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SUMMARY

Unintended and parasitic coupling effects are becoming more relevant in currently designed, small-scale/high-
frequency RFICs. Electromagnetic (EM) based procedures must be used to generate accurate models for proper
verification of system behaviour. But these EM methodologies may take advantage of structural sub-system
organization as well as information inherent to the IC physical layout, to improve their efficiency. Model order
reduction techniques, required for fast and accurate evaluation and simulation of such models, must address and
may benefit from the provided hierarchical information. System-based interconnection techniques can handle
some of these situations, but suffer from some drawbacks when applied to complete EM models. We will present
an alternative methodology, based on similar principles, that overcomes the limitations of such approaches. The
procedure, based on structure-preserving model order reduction techniques, is proved to be a generalization of the
interconnected system based framework. Further improvements that allow a trade off between global error and
block size, and thus allow a better control on the reduction,will be also presented.
Copyright c© 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Model Order Reduction(MOR) techniques have achieved a considerable level of maturity in the last
few years, and their application is widespread and well established, from the automotive and aerospace
industries to the electronic realm [1, 2, 3]. They are the basic tools for avoiding detailed simulations,
far too costly in time and computational resources, providing smaller yet accurate models able to be
processed in the simulation flow. However, these method mustnot only provide reliable models in the
input-output behavioral sense, but they must also maintainsome of the physical inherent characteristics
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of the original systems, such as the stability and passivity, with obvious implications to the simulation
itself.

Within the electronics industry, the most popular methods are either the Moment Matching based
methods [4, 5, 6, 7] or the Balanced Truncation framework [8,10, 9]. Recently, a new approach that
links the rational Krylov procedures to theTruncated Balanced Realization(TBR), namedPoor’s Man
TBR (PMTBR), has been presented [11].

However, the ever increasing range of frequencies, together with the shrinking feature size, led to
the necessity of taking into account formerly negligible Electromagnetic (EM) interactions between
the multiple sub-systems that compose a full system. New EM modeling methodologies [12, 13] take
advantage of such hierarchical information, and MOR stagesshould be able to include and maintain
such a valuable information.

The present document aims at providing some basis for efficient techniques able to address the
above mentioned issue, and it is structured as follows: in Section 2 a quick review of the main MOR
techniques, including their advantages and drawbacks, will be presented. In Section 3 a first system-
based approach for handling and reducing interconnected systems will be revisited, giving the basis for
a hierarchical representation. In Section 4 the structure-preserving model reduction approaches will be
introduced, to further link them to the interconnected-system based, and present some improvements.
Next, some simulation results will be presented in Section 5. The document will be closed with some
conclusions in Section 6.

2. BACKGROUND IN MODEL ORDER REDUCTION

The main techniques for MOR are geared towards the reductionof a state space linear time-invariant
system, obtained by some modeling methodology, and representing a physical system. In such state
space representation, the output is related to the input viasome inner states satisfying,

Cẋ + Gx = Bu

y = Lx + Du.
(1)

whereC, G ∈ R
n×n are respectively the dynamic and static matrices,B ∈ R

n×m is the matrix that
relates the input vectoru ∈ R

m to the inner statesx ∈ R
n andL ∈ R

p×n is the matrix that links those
inner states to the outputsy ∈ R

p. The matrixD ∈ R
p×m represents possible direct algebraic relation

between inputs and outputs.
This time-domain description yields a frequency response modeled via the transfer function

H(s) = L(sC + G)−1B + D, (2)

for which we seek to generate a reduced order approximation,able to accurately capture the input-
output behavior.

Ĥ(s) = L̂(sĈ + Ĝ)−1B̂ + D, (3)

in which Ĉ, Ĝ ∈ R
q×q, B̂ ∈ R

q×m, andL̂ ∈ R
p×q are the reduced set of matrices, withq ≪ n.

In general, one attempts to generate aReduced Order Model(ROM) whose structure is as similar to
the original as possible, in order to facilitate further simulations.

2.1. Moment Matching

Moment matching techniques have gained a well deserved famedue to their simplicity and efficiency.
Proof of this is the large number of variants existing (some examples are [4, 5, 6, 7]). They rely

Copyright c© 2009 John Wiley & Sons, Ltd. Int. J. Numer. Model.2009;submission:1–19
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BLOCK ORIENTED MOR OF INTERCONNECTED SYSTEMS 3

on the computation of the so called moments, i.e. the coefficients of the Taylor Series expansion of
the transfer function in (2) around some frequency point. Perhaps, currently the most well known of
these techniques is PRIMA [4], where a Krylov subspace is computed in an iterative fashion, via an
iterative Block Arnoldi procedure, to latter project the original system matrices in (1), via a congruence
transformation, into that subspace.

colsp {V } ≡ Kr {A, R, q} , with A = −G−1C, R = G−1B, (4)

Ĝ = V T GV Ĉ = V T CV B̂ = V T B L̂ = LV (5)

whereKr {A, R, q} is the Krylov subspace ofq block moments (R, AR, . . .Aq−1R), andV is the
projector applied in the congruence transformation (5) forthe reduction.

This projection avoids numerical problems, and provides further benefits, such as the preservation of
passivity under certain conditions (usually fulfilled in the case of electric based models). The iterative
nature of the method and easy implementation turn these procedures into an efficient framework when
applied to very large systems. On the other hand, the models obtained are sometimes larger than
the necessary, in particular for large frequency ranges, and the reduced matrices are full, losing all
initial sparsity. Furthermore, the only known techniques for a priori order selection are expensive and
cumbersome to implement.

