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SUMMARY

Unintended and parasitic coupling effects are becomingemelevant in currently designed, small-scale/high-
frequency RFICs. Electromagnetic (EM) based procedurest beiused to generate accurate models for proper
verification of system behaviour. But these EM methodolegitay take advantage of structural sub-system
organization as well as information inherent to the IC pbgklayout, to improve their efficiency. Model order
reduction techniques, required for fast and accurate atialtuand simulation of such models, must address and
may benefit from the provided hierarchical information. t8ys-based interconnection techniques can handle
some of these situations, but suffer from some drawbacks applied to complete EM models. We will present
an alternative methodology, based on similar principleat bvercomes the limitations of such approaches. The
procedure, based on structure-preserving model ordectieditechniques, is proved to be a generalization of the
interconnected system based framework. Further impromtsrtbat allow a trade off between global error and
block size, and thus allow a better control on the reductioh be also presented.

Copyright(© 2009 John Wiley & Sons, Ltd.

KEY WORDS. Model Order Reduction; Structure Preserving; EM Simolatinterconnected Systems

1. INTRODUCTION

Model Order ReductiofMOR) techniques have achieved a considerable level of nivata the last
few years, and their application is widespread and wellbdistzed, from the automotive and aerospace
industries to the electronic realm [1, 2, 3]. They are thedimmls for avoiding detailed simulations,
far too costly in time and computational resources, proxgdimaller yet accurate models able to be
processed in the simulation flow. However, these method matsinly provide reliable models in the
input-output behavioral sense, but they must also maistaime of the physical inherent characteristics
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2 J. FERMANDEZ VILLENA, W. H. A. SCHILDERS, AND L. M. SILVEIRA

of the original systems, such as the stability and passiwit{y obvious implications to the simulation
itself.

Within the electronics industry, the most popular methagseither the Moment Matching based
methods [4, 5, 6, 7] or the Balanced Truncation frameworkL[B,9]. Recently, a new approach that
links the rational Krylov procedures to tAeuncated Balanced RealizatighBR), namedoor’'s Man
TBR (PMTBR), has been presented [11].

However, the ever increasing range of frequencies, togettik the shrinking feature size, led to
the necessity of taking into account formerly negligibledtomagnetic (EM) interactions between
the multiple sub-systems that compose a full system. New Edeating methodologies [12, 13] take
advantage of such hierarchical information, and MOR stagesild be able to include and maintain
such a valuable information.

The present document aims at providing some basis for effitechniques able to address the
above mentioned issue, and it is structured as follows: #ti@® 2 a quick review of the main MOR
techniques, including their advantages and drawbackkpwipresented. In Section 3 a first system-
based approach for handling and reducing interconnectedrsg will be revisited, giving the basis for
a hierarchical representation. In Section 4 the strugweserving model reduction approaches will be
introduced, to further link them to the interconnectedtaysbased, and present some improvements.
Next, some simulation results will be presented in Sectiofite document will be closed with some
conclusions in Section 6.

2. BACKGROUND IN MODEL ORDER REDUCTION

The main techniques for MOR are geared towards the reducfiarstate space linear time-invariant
system, obtained by some modeling methodology, and remiiegea physical system. In such state
space representation, the output is related to the inpuorige inner states satisfying,

Ciz+ Gz = Bu

y = Lx + Du. (1)

whereC, G € R™*™ are respectively the dynamic and static matridess R”*™ is the matrix that
relates the input vectar € R™ to the inner states € R™ andL € RP*" is the matrix that links those
inner states to the outpugse RP. The matrixD € RP*™ represents possible direct algebraic relation
between inputs and outputs.

This time-domain description yields a frequency respongdeted via the transfer function

H(s) = L(sC+G)™'B+ D, )
for which we seek to generate a reduced order approximadiale, to accurately capture the input-
output behavior. R o

H(s) = L(sC+G)'B+ D, (3)
in which (7, G € R4, B € R?*™ andL € RP*4 are the reduced set of matrices, Witk n.

In general, one attempts to generaiReduced Order Mod¢ROM) whose structure is as similar to
the original as possible, in order to facilitate further slations.

2.1. Moment Matching

Moment matching techniques have gained a well deserved daméo their simplicity and efficiency.
Proof of this is the large number of variants existing (sorrengples are [4, 5, 6, 7]). They rely
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BLOCK ORIENTED MOR OF INTERCONNECTED SYSTEMS 3

on the computation of the so called moments, i.e. the coeffisiof the Taylor Series expansion of
the transfer function in (2) around some frequency pointh&es, currently the most well known of
these techniques is PRIMA [4], where a Krylov subspace ispded in an iterative fashion, via an
iterative Block Arnoldi procedure, to latter project théginal system matrices in (1), via a congruence
transformation, into that subspace.

colsp{V} = Kr{A,R,q}, with A=-G7'C, R=G™'B, (4)

G=vTqv C=VTCV B=VTB L=LV (5)

where Kr {A, R, q} is the Krylov subspace of block moments R, AR, ... A2"'R), andV is the
projector applied in the congruence transformation (5}Herreduction.

This projection avoids numerical problems, and provideth&r benefits, such as the preservation of
passivity under certain conditions (usually fulfilled iretbase of electric based models). The iterative
nature of the method and easy implementation turn theseguoes into an efficient framework when
applied to very large systems. On the other hand, the modeined are sometimes larger than
the necessary, in particular for large frequency ranges,tih@ reduced matrices are full, losing all

initial sparsity. Furthermore, the only known techniquesd priori order selection are expensive and
cumbersome to implement.

