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Abstract. In this paper we describe two large deviation principles for the empirical
process of words cut out from a random sequence of letters according to a random renewal
process: one where the letters are frozen (“quenched”) and one where the letters are
not frozen (“annealed”). We apply these large deviation principles to five classes of
interacting stochastic systems: interacting diffusions, coupled branching processes, and
three examples of a polymer chain in a random environment. In particular, we show
how these large deviation principles can be used to derive variational formulas for the
critical curves that are associated with the phase transitions occurring in these systems,
and how these variational formulas can in turn be used to prove the existence of certain
intermediate phases.
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1. Large Deviation Principles

In Section 1 we describe two large deviation principles that were derived in Birkner,
Greven and den Hollander [3]. In Sections 2–4 we apply these large deviation
principles to five classes of interacting stochastic systems that exhibit a phase
transition. In Section 5 we argue why these applications open up a new window
of research, with a variational view, and we make a few closing remarks.

1.1. Letters, words and sentences. Let E be a Polish space (e.g. E =
Z

d, d ≥ 1, with the lattice norm or E = R with the Euclidean norm). Think of

E as an alphabet, i.e., a set of letters. Let Ẽ = ∪n∈NE
n be the set of finite words

drawn from E, which is a Polish space under the discrete topology.

For ν a probability measure on E, let X = (Xk)k∈N0 (with N0 = N ∪ {0}) be
i.i.d. with law ν. For ρ a probability measure on N, let τ = (τi)i∈N be i.i.d. with
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law ρ. Assume that X and τ are independent and write Pr to denote their joint
law.

Given X and τ , define Y = (Y (i))i∈N by putting

T0 = 0 and Ti = Ti−1 + τi, i ∈ N, (1.1)

and

Y (i) =
(
XTi−1 , XTi−1+2, . . . , XTi−1

)
, i ∈ N. (1.2)

In words, Y is the infinite sequence of words cut out from the infinite sequence of
letters X according to the renewal times τ (see Fig. 1). Clearly, under the law Pr,

Y is i.i.d. with law q⊗N
ρ,ν on ẼN, the set of infinite sentences, where the marginal

law qρ,ν on Ẽ is given by

qρ,ν

(
(x1, . . . , xn)

)
= ρ(n) ν(x1) · · · ν(xn), n ∈ N, x1, . . . , xn ∈ E. (1.3)
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Figure 1. Cutting words out from a sequence of letters according to renewal times.

The reverse operation of cutting words out from a sequence of letters is glueing
words together into a sequence of letters. Formally, this is done by defining a
concatenation map κ from ẼN to EN. This map induces in a natural way a map κ
from P(ẼN) to P(EN), the sets of probability measures on ẼN and EN (endowed
with the topology of weak convergence). The concatenation q⊗N

ρ,ν ◦κ
−1 of q⊗N

ρ,ν equals

ν⊗N, as is evident from (1.3).

Note that in the above set-up three objects can be freely chosen: E (alphabet),
ν (letter law) and ρ (word length law). In what follows we will assume that ρ has
infinite support and satisfies

lim
n→∞

ρ(n)>0

log ρ(n)

logn
= −α for some α ∈ [1,∞). (1.4)

1.2. Annealed LDP. Let P inv(ẼN) be the set of probability measures on

ẼN that are invariant under the left-shift θ̃ acting on ẼN. For N ∈ N, let
(Y (1), . . . , Y (N))per be the periodic extension of the N -tuple (Y (1), . . . , Y (N)) ∈ ẼN

to an element of ẼN, and define

RN =
1

N

N−1∑

i=0

δeθi(Y (1) ,...,Y (N))per ∈ P inv(ẼN). (1.5)
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This is the empirical process of N -tuples of words in Y . The following large de-
viation principle (LDP) is standard (see e.g. Dembo and Zeitouni [14], Corollar-
ies 6.5.15 and 6.5.17). Let

H(Q | q⊗N

ρ,ν ) = lim
N→∞

1

N
h

(
Q|FN

∣∣∣ (q⊗N

ρ,ν )|FN

)
∈ [0,∞] (1.6)

be the specific relative entropy of Q w.r.t. q⊗N
ρ,ν . Here, FN = σ(Y (1), . . . , Y (N)) is

the sigma-algebra generated by the first N words, Q|FN
is the restriction of Q to

FN , and h( · | · ) denotes relative entropy.