2.2. Balanced Truncation

Another wide spread approach is the Truncated Balanced Realization (TBR) [8, 9], which relies on
the analysis of the Controllability and Observability of the inner states, via the computation of the
Gramians. The system is balanced under a similarity transformation (which makes both Gramians
equal and diagonal). That balancing maintains invariant the input-output properties of the state-space
model, such as the transfer function and the eigenvalue space of the product of both the Controllability
and Observability Gramians.

These eigenvalues, also known as Hankel singular values, can be associated to an energetic
interpretation of the system, and more precisely, of the states. By truncating the ”weak” states
associated to the low value eigenvalues, the remaining ”strong” states, associated with highly energetic
eigenvalues, lead to a good reduced approximation of the original system. Furthermore, this framework
is purported to give quasi-optimal reduced models, and the error can be controlled via ana posteriori
theoretical error bound on the frequency domain, given by the sum of the truncated Hankel singular
values [10]. On the other hand, the computation of the Gramians requires solving a dual pair of
Lyapunov equations, which can be hard to implement and demands high computational effort. These
facts limit the applicability of the TBR frameworks to smallto medium size models.

2.3. PMTBR

Poor’s Man TBR (PMTBR) [11] is a projection MOR technique that exploits the direct relation
between the multipoint rational projection framework [7] and the truncated balanced realization, via
a statistical interpretation of the system Gramians. This new approach can take advantage of somea
priori knowledge of the system properties, and is less expensive interms of computation, but tends to
TBR when the order of the approximation increases.

The system Gramians can be expressed in the frequency domain(after applyingParseval’s
Theorem). In the case of the controllability Gramian

X =

∫
∞

−∞

(jωC + G)−1BBT (jωC + G)−Hdw (6)

Copyright c© 2009 John Wiley & Sons, Ltd. Int. J. Numer. Model.2009;submission:1–19
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4 J. FERŃANDEZ VILLENA, W. H. A. SCHILDERS, AND L. M. SILVEIRA

whereω is the frequency. A quadrature rule can be applied in the frequency space to approximate the
Gramian via numerical computation

X̃ =

P∑

i

wiziz
H
i (7)

The samples are given byzi = (G+siC)−1B, wheresi = jωi (with i = 1, 2, . . . , P ) areP frequency
sample points. Thesi andwi can be interpreted as nodes and weights of the quadrature scheme. The
actual mechanics of the algorithm are akin to multi-point projection. LetZ be a matrix whose columns
are thezi, andW the diagonal matrix of the square root of the weights. Eqn. (7) can be written more
compactly as:

X̃ = ZW 2ZH (8)

If the quadrature rule applied is accurate,X̃ will converge toX , which implies the dominant eigenspace
of X̃ converges to the dominant eigenspace ofX . Computing theSingular Value Decomposition
(SVD) of ZW , ZW = V SU (with S real diagonal, andV , U unitary matrices), it is easy to see
thatV converges to the eigenspace ofX , and the Hankel singular values are obtained directly from
the entries ofS. V can then be used as the projection matrix in a model order reduction scheme.
The congruence projection scheme provides this method withthe same advantages that in the case of
PRIMA. Furthermore, the connection with the TBR framework and the fact that the singular values
converge to the Hankel singular values, makes it possible touse them in a directa posteriorierror
bound in the same way the Hankel singular values were used.

3. INTERCONNECTED SYSTEMS

An Interconnected System (IS) is a global model composed of several sub-systems. Inside the global IS,
the inner sub-systems interact by some relations between their local inputs and outputs. The global IS
can be represented in terms of theglobal input-output behavior, but the hierarchy of the interconnection
makes the inner models still recognizable. The schematic ofan example is shown in Figure 1.

From this starting point, the reduction of the complete system may follow different paths. One is to
reduce the complete system by focusing on the global input-output response. This approach leads
to a more compressed result, as it just focuses on the global behavior. On the other hand it may
destroy the inner structure, making the sub-systems no longer distinguishable. Another possibility is to
reduce every inner model individually, taking into accountits local behavior. If each model response is
accurately captured, the same relations between local inputs and outputs will lead to a reduced IS with
similar characteristics. Despite maintaining the inner structure of the interconnection, some complex
sub-systems may require large order models to accurately capture some individual behavior with no
effect on the global response. This means that, from a globalpoint of view, the reduction is not optimal.

Yet another possibility was already pursued in [14], which also gives a good system-viewpoint
formulation for IS. This approach consists in reducing eachindividual model but by taking into account
its effect in the global input-output response. Therefore,it is able to maintain the inner structure while
a better global compression is achieved. In the next subsections the basis and reduction methods for
this last approach will be briefly presented.

Copyright c© 2009 John Wiley & Sons, Ltd. Int. J. Numer. Model.2009;submission:1–19
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BLOCK ORIENTED MOR OF INTERCONNECTED SYSTEMS 5

Figure 1. IS Global System composed from a set of interconnected sub-systems.