2.2. Balanced Truncation

Another wide spread approach is the Truncated Balancedzasah (TBR) [8, 9], which relies on
the analysis of the Controllability and Observability oethner states, via the computation of the
Gramians. The system is balanced under a similarity tramsfoon (which makes both Gramians
equal and diagonal). That balancing maintains invariamirtput-output properties of the state-space
model, such as the transfer function and the eigenvalueeggfahe product of both the Controllability
and Observability Gramians.

These eigenvalues, also known as Hankel singular values,beaassociated to an energetic
interpretation of the system, and more precisely, of théestaBy truncating the "weak” states
associated to the low value eigenvalues, the remainingrigtrstates, associated with highly energetic
eigenvalues, lead to a good reduced approximation of tiggnatisystem. Furthermore, this framework
is purported to give quasi-optimal reduced models, and tfog ean be controlled via aa posteriori
theoretical error bound on the frequency domain, given leystim of the truncated Hankel singular
values [10]. On the other hand, the computation of the Grasnr@quires solving a dual pair of
Lyapunov equations, which can be hard to implement and ddsigh computational effort. These
facts limit the applicability of the TBR frameworks to smadlmedium size models.

2.3. PMTBR

Poor's Man TBR (PMTBR) [11] is a projection MOR technique ttlexploits the direct relation
between the multipoint rational projection framework [Tidathe truncated balanced realization, via
a statistical interpretation of the system Gramians. Tkis approach can take advantage of s@ame
priori knowledge of the system properties, and is less expensiegrims of computation, but tends to
TBR when the order of the approximation increases.

The system Gramians can be expressed in the frequency dqafsén applying Parseval’s
Theoren. In the case of the controllability Gramian

X:/ (jwC + G)'BBT (jwC + G) Hdw (6)

Copyright(© 2009 John Wiley & Sons, Ltd. Int. J. Numer. Model2009;submission:1-19
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4 J. FERMANDEZ VILLENA, W. H. A. SCHILDERS, AND L. M. SILVEIRA

wherew is the frequency. A quadrature rule can be applied in theuigagy space to approximate the
Gramian via numerical computation

P
X = Z w2z (7

The samples are given by = (G +s;C) "' B, wheres; = jw; (withi = 1,2, ..., P) areP frequency
sample points. The; andw; can be interpreted as nodes and weights of the quadratueescihe
actual mechanics of the algorithm are akin to multi-poij@ction. Let” be a matrix whose columns
are thez;, andWW the diagonal matrix of the square root of the weights. Egphcén be written more
compactly as:

X =zw?z" (8)

Ifthe quadrature rule applied is accuratewill converge taX, which implies the dominant eigenspace
of X converges to the dominant eigenspaceXaf Computing theSingular Value Decomposition
(SVD) of ZW, ZW = V. SU (with S real diagonal, and’, U unitary matrices), it is easy to see
that V' converges to the eigenspaceXf and the Hankel singular values are obtained directly from
the entries ofS. V can then be used as the projection matrix in a model orderctisshuscheme.
The congruence projection scheme provides this methodthétlsame advantages that in the case of
PRIMA. Furthermore, the connection with the TBR framewonkl dhe fact that the singular values
converge to the Hankel singular values, makes it possibleséthem in a direca posteriorierror
bound in the same way the Hankel singular values were used.

3. INTERCONNECTED SYSTEMS

An Interconnected System (IS) is a global model composeeh@al sub-systems. Inside the global IS,
the inner sub-systems interact by some relations betwedridbal inputs and outputs. The global IS
can be represented in terms of tilebalinput-output behavior, but the hierarchy of the intercartios
makes the inner models still recognizable. The schematim&xample is shown in Figure 1.

From this starting point, the reduction of the completeesystay follow different paths. One is to
reduce the complete system by focusing on the global inptgtt response. This approach leads
to a more compressed result, as it just focuses on the glafavor. On the other hand it may
destroy the inner structure, making the sub-systems nelatigtinguishable. Another possibility is to
reduce every inner model individually, taking into accoitsmtocal behavior. If each model response is
accurately captured, the same relations between locatsrgma outputs will lead to a reduced IS with
similar characteristics. Despite maintaining the innencture of the interconnection, some complex
sub-systems may require large order models to accuratptyregasome individual behavior with no
effect on the global response. This means that, from a gpaat of view, the reduction is not optimal.

Yet another possibility was already pursued in [14], whitéoagives a good system-viewpoint
formulation for IS. This approach consists in reducing eadividual model but by taking into account
its effect in the global input-output response. Therefitiis,able to maintain the inner structure while
a better global compression is achieved. In the next subsacdhe basis and reduction methods for
this last approach will be briefly presented.

Copyright(© 2009 John Wiley & Sons, Ltd. Int. J. Numer. Model2009;submission:1-19
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BLOCK ORIENTED MOR OF INTERCONNECTED SYSTEMS 5
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Figure 1. IS Global System composed from a set of intercdedesub-systems.