Theorem 1.1. [Annealed LDP] The family of probability distributions Pr(RN ∈

· ), N ∈ N, satisfies the LDP on P inv(ẼN) with rate N and with rate function

Iann : P inv(ẼN) → [0,∞] given by

Iann(Q) = H(Q | q⊗N

ρ,ν ). (1.7)

The rate function Iann is lower semi-continuous, has compact level sets, has a
unique zero at Q = q⊗N

ρ,ν , and is affine.

Informally, Theorem 1.1 says that Pr(RN ≈ Q) ≈ e−NIann(Q) as N → ∞.

1.3. Quenched LDP. To formulate the quenched analogue of Theorem 1.1,
which is the main result in Birkner, Greven and den Hollander [3], we need some
further notation. Let P inv(EN) be the set of probability measures on EN that

are invariant under the left-shift θ acting on EN. For Q ∈ P inv(ẼN) such that
mQ = EQ[τ1] < ∞ (where EQ denotes expectation under the law Q and τ1 is the
length of the first word), define

ΨQ(·) =
1

mQ
EQ

[
τ1−1∑

k=0

δθkκ(Y )(·)

]
∈ P inv(EN). (1.8)

Think of ΨQ as the shift-invariant version of Q ◦ κ−1 obtained after randomising
the location of the origin. This randomisation is necessary because a shift-invariant
Q in general does not (!) give rise to a shift-invariant Q ◦ κ−1.

For tr ∈ N, let [·]tr : Ẽ → [Ẽ]tr = ∪tr
n=1E

n denote the word length truncation
map defined by

y = (x1, . . . , xn) 7→ [y]tr = (x1, . . . , xn∧tr), n ∈ N, x1, . . . , xn ∈ E, (1.9)

i.e., [y]tr is the word of length ≤ tr obtained from the word y by dropping all the

letters with label > tr. This map induces in a natural way a map from ẼN to
[Ẽ]Ntr, and from P inv(ẼN) to P inv([Ẽ]Ntr). Note that if Q ∈ P inv(ẼN), then [Q]tr is
an element of the set

P inv,fin(ẼN) = {Q ∈ P inv(ẼN) : mQ <∞}. (1.10)
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Theorem 1.2. [Quenched LDP] For ν⊗N–a.s. all X, the family of regular con-
ditional probability distributions Pr(RN ∈ · | X), N ∈ N, satisfies the LDP on

P inv(ẼN) with rate N and with deterministic rate function Ique : P inv(ẼN) →
[0,∞] given by

Ique(Q) =

{
Ifin(Q), if Q ∈ P inv,fin(ẼN),

lim
tr→∞

Ifin
(
[Q]tr

)
, otherwise,

(1.11)

where

Ifin(Q) = H(Q | q⊗N

ρ,ν ) + (α − 1)mQH(ΨQ | ν⊗N). (1.12)

The rate function Ique is lower semi-continuous, has compact level sets, has a
unique zero at Q = q⊗N

ρ,ν , and is affine.

Informally, Theorem 1.2 says that Pr(RN ≈ Q | X) ≈ e−NIque(Q) as N → ∞ for
ν⊗N-a.s. all X .

Note from (1.7) and (1.11–1.12) that Ique equals Iann plus an additional term
that quantifies the deviation of ΨQ, the randomised concatenation of Q, from
the reference law ν⊗N of the letter sequence. This term, which also depends on
the exponent α in (1.4), is explicit when mQ < ∞, but requires a truncation
approximation when mQ = ∞. Further note that if α = 1, then the additional
term vanishes and Ique = Iann.

2. Collision local time of two random walks

In this section we apply Theorems 1.1–1.2 to study the collision local time of two
random walks. The results are taken from Birkner, Greven and den Hollander [4].
In Section 3 we will use the outcome of this section to describe phase transitions
in two interacting stochastic systems: interacting diffusions and coupled branching
processes.

Figure 2. Two random walks that build up collision local time.

Let S = (Sk)k∈N0 and S′ = (S′
k)k∈N0 be two independent random walks on Z

d,
d ≥ 1, both starting at the origin and with an irreducible, symmetric and transient
transition kernel p(·, ·). Write pn for the n-th convolution power of p. Suppose
that

lim
n→∞

log p2n(0, 0)

logn
= −α for some α ∈ [1,∞). (2.1)
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Write P to denote the joint law of S, S ′. Let

V = V (S, S′) =
∑

k∈N

1{Sk=S′

k
} (2.2)

be the collision local time of S, S ′ (see Fig. 2), which satisfies P (V < ∞) = 1
because p(·, ·) is transient. Define

z1 = sup
{
z ≥ 1: E

[
zV | S

]
<∞ S-a.s.