3.1. Basis

Under a system viewpoint, the interconnections are treatedas signals which flow between the inner
models, defined as sub-systems, with their local inputs and outputs. A new set of matrices is presented,
defined as interconnection matrices, which relates the local inputs and outputs between them, and to
the global inputs and outputs:

ai = ui +
∑Nb

i=1
Kijbj

ui = Hiu

y =
∑Nb

i=1
Fibi

(9)

whereNb is the number of sub-systems,u ∈ R
m and y ∈ R

p are the global inputs and outputs
respectively,ai ∈ R

mi and bi ∈ R
pi are the local inputs and outputs of thei-th sub-system,

Hi ∈ R
mi×m is the matrix that relates the global to the local inputs of the i-th sub-system ,

Fi ∈ R
p×pi is the matrix that relates the local outputs of thei-th sub-system to the global outputs, and

Kij ∈ R
pi×mj is the matrix that relates the local outputs of thej-th sub-system to the local inputs of

thei-th sub-system. These relations, in combination with the state space matrices of each sub-system,
yield in a global transfer function between the inputsu and outputsy, which can be reformulated in a
global state-space system (see Figure 1 for a graphical depiction)

CGẋ + GGx = BGu

y = LGx + DGu
(10)

where (for further details see [14])

CG = CD CD = diag {C1, C2, . . . CNb
}

CG = GD − BK(I − DK)−1L GD = diag {G1, G2, . . . GNb
}

BG = BD(I − DK)−1H BD = diag {B1, B2, . . . BNb
}

LG = F (I − KD)−1LD LD = diag {L1, L2, . . . LNb
}

DG = FDD(I − DK)−1H DD = diag {D1, D2, . . .DNb
}

(11)

H =
[
H1

T H2
T . . .HNb

T
]T

F = [L1, L2, . . . LNb
]

K =




K11 . . . K1Nb

. . .
KNb1

. . . KNbNb


 (12)

Copyright c© 2009 John Wiley & Sons, Ltd. Int. J. Numer. Model.2009;submission:1–19
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6 J. FERŃANDEZ VILLENA, W. H. A. SCHILDERS, AND L. M. SILVEIRA

Although providing a nice and clear systemic formulation for the treatment of interconnected systems,
this formulation retains some drawbacks that make this approach hard to model EM effects. The signal
based interconnection only allows input-output relations, and, as seen in (11), has effect only in the
algebraic part of the system (i.e.GG, BG, LG andDG). This means that the modeled interactions
accounted for in this formulation are restricted to conductive connections, with an associated current
flowing through the contact. However, some relevant EM effects occur without physical contact, via
frequency dependent inductive and capacitive couplings (which may be desired or unintended). As an
example let us take two close integrated spiral inductors. This situation generates a considerable amount
of electromagnetic interaction, modeled as capacitive andinductive couplings. This case can not be
properly modeled following the formulation presented. Nevertheless, this system based formulation
can be very useful in some cases. The work in [14] presents twoprocedures to address the reduction
of the system in (10), one based in Krylov projection methodsand other in the TBR framework, which
will be briefly summarized in the next two sub-sections (for further details see the referred literature).

3.2. Krylov Approaches

Under Krylov based MOR, some theorems are presented and proved in [14], which present some
interesting moment matching properties inside the IS framework. First, if thei-th sub-system is reduced
with a projector that spans the Krylov subspace ofq moments obtained with its local state-space
matrices (i.e.colsp {Vi} ≡ Kr {Ai, Ri, q}, with Ai = −G−1

i Ci andRi = G−1

i Bi), then the transfer
function that results from the interconnection of the all the non reduced systems and thei-th (reduced)
system matchesq moments of the original one. This can be useful in order to reduce some sub-systems
in stand alone mode, but, as it has been already explained at the beginning of Section 3, may not be the
best reduction methodology to achieve a good global compression.

Second, if a projector whose columns spans the Krylov subspace of the global system is computed
(i.e. colsp {VG} ≡ Kr {AG, RG, q}, with AG = −G−1

G CG andRG = G−1

G BG), then every single

sub-system can be projected block wise (i.e.VG =
[
V T

1
. . . V T

Nb

]T
, andVi applied in a congruence

transformation over thei-th sub-system). The transfer function generated from the interconnection of
the resulting reduced sub-systems matches at leastq moments of the original non reduced transfer
function. This theorem opens some possibilities more in accordance with the proposed scheme, as
it provides an independent sub-system reduction but focusing on capturing the global input-output
behavior.

3.3. Balanced Truncation Approaches

The work in [14] is centered in a TBR-based scheme for MOR of the IS. The Interconnected System
Balance Truncation (ISBT) presented there pursues exactlythe reduction of the individual sub-systems
in terms of the global I/O response.

This objective is achieved by computing the controllability and observability Gramians of the
global IS system. Once these global Gramians are obtained, they are split into block Gramians (by
following the system hierarchy), and the balancing is performed block wise, over the states related to
each sub-system in an independent fashion. Therefore, the diagonal blocks of the controllability and
observability Gramians become equal and diagonal. The truncation of the ”weak” states can be also
done block wise, but the information used for that truncation (i.e. the Hankel singular values) was
obtained from the global system, and thus those truncated states are the ones that have a ”weak” effect
on the global response (see [14] for details and a proof).

Copyright c© 2009 John Wiley & Sons, Ltd. Int. J. Numer. Model.2009;submission:1–19
Prepared usingjnmauth.cls



BLOCK ORIENTED MOR OF INTERCONNECTED SYSTEMS 7

To summarize, every sub-system is truncated independentlybut using the controllability and
observability information of the global input-output response. The methodology still maintains the
advantages of the TBR procedures, i.e. it provides quasi-optimal models and allows some degree
of error control via the Hankel singular values. Furthermore, the truncation is applied locally (at
each sub-system), but with respect to the global behavior. On the other hand, the drawbacks of the
TBR framework are increased here, as the scheme needs to compute the global Gramians, and as
a consequence, to solve a pair of dual Lyapunov equations with the global matrices. It should be
noticed that the size of the global system is the sum of the individual sizes of the multiple sub-systems.
Therefore this step becomes extremely computationally expensive, implying that the reduction of large
size IS becomes very inefficient.