3.1. Basis

Under a system viewpoint, the interconnections are treasesignals which flow between the inner
models, defined as sub-systems, with their local inputs atlts. A new set of matrices is presented,
defined as interconnection matrices, which relates thd lopats and outputs between them, and to
the global inputs and outputs:

a; = u; + 0 Kb

y =0 Fibs
where N, is the number of sub-systems, € R™ andy € RP are the global inputs and outputs
respectively,a; € R™: andb; € RP: are the local inputs and outputs of theh sub-system,
H, € R™*™ is the matrix that relates the global to the local inputs of tfth sub-system ,
F; € RP*Pi js the matrix that relates the local outputs of titl sub-system to the global outputs, and
K;; € RP#*™i is the matrix that relates the local outputs of jhth sub-system to the local inputs of
thei-th sub-system. These relations, in combination with theestpace matrices of each sub-system,
yield in a global transfer function between the inputand outputg;, which can be reformulated in a
global state-space system (see Figure 1 for a graphicadtitapi

Caix 4+ Ggx = Bgu

y = Lgx + Dgu (10)
where (for further details see [14])
CG:CD CDZdiag{Cl,Cg,...CNb}
CG:GD—BK(I—DK)flL GDZdiag{Gl,Gg,...GNb}
BG:BD(I—DK)_lH BD:diag{Bl,BQ,...BNb} (11)
LG:F(I—KD)_lLD LDZdiag{Ll,Lg,...LNb}
Dg=FDp(I - DK)™'H Dp = diag{D1, D, ... Dy,}
H: [HlTHQT...HNbT}T Kll KlNh
K= (12)
F =[Ly,Lo,...Ly,] Ky ... Kwyn,
Copyright© 2009 John Wiley & Sons, Ltd. Int. J. Numer. Model2009;submission:1-19
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6 J. FERMANDEZ VILLENA, W. H. A. SCHILDERS, AND L. M. SILVEIRA

Although providing a nice and clear systemic formulationtfee treatment of interconnected systems,
this formulation retains some drawbacks that make thisagar hard to model EM effects. The signal
based interconnection only allows input-output relatjarsd, as seen in (11), has effect only in the
algebraic part of the system (i.&¢, B, Lg and D). This means that the modeled interactions
accounted for in this formulation are restricted to conthectonnections, with an associated current
flowing through the contact. However, some relevant EM éffeccur without physical contact, via
frequency dependent inductive and capacitive couplindggofwmay be desired or unintended). As an
example let us take two close integrated spiral inductdris Jituation generates a considerable amount
of electromagnetic interaction, modeled as capacitiveiaddctive couplings. This case can not be
properly modeled following the formulation presented. ditgheless, this system based formulation
can be very useful in some cases. The work in [14] presentptaedures to address the reduction
of the system in (10), one based in Krylov projection methartts other in the TBR framework, which
will be briefly summarized in the next two sub-sections (fotlier details see the referred literature).

3.2. Krylov Approaches

Under Krylov based MOR, some theorems are presented anegiov[14], which present some
interesting moment matching properties inside the IS fraonk. First, if the;-th sub-system is reduced
with a projector that spans the Krylov subspaceyahoments obtained with its local state-space
matrices (i.ecolsp {Vi} = Kr{A;, R;, ¢}, with A; = —G;'C; andR; = G; ' B;), then the transfer
function that results from the interconnection of the adl tton reduced systems and thth (reduced)
system matchegmoments of the original one. This can be useful in order tacedome sub-systems
in stand alone modéut, as it has been already explained at the beginning dioBe®, may not be the
best reduction methodology to achieve a good global corsjmes

Second, if a projector whose columns spans the Krylov sudesphithe global system is computed
(i.e.colsp{Ve} = Kr{Ag, Rg,q}, with A = —G;'Ce andRe = G'Bg), then every single
sub-system can be projected block wise (8. = [V/© ... Vﬁb]T, andV; applied in a congruence
transformation over théth sub-system). The transfer function generated fromrttex¢onnection of
the resulting reduced sub-systems matches at leasdtments of the original non reduced transfer
function. This theorem opens some possibilities more iroatance with the proposed scheme, as
it provides an independent sub-system reduction but fagusn capturing the global input-output
behavior.

3.3. Balanced Truncation Approaches

The work in [14] is centered in a TBR-based scheme for MOR efith The Interconnected System
Balance Truncation (ISBT) presented there pursues exthetiseduction of the individual sub-systems
in terms of the global I/O response.

This objective is achieved by computing the controllapiiind observability Gramians of the
global IS system. Once these global Gramians are obtaihed,are split into block Gramians (by
following the system hierarchy), and the balancing is prenfed block wise, over the states related to
each sub-system in an independent fashion. Therefore jdlgerthal blocks of the controllability and
observability Gramians become equal and diagonal. Theation of the "weak” states can be also
done block wise, but the information used for that trunaafice. the Hankel singular values) was
obtained from the global system, and thus those truncat¢elssare the ones that have a "weak” effect
on the global response (see [14] for details and a proof).

Copyright© 2009 John Wiley & Sons, Ltd. Int. J. Numer. Model2009;submission:1-19
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BLOCK ORIENTED MOR OF INTERCONNECTED SYSTEMS 7

To summarize, every sub-system is truncated independéntlyusing the controllability and
observability information of the global input-output resise. The methodology still maintains the
advantages of the TBR procedures, i.e. it provides quasirap models and allows some degree
of error control via the Hankel singular values. Furtherepdhe truncation is applied locally (at
each sub-system), but with respect to the global behaviorth® other hand, the drawbacks of the
TBR framework are increased here, as the scheme needs tautoithe global Gramians, and as
a consequence, to solve a pair of dual Lyapunov equatiorts thi global matrices. It should be
noticed that the size of the global system is the sum of thigichaal sizes of the multiple sub-systems.
Therefore this step becomes extremely computationallgesipe, implying that the reduction of large
size IS becomes very inefficient.

