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Abstract. Inference for clusters of extreme values of a time series typically requires the
identification of independent clusters of exceedances over a high threshold. The choice of
declustering scheme often has a significant impact on estimates of cluster characteristics.
We propose an automatic declustering scheme that is justified by an asymptotic result
for the arrival times between threshold exceedances. The scheme relies on the extremal
index, which we show may be estimated prior to declustering. The scheme also supports
a bootstrap procedure for assessing the variability of estimates.

Keywords: automatic declustering, bootstrap, extremal index, extreme values, inter-
arrival times

fDepartment of Mathematics and Statistics, Lancaster University, Lancaster, LA1 4YF, UK. E-mail:
c.ferro@lancaster.ac.uk

tBEurandom, P.0.Box 513, NL-5600 MB Eindhoven, The Netherlands.

E-mail: segers@eurandom.tue.nl



1 Introduction

Let {&n}n>1 be a strictly stationary sequence of random variables with marginal distribution
function F', finite or infinite right end-point w = sup{z : F(z) < 1} and tail function

F=1-—F. For integers 0 < k <[ and n > 1, put
Mk,l:max{fi:i:k+1,...,l} and Mn:M(),n.

We say that the process has extremal index 8 € [0, 1] if for each 7 > 0 there exists a sequence
{tn }n>1 such that, as n — oo,

(i) nﬁ(un) - T,
(i) P(M, < wuy) — e 7

see Leadbetter et al. (1983). If # = 1 then exceedances of an increasing threshold occur singly
in the limit; if # < 1 then exceedances tend to cluster in the limit. We consider the problem
of making inferences about characteristics of such clusters. The extremal index is one such
characteristic, which has an interpretation due to Leadbetter (1983) as the reciprocal of the
mean cluster size.

Theorem 4.5 of Hsing (1987) shows that clusters of exceedances may be considered inde-
pendent in the limit. Consequently, a common approach to inference is to identify independent
clusters of exceedances above a high threshold, evaluate for each cluster the characteristic of
interest, and form estimates from these values. The methods used to identify clusters define
different estimators, the two most common being blocks and runs declustering used by Lead-
better et al. (1989). Runs declustering, for example, assumes that exceedances belong to the
same cluster if they are separated by fewer than a certain number (the run length) of values
below the threshold. Hsing (1991) points out that a problem with these estimators is the
selection of the declustering parameters, which is largely arbitrary: the choice of block length
or run length usually has a significant influence on the estimate of the cluster characteristic.
Estimation of the extremal index is developed by Leadbetter and Nandogopalan (1989), Smith
and Weissman (1994) and Weissman and Novak (1998) among others; for an application in
finance see Longin (2000). Examples of other cluster characteristics are the cluster maximum,
which is the focus of peaks-over-threshold (POT) modelling (reviewed by Davison and Smith,
1990), and the ‘excess height statistic’ used by Leadbetter (1995) to monitor ozone levels.

We investigate the point process of exceedance times (see Hsing et al., 1988) and find
that the asymptotic distribution of the inter-arrival times belongs to a one-dimensional para-
metric family of distributions indexed by the extremal index. This result provides a limiting
argument for one particular declustering scheme, characterised by the extremal index. We
can estimate the extremal index without declustering by equating theoretical moments of
the limiting distribution to their empirical counterparts. In this way we define an auto-
matic declustering scheme that does not require a subjective choice of auxiliary parameter.
Furthermore, the declustering scheme supports a bootstrap procedure for obtaining confi-
dence intervals on estimates of cluster characteristics that accounts for the uncertainty in the
scheme’s estimation.

We derive the agsymptotic distribution of times between threshold exceedances in Section
2 and present our estimator for the extremal index in Section 3. We prove consistency of
the estimator for m-dependent processes. In Section 4 we define the declustering scheme and
bootstrap procedure. We investigate the performance of our extremal-index estimator with



a simulation study in Section 5, and conclude in Section 6 with an application to a series of
daily minimum temperatures recorded at Wooster, Ohio.