}
, (2.3)

z2 = sup
{
z ≥ 1: E

[
zV

]
<∞

}
. (2.4)

(The lower indices indicate the number of random walks being averaged over.)
Note that, by the tail triviality of S, the range of z-values for which E[ zV | S ]
converges is S-a.s. constant.

As shown in [4], Theorems 1.1–1.2 can be applied with the following choice of
E, ν and ρ:

E = Z
d, ν(x) = p(0, x), ρ(n) = p2bn/2c(0, 0)/[2Ḡ(0, 0) − 1], (2.5)

where Ḡ(0, 0) =
∑

n∈N0
p2n(0, 0) is the Green function at the origin associated with

p2(·, ·), the transition kernel of S−S ′. The following theorem provides variational
formulas for z1 and z2. This theorem requires additional assumptions on p(·, ·):

∑

x∈Zd

‖x‖δp(0, x) <∞ for some δ > 0,

lim inf
n→∞

log[ pn(0, Sn)/p2bn/2c(0, 0) ]

logn
≥ 0 S − a.s.,

inf
n∈N

E
[

log[ pn(0, Sn)/p2bn/2c(0, 0) ]
]
> −∞.

(2.6)

As shown in [4], the last two assumptions hold for a large class of random walks,
including those that are in the domain of attraction of a normal law, respectively,
a symmetric stable law. They potentially hold in full generality under a mild
regularity condition on p(·, ·). 1

Theorem 2.1. Assume (2.1) and (2.6). Then z1 = 1 + e−r1 , z2 = 1 + e−r2 with

r1 = sup
Q∈P inv

(
fZd

N
)
{∫

fZd

(π1Q)(dy) log f(y) − Ique(Q)

}
∈ R, (2.7)

r2 = sup
Q∈P inv

(
fZd

N
)
{∫

fZd

(π1Q)(dy) log f(y) − Iann(Q)

}
∈ R, (2.8)

where π1Q is the projection of Q onto Z̃d, i.e., the law of the first word, and

f : Z̃d → [0,∞) is given by

f((x1, . . . , xn)) =
1

ρ(n)
pn(0, x1 + · · · + xn), n ∈ N, x1, . . . , xn ∈ Z

d. (2.9)

1The symmetry of p(·, ·) implies that p2n(0, 0) > 0 for all n ∈ N0 and pn(0, x)/p2bn/2c(0, 0) ≤ 1
for all n ∈ N0 and x ∈ Z

d.



6

Remark: Since P (V = k) = (1 − F̄ )F̄ k, k ∈ N0, with F̄ = P
(
∃ k ∈ N : Sk = S′

k

)
,

an easy computation gives z2 = 1/F̄ . Since F̄ = 1− [1/Ḡ(0, 0)], we therefore have
z2 = Ḡ(0, 0)/[Ḡ(0, 0) − 1]. This simple formula reflects itself in the fact that the
variational formula in (2.8) can be solved explicitly (see [4]). However, unlike for
z2, no closed form expression is known for z1, because the variational formula in
(2.7) cannot be solved explicitly.

Because Ique ≥ Iann, we have r1 ≤ r2, and hence z2 ≤ z1. The following
corollary gives conditions under which strict inequality holds or not. Its proof in
[4] relies on a comparison of the two variational formulas in (2.7–2.8).

Corollary 2.2. Assume (2.1) and (2.6).
(a) If p(·, ·) is strongly transient, i.e.,

∑
n∈N

npn(0, 0) <∞, then z2 < z1.
(b) If α = 1, then z1 = z2.

Analogous results hold when we turn the discrete-time random walks S and
S′ into continuous-time random walks S̃ = (St)t≥0 and S̃′ = (S̃′

t)t≥0 by allowing
them to make steps at rate 1, while keeping the same transition kernel p(·, ·). Then
the collision local time becomes

Ṽ =

∫ ∞

0

1{eSt=eS′
t}
dt. (2.10)

For the analogous quantities z̃1 and z̃2, variational formulas like in Theorem 2.1
can be derived, and a result similar to Corollary 2.2 holds:

Corollary 2.3. Assume (2.1) and (2.6).
(a) If p(·, ·) is strongly transient, then z̃2 < z̃1.
(b) If α = 1, then z̃1 = z̃2.