4. BLOCK STRUCTURE PRESERVING

A block structured system is one that has a well defined stradéhside the state-space descriptor, i.e.
the states can be split into several sets depending on theiren(e.g. if the states models voltage or
currents in a simple MNA formulation) or other charactécist Therefore, the matrices of the state-
space descriptor in (1) have a relevant block hierarchy

G11 oo Gle 011 oo Cle
GN;,I GNbNb CNz,l CNbNb
T
B=[B" ... By,7] L=][L; ... Ly,)] (13)

In certain situations it may be useful, or even necessamgdimtain the inner structure of this system
after reduction. It is well known that projection technigdead to full reduced matrices, in which the
inner hierarchy and sparsity pattern of the original masiare lost.

Some techniques for maintaining the block structure of aesysvere already pursued. The first
work to address the problem was [15], where a two-block sirecwas kept in order to separate
voltage from current states in a MNA formulation. Later, 6], the same idea was extended to an
arbitrary number of blocks in order to model several subtits, and in [17] the same approach was
used in the reduction of second order systems. In the fatigwibrief review of the basis of the method
will be done.

4.1. Basis

The main idea for this procedure is to retain the system bébelcture, i.e. the multi-level hierarchy,
after reduction via projection, allowing for a more effideaduction and the maintenance of certain
system properties, such as the sparsity block pattern, lamdlbck hierarchical structurdlock
Structure PreservingBSP) relies on expanding the projector of the global sygtemained via any
classical MOR projection technique) into a block diagonatnm, with block sizes equal to the sizes
of its N, individual component blocks (13).

A basis that spans a suitable subspace for reduction viagiiof is then computed (for example a
Krylov subspace). The projector built from that basis cagfii and restructured into a block diagonal

Copyright(© 2009 John Wiley & Sons, Ltd. Int. J. Numer. Model2009;submission:1-19
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8 J. FERMANDEZ VILLENA, W. H. A. SCHILDERS, AND L. M. SILVEIRA

Figure 2. Interconnected system represented as a Blockt@ted system, and the effect of the subsequent Block
Structure Preserving reduction.

one so that the structure is preserved under congruencédraration.

Vi Vi
: |=colsp[Kr{A,R,q}] — =V (14)
Vn, Vn,

with A = —-G~'C, R = G~' B, andq the reduced order.
The block-wise congruence transformation leads to

Gij = VGV, Bi = VB, (15)
Ciy = V'CyV; L; =LV

It is clear that inside the blocks the structure is lost, apdaithe authors’ knowledge, there are no
known techniques to avoid this effect. Furthermore, the efzhe reduced system is increased, as the
number of columns of the projector after the expansials« q.

On the other hand, the block structure is retained, the tEfvgbarsity is increased (any empty block
remains a empty reduced block), and it can be shown that wedtgin circumstances the number of
moments matched can be increased (upjo< ). In the worst case, the number of moments matched
is ¢, i.e. the same as in the non-structure-preserving reductio

4.2. Interconnected Systems Viewpoint

Let us consider now the case of EM modeling, where the lineanponents considered include
designed-in passives, interconnect, etc. The system igésor has an interesting structure (see
Figure 2), where the diagonal blocks correspond to the iddal block matrices, whereas the off-
diagonal blocks correspond to the conductive interconmest(in the G matrix) or capacitive and
inductive couplings (C matrix). Standard model order reidmtechniques can be applied to this global
system and, while the resulting reduced model will usuadlyable to accurately capture the input-
output behavior of the complete set of blocks, the generatdaced matrices are full and, furthermore,
the original block hierarchy can no longer be recoveredhis ¢ontext, the BSP technique presented
in the previous section can be very helpful, as it can allowousaintain the block hierarchy existing
in the system (see again Figure 2). This structure has a slastarity with the one presented in
the IS formulation (see Section 3), and in fact this is noncimiental, as we will show in a more
formal manner. Let us take for simplicity the case of two comgnts or blocks, which have no
coupling effects other than conductive interconnectidhgrefore the global system matrikis block

Copyright(© 2009 John Wiley & Sons, Ltd. Int. J. Numer. Model2009;submission:1-19
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BLOCK ORIENTED MOR OF INTERCONNECTED SYSTEMS 9

diagonal, whereas th@ matrix has off diagonal blocks related to the interconmedibetween the
two components. The notation will be slightly changed inesrtb give a clearer relation with the
IS formulation, andD will be taken as zero for simplicity, but without loss of geaigy. The global
system representation is

Ci+ Gr=Mu
y=Nzx
(16)
[ Cu 0 _ | Gu G T 7T N —
e=[G &) o= & &) w-pr o vopi
The system can be rewritten in the following expressions
_ | Cu 0 | _
- [ e } —cp
Gi11 G2 Gin 0 0 B1Ki2Ls
[ G21 Gao } [ 0  Ga } [ By K1 Ly 0 } ot
17)
M=[ur mf)T=| B O \ur v = BH
1 2 0 B2 1 2
L 0
N =[N1 No| = [F} F2]{ 01 L, ] =FL
where
G12 = B1K12L2 Ga1 = BaKa1 1
M, = B, H, My = BoHo (18)

N, =F1, Ny = Fy Lo

The simplest way to achieve this decomposition is toBgtnd L; equal to the identity, and thus
K1 = Gy, K21 = Go1, H; = M; andF; = N;,. A different approach could be to perform a Singular
Value Decomposition (SVD) of these blocks, i@;2 = Uj2%12V19, with U and V' orthonormal
matrices containing the singular vectors associated teitigular values contained in the diagonal
matrix 3, and thusB; = Ui, Lo = Vio, and Ko = ¥15. This would also allow a certain degree
of compression in the number of ports of each sub-systemaivardnk approximation, based on the
singular values, is applied. Of course there may be many stiietions depending on the matrices.