4. BLOCK STRUCTURE PRESERVING

A block structured system is one that has a well defined structure inside the state-space descriptor, i.e.
the states can be split into several sets depending on their nature (e.g. if the states models voltage or
currents in a simple MNA formulation) or other characteristics. Therefore, the matrices of the state-
space descriptor in (1) have a relevant block hierarchy

G=




G11 . . . G1Nb

...
. . .

...
GNb1

. . . GNbNb


 C =




C11 . . . C1Nb

...
. . .

...
CNb1

. . . CNbNb




B =
[
B1

T . . . BNb

T
]T

L = [L1 . . . LNb
] (13)

In certain situations it may be useful, or even necessary, tomaintain the inner structure of this system
after reduction. It is well known that projection techniques lead to full reduced matrices, in which the
inner hierarchy and sparsity pattern of the original matrices are lost.

Some techniques for maintaining the block structure of a system were already pursued. The first
work to address the problem was [15], where a two-block structure was kept in order to separate
voltage from current states in a MNA formulation. Later, in [16], the same idea was extended to an
arbitrary number of blocks in order to model several sub-circuits, and in [17] the same approach was
used in the reduction of second order systems. In the following a brief review of the basis of the method
will be done.

4.1. Basis

The main idea for this procedure is to retain the system blockstructure, i.e. the multi-level hierarchy,
after reduction via projection, allowing for a more efficient reduction and the maintenance of certain
system properties, such as the sparsity block pattern, and the block hierarchical structure.Block
Structure Preserving(BSP) relies on expanding the projector of the global system(obtained via any
classical MOR projection technique) into a block diagonal matrix, with block sizes equal to the sizes
of its Nb individual component blocks (13).

A basis that spans a suitable subspace for reduction via projection is then computed (for example a
Krylov subspace). The projector built from that basis can besplit and restructured into a block diagonal

Copyright c© 2009 John Wiley & Sons, Ltd. Int. J. Numer. Model.2009;submission:1–19
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8 J. FERŃANDEZ VILLENA, W. H. A. SCHILDERS, AND L. M. SILVEIRA

Figure 2. Interconnected system represented as a Block Structured system, and the effect of the subsequent Block
Structure Preserving reduction.

one so that the structure is preserved under congruence transformation.



V1

...
VNb


≡ colsp [Kr {A, R, q}] →




V1

. . .
VNb


=V̆ (14)

with A = −G−1C, R = G−1B, andq the reduced order.
The block-wise congruence transformation leads to

Ĝij = V T
i GijVj B̂i = V T

i Bi

Ĉij = V T
i CijVj L̂j = LjVj

(15)

It is clear that inside the blocks the structure is lost, and up to the authors’ knowledge, there are no
known techniques to avoid this effect. Furthermore, the size of the reduced system is increased, as the
number of columns of the projector after the expansion isNb × q.

On the other hand, the block structure is retained, the levelof sparsity is increased (any empty block
remains a empty reduced block), and it can be shown that undercertain circumstances the number of
moments matched can be increased (up toNb × q). In the worst case, the number of moments matched
is q, i.e. the same as in the non-structure-preserving reduction.

4.2. Interconnected Systems Viewpoint

Let us consider now the case of EM modeling, where the linear components considered include
designed-in passives, interconnect, etc. The system description has an interesting structure (see
Figure 2), where the diagonal blocks correspond to the individual block matrices, whereas the off-
diagonal blocks correspond to the conductive interconnections (in the G matrix) or capacitive and
inductive couplings (C matrix). Standard model order reduction techniques can be applied to this global
system and, while the resulting reduced model will usually be able to accurately capture the input-
output behavior of the complete set of blocks, the generatedreduced matrices are full and, furthermore,
the original block hierarchy can no longer be recovered. In this context, the BSP technique presented
in the previous section can be very helpful, as it can allow usto maintain the block hierarchy existing
in the system (see again Figure 2). This structure has a closesimilarity with the one presented in
the IS formulation (see Section 3), and in fact this is not coincidental, as we will show in a more
formal manner. Let us take for simplicity the case of two components or blocks, which have no
coupling effects other than conductive interconnections.Therefore the global system matrixC is block

Copyright c© 2009 John Wiley & Sons, Ltd. Int. J. Numer. Model.2009;submission:1–19
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BLOCK ORIENTED MOR OF INTERCONNECTED SYSTEMS 9

diagonal, whereas theG matrix has off diagonal blocks related to the interconnections between the
two components. The notation will be slightly changed in order to give a clearer relation with the
IS formulation, andD will be taken as zero for simplicity, but without loss of generality. The global
system representation is

Cẋ + Gx = Mu

y = Nx

C =

[
C11 0
0 C22

]
G =

[
G11 G12

G21 G22

]
M =

[
MT

1
MT

2

]T
N = [N1 N2]

(16)

