4.8.7) to get the analogue of Proposition 4.4.3.

A Appendix

In this appendix we give the proof of Proposition 1.2.1.
Proof. Fix t > 0, n € Q and K: Z% x [0,00) — R such that S =, ;4 fg ds|K(z,s)| < oo.
First consider the case K > 0. Since the &-process and the é—process are both monotone in

their initial configuration (as is evident from the graphical representation described in Section
1.2), it suffices to show that

<exp[2/ ds K(z,5)&(z )]) EIRV"(eXp [Z/ ds K(z,s)&(z )]), (A.0.11)
z€Z4 z€Z4

for all n € Q such that |{x € Z¢: n(z) = 1}| < co. This goes as follows.
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Since &5(z) € {0,1}, we may write for any r € R\ {0},

<exp[2/dusS§s()]> <exp[Z/duss rﬁs”i]).

ZEZd ZeZd
(A.0.12)
By Taylor expansion, we get

<exp[z/dms ’“2’;1])

czd

S e )

€74

—t
= exp [m S:|

x§0< _1> n,(H/ds] z)(r:[ ) n(eXp[ >

z;€L?

)

(A.0.13)
According to Lemma 4.1 in Landim [11], we have for any r € R,

<exp ngj Zj ]) < EIT?W(exp [rZESj(zj)
j=1

Picking 7 > 0, combining (A.0.12-A.0.14), and using the analogue of (A.0.13) for (§)>0, we

obtain
(exp[Z/duss{s( )]><EIRW<eXp[ >
2€74
(A.0.15)

Now let r | 0 and use the dominated convergence theorem to arrive at (A.0.11).

) . (A.0.14)

7"55(2) —1

Z/duss 1

2€74

For the case K < 0 we can use the same argument with

—rls _ 1
e, =S T (A.0.16)

1—e"
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