2 Inter-arrival times

The statistical development in this paper rests on the limiting distribution of the times be-
tween exceedances of a threshold u by the process {,}n>1. Let T'(u) be a random variable
with distribution

T (u) 4 min{n > 1: 41 > u} given & > u,

that is,
P{T(u)=n}=PMiy <u,ét1>ul|& >u) forn>1,

or, alternatively,
P{T(w)>n}=PMipt1 <u|& >u) forn>1.

We compute the asymptotic distribution of T(u). The case when the random variables
&n, n > 1, are independent, is straightforward. Clearly

P{T(u) >n} =F(u)" forn>1,
so that, for z > 0,
P{F(u)T(u) >z} = P{T(u) > |z/F(u)|} = exp{|z/F(u) | log F(u)}.
Finally, if F' has no atom at its end-point w then, since log(1 + €¢) ~ € as ¢ — 0, we have

liTmP{F’(u)T(u) >zt=e* forz>0.

U W

So F(u)T () is asymptotically standard exponentially distributed. This agrees with the result

(see Hsing et al., 1988) hat the point process of exceedance times has a Poisson-process limit.
Now consider the general case with extremal index 6 € [0,1]. The corresponding point-

process limit for the exceedance times is compound Poisson (see Hsing et al., 1988). This

leads us to expect that the limit distribution of the inter-arrival times will be a mixture of

an exponential distribution and a point-mass on zero. This is indeed the case, as described

in Theorem 2.1 below. For real u and integers 1 < k <[, let 7y, ;(u) be the o-field generated

by the events {&; > u}, & <i <. Define the mixing coefficients

omg(u) = max sup|P(B|A4)—P(B)

where the supremum is over all A € Fj (u) with P(A) > 0 and all B € Fyqgn(u).
Theorem 2.1 Let the positive integers ry, n > 1, and the thresholds u,, n > 1, be such that

Ty — 00, rmF(up) — 7, and P(M,, <up)— e_aT,

for some 7 € (0,00) and 6 € [0,1]. If there exist positive integers g, = o(ry) such that
Oer, g, (Un) = 0(1) for all ¢ > 0, then

P{F(up)T(ug) >t} — 0%,  fort>0.



The proof is contained in Appendix A. Note that the mixing condition used here is similar
to that of Weissman and Novak (1998).
Theorem 2.1 says that

Fw)Tw) Ty asulw, (1)

where Tp is a random variable distributed according to the mixture distribution
(1 —0)eo + Buo, (2)

€ is the degenerate probability distribution at 0 and uy is the exponential distribution with
mean 6~ !. Note the dual role of the extremal index: 6 is both the proportion of non-zero
inter-arrival times and the reciprocal of the mean of the non-zero inter-arrival times. These
features are evident in Fig. 1, which was constructed from the times between the largest 1000
values in a sequence of length 10000 generated from a stationary process with extremal index
0 =0.5.

Normalised Inter-arrival Times

Exponential Quantiles

Figure 1: Quantile-quantile plot of normalised inter-arrival times against unit-exponential quantiles. The
vertical line indicates the (1 — #)-quantile, the sloping line has gradient #=1, and 6 = 0.5.

3 Extremal-index estimation

In this section we describe an estimator for the extremal index that is based on the limit result
(1). Suppose that we have a sample &;,...,&, and a high threshold u. Let N = N,(u) =
Yoy I(& > u) be the number of observations exceeding u, and let

1<§51<---<Sv<n
be the exceedance times. The observed inter-arrival times are

Ti:Sz'—l—l_Si forizl,...,N—l.



3.1 Intervals estimator

The second moment of Ty is E(Tj;) = 2/6, which we estimate to obtain a first estimator for

6. Let F,(u) be an estimator for F(u). Then

- 2(N - 1)
On(u) = F’n(u)Q ZN—I T2

i=1 i

For example, if Fy,(u) = N/n, then we have

- 2n%(N — 1)
= e
1= )

We can improve on this however. The first moment of T} is one so that 8 is related to the
coefficient of variation, v, of the inter-arrival times by

1+ % = E(T?)/{E(Ty)}* =20~1.

In particular, the exceedance times are over-dispersed (there is clustering in the limit) if and
only if the extremal index is less than one. This relationship motivates another estimator for
9,

o 2(sNm)
On(u) = (N—1) ZZZ\;II Ti2’

3)

where we do not need to estimate F(u).