The system can be rewritten in the following expressions

C =

[
C11 0
0 C22

]
= CD

G =

[
G11 G12

G21 G22

]
=

[
G11 0
0 G22

]
+

[
0 B1K12L2

B2K21L1 0

]
= GD + BKL

M =
[
MT

1
MT

2

]T
=

[
B1 0
0 B2

] [
HT

1
HT

2

]T
= BH

N = [N1 N2] = [F1 F2]

[
L1 0
0 L2

]
= FL

(17)

where
G12 = B1K12L2 G21 = B2K21L1

M1 = B1H1 M2 = B2H2

N1 = F1L1 N2 = F2L2

(18)

The simplest way to achieve this decomposition is to setBi andLi equal to the identity, and thus
K12 = G12, K21 = G21, Hi = Mi andFi = Ni. A different approach could be to perform a Singular
Value Decomposition (SVD) of these blocks, i.e.G12 = U12Σ12V12, with U and V orthonormal
matrices containing the singular vectors associated to thesingular values contained in the diagonal
matrix Σ, and thusB1 = U12, L2 = V12, andK12 = Σ12. This would also allow a certain degree
of compression in the number of ports of each sub-system if a low rank approximation, based on the
singular values, is applied. Of course there may be many other solutions depending on the matrices.

Note now that the description in (16) is exactly the same representation achieved via the IS
interconnection of the systems

C11ẋ + G11x = B1a1

b1 = L1x

C22ẋ + G22x = B2a2

b2 = L2x
(19)

whereai andbi are respectively the local inputs and outputs, with the interconnection matrices defined
as

K =

[
0 K12

K21 0

]
H =

[
H1

H2

]
F = [F1 F2] (20)

This sketch of a proof, presented here for the simple case of two sub-systems, can be extended to an
arbitrary number of subsystems, and shows that the interconnection of any circuit can be presented as
a block structured system.

Copyright c© 2009 John Wiley & Sons, Ltd. Int. J. Numer. Model.2009;submission:1–19
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10 J. FERŃANDEZ VILLENA, W. H. A. SCHILDERS, AND L. M. SILVEIRA

Let us see what happens when a Krylov-based Block Structure Preserving reduction is applied to this
interconnected system. Consider a projectorV that spans a suitable subspace for the reduction of the
global (structured) system. As shown in Section 4.1, this projector can be split and further expanded
following the system structure, in order to preserve such block structure after the reduction. This leads
to

V → V̆ =

[
V1 0
0 V2

]

Ĉ = V̆ T CV̆ =

[
V T

1
C11V1 0
0 V T

2
C22V2

]
M̂ = V̆ T M =

[
MT

1
V1 MT

2
V2

]T

Ĝ = V̆ T GV̆ =

[
V T

1
G11V1 V T

1
G12V2

V T
2

G21V1 V T
2

G22V2

]
N̂ = NV̆ = [N1V1 N2V2]

(21)

If now the decomposition presented in (17) is applied, it is straightforward that the reduction in (21) is
equivalent to the independent reduction of the systems in (19), with V1 andV2 respectively, followed
by interconnecting them again with the matrices in (20).

This proves that the BSP reduction of the system is equivalent to the Krylov-based reduction of the
interconnected systems as presented in [14] (this fact was proved numerically via several simulations,
but the results are not presented as we feel the theoretical proof sketched here is stronger and more
appealing).

However, it is important to recall that the BSP scheme allowsthe reduction of systems when
there are couplings between the sub-system blocks (i.e. there are non-zero off-diagonal blocks in the
globalC matrix). For this reason, it can be concluded that the BSP reduction framework is, in fact, a
generalization of the Krylov-based IS scheme.

4.3. PMTBR connection

The results in the previous section show a direct relation between both BSP and Krylov-based IS
frameworks. In Sections 2.1 and 2.2 the advantages and drawbacks of both moment matching and
TBR were presented, which can be extended to the current case.

The Krylov approach is highly efficient, but it has poor control over the accuracy and order of the
blocks. Furthermore, all the blocks must be reduced to the same size, what can become a serious
drawback when the complexity of the models differ a lot (and therefore very different reduced orders
are needed for their accurate modeling). The balanced truncation approach seems to have better
performance, in particular in the case of interconnected systems, in which the trade off between
the order and the accuracy can be done sub-system wise. However, the high cost required for the
computation leads one to outright discard this method in an EDA framework.

It is important to notice that any projection-based MOR procedure can be extended in the BSP
manner to maintain the hierarchical structure of a system. This includes the case of the PMTBR
algorithm, where additional characteristics of the procedure can be further taken advantageous of in the
current framework. In Section 2.3 it was shown that if the quadrature scheme (7) is accurate enough,
then the estimated GramiañX converges to the original oneX , which implies that the dominant
eigenspace of̃X converges to the dominant eigenspace ofX . If the system has some internal structure,
then the matrixZ computed from the vector samples of the global system can be split into several
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blocks. The estimated Gramian can be written block-wise as



Z1

...
ZNb


 → ZZH =




Z1Z
H
1

. . . Z1Z
H
Nb

...
. . .