An easy computation gives log z̃2 = 2/G(0, 0), where G(0, 0) =
∑

n∈N0
pn(0, 0) is

the Green function at the origin associated with p(·, ·). There is again no closed
form expression for z̃1.

Recent progress on extending the gaps in Corollaries 2.2(a) and 2.3(a) to tran-
sient random walks that are not strongly transient (like simple random walk in
d = 3, 4) can be found in Birkner and Sun [5], [6], and in Berger and Toninelli [1].
These papers require assumptions on the tail of p(0, ·) and use fractional moment
estimates rather than variational formulas.

3. Two applications without disorder

3.1. Interacting diffusions. Consider the following system of coupled sto-
chastic differential equations:

dXx(t) =
∑

y∈Zd

p(x, y)[Xy(t)−Xx(t)] dt+
√
qXx(t)2 dWx(t), x ∈ Z

d, t ≥ 0. (3.1)
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Here, p(·, ·) is a random walk transition kernel on Z
d, q ∈ (0,∞) is a diffusion

constant, and W = (W (t))t≥0 with W (t) = {Wx(t)}x∈Zd is a collection of inde-
pendent standard Brownian motions on R. The initial condition is chosen such
that {Xx(0)}x∈Zd is a shift-invariant and shift-ergodic random field taking val-
ues in [0,∞) with a positive and finite mean (the evolution in (3.1) preserves the
mean).

It was shown in Greven and den Hollander [19] that if p(·, ·) is irreducible,
symmetric and transient, then there exist 0 < q2 ≤ q∗ < ∞ such that the system
in (3.1) locally dies out when q > q∗, but converges to a non-trivial equilibrium
when q < q∗, and this equilibrium has an infinite second moment when q ≥ q2 and
a finite second moment when q < q2. It was conjectured in [19] that q2 < q∗. Since
it was shown in [19] that

q∗ = log z̃1, q2 = log z̃2, (3.2)

Corollary 2.3(a) settles this conjecture when p(·, ·) satisfies (2.1) and (2.6) and is
strongly transient.

3.2. Coupled branching processes. Consider a spatial population mo-
del on Z

d evolving as follows:

(1) Each individual migrates at rate 1 according to p(·, ·).
(2) Each individual gives birth to a new individual at the same site at rate q.
(3) Each individual dies at rate q(1 − r).
(4) All individuals at the same site die simultaneously at rate qr.

(3.3)
Here, p(·, ·) is a random walk transition kernel on Z

d, q ∈ (0,∞) is a birth-death
rate, and r ∈ [0, 1] is a coupling parameter. The case r = 0 corresponds to a
critical branching random walk, for which the average number of individuals per
site is preserved. The case r > 0 is challenging because the individuals descending
from different ancestors are no longer independent.

For the case r = 0, the following dichotomy holds (where for simplicity we
restrict to an irreducible and symmetric p(·, ·)): if the initial configuration is drawn
from a shift-invariant and shift-ergodic random field taking values in N0 with a
positive and finite mean, then the system in (3.3) locally dies out when p(·, ·) is
recurrent, but converges to a non-trivial equilibrium when p(·, ·) is transient, both
irrespective of the value of q. In the latter case, the equilibrium has the same mean
as the initial distribution and has all moments finite.

For the case r > 0, the situation is more subtle. It was shown in Greven [17],
[18] that there exist 0 < r2 ≤ r∗ ≤ 1 such that the system in (3.3) locally dies
out when r > r∗, but converges to a non-trivial equilibrium when r < r∗, and
this equilibrium has an infinite second moment when r ≥ r2 and a finite second
moment when r < r2. It was conjectured in [18] that r2 < r∗. Since it was shown
in [18] that

r∗ ≥ 1 ∧ (q−1 log z̃1), r2 = 1 ∧ (q−1 log z̃2), (3.4)

Corollary 2.3(a) settles this conjecture when p(·, ·) satisfies (2.1) and (2.6) and is
strongly transient, and q > log z̃2 = 2/G(0, 0).
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4. Three applications with disorder

4.1. A polymer in a random potential.

Path measure. Let S = (Sk)k∈N0 be a random walk on Z
d, d ≥ 1, starting

at the origin and with transition kernel p(·, ·). Write P to denote the law of S.
Let ω = {ω(k, x) : k ∈ N0, x ∈ Z

d} be an i.i.d. field of R-valued non-degenerate
random variables with marginal law µ0, playing the role of a random environment.