Finally, let us make one more improverment to our estimator by considering the penultimate
approximation to the limiting mixture distribution (2). If we set 7, = n in the proof of
Theorem 2.1, then we see that the distribution of the inter-arrival times satisfies

P{T(uy) > n} = 6F (uy)"™ + o(1).

We can derive an estimator for # based on this relationship. Let T denote a random
variable on the positive integers whose distribution is given by

P(T >n)=6p"™, forn=1,2,... (4)

where 6 € (0,1] and p € (0,1) may be thought of as F(uy).
First, note that
2{E(T))? 2{1 - (1 -0)p°}?
E(T?)  20p° +6p°(1 —pf) + (1 —p°)?
= 0+60(2-30/2)(1-p)+0{(1-p)?}, asp—1,

which follows from

BT 1) = 3 P> n)=0p(l—p),

n=1
E{@} = nz:;nP(T >n) =0p(1 —p) 2.



Therefore, the first-order bias of 8,,(u) at a threshold u is approximately 6(2 — 30/2)F(u). In
contrast, the relationship
2{E(T —1)}?

E(T DT -] '

motivates the estimator

" 2 [ -}
Hn(u) = N_1 3 (5)
(N DZIL T - (T )

whose first-order bias is approximately zero. We call gn(u) the intervals estimator. Compared
to estimator (3), the estimators for the first and second moments from which the intervals
estimator is constructed have been shrunk towards zero. This is intuitively appealing. The
smallest observed inter-arrival times are positive, whereas the limiting distribution (2) models
them as zero. The intervals estimator ensures that the contributions from the smallest inter-
arrival times are indeed zero; the larger inter-arrival times are relatively unaffected.

Consistency of the intervals estimator for m-dependent processes is stated in the following
theorem, the proof of which is contained in Appendix B. Recall that, for a positive integer m,
the sequence {&y, }n>1 is m-dependent if, for all positive integers &, the o-fields o(¢; : 1 <1 < k)
and o(&; : i > k + m) are independent.

Theorem 3.1 Let the positive integers ry, n > 1, and the thresholds u,, n > 1, be such that

rm=o0(n), ™™ — 00, rF(uy)—7, and P(M,, <up)— 6707,

for some T € (0,00) and 0 € (0,1]. If {&n}n>1 is m-dependent, then On(un) 2 6.

3.2 Maximum likelihood estimation

We have described two models (the limiting form (2) and the penultimate approximation
(4)) for the inter-arrival times. In this section we examine the possibility of using these
models to construct maximum likelihood estimators for the extremal index. This contrasts
with the moment-based intervals estimator (5). We shall construct the likelihoods under
the assumption that the inter-arrival times are independent since we have models for their
marginal distribution only. This is an incorrect assumption but does not affect the validity
of maximum likelihood point estimates.
If we write ¢t; = NT;/n then the log-likelihood from the limiting model (2) is

N1 o) (g g\ TE>0) N1
Zlog{ue) (t:=0) (0 e tz’) }zQ(Nl)logHHZti
i=1 i=1

since the observed inter-arrival times are always strictly positive. The resulting maximum
likelihood estimator for 6 is min{1,2/¢}, where ¢ is the mean of the t;. This estimator tends
in distribution to one as n increases: a failure arising from the model assigning all of the
inter-arrival times to the exponential component of the mixture distribution. It is possible
to circumvent this problem by grouping a certain number of the smallest inter-arrival times
and treating them as though they were equal to zero. This solution requires the choice of an
auxiliary parameter however. The choice is arbitrary and can have a significant impact on
estimates so that we are no better off than if we had used runs or blocks declustering.



The log-likelihood from the penultimate model (4) is

my log(1 — 6p®) + {log 6 + log(1 — p?)} Z m; + 6logyp Z(z — Dymy,
i>2 i>2

where m; is the number of inter-arrival times equal to ¢. Maximum likelihood estimates
may be found by numerical optimisation. Unfortunately, this likelihood performs poorly in
practice. The reason for this is that the distribution (4) is a good model for the large inter-
arrival times only; at the same time, for p close to one, m, has a strong influence on the
likelihood. Again, grouping small inter-arrival times and modelling only the larger times is a
possible, but unattractive, solution.