...
ZNb

ZH
1

. . . ZNb
ZH

Nb


=X̃ (22)

But if we expand the matrixZ into diagonal blocks

Z̆=




Z1

. . .
ZNb


→ Z̆Z̆H=



Z1Z

H
1

. . .
ZNb

ZH
Nb


=X̆. (23)

From (22) it can be seen thatZiZ
H
i = X̄ii, i.e. the matrixX̆ = Z̆Z̆H is a block diagonal matrix whose

entries are the block diagonal entries of the matrixX̃ . Under a good quadrature scheme, the matrixX̃

converges to the originalX , and thereforĕX will converge to the block diagonals ofX .
This means that the dominant eigenspace ofX̆ converges to the dominant eigenspace of the block

diagonals ofX . We can then apply an SVD to each block of theZ matrix

Zi = ViSiUi → X̆ii = X̃ii = ViS
2

i V T
i (24)

whereSi is real diagonal, andVi and Ui are unitary matrices. The dominant eigenvectors ofVi

corresponding to the dominant eigenvalues ofSi can be used as a projection matrix in a congruence
transformation over the system matrices for model order reduction. The elements ofSi can also be
used for a simplea posteriorierror estimation in a fashion similar to how Hankel singularvalues are
used in TBR procedures.

Using these block projectorsVi, a structure preserving projector for the global system (V̆ ) can be
built (14) which will capture the most relevant behavior of each block (revealed by the SVD) with
respect to the global response (recall thatZ is composed of sample vectors of the complete system).

This approach provides us with more flexibility when reducing a complete system composed of
multiple blocks and the interactions between them, as it allows us to individually control the reduced
size of each sub-system, i.e. block-wise, via an error estimation based on the global input-output
response (and unlike the Krylov-based procedure, only the strictly necessary order for the reduction of
each sub-system is needed). The procedure is analogous to the ISBT one presented in Section 3.3
(for further details see [14]), which provides another linkbetween the BSP and IS frameworks,
but unlike the latter, the PMTBR-based BSP does not incur theexcessively large cost of the ISBT
when applied to large systems. Furthermore, the existence of EM couplings is no longer an issue,
since the original system is formulated as a global block structured state space description (and
thus the projection is applied on the global system). Passivity is guaranteed (as long as the PRIMA
conditions for passivity are fulfilled by the global structured system), since the reduction is done via a
congruence transformation. Further advantages inherent to the PMTBR framework, such as weighting
and frequency selection, are also extendable in a straightforward manner.

5. RESULTS

In this section we show the results of applying the techniquepresented to several systems.
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12 J. FERŃANDEZ VILLENA, W. H. A. SCHILDERS, AND L. M. SILVEIRA

Table I. Characteristics of the first example: SPIRAL and CMIM

Block Original PMTBR BS PMTBR PRIMA BS PRIMA

Size|SR |#I/O Size|SR|#I/O Size|SR|#I/O Size|SR |#I/O Size|SR|#I/O

1st (RC line) 101 | 0.029 | 2 – 5 | 1.00 | 2 – 14 | 1.00 | 2

2nd (Spiral) 4961 | 9e-4 | 2 – 39 | 1.00 | 2 – 60 | 1.00 | 2

3rd (RC line) 101 | 0.029 | 2 – 5 | 1.00 | 2 – 12 | 1.00 | 2

4th (CMIM) 6044 | 8e-4 | 2 – 18 | 1.00 | 2 – 60 | 1.00 | 2

Global 11207 | 4e-4 | 2 44 | 1.00 | 2 67 | 0.636 | 2 60 | 1.00 | 2 146 | 0.567 | 2
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Figure 3. SPIRAL and CMIM example: (Left)|Y11| versus the frequency for the original model and the several
ROMs. (Right) Infinity Error (‖H − Hr‖

∞
) of the ROMs versus the frequency.

5.1. Spiral and CMIM

This first example we discuss is composed of four sub-systems: the first one is a RC lumped model of
an interconnect line, the second is a Full-Wave EM model of a integrated Spiral, including surrounding
substrate and air, the third is another RC lumped model of an interconnect line, and the forth is another
Full-Wave EM model, in this case of a Metal-Insulator-Metal(MIM) capacitor. These four models
are connected, generating a four block global model. Table Ishows the relevant characteristics of the
system, in which each sub-system is characterized by its number of states (Size), its sparsity ratio (SR),
and its number of terminals (#I/O). These features are also presented for the global system (Global),
and for each of the reduction procedures that are benchmarked.

For the reduction, we are going to benchmark standard MOR techniques based on Moment Matching
(PRIMA [4]) and on TBR approximation (PMTBR [11]), against Block Structure Preserving (BS)
approaches with the same underlying reduction procedures (i.e. BS PRIMA and BS PMTBR). It is
important to recall here that the BS approaches and the IS approaches are exactly the same here, since
there are no EM couplings between subsystems, only electricinterconnections.

For the PRIMA approaches,30 block moments are computed, whereas PMTBR approaches are
reduced with15 frequency samples and a tolerance of1e-3. In the case of BS PMTBR this tolerance
is applied block-wise. From Table I we can see the block sizesin the BS approaches (in the standard
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Figure 4. SPIRAL and CMIM example: (Left) drop of the singular values for the PMTBR estimated Gramian, the
BS PMTBR estimated Gramian, and the several Block Gramians.(Right) detail of the leading Singular Values.

approaches the inner structure is lost, and thus the fields inthe table are empty). Smaller sizes in blocks
1 and3 for the PRIMA based framework are due to deflation in the basisorthonormalization. The
block sizes of the BS PMTBR procedure are determined automatically for the fixed tolerance. The
blocks are full after the reduction, but the complete systemstill retains a certain degree of sparsity, and
the sub-systems are still distinguishable.