Note now that the description in (16) is exactly the same esgmtation achieved via the IS
interconnection of the systems

Cnz+ Gz = Biag Ca2% + Gogxr = Baag

by = Lix by = Lox (19)

wherea; andb; are respectively the local inputs and outputs, with theraaienection matrices defined
as

_ 0 K2 | Hy _
K_[Kzl 0 } H_[HQ} F=[F F] (20)
This sketch of a proof, presented here for the simple case®@btib-systems, can be extended to an
arbitrary number of subsystems, and shows that the intesstion of any circuit can be presented as
a block structured system.

Copyright© 2009 John Wiley & Sons, Ltd. Int. J. Numer. Model2009;submission:1-19
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10 J. FERMANDEZ VILLENA, W. H. A. SCHILDERS, AND L. M. SILVEIRA

Let us see what happens when a Krylov-based Block Structes=Rring reduction is applied to this
interconnected system. Consider a projedfdhat spans a suitable subspace for the reduction of the
global (structured) system. As shown in Section 4.1, thiggmtor can be split and further expanded
following the system structure, in order to preserve suoklbktructure after the reduction. This leads
to

. _[vi 0
V—>V—[ 0 V2:|
o~ V] 19} T _ .
C=VTcv = [ Yi %“Vl VQTCOQQVQ} M=VTM=[MIVi MIV;)" (21
A oren [ VEGUV VTGV S
_ T _ 1 GuVi Vi Giale _ _
G=VTGV = [ VI %TGQQVQ} N=NV=[NMVi NaVa]

If now the decomposition presented in (17) is applied, itigightforward that the reduction in (21) is
equivalent to the independent reduction of the systems3j (tith 1, and V5 respectively, followed
by interconnecting them again with the matrices in (20).

This proves that the BSP reduction of the system is equivédethe Krylov-based reduction of the
interconnected systems as presented in [14] (this fact veagg numerically via several simulations,
but the results are not presented as we feel the theoretioaf pketched here is stronger and more
appealing).

However, it is important to recall that the BSP scheme alldfes reduction of systems when
there are couplings between the sub-system blocks (i.ee #re non-zero off-diagonal blocks in the
global C' matrix). For this reason, it can be concluded that the BSRatémh framework is, in fact, a
generalization of the Krylov-based IS scheme.

4.3. PMTBR connection

The results in the previous section show a direct relatioméen both BSP and Krylov-based IS
frameworks. In Sections 2.1 and 2.2 the advantages and dckstof both moment matching and
TBR were presented, which can be extended to the current case

The Krylov approach is highly efficient, but it has poor cohtver the accuracy and order of the
blocks. Furthermore, all the blocks must be reduced to theessize, what can become a serious
drawback when the complexity of the models differ a lot (ameréfore very different reduced orders
are needed for their accurate modeling). The balanced dtiomc approach seems to have better
performance, in particular in the case of interconnectestesys, in which the trade off between
the order and the accuracy can be done sub-system wise. ldgvtkeg high cost required for the
computation leads one to outright discard this method inA Eamework.

It is important to notice that any projection-based MOR pihaore can be extended in the BSP
manner to maintain the hierarchical structure of a systehis includes the case of the PMTBR
algorithm, where additional characteristics of the prazedan be further taken advantageous of in the
current framework. In Section 2.3 it was shown that if thedrature scheme (7) is accurate enough,
then the estimated Gramiaki converges to the original on&, which implies that the dominant
eigenspace ok converges to the dominant eigenspac&otf the system has some internal structure,
then the matrix2 computed from the vector samples of the global system carmpliiergo several
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blocks. The estimated Gramian can be written block-wise as

7z VAV lej{}’b
: — zzH = : : =X (22)
Zn, Zn, 28 L ZNbZ]{,Ib
But if we expand the matri¥ into diagonal blocks
7 AV
j— —z7H= =X. (23)
ZNb ZNbZZI\L/Ib

From (22) it can be seen thatZ# = X, i.e. the matrixX = ZZ" is a block diagonal matrix whose
entries are the block diagonal entries of the makfixUnder a good quadrature scheme, the maifix
converges to the original, and thereforeX will converge to the block diagonals &f .

This means that the dominant eigenspacéi'ocfonverges to the dominant eigenspace of the block
diagonals ofX. We can then apply an SVD to each block of thenatrix

Zi =ViSiU; — Xy = Xy = Vi S2viT (24)

where S; is real diagonal, and/; and U; are unitary matrices. The dominant eigenvectors/pf
corresponding to the dominant eigenvaluesptan be used as a projection matrix in a congruence
transformation over the system matrices for model ordencgon. The elements of; can also be
used for a simpl@ posteriorierror estimation in a fashion similar to how Hankel singwalues are
used in TBR procedures.

Using these block projectoiig, a structure preserving projector for the global syst§f1)1 ¢an be
built (14) which will capture the most relevant behavior aick block (revealed by the SVD) with
respect to the global response (recall tHas composed of sample vectors of the complete system).