The problems encountered above make the likelihood approach difficult to implement so
that we prefer the intervals estimator.

4 Automatic declustering and bootstrapping

While we have shown how the extremal index may be estimated without recourse to declus-
tering, estimating other cluster characteristics may require clusters to be identified. All
declustering schemes proposed in the literature require an auxiliary parameter, the choice of
which is largely arbitrary. In this section we explain how the limiting distribution (2) may be
used to identify clusters without making an arbitrary choice. As we shall see, declustering also
supports a bootstrap procedure for assessing estimation uncertainty; we describe a procedure
to compute confidence limits for estimates of general cluster characteristics. Importantly, this
procedure accounts for the uncertainty in the choice of declustering scheme.

Recall that the limiting process of exceedance times is a compound Poisson process so that
we may categorise inter-arrival times into two types: independent inter-cluster times (between
clusters), and independent sets of intra-cluster times (within clusters). As mentioned below
(2), the extremal index is the proportion of inter-arrival times that may be regarded as inter-
cluster times. Suppose that we observe N exceedance times, S1 < --- < Sy, and T; = S;41—5;
fori=1,..., N —1 are the inter-arrival times. Then we can assume that the largest C' —1 =
|ON | inter-arrival times are approximately independent inter-cluster times that divide the
remainder into approximately independent sets of intra-cluster times. To be precise, if T{¢
is the C-th largest inter-arrival time and Tj; is the j-th inter-arrival time to exceed Ty,
then {7} }]c:—11 is a set of approximately independent inter-cluster times. (In the case of ties,
decrease C' until T{¢c_yy is strictly greater than Ti¢y.) Let 7; = {T;;_,41,--.,T;; -1}, where
i =0,ic =N and T; = 0 if i; = i;_1 + 1. Then {Z;}5_, is a collection of approximately
independent sets of intra-cluster times. Furthermore, each set 7; has associated with it a set
of threshold exceedances, C; = {& : k € S;}, where S; = {S;;_, 41,..-, 5, }-

This interpretation justifies a decomposition of the observed process into C' clusters, where
the j-th cluster comprises the exceedances C;. This is equivalent to runs declustering with
run length Tic). In practice, C is defined by replacing § with the intervals estimate (5) so
that we have an entirely automatic declustering procedure, justified by the limiting theory.

Suppose now that we are interested in making inferences about a cluster functional, H.
This could be the ‘excess height statistic’ of Leadbetter (1995) for example. We can evaluate
the functional for each cluster to obtain values {H; }le that may be used to estimate prop-
erties of H. Denote such estimates by H. For example, we might estimate the expectation of
H by H= C_I(Hl +"'+Hc).



We can use the bootstrap to obtain confidence limits on such estimates. Given the de-
composition of the process of exceedances described above, we recommend the following
procedure:

c-1

(a) Resample with replacement C — 1 inter-cluster times from {1, },; .

(b) Resample with replacement C sets of intra-cluster times (some of which may be empty)

and associated exceedances from {(7},C;) le.

(c) Intercalate these inter-arrival times and clusters to form a bootstrap replication of the
process.

(d) Compute N, 8 and C for the bootstrap process and decluster accordingly.
(e) Compute H from the declustered bootstrap process.

Forming B such bootstrap processes yields collections of estimates, 5(1), cee, @\( p) and H (1)s-> H (B)s

that may be used to approximate the distributions of the original point estimates, 8 and H.
In particular, the empirical a- and (1 — a)-quantiles of each sample define (1 — 2a)-confidence
intervals. We demonstrate this procedure for the data-set in Section 6, and make use of it in
the simulation study of the following section.

5 Simulation study

In this section we investigate the performance of the intervals estimator (5) for the extremal
index and compare it to the performance of the runs estimator, which may be written in
terms of the inter-arrival times as

N-1
O (u;r) = N1 {X:I(TZ >r)+1}

i=1

when the run length is . We simulate data from two stationary processes: a max-autoregressive
process and a first-order Markov chain with extreme-value transition distribution.
Choose 8 € (0,1]. Let Wy, n > 1, be independent unit Fréchet random variables and put

& =Wi/0 and &, =max{(l—0)¢,_1,Wy}, forn>2. (6)

Then {£,}n>1 is a max-autoregressive process with extremal index 6. For the Markov chain,
let 5 € (0,1] and

- - B
P(6y < 21,6 < m) = exp {_ (57 +051%) } .