Write P = (µ0)⊗[N0×Z
d] to denote the law of ω. Assume that

M(λ) = E
(
eλω(0,0)

)
<∞ ∀λ ∈ R. (4.1)

For fixed ω and n ∈ N, define

dP β,ω
n

dP

(
(Sk)n

k=0

)
=

1

Zβ,ω
n

e−Hβ,ω
n

(
(Sk)n

k=0

)
(4.2)

with

Hβ,ω
n

(
(Sk)n

k=0

)
= −β

n∑

k=1

ω(k, Sk), (4.3)

i.e., P β,ω
n is the Gibbs measure on the set of paths of length n ∈ N associated with

the Hamiltonian Hβ,ω
n . Here, β ∈ [0,∞) plays the role of environment strength (or

“inverse temperature”), while Zβ,ω
n is the normalising partition sum. In this model,

ω represents a space-time medium of “random charges” with which a directed
polymer, described by the space-time path (k, Sk)n

k=0, is interacting (see Fig. 3).

Figure 3. A directed polymer sampling random charges in a halfplane.

Weak vs. strong disorder. Let χn(ω) = Zβ,ω
n e−n log M(β), n ∈ N0. It is well

known that χ(ω) = (χn(ω))n∈N0 is a non-negative martingale with respect to the
family of sigma-algebras Fn = σ(ω(k, x), 0 ≤ k ≤ n, x ∈ Z

d), n ∈ N0. Hence
limn→∞ χn(ω) = χ∞(ω) ≥ 0 ω-a.s., with P(χ∞(ω) = 0) = 0 or 1. This leads to
two phases:

W = {β ∈ [0,∞) : χ∞(ω) > 0 ω − a.s.},

S = {β ∈ [0,∞) : χ∞(ω) = 0 ω − a.s.},
(4.4)

which are referred to as the weak disorder phase and the strong disorder phase,
respectively. It was shown in Comets and Yoshida [13] that there is a unique
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critical value β∗ ∈ [0,∞] (depending on d, p(·, ·) and µ0) such that weak disorder
holds for 0 ≤ β < β∗ and strong disorder holds for β > β∗. Moreover, in the weak
disorder phase the paths have a Gaussian scaling limit under the Gibbs measure,
while this is not the case in the strong disorder phase. In the strong disorder phase
the path tends to localise around the highest values of ω in a narrow space-time
tube.

Suppose that p(·, ·) is irreducible, symmetric and transient. Abbreviate ∆(β) =
logM(2β)− 2 logM(β). Note that β 7→ ∆(β) is strictly increasing. Bolthausen [9]
observed that

E
[
χn(ω)2

]
= E

[
e∆(β)Vn

]
with Vn =

n∑

k=1

1{Sk=S′

k
}, (4.5)

where S and S′ are two independent random walks with transition kernel p(·, ·),
and concluded that χ(ω) is L2-bounded if and only if β < β2 with β2 ∈ (0,∞] the
unique solution of

∆(β2) = log z2 (4.6)

(with β2 = ∞ whenever ∆(∞) ≤ log z2). Since

P(χ∞(ω) > 0) ≥ E[χ∞(ω)]2/E[χ∞(ω)2], E[χ∞(ω)] = χ0(ω) = 1, (4.7)

it follows that β < β2 implies weak disorder, i.e., β∗ ≥ β2. By a stochastic
representation of the size-biased law of χn(ω), it was shown in Birkner [2] that in
fact weak disorder holds if β < β1 with β1 ∈ (0,∞] the unique solution of

∆(β1) = log z1, (4.8)

i.e., β∗ ≥ β1. Since β 7→ ∆(β) is strictly increasing for any non-degenerate µ0

satisfying (4.1), it follows from (4.6–4.8) and Corollary 2.2(a) that β1 > β2 when
p(·, ·) satisfies (2.1) and (2.6) and is strongly transient, provided µ0 is such that
β2 <∞. In that case the weak disorder phase contains a subphase for which χ(ω)
is not L2-bounded. This disproves a conjecture of Monthus and Garel [21], who
argued that β2 = β∗.

For further details, see den Hollander [20], Chapter 12. Main contributions
in the mathematical literature towards understanding the two phases have come
from M. Birkner, E. Bolthausen, A. Camanes, P. Carmona, F. Comets, B. Derrida,
M.R. Evans, Y. Hu, J.Z. Imbrie, O. Mejane, M. Petermann, M.S.T. Piza, T. Shiga,
Ya.G. Sinai, T. Spencer, V. Vargas and N. Yoshida.

