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Abstract: We propose a novel algorithm for carrier phase estimation with differential demodulation,
phase coupling between both polarizations and non-redundant error correction. The algorithm is demon-
strated on measured 111Gb/s polarization-multiplexed QPSK with 10x10.7Gb/s OOK neighbours.
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1. Introduction

Due to the growth of the bandwidth requirements, existing 10.7Gb/s on-off keying (OOK) wavelength-division multi-
plexing (WDM) optical transmission systems will be partially upgraded to a 111Gb/s line rate in the near future [1].
With the increased receiver sensitivity and the feasibility for linear equalisation, coherent polarization-multiplexed
quadrature phase shift keying (CP-QPSK) attracts a lot of attention for the gradual replacement of existing direct
detection systems. In particular, the non-linearity induced cross-phase modulation (XPM) is one of the main impair-
ments, which becomes the limiting effect on the transmission distance and performance in multi-rate WDM systems
[2, 3]. The phase variation caused by non-linearity can be suppressed by a carrier phase recovery. Hence, the carrier
phase recovery becomes a major problem for those XPM limited WDM systems.

Recently two novel algorithms for digital carrier phase recovery with significant performance improvements have
been proposed. The joint-polarization carrier phase estimation (JPC) [4] applies Viterbi-Viterbi feed forward carrier
phase estimation (VV) [5] in each polarization and mutually cross-couples phase information between both polariza-
tions to enhance the feedback adjusting phase corrections. An alternative approach has been introduced in [6], where
the correlation of both polarizations is employed in a similar principle as in JPC. However, the algorithm requires a
precise parameter adjustment and involves a relatively high implementation complexity. In this work, we present the
polarization coupled carrier phase estimation (PCC) for WDM CP-QPSK systems. The algorithm employs polariza-
tion coupled information from the JPC structure in combination with differential decoding and non-redundant error
correction. This combines the positive properties of JPC to mitigate XPM induced phase shifts, differential decoding
to mitigate cycle slips and NEC to compensate for the performance loss due to differential decoding. Furthermore, the
complexity is strongly decreased compared to the algorithm described in [6]. The performance is evaluated based on
measured 111Gb/s CP-QPSK with 10x10.7Gb/s OOK neighbours.

2. Algorithm Principle

At the receiver, coherent demodulation transfers the electrical field from the optical into the electrical domain, where
linear channel impairments like chromatic dispersion and polarisation mode dispersion can be equalised with a linear
FIR filter. After equalisation, the remaining phase variation caused by the frequency offset of the free running local
oscillator (LO), including deviations caused by the laser line width, and the XPM phase noise can be reduced by
frequency offset compensation and carrier phase estimation. Since the signal in the x- and y-polarization is mixed
down by the same LO, the phase variation caused by the frequency offset and laser line width is identical in the x- and
y-polarization. As shown in [4] and [7], the XPM phase noise is correlated in the x- and y-polarization. Thus, phase
coupling between both polarizations can improve the performance of the carrier phase estimation [4, 6].

The JPC algorithm is the first carrier phase estimation, which employs the correlation between polarizations. The
block diagram of JPC is show in Fig. 1. After phase recovery by the VV algorithm, the phase variation in the x- and
y-polarisation is coupled and weighted by a factor Xx and Xy , with 0 ≤ Xx = Xy ≤ 1.

The proposed PCC algorithm combines combines JPC with differential decoding, which avoids cycle-slips at the
cost of error propagation. This error propagation can be compensated by NEC [9], which provides error detection
and correction. Additionally, a block with differential digital demodulation (DDD) provides necessary information
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Fig. 1. Block diagram of JPC algorithm
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Fig. 2. Block diagram of PCC algorithm

for NEC. According to Fig. 2, the complex valued signal for both polarizations Ex[n] and Ey[n] is fed into the
carrier recovery block after equalisation. In the x-polarization, the complex signal Exjpc[n] from JPC is mapped to
bit sequences bx0[n] and bx1[n], which are differentially decoded to bit sequences cx0[n] and cx1[n]. Then, cx0[n]
and cx1[n] are mapped to rx[n] to provide information symbols for NEC. The parity symbols px[n] for NEC can be
retrieved using DDD, a phase rotation with the constant phase Φ̄x and a mapping pattern as described in [6]. The same
applies for the y-polarization vice versa.