Figure 3 shows the frequency based transfer function of the original model and the ROMs. It also
presents the error, measured as the infinite norm‖H − Hr‖∞ at each frequency point. It can be
seen that, while accurate at lower frequencies, local expansion Moment Matching approaches have
less overall accuracy. Sampling based approaches behave better along the whole frequency range.
Multipoint moment matching approaches may be applied here with improvements on the accuracy.
Now let us study the error control features of the BS PMTBR approach. Figure 4 shows a plot of the
magnitude of the singular values (SV) for the PMTBR approach, the BS PMTBR approach, and for
each of the individual blocks (note that since systems in blocks 1 and 3 are the same, the singular values
are quite similar, and thus the curves almost overlap one another). These SV are obtained by estimating
the (global) gramian with300 samples. It can be seen that the PMTBR SV ”drop” is limited by the
maximum among the blocks’ SV (i.e., the curve is above the maximum of the individual blocks’ SV but
close to them). On the other hand, the BS PMTBR SV ”dropt” is exactly the same as the contribution
of the blocks’ SVs (this is logical, as these are obtained from the SVD of the block diagonal Gramian),
and thus the number of SV retained for the same tolerance is increased, but the curve exhibits the same
behaviour as the one of the PMTBR. Furthermore, a detailed study shows that the first (dominant) SVs
are the same for both approaches. Figure 5 shows the convergence of the Singular Values as we increase
the number of sampling points used in the estimation of the Gramian. It is clear that both approaches
converge at a similar ratio.

Figure 6 shows how the error in the transfer function approximation decreases along with the
tolerance settled for the reduction, with an automatic order selection (order is presented along the
horizontal axis). Curves are shown for both approaches, PMTBR and BS PMTBR. It is clear that
PMTBR generates models with higher compression, but the interesting thing is how the error can be
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Figure 5. SPIRAL and CMIM example: Convergence of the Singular Value with the increase in the number of
sampling points: (Left) for standard PMTBR, and (Right) forBS PMTBR.

30 40 50 60 70 80 90 100 110 120
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Reduced Size

V
al

ue

(15 samples) PMTBR and BS Error and Tolerance versus ROM size

 

 
PMTBR: Max ||H − H

r
||

inf

PMTBR: Fixed Tolerance
BS: Max ||H − H

r
||

inf

BS: Fixed Tolerance

40 60 80 100 120 140
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Reduced Size

V
al

ue

(30 samples) PMTBR and BS Error and Tolerance versus ROM size

 

 
PMTBR: Max ||H − H

r
||

inf

PMTBR: Fixed Tolerance
BS: Max ||H − H

r
||

inf

BS: Fixed Tolerance

40 60 80 100 120 140
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Reduced Size

V
al

ue

(50 samples) PMTBR and BS Error and Tolerance versus ROM size

 

 
PMTBR: Max ||H − H

r
||

inf

PMTBR: Fixed Tolerance
BS: Max ||H − H

r
||

inf

BS: Fixed Tolerance

Figure 6. SPIRAL and CMIM example: Comparison of the behaviour of the tolerance settled and the error incurred
with such tolerance with an automatic order selection, versus the ROM size. (Left) For15 samples, (Center) for

30 samples, and (Right) for50 samples.

controlled with the blocks’ singular values for the BS PMTBRapproaches, and thus generating an
almost optimal block-wise compression based on global I/O relevance. Furthermore, the convergence
of the BS PMTBR approach for small tolerances seems faster. This is because for a small number of
samples, the standard PMTBR approach does not have enough vectors to generate a good model for
the global system, whereas the block-wise approach only needs to generate basis for the blocks, which
can be approximated with a smaller number of vectors. This fact potentially reduces the number of
samples needed for achieving a desired error.

5.2. SPIRAL over N-Well

The second example is a system taken from an industrial circuit, which has an integrated Spiral Inductor
over an N-Well. The system is modeled via Full-Wave Finite Integration Technique (FIT), with Domain
Decomposition (for further details see [13]). The completedomain is split into two sub-domains, the
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Figure 7. Layout configuration of the Spiral over N-Well example.

Table II. Characteristics of the second example: SPIRAL over N-Well

Block Original PMTBR BS PMTBR PRIMA BS PRIMA

Size|SR |#I/O Size|SR|#I/O Size|SR |#I/O Size|SR|#I/O Size|SR|#I/O

Top 34595 | 1.9e-4 | 466 – 36 | 1.00 | 466 – 80 | 1.00 | 466

Bottom 16397 | 3.2e-4 | 464 – 24 | 1.00 | 464 – 80 | 1.00 | 464

Complete 50992 | 1.4e-4 | 2 36 | 1.00 | 2 60 | 1.00 | 2 80 | 1.00 | 2 160 | 1.00 | 2
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Figure 8. SPIRAL over N-Well example: (Left) Real part and (Centre) imaginary part ofZ11, for the
measurements, the original EM model and the ROMs. (Right) Relative Error in|Z11| for the ROMs with respect

to the original EM model.

Top one consists of the spiral, air and the more critical partof the substrate (including the N-Well),
whereas the Bottom domain includes the lower homogeneous substrate bulk. The global ports are in
the Top domain, one related to the spiral (one terminal connected and the other grounded), and the
other one to the N-Well (See Figure 7 for the layout topology), which means that the Bottom domain
does not have any external port. This domain is only related to the Top domain via EM couplings. The
characteristics of the example system are shown in Table II,where the couplings between domains are
included as terminals inside the corresponding block (464 coupling terminals connect both domains).