4.2. A polymer pinned at an interface.

Path measure. Let S = (Sk)k∈N0 be a recurrent Markov chain on a countable
state space starting at a marked point 0. Write P to denote the law of S. Let K
denote the law of the first return time of S to 0, which is assumed to satisfy

lim
n→∞

logK(n)

logn
= −α for some α ∈ [1,∞). (4.9)
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Let ω = (ωk)k∈N0 be an i.i.d. sequence of R-valued non-degenerate random vari-
ables with marginal law µ0, again playing the role of a random environment. Write
P = µ⊗N0

0 to denote the law of ω. Assume that

M(λ) = E(eλω0) <∞ ∀λ ∈ R. (4.10)

Without loss of generality we take: E(ω0) = 0, E(ω2
0) = 1.

For fixed ω and n ∈ N, define, in analogy with (4.2–4.3),

dP β,h,ω
n

dP

(
(Sk)n

k=0

)
=

1

Zβ,h,ω
n

e−Hβ,h,ω
n

(
(Sk)n

k=0

)
(4.11)

with

Hβ,h,ω
n

(
(Sk)n

k=1

)
= −

n∑

k=1

(βωk − h) 1{Sk=0}, (4.12)

where β ∈ [0,∞) again plays the role of environment strength, and h ∈ [0,∞)
the role of environment bias. This models a directed polymer interacting with
“random charges” at an interface (see Fig. 4). A key example is when S is simple
random walk on Z, which corresponds to the case α = 3

2 .
The quenched free energy per monomer f que(β, h) = limn→∞

1
n logZβ,h,ω

n is
constant ω-a.s. (a property called self-averaging), and has two phases

L =
{

(β, h) : fque(β, h) > 0
}
,

D =
{

(β, h) : fque(β, h) = 0
}
,

(4.13)

which are referred to as the localised phase and the delocalised phase. These two
phases are the result of a competition between entropy and energy: by staying close
to the interface the polymer looses entropy, but at the same time it gains energy
because it can more easily pick up large charges at the interface. The lower bound
comes from the strategy where the path spends all its time above the interface,
i.e., Sk > 0 for 1 ≤ k ≤ n. Indeed, in that case Hβ,h,ω

n ((Sk)n
k=0) = 0, and since

log[
∑

m>nK(m)] ∼ −(α− 1) logn as n→ ∞, the cost of this strategy under P is
negligible on an exponential scale.

Figure 4. A directed polymer sampling random charges at an interface.

The associated quenched critical curve is

hque
c (β) = inf{h : fque(β, h) = 0}, β ∈ [0,∞). (4.14)

Both fque and hque
c are unknown. However, their annealed counterparts

fann(β, h) = lim
n→∞

1

n
log E(Zβ,h,ω

n ), hann
c (β) = inf{h : fann(β, h) = 0}, (4.15)
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can be computed explicitly, because they correspond to the degenerate case where
ωk = (1/β) logM(β), k ∈ N0. In particular, hann

c (β) = logM(β). Since fque ≤
fann, it follows that hque

c ≤ hann
c .

Disorder relevance vs. irrelevance. For a given choice of K, µ0 and β, the
disorder is said to be relevant when hque

c (β) < hann
c (β) and irrelevant when

hque
c (β) = hann

c (β). Various papers have appeared in the literature containing
various conditions under which relevant disorder, respectively, irrelevant disorder
occurs, based on a variety of different estimation techniques. Main contributions
in the mathematical literature have come from K. Alexander, B. Derrida, G. Gia-
comin, H. Lacoin, V. Sidoravicius, F.L. Toninelli and N. Zygouras. For overviews,
see Giacomin [16], Chapter 5, and den Hollander [20], Chapter 11.

In work in progress with D. Cheliotis [12] a different view is taken. Namely,
with the help of Theorems 1.1–1.2 for the choice

E = R, ν = µ0, ρ = K, (4.16)

the following variational formulas are derived for hque
c and hann

c .