This approach provides us with more flexibility when redgca complete system composed of
multiple blocks and the interactions between them, asatalus to individually control the reduced
size of each sub-system, i.e. block-wise, via an error egtim based on the global input-output
response (and unlike the Krylov-based procedure, onlyttiwlg necessary order for the reduction of
each sub-system is needed). The procedure is analogous {8BT one presented in Section 3.3
(for further details see [14]), which provides another lingtween the BSP and IS frameworks,
but unlike the latter, the PMTBR-based BSP does not incuretteessively large cost of the ISBT
when applied to large systems. Furthermore, the existeh&Mocouplings is no longer an issue,
since the original system is formulated as a global blockcstired state space description (and
thus the projection is applied on the global system). Pagdi guaranteed (as long as the PRIMA
conditions for passivity are fulfilled by the global struetd system), since the reduction is done via a
congruence transformation. Further advantages inhesénetPMTBR framework, such as weighting
and frequency selection, are also extendable in a straigtdfd manner.

5. RESULTS
In this section we show the results of applying the technjayeésented to several systems.
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Table I. Characteristics of the first example: SPIRAL and @MI

Block Original PMTBR BS PMTBR PRIMA BS PRIMA
Size|SR[#I/0 || Size|SR|#I/O || Size|SR[#I/O || Size|SR[#I/O || Size|SR|#I/O
1st (RC line) 101 | 0.029 | 2 - 5 | 1.00 | 2 - 14 | 1.00 | 2
2nd (Spiral) 4961 | 9e-4 | 2 - 39 | 1.00 | 2 - 60 | 1.00 | 2
3rd (RC line) 101 | 0.029 | 2 - 5 | 1.00 | 2 - 12 | 1.00 | 2
4th (CMIM) 6044 | 8e-4 | 2 - 18 | 1.00 | 2 - 60 | 1.00 | 2
Global 11207 | 4e-4 | 2 44 | 1.00 | 2 67 | 0.636 | 2 60 | 1.00 | 2 146 | 0.567 | 2
0.35 10°
—— NOMINAL (size 11207) .
oa| PRIMA (size 60) - X 1 R AR ORI
' BS PRIMA (size 146) = + 1021 .

‘= = PMTBR (size 44)
BS PMTBR (size 67)

0.25

0.1r

R PRIMA (size 60)
-8 | BS PRIMA (size 146) | |
e o R PMTBR (size 44)

BS PMTBR (size 67)

0.051

1010 1011

Frequencies (Hz)

n
9

8 9 10 11 8
10

10 10
Frequencies (Hz)

Figure 3. SPIRAL and CMIM example: (Leftyi:| versus the frequency for the original model and the several
ROMs. (Right) Infinity Error | H — H.|| ) of the ROMSs versus the frequency.

5.1. Spiral and CMIM

This first example we discuss is composed of four sub-systiradirst one is a RC lumped model of
an interconnect line, the second is a Full-Wave EM model ofegrated Spiral, including surrounding
substrate and air, the third is another RC lumped model aft@ndonnect line, and the forth is another
Full-Wave EM model, in this case of a Metal-Insulator-Mg(slllM) capacitor. These four models
are connected, generating a four block global model. TabloWws the relevant characteristics of the
system, in which each sub-system is characterized by itbeuof states (Size), its sparsity ratio (SR),
and its number of terminals (#1/0). These features are alssemted for the global system (Global),
and for each of the reduction procedures that are benchuharke

For the reduction, we are going to benchmark standard MOftgues based on Moment Matching
(PRIMA [4]) and on TBR approximation (PMTBR [11]), againstoBk Structure Preserving (BS)
approaches with the same underlying reduction procedueesBS PRIMA and BS PMTBR). It is
important to recall here that the BS approaches and the I®agipes are exactly the same here, since
there are no EM couplings between subsystems, only elécteiconnections.

For the PRIMA approache8() block moments are computed, whereas PMTBR approaches are
reduced withl5 frequency samples and a tolerancd ef3. In the case of BS PMTBR this tolerance
is applied block-wise. From Table | we can see the block sizéise BS approaches (in the standard
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Figure 4. SPIRAL and CMIM example: (Left) drop of the singwalues for the PMTBR estimated Gramian, the
BS PMTBR estimated Gramian, and the several Block Gram{&ight) detail of the leading Singular Values.

approaches the inner structure is lost, and thus the fieltheitable are empty). Smaller sizes in blocks
1 and3 for the PRIMA based framework are due to deflation in the basisonormalization. The
block sizes of the BS PMTBR procedure are determined autoatigtfor the fixed tolerance. The
blocks are full after the reduction, but the complete sysi@ithretains a certain degree of sparsity, and
the sub-systems are still distinguishable.