The BS methodologies generate very compressed models, withexcellent accuracy in comparison
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Figure 9. Layout configuration of the Double Spiral example.

Table III. Characteristics of the third example: Double Spiral

Block Original BS PMTBR BS PRIMA

Size | SR | #I/O Size | SR | #I/O Size | SR | #I/O

Left 85616 | 6.3e-5 | 938 54 | 1.00 | 938 600 | 1.00 | 938

Middle 8027 | 4.4e-3 | 1874 59 | 1.00 | 1874 600 | 1.00 | 1874

Right 85629 | 9.1e-5 | 938 87 | 1.00 | 938 600 | 1.00 | 938

Complete 179272 | 5.9e-5 | 2 200 | 0.88 | 2 1800 | 0.89 | 2

with the original EM model. Figure 8 shows the value of the impedance at the spiral port as
a function of the frequency. Experimental measurements arealso shown in order to validate the
EM modeling technique. It is important to notice that the BS PRIMA approach is more accurate
around the expansion point (lower frequency), losing accuracy at higher frequencies for the given
number of moments matched (40). The PMTBR based approach offers more compressed models, with
independent compression for each block (36 and 24 in this example) based on its complexity and
relevance on the global ports, and a better accuracy overall, although it requires a higher computational
cost (due to its multi-point nature). For details on the reduction sizes, see Table II. Another interesting
aspect of the methodology that Table II presents, is that theBS approaches manage to reduce the
blocks to a size smaller than the number of local connectors of each sub-system, while preserving the
structure of the system. Therefore the sub-system representation can be recovered (see Section 4.2 for
a theoretical interpretation of such phenomena). This is possible because only global ports are taken
into account, and is an interesting advantage, since individual projection based reduction of such sub-
systems could never achieve such a degree of compression.

5.3. Double Spiral

Our third example is another industrial circuit, composed of two coupled integrated planar spirals.
Each of the spiral ends represent one port, having one terminal voltage excited (intentional terminal,
IT) and one terminal connected to ground (see Figure 9 for a layout topology). The complete domain,
of size179272, includes substrate and upper air, and is partitioned into three sub-domains, each of them
connected to the others via a set of connectors (modeling both electric and magnetic interactions). In
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Figure 10. Coupled Double Spiral: Comparison of ROMs versusExperimental measurements and MOMENTUM
results. (Top) Real (left) and Imaginary (Right) part ofZ11. (Center) Real (left) and Imaginary (Right) part ofS11.

(Bottom) Real (left) and Imaginary (Right) part ofS21.

the left sub-domain we have the left spiral, in the middle domain the area between spirals, whereas in
the right domain we have the right spiral. Each sub-domain includes the corresponding substrate and
upper air layer. The Full Wave EM model was obtained via Finite Integration Technique (FIT) [13], and
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its matrices present a Block Structure that follows the domain partitioning (see Table III for details).
Notice that the number of connectors or hooks for each domainis 938, whereas the global ports

are only2. Trying to reduce the domains independently with standard projection methodologies would
lead to huge models (each block vector generated would have938 vectors), and would not provide
us with any simulation advantage. On the other hand, the BS methodologies manage to obtain very
compressed models. In fact, in Table III it can be seen that the sizes of the blocks are much smaller
than the number of connectors for each domain. This may look strange, but in fact we have maintained
the block structure, and we are able to recover the original connection between sub-domains, while at
the same time achieving a better compression by using the global ports. It is important to notice that,
although the number of connectors between sub-domains is high, the off-diagonal blocks in the global
reduced matrix (related to the couplings or interconnections) are of the adequate size and full. This is
coherent with the results in Section 4.2.

The BS PMTBR based approach generates different orders for each domain, according to its
complexity and relevance on the external ports, to yield a200-dofs ROM. For the Krylov based
approach, 300 moments are matched at a single expansion point, to generate a 1800-dofs ROM.
Both methodologies preserve the block structure (providedby the domain decomposition) after the
reduction stage. The frequency results for the impedance atone port, and the S-parameters, can be
seen in Figure 10, in which the experimental measurements upto 40GHz, and the EM results using
the commercial MOMENTUM tool (up to15GHz) are included. The proposed methodology provides
a very good agreement, and both BSP PRIMA and and BSP PMTBR provide highly compressed and
accurate models.

6. CONCLUSIONS

In this paper we have presented guidelines for the reductionof a complete system described by a set
of hierarchy aware EM models. The systems can be representedin a Block Structure manner, with
entries related to the sub-systems in the diagonal blocks ofthe matrices, and interactions between sub-
systems (i.e. interconnections or couplings) in the off-diagonal blocks. In order to preserve the initial
hierarchical structure of the complete system, Block Structure Preserving Model Order Reduction
methodologies were advocated. We have shown that these methodologies are generalizations of the
systemic approaches based on Interconnected Systems’ representation and reduction.

A novel approach that combines the BSP reduction with the PMTBR framework was introduced.
The presented scheme, similarly to the TBR based Interconnected systems reduction (ISBT), allows
us a individual reduction of the multiple sub-systems by using global I/O information. The reduction
order of each sub-system can be controlled individually in terms of its global I/O relevance, by a simple
a posteriorianalysis of the Singular Values. The use of a BSP projection scheme allows us to model
coupling effects, while maintaining the hierarchy and block sparsity patterns after the reduction step.
Some examples were also presented, which showed the performance of the advocated approach.
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