Theorem 4.1. For all β ∈ [0,∞),

hque
c (β) = sup

Q∈C
[βΦ(Q) − Ique(Q)],

hann
c (β) = sup

Q∈C
[βΦ(Q) − Iann(Q)],

(4.17)

where

C =
{
Q ∈ P inv(R̃N) :

∫

R

|x| (π1,1Q)(dx) <∞
}
, Φ(Q) =

∫

R

x (π1,1Q)(dx),

(4.18)
with π1,1Q the projection of Q onto R, i.e., the law of the first letter of the first
word.

0
β

h

hque
c (β)

hann
c (β)

βc

Figure 5. Critical curves for the pinned polymer

It is shown in [12] that a comparison of the two variational formulas in The-
orem 4.1 yields the following necessary and sufficient condition for disorder rele-
vance.
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Corollary 4.2. For every β ∈ [0,∞),

hque
c (β) < hann

c (β) ⇐⇒ Ique(Qβ) > Iann(Qβ), (4.19)

where Qβ = q⊗N

K,β is the unique maximiser of the annealed variational formula in
(4.17), given by

qK,β((x1, . . . , xn)) = K(n)µβ(x1) · · ·µβ(xn), n ∈ N, x1, . . . , xn ∈ R, (4.20)

with µβ the law obtained from µ0 by tilting:

dµβ(x) =
1

M(β)
eβxdµ0(x), x ∈ R. (4.21)

As shown in [12], an immediate consequence of the variational characterisation
in Corollary 4.2 is that there is a unique critical temperature (see Fig. 5).

Corollary 4.3. For all µ0 and K there exists a βc = βc(µ0,K) ∈ [0,∞] such that

hque
c (β)

{
= hann

c (β) if β ∈ [0, βc],
< hann

c (β) if β ∈ (βc,∞).
(4.22)

Moreover, necessary and sufficient conditions on µ0 and K can be derived under
which βc = 0, βc ∈ (0,∞), respectively, βc = ∞, providing a full classification of
disorder relevance.

4.3. A copolymer near a selective interface.

Path measure. Let S be a recurrent random walk on Z. Keep (4.9–4.11), but
change the Hamiltonian in (4.12) to

Hβ,h,ω
n

(
(Sk)n

k=1

)
= −β

n∑

k=1

(ωk + h) sign(Sk). (4.23)

This model was introduced in Garel, Huse, Leibler and Orland [15]. For the special
case where µ0 = 1

2 (δ−1 + δ+1), it models a copolymer consisting of a random con-
catenation of hydrophobic and hydrophilic monomers (representated by ω), living
in the vicinity of a linear interface that separates oil (above the interface) and water
(below the interface) as solvents. The polymer is modelled as a two-dimensional
directed path (k, Sk)k∈N0 . The Hamiltonian in (4.23) is such that hydrophobic
monomers in oil (ωk = +1, Sk > 0) and hydrophilic monomers in water (ωk = −1,
Sk < 0) receive a negative energy, while the other two combinations receive a
positive energy.

The quenched free energy per monomer, f que(β, h) = limn→∞
1
n logZβ,h,ω

n ω-
a.s., again has two phases (see Fig. 6)

L = {(β, h) : gque(β, h) > 0},

D = {(β, h) : gque(β, h) = 0},
(4.24)
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where gque(β, h) = fque(β, h) − βh. These two phases are again the result of a
competition between entropy and energy: by staying close to the interface the
copolymer looses entropy, but it gains energy because it can more easily switch
between the two sides of the interface in an attempt to place as many monomers
as possible in their preferred solvent. The lower bound again comes from the
strategy where the path spends all its time above the interface, i.e., Sk > 0 for
1 ≤ k ≤ n. Indeed, in that case sign(Sk) = +1 for 1 ≤ k ≤ n, resulting in
Hβ,h,ω

n ((Sk)n
k=0) = −βhn[1 + o(1)] ω-a.s. as n → ∞ by the strong law of large

numbers for ω. Since log[
∑

m>nK(m)] ∼ −(α − 1) logn as n → ∞, the cost of
this strategy under P is again negligible on an exponential scale.

0
β

hque
c (β)

1

L

D

Figure 6. Quenched critical curve for the copolymer.

The associated quenched critical curve is

hque
c (β) = inf{h : gque(β, h) = 0}, β ∈ [0,∞). (4.25)

Both gque and hque
c are unknown. Their annealed counterparts gann(β, h) and

hann
c (β) = inf{h : gann(β, h) = 0} can again be computed explicitly.