Figure 3 shows the frequency based transfer function of tiggnal model and the ROMs. It also
presents the error, measured as the infinite nffin— H, || at each frequency point. It can be
seen that, while accurate at lower frequencies, local esiparMoment Matching approaches have
less overall accuracy. Sampling based approaches behtee dleng the whole frequency range.
Multipoint moment matching approaches may be applied hétte immprovements on the accuracy.
Now let us study the error control features of the BS PMTBRraaph. Figure 4 shows a plot of the
maghnitude of the singular values (SV) for the PMTBR appro#ith BS PMTBR approach, and for
each of the individual blocks (note that since systems inkdd and 3 are the same, the singular values
are quite similar, and thus the curves almost overlap onthano These SV are obtained by estimating
the (global) gramian witl300 samples. It can be seen that the PMTBR SV "drop” is limited gy t
maximum among the blocks’ SV (i.e., the curve is above theimam of the individual blocks’ SV but
close to them). On the other hand, the BS PMTBR SV "dropt” matly the same as the contribution
of the blocks’ SVs (this is logical, as these are obtainedhftibe SVD of the block diagonal Gramian),
and thus the number of SV retained for the same tolerancerisased, but the curve exhibits the same
behaviour as the one of the PMTBR. Furthermore, a detailetysthows that the first (dominant) SVs
are the same for both approaches. Figure 5 shows the coneergkthe Singular Values as we increase
the number of sampling points used in the estimation of tre@an. It is clear that both approaches
converge at a similar ratio.

Figure 6 shows how the error in the transfer function appnation decreases along with the
tolerance settled for the reduction, with an automatic ost#dection (order is presented along the
horizontal axis). Curves are shown for both approaches, BRI&nd BS PMTBR. It is clear that
PMTBR generates models with higher compression, but tieedsting thing is how the error can be
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Convergence of SV as the # of samples increases Convergence of SV as the # of samples increases
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Figure 5. SPIRAL and CMIM example: Convergence of the SiagMalue with the increase in the number of
sampling points: (Left) for standard PMTBR, and (Right) B8 PMTBR.

(15 samples) PMTBR and BS Error and Tolerance versus ROM size , (30 samples) PMTBR and BS Error and Tolerance versus ROM size , (50 samples) PMTBR and BS Error and Tolerance versus ROM size
10 10

—e— PMTBR: Max [H - Hl, —e— PMTBR: Max [H - H, —6— PMTBR: Max[[H = Hl
: .8 PMTBR: Fixed Tolerance| a .0 PMTBR: Fixed Tolerance| a 0 ..@ - PMTBR: Fixed Tolerance|
“a R ——BS: Max [ Kl 107 —— BS: Max [IH - Hl, 107\ ' —y— BS: Max |IH ~
A .. BS: Fixed Tolerance ...Q+ BS: Fixed Tolerance ~ Q- BS: Fixed Tolerance

A °
] (2 3 3
: s g
] o 107 10°
o 3
o 0. 10° ] '3 10°
o ° o “o
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Figure 6. SPIRAL and CMIM example: Comparison of the behawaf the tolerance settled and the error incurred
with such tolerance with an automatic order selection,ugethe ROM size. (Left) Fot5 samples, (Center) for
30 samples, and (Right) fai0 samples.

controlled with the blocks’ singular values for the BS PMTBRproaches, and thus generating an
almost optimal block-wise compression based on global &évance. Furthermore, the convergence
of the BS PMTBR approach for small tolerances seems faghés.i$ because for a small number of
samples, the standard PMTBR approach does not have enoagisvt generate a good model for
the global system, whereas the block-wise approach onlgsteegenerate basis for the blocks, which
can be approximated with a smaller number of vectors. Thisgatentially reduces the number of
samples needed for achieving a desired error.

5.2. SPIRAL over N-Well

The second example is a system taken from an industrialiginduich has an integrated Spiral Inductor
over an N-Well. The system is modeled via Full-Wave Finited¢mation Technique (FIT), with Domain
Decomposition (for further details see [13]). The complitenain is split into two sub-domains, the
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Table Il. Characteristics of the second example: SPIRAL disVell
Block Original PMTBR BS PMTBR PRIMA BS PRIMA
Size|SR|#I/O Size|SR|#I/O || Size|SR|#I/O | Size|SR[#I/O || Size|SR|#/O
Top 34595 | 1.9¢-4 | 466 - 36| 1.00 | 466 - 80 | 1.00 | 466
Bottom || 16397 | 3.2¢-4 | 464 - 241.00 | 464 - 80| 1.00 | 464
omplete Ae- . . . .
C let 50992 | 1.4e-4 | 2 36 |1.00 | 2 60| 1.00 | 2 80| 1.00 |2 160 | 1.00 | 2
300 10°
500 ‘: Measures " PRIMA (80) R *
’ EM (50992) BS PRIMA (160)
200 PRIMA (80) S|l - PMTBR (36) N
400 £ BS PRIMA (160 000 BsPMTBER ©9) A S
& ~ — PMTBR (36) = Ay
Measures 2 1007 | _ _ _BspMTBR (60) S ) - g
300 EM (50992) £ T 4 oy
PRIMA (80) g ol N L "
BS PRIMA (160)| * h ' - s
200 — — PMTBR (36) + 7 w P
- — ~BSPMTBR(60) | / 100 10 o
100 F
e wa%*”f -200 o
0 8 9 10 8 9 10 10 8 9 10
10 10 10 10 10 10 10 10 10

Frequencies (Hz) Frequencies (Hz) Frequencies (Hz)

Figure 8. SPIRAL over N-Well example: (Left) Real part ande(e) imaginary part ofZ;;, for the
measurements, the original EM model and the ROMs. (RighigtRe Error in|Z11 | for the ROMs with respect
to the original EM model.

Top one consists of the spiral, air and the more critical pathe substrate (including the N-Well),
whereas the Bottom domain includes the lower homogenedastrate bulk. The global ports are in
the Top domain, one related to the spiral (one terminal coiedeand the other grounded), and the
other one to the N-Well (See Figure 7 for the layout topologhich means that the Bottom domain
does not have any external port. This domain is only relaie¢ddg Top domain via EM couplings. The

characteristics of the example system are shown in Tablehkre the couplings between domains are

included as terminals inside the corresponding bldéKd Coupling terminals connect both domains).
The BS methodologies generate very compressed modelsexgttllent accuracy in comparison
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Figure 9. Layout configuration of the Double Spiral example.