This is a bivariate extreme-value distribution with symmetric logistic dependence structure;
the extremal index of {¢, },>1 for specific values of 8 may be found by simulation (see Smith
et al., 1997). We simulate 1000 sequences of length 5000 from both of these processes for
each of three extremal indices: 0.25, 0.5 and 0.75. (This corresponds to 8 = 0.43,0.64 and
0.82 for the Markov chain.) For each sequence, we compute the intervals estimator and three
runs estimators (with run lengths 1, 5 and 9) at a range of thresholds chosen so that there
are N exceedances, with N ranging from 10 to 1000. Note that the intervals estimators can



give estimates that are greater than one. Hereafter we set estimates equal to one if this is the
case. We report the root-mean-square error (rmse) of the point estimates and the coverage
probability of bootstrapped confidence limits (computed with B = 1000) in each case.

Fig. 2 shows the empirical root-mean-square errors and coverage probabilities for the four
estimators applied to the max-autoregressive processes. The sensitivity of the runs estimator
to run length, threshold and the true extremal index is clear; the intervals estimator is robust
to these factors. This robustness is particularly evident at lower thresholds, where the coverage
probability for the intervals estimator remains close to the nominal value. Nevertheless, for
high thresholds, the runs estimators appear to outperform the intervals estimator. Fig. 3
presents the results for the Markov chains. Similar comments can be made here with regard
to the robustness of the intervals estimator. Note, however, that not every choice of run
length for the runs estimator leads to performance superior at high thresholds to that of the
intervals estimator. This further demonstrates the benefit of the intervals estimator.

6 Data example

We conclude with an application of the intervals estimator and intervals declustering to a time-
series of negated daily minimum temperatures, recorded to the nearest degree Fahrenheit, at
Wooster, Ohio. See Smith et al. (1997) for a description of the data and additional analysis.
We shall estimate the extremal index and mean cluster excess of the series at thresholds
w=0.5,1.5,...,14.5. For some threshold u and some cluster {{; : k € S} of exceedances, the
cluster excess is defined by ), _s(§x —u), and is an indicator for the severity of a cold period.

The intervals estimates of the extremal index are shown in Fig. 4 with bootstrap 95%
confidence limits. For comparison, runs estimates with run length five days are also shown.
As expected, the variance of the intervals estimator is greater than that of the runs estimator,
which does not account for uncertainty in the run length. Both plots support an extremal
index of about 0.6, which is similar to the values found by Smith et al. (1997).

The estimates of the mean cluster excess are presented in the left-hand plot of Fig. 5. The
results are not clear-cut although the graph appears to level out at a threshold of ten degrees
and a mean cluster excess of about six degrees.

Finally, returning to the bootstrap procedure of Section 4, notice that each bootstrapped
process has an associated run length, r) = Tic,), where Cjy) = [0)N(p)| and Ny is the
number of exceedances in the process. At each threshold, the collection {r) }B_, describes
the uncertainty in the declustering scheme and indicates the extent of the uncertainty ig-
nored by using runs declustering with an arbitrary run length. The right-hand plot in Fig. 5
summarises the run length distribution. A run length of about one week is suggested with
the interpretation that cold periods separated by more than one week can be considered
independent.
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A Proof of Theorem 2.1

Since both g, = o(ry,) and oy, = o, 4, (un) = 0o(1), we can find positive integers py, such that

Dn = O(Tn);

Oy = 0(pn)

and g, = o(py)-

(Take for instance p, = |{r, max(gn,rnan)}/?].) Since F(u,)™™ — e, all conditions of
Corollary 2.3 of O’Brien (1987) are fulfilled. We derive

P(Mrn < Un) — F(un)T"P(Ml,pn Sun|é1>un) _, 0.