The copolymer model is much harder than the pinning model described in
Section 4.2, because the disorder ω is felt not just at the interface but along the
entire polymer chain. The following bounds are known:

(
2
αβ

)−1
logM

(
2
αβ

)
≤ hque

c (β) ≤ hann
c (β) = (2β)−1 logM(2β) ∀β > 0. (4.26)

The upper bound was proved in Bolthausen and den Hollander [10], and comes
from the observation that fque ≤ fann. The lower bound was proved in Bodineau
and Giacomin [7], and comes from strategies where the copolymer dips below the
interface (into the water) during rare stretches in ω where the empirical density is
sufficiently biased downwards (i.e., where the polymer is sufficiently hydrophilic).

Main contributions in the mathematical literature towards understanding the
two phases have come from M. Biskup, T. Bodineau, E. Bolthausen, F. Caravenna,
G. Giacomin, M. Gubinelli, F. den Hollander, H. Lacoin, N. Madras, E. Orlandini,
A. Rechnitzer, Ya.G. Sinai, C. Soteros, C. Tesi, F.L. Toninelli, S.G. Whitting-
ton and L. Zambotti. For overviews, see Giacomin [16], Chapters 6–8, and den
Hollander [20], Chapter 9.

Strict bounds. Toninelli [22] proved that the upper bound in (4.26) is strict for
µ0 with unbounded support and large β. This was later extended by Bodineau,
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Giacomin, Lacoin and Toninelli [8] to arbitrary µ0 and β. The latter paper also
proves that the lower bound in (4.26) is strict for small β. The proofs are based
on fractional moment estimates of the partition sum and on finding appropriate
localisation strategies.

In work in progress with E. Bolthausen [11], Theorems 1.1–1.2 are used, for
the same choice as in (4.16), to obtain the following characterisation of the critical
curves.

Theorem 4.4. For every β ∈ [0,∞),

h = hque
c (β) ⇐⇒ Sque(β, h) = 0, (4.27)

h = hann
c (β) ⇐⇒ Sann(β, h) = 0, (4.28)

with

Sque(β, h) = sup
Q∈P inv,fin(eRN)

[Φβ,h(Q) − Ique(Q)], (4.29)

Sann(β, h) = sup
Q∈P inv,fin(eRN)

[Φβ,h(Q) − Iann(Q)], (4.30)

where

Φβ,h(Q) =

∫

eR

(π1Q)(dy) logφβ,h(y), φβ,h(y) = 1
2

(
1 + e−2βh τ(y)−2β σ(y)

)
,

(4.31)
with τ(y) and σ(y) the length, respectively, the sum of the letters in the word y.

The variational formulas in Theorem 4.4 are more involved than those in Theo-
rem 4.1 for the pinning model. The annealed variational formula in (4.30) can
again be solved explicitly, the quenched variational formula in (4.29) cannot.

In [11] the strict upper bound in (4.26), which was proved in [8], is deduced
from Theorem 4.4 via a criterion analogous to Corollary 4.2.

Corollary 4.5. hque
c (β) < hann

c (β) for all µ0 and β > 0.

We are presently trying to prove that also the lower bound in (4.26) holds in full
generality.

Weak interaction limit. A point of heated debate has been the slope of the
quenched critical curve at β = 0,

lim
β→∞

1

β
hque

c (β) = Kc, (4.32)

which is believed to be universal, i.e, to only depend on α and to be robust against
small perturbations of the interaction Hamiltonian in (4.23). The existence of the
limit was proved in Bolthausen and den Hollander [10]. The bounds in (4.26)
imply that Kc ∈ [α−1, 1], and various claims were made in the literature arguing
in favor of Kc = α−1, respectively, Kc = 1. In Bodineau, Giacomin, Lacoin and
Toninelli [8] it is shown that Kc ∈ (α−1, 1) under some additional assumptions on
the excursion length distribution K(·) satisfying (4.9). We are presently trying
to extend this result to arbitrary K(·) with the help of a space-time continuous
version of the large deviation principles in Theorems 1.1–1.2.
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5. Closing remarks

The large deviation principles in Theorems 1.1–1.2 are a powerful new tool to
analyse the large space-time behaviour of interacting stochastic systems based on
excursions of random walks and Markov chains. Indeed, they open up a window
with a variational view, since they lead to explicit variational formulas for the
critical curves that are associated with the phase transitions occurring in these
systems. They are flexible, but at the same time technically demanding.

A key open problem is to find a good formula for Ique(Q) when mQ = ∞ (recall
(1.11–1.12)), e.g. when Q is Gibbsian.
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