3. Experimental Setup

The measured data from a loop experiment as described in [3] is analysed to evaluate the performance of the algorithm.
The 111Gb/s CP-QPSK signal with 10x10.7Gb/s OOK neighbours was transmitted over 760km and 1140km SSMF
on a dispersion managed link as shown in Fig.3. The signal spacing between the central channel and the nearest OOK
neighbours is set to 50GHz, 100GHz and 200GHz. Neighbour channels are placed 50GHz away from each other for
all experiments. At the receiver the signal is fed into the 90◦-optical hybrid and mixed down by a free running LO.
The signal blocks of 2 · 107 samples (2 samples/bit) are saved by a digital storage oscilloscope. The offline signal post
processing is applied on a PC to evaluate the algorithm performance as shown in Fig. 4.
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Fig. 3. Loop experiment setup Fig. 4. Receiver setup with post-processing

4. Algorithm Performance

For each measurement point, the BER is calculated over 5 sets of the measured data to enhance the statistical reliability.
The channel spacing is adjusted to 50GHz between all channels. The factors Xx and Xy depends on the channel
parameters, which is slowly time-varying. Hence, we initially optimised Xx = Xy = 0.6 for all evaluations.

Fig. 5 and 6 show the BER performance vs. launch power of PCC in comparison with VV and differential decoding
with NEC. It can be seen, that the BER performance is best around the launch power of -3 and -2dBm, decreasing
towards lower and higher powers. This represents a trade-off between the OSNR value and the non-linearity. The PCC
algorithm outperforms the conventional VV algorithm for all measurement points. The performance improvements
depend on the launch power and the transmission distance. Due to the ASE-noise by the lower launch powers, the
PCC algorithm considerably improves the performance both at transmission distances of 760km and 1140km. Since
the XPM phase variation is accumulated with transmission distance, the performance improvements of PCC at 1140km
are clearly decreased in comparison to 760km due to non-linearities.

The optimisation of N can minimize the BER of PCC and VV [2, 8]. With the ASE-noise impairment, the correla-
tion length of the phase variation is large. Therefore, the BER of PCC and VV with N = 5 for lower launch powers is
better than N = 2. The correlation length of the phase variation is decreased with the increasing non-linearity caused
for higher launch powers. In this case, N = 2 is the optimal estimation block length, where the performance of VV
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algorithm is related to differential decoding [2]. Hence, the advantage of the NEC can be confirmed by the comparison
of differential decoding with NEC to the VV with N = 2. It should be noted, that the BER of the PCC with N = 2
is similar to N = 5 by higher launch powers. The reason for that is the coupling with the differential decoded signal
from the DDD. Fig. 7 shows the performance of the proposed algorithm for various averaging block lengths N , where
the best performance is reached for N = 5.

The performance of coherent receivers and of PCC are limited by non-linearities, which can be mitigated by
changing the signal spacing between the central channel and the nearest OOK neighbours. In our experiments, we
configured this to 50GHz, 100GHz and 200GHz. Fig. 8 depicts, that the non-linearity impairments induced XPM can
be reduced with the expanded channel spacing.
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5. Conclusions

We have proposed the PCC carrier phase estimation algorithm for coherent receivers of CP-QPSK in a XPM limited
multi-rate WDM transmission system. The algorithm outperforms the conventional Viterbi-Viterbi feed forward car-
rier phase estimation with slightly increased implementation complexity. The algorithm performance is analysed for
measurements of 111Gb/s CP-QPSK with 10x10.7Gb/s OOK neighbours.
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