But P(M,., < up) — e %7 by assumption, so necessarily

11

P(Mip, <up|& >up) — 0.



Now we can proceed with the proof of the stated limit relation itself. Put k, = [¢/F (uy)].
We have

P{F(uy)T(up) >t} = P{T(uy) > kp}
= P(Ml,l-i—kn < up ‘ & > up).

For n large enough so that ¢, < p,, we have

P(Mp, pptgn > Un | §1 > un) P(My, pntqn > Un) + O

<
< QHF(UH) + ap — 0,

so that

P(M171+kn < up | &1 > up)
= P(Ml,;l)n < Un, Mpn‘i“]nykn é Un, | 61 > Un) + 0(]‘)'

But k, ~ t77lr, = O(ry,), so that by assumption

P(Mlypn S Unp, Mpn‘i“]nykn S Un ‘ 61 > Un)
= P(Mpn+Qn7kn é Un | Ml,pn < Un;s 61 > un)P(Ml,;Dn < Unp | 61 > Un)

= {P(Mp,1gnkn < un)+0(1)}{0 + o(1)}.

Now also sy, = ky, — (Pn+qn) ~ t77tr, = O(ry,). Apply Corollary 2.3 of O’Brien (1987) again
to deduce that
P(Mpn+qn7 n S Un) = P(Msn é Un)
= F(up)*nPMupnsunléi>un) 4 1) — 0,

B Proof of Theorem 3.1

Denote F(u,) by pn. To avoid ambiguities, let 8, (u,) be an arbitrary number, say 1, if either
N €{0,1} or if N > 1 but no T; is larger than two.

Lemma B.1 There exist C > 0, 0 < v < 1 and positive integer ng such that

() P(My <up) < Cykim
(i1) P(Mig <un|& >up) < CHF/m

for all integer k > 1 and n > ny.

Proof. (i) Fix positive integer k and write k = ¢gm+j where¢ = 0,1,2,...and j =0,1,... ,m—
1. Divide the sample of size & into g blocks of size m and one block of size j. By m-dependence,

we get
: k/rn
P(My < un) < (1= pa)* < (1 =) 7™ { (L= po)™/m 7

12



Since 1 —p, — Ll and (1 —p,)™ — e 7 <1, we can find 0 < 7y < 1 and a positive integer ng
such that for all integer n > ng, we have

(1 _pn)—j/m
(1 _pn)rn/m

(1-py)t<2 forj=0,1,...,m—1,

<
<

Hence for all integer n > ng, we have P(Mj < uy,) < 27k/ n,
(ii) For integer £ > m + 1, we have by m-dependence and stationarity

P(Ml,k < up ‘ &> Un) < P(Mm,k < Un) = P(Mk—m < Un)

Thanks to (i), the latter is bounded by 2y~™~*/™_ For k < m, we have 2y~"~k/T™n > 1. Put
C =2y O

Lemma B.2 If the positive integers sy satisfy sp ~ Aryp for some 0 < A < oo, then

P(M,, <up)— e 7 and P(Ms, <upl|& >uy) — ge 0>
Proof. Similar to the proof of Theorem 2.1. O
By convention, we set Zf\;l(Ti —1)=0if N € {0,1}.
Lemma B.3 We have N X np,, and ZZZ\SI(TZ ~1) A n.

Proof. Clearly E(N) = np,. By stationarity and m-dependence, also var(N) < 2mnp,.
Together, E[{(np,) "N — 1}?] < 2m(np,) " — 0, which implies N X np,. In particular, we
have N % oo, so that P(N >2) — 1.

Next, "N YT ~1) =8y - S — (N -1)=n—(n—8Sy) -8 — (N —1) if N > 2. For
¢ > 0, we have by Lemma B.1

P(n— Sy >crpand N > 2) < P(M|g, | < up) < Crylernlira

so that n — Sy = Op(ry) = 0p(n). Similarly, S1 = Op(ry) = op(n). From the first part, we
already know that N = op(n). O

It remains to deal with the term Zf\;l(Ti — 1)(T; — 2) (which we also set equal to zero if
N € {0,1}). Define

n—1n—i

Xn =D (0= DI > un > M),
i=1 j=1

Observe that if N > 2, then
N-1T;—1 n—Sy
Xn = G-+ D> G-
i=1 j=1 j=1
L N1
= 52 (L - DT -2)+ ;(n—Sw)(n - Sy — 1)
=1



In particular, we have

N-1
Xn =5 Y (Ti = 1)(Ti —2) + Op(r3).
i=1

N =

Hence, to prove the Theorem, it is sufficient to show that n'p, X, - 6~!. To this end, we
need only show that

npE(X,) — 07" and n?plE(X2) - 072
Lemma B.4 n~!p,E(X,) — 07!