Table Ill. Characteristics of the third example: Doubler&bpi
Block Original BS PMTBR BS PRIMA

Size | SR |#1/0 || Size | SR | #1/0 || Size | SR | #1/0
Left 85616 | 6.3¢-5 | 938 || 54]1.00 938 || 600 |1.00 | 938
Middle || 8027 | 4.4e-3 | 1874 || 59]1.00 | 1874 || 600 | 1.00 | 1874
Right || 85629 |9.1e-5]938 || 87]1.00|938 | 600 1.00 938
Complete| 179272 | 5.9¢-5 | 2 200 | 0.88 | 2 1800 | 0.89 | 2

with the original EM model. Figure 8 shows the value of the @dance at the spiral port as
a function of the frequency. Experimental measurementsals@ shown in order to validate the
EM modeling technique. It is important to notice that the BSINRA approach is more accurate
around the expansion point (lower frequency), losing aamcyrat higher frequencies for the given
number of moments matchedl)). The PMTBR based approach offers more compressed modtis, w
independent compression for each blo8k &nd 24 in this example) based on its complexity and
relevance on the global ports, and a better accuracy oyalthlbugh it requires a higher computational
cost (due to its multi-point nature). For details on the i&itun sizes, see Table Il. Another interesting
aspect of the methodology that Table Il presents, is thaBBeapproaches manage to reduce the
blocks to a size smaller than the number of local connectioesch sub-system, while preserving the
structure of the system. Therefore the sub-system repgancan be recovered (see Section 4.2 for
a theoretical interpretation of such phenomena). This ssipte because only global ports are taken
into account, and is an interesting advantage, since ithgialiprojection based reduction of such sub-
systems could never achieve such a degree of compression.

5.3. Double Spiral

Our third example is another industrial circuit, composédwm coupled integrated planar spirals.
Each of the spiral ends represent one port, having one tatmittage excited (intentional terminal,
IT) and one terminal connected to ground (see Figure 9 foyaulietopology). The complete domain,
of size179272, includes substrate and upper air, and is partitioned metsub-domains, each of them
connected to the others via a set of connectors (modelifgdiettric and magnetic interactions). In
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Figure 10. Coupled Double Spiral: Comparison of ROMs veEygerimental measurements and MOMENTUM
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the left sub-domain we have the left spiral, in the middle donthe area between spirals, whereas in
the right domain we have the right spiral. Each sub-domaitudes the corresponding substrate and

upper air layer. The Full Wave EM model was obtained
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its matrices present a Block Structure that follows the darpartitioning (see Table Il for details).

Notice that the number of connectors or hooks for each dotis&ii8, whereas the global ports
are only2. Trying to reduce the domains independently with standesgeption methodologies would
lead to huge models (each block vector generated would %28 eectors), and would not provide
us with any simulation advantage. On the other hand, the BBadelogies manage to obtain very
compressed models. In fact, in Table Il it can be seen thasikes of the blocks are much smaller
than the number of connectors for each domain. This may lvakge, but in fact we have maintained
the block structure, and we are able to recover the origimhection between sub-domains, while at
the same time achieving a better compression by using theamrts. It is important to notice that,
although the number of connectors between sub-domaingtis thie off-diagonal blocks in the global
reduced matrix (related to the couplings or interconnesfi@re of the adequate size and full. This is
coherent with the results in Section 4.2.

The BS PMTBR based approach generates different ordersafdn domain, according to its
complexity and relevance on the external ports, to yiel20@-dofs ROM. For the Krylov based
approach, 300 moments are matched at a single expansiot) pmigenerate a 1800-dofs ROM.
Both methodologies preserve the block structure (provisethe domain decomposition) after the
reduction stage. The frequency results for the impedanoaeatport, and the S-parameters, can be
seen in Figure 10, in which the experimental measurements UpGHz, and the EM results using
the commercial MOMENTUM tool (up t@5GHz) are included. The proposed methodology provides
a very good agreement, and both BSP PRIMA and and BSP PMTBRderbighly compressed and
accurate models.

6. CONCLUSIONS

In this paper we have presented guidelines for the reducfiancomplete system described by a set
of hierarchy aware EM models. The systems can be represente®lock Structure manner, with
entries related to the sub-systems in the diagonal bloctteeahatrices, and interactions between sub-
systems (i.e. interconnections or couplings) in the offgdinal blocks. In order to preserve the initial
hierarchical structure of the complete system, Block Stm&cPreserving Model Order Reduction
methodologies were advocated. We have shown that thesedwdtigies are generalizations of the
systemic approaches based on Interconnected Systemasegpation and reduction.

A novel approach that combines the BSP reduction with the BRITramework was introduced.
The presented scheme, similarly to the TBR based Interatedeystems reduction (ISBT), allows
us a individual reduction of the multiple sub-systems byggilobal I/O information. The reduction
order of each sub-system can be controlled individuallgimis of its global I/O relevance, by a simple
a posteriorianalysis of the Singular Values. The use of a BSP projectiberme allows us to model
coupling effects, while maintaining the hierarchy and klsparsity patterns after the reduction step.
Some examples were also presented, which showed the parioenof the advocated approach.
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