Proof. By stationarity of the process {¢}n>1, we obtain

n—1n—i

E(Xn) = Y. ) (G— P& > un > Miiyj)
i=1 j=1
= pa Y (i — D —HPMii1j < up | &> un).
=1

Rewrite the sum as an integral to find
n
B = o [ (5] = 10— [sDPOh1e < un | €0 > un)ds
0

n/rn
- /0 ([ras] — D0 — [ras )Py 14 o] < tin | &1 > 1) ds.

Hence we have

n/rn
n_lan(Xn) :pn""n/o pul[rns] — (1 - [THSW/n)P(MI,I—l—(rns] <y | & > up)ds.

By Lemmas B.1 and B.2, the dominated convergence theorem yields

o
n"pE(X,) — 7'2/ s9e 07 ds =971,
0

Lemma B.5 n 2p2 E(X2) — 02
Proof. For integers n > 1,1 <i<n—1and 1 <j <n —1, abbreviate

I j = IZ(Z) =I(& > up > Min_j).

We have

n—1ln—in—1n—k

EX2) =Y 3331 -1)E;l).

i=1 j=1 k=1 I=1

14



The expectations can be computed as follows:

E(I; ;) E(I ;)
E(L; ;L) = E(Ii ),
(IJIkl) = 0, fori<k§i+j,
E(;jIxy) = E(Lj)E(Ly), fork>i+j+m.

Hence we can write E(X2) = A, + By, + C,, where

n—1n—in—i
A, = D DD (G -V - VETzn),
i=1 j=1 I=1

n—1n—ii+j+m—1n—k

B, = 2) 3 > > (G-1H-DE[;Ly),
i=1 j=1 k=i+j+1 I=1
n—1ln—i n-1 n—k

Co = 2> 3 > > (-1 —-1DEI,)E(Ly).

i=1 j=1 k=i+j4+m I=1

The terms A, and B,. We have

n—1ln—1
An < n) Y (G- D0 - DEI ),
j=11=1
n—1ln—1
By < 2mny 3G - 1)~ DE(Tju).
j=11=1
Changing sums gives
n—1ln—1 n—1 n—1 n—1
DX G -DI-DE@a) <2 (-1 (- DEIy) =Y (1 - 1)EIy).
j=11=1 j=1 I=j =1

By Lemma B.1, we have E(I1;) = P(&1 > up > My14) < ppCyY/™. Hence both n~'4,
and n~!' B, are bounded by some positive constant times p, > 7o, (I — 1)2lyH™ . As n — oo,
this expression is O {pn(1 — y'/™)~*} = O(p,3). Therefore, both A, and B, are O(np,>) =
o(n?p,?).
The term C,,. Changing the order of summation, we have

Co = 233 (- 1) - VE(L)E IuZ Z

j=11=1 i=1 k=i+j+m
n o n
= > > G-Vl -Dm—1—-j-m+1)(n—1—j—m)E(5)E(y).
j=11=1
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Write the sum as an integral

Co = // )([£] = 1)(n — [s] = [t] —m+1)
(n— [s] — [£] — m) 4 BTy 1) (I ) ds b

n/rn  pn/re
_ / / (rns] — 1)([rat] — 1)(n — [ras] — [rat] — m+1)

rns| — [rat] —m)y E(Iy 1) E(I1,[r,¢)) ds dt.
Since E(Iy [r,s)) = pnP(Ml,lﬂrns} < up | & > up), we can apply Lemmas B.1 and B.2,
giving
o0 o
n"2p2C, — 7'4/ / sthe % 0e 0t ds dt = 62

by dominated convergence. O
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