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Chapter 1

Introduction

1.1 Moving boundary problems

The melting of ice, growth of tumours, winning of oil, and production of glasses are pro-
cesses that have something in common. In all four cases the shape of a clump of matter
(ice, tissue, or fluid) evolves over time. This evolution is due to a driving mechanism,
namely temperature difference, nutrition in the cells, pressure variation, or surface ten-
sion. These processes are modeled as moving boundary problems. The crucial feature
is that the boundary of the moving domain is part of the solution and has to be found.
Besides the shape of the domain we often have to calculate physical quantities such as
velocity, pressure, or temperature inside the domain. These quantities depend on the
motion of the domain and vice versa. For example, the temperature of melting ice in
water depends on the changing geometry. On the other hand, the evolution of the phase
boundary is influenced by the temperature difference between water and ice.

The area of applications of moving boundary problems is very wide. From the ex-
amples above it may appear that we need to restrict ourselves to moving objects that
are three-dimensional clumps of matter. This is not necessary. To give an example from
population dynamics, consider a geographical region in which two competing species A
and B live. One can divide this region into subregions, one in which species A lives, one
with species B, and maybe a third subregion where the species coexist. The evolution of
these regions can be understood from a model including quantities such as population
density. Also in epidemiology a moving boundary between geographical domains can
be used to study the spreading of a virus or a disease.

The subjects that we have mentioned up to now are all related to physics or biology.
There are however many applications in other areas. An example from financial math-
ematics is pricing of American options [78]. A put option is a contract that gives the
right to the holder to sell a risky asset like a stock within a specified period at a price
that is fixed in advance. It is a natural question to ask what a fair price is for such an
option. Many models for option pricing are based on the famous Black-Scholes partial
differential equation [6] and include a so-called exercise boundary. The stock should
be sold when its value reaches this boundary. The exercise boundary and the optimal
option price, need to be determined simultaneously.

Roughly speaking, in applied mathematics there are three ways to approach moving
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Figure 1.1: Sketch of horizontal Hele-Shaw cell with injection or suction through a thin tube

boundary problems. First of all, there is the numerical approach. In practise it is often
inevitable to use numerical simulations to approximate solutions. A difficulty is that
the geometries may become very complicated. Boundaries may become very irregular
or even fractal. Another issue is that in some situations solutions suddenly vanish. We
will discuss an example in which a solution breaks down in Section 1.2. The second ap-
proach is constructing exact analytical solutions. In Section 1.2 we discuss some cases in
which this is possible. Apart from numerics and finding exact solutions, one can use an-
alytical methods to prove qualitative properties like existence of solutions with certain
regularity on some time interval. Besides existence there is the question of uniqueness.
It is often believed that a model from the ”real world” has precisely one solution. This
is not always the case since reality is often simplified. Therefore, existence and unique-
ness theorems are not only interesting for purely theoretical purposes but they also tell
us whether a model is acceptable after simplifications or not. An example in which a
mathematical model, that seems a reasonable description of reality, has no solutions, is
a creeping flow past a cylinder. This example of non-existence is known as the Stokes
paradox [52]. Besides existence and uniqueness a third condition for well-posedness
is that a slight modification in the initial conditions must lead to small changes in the
outcome.

In this thesis these three issues will be discussed for two important classes of mov-
ing boundary problems, namely Hele-Shaw flows and Stokes flows. In particular, it
will be shown that certain solutions are asymptotically stable. This means that a small
perturbation of these solutions decays during the evolution. The rate of this decay will
be calculated. Several types of boundary conditions, that model different physical situ-
ations, will be considered.

1.2 Hele-Shaw flow

In 1898 the Hele-Shaw model was introduced to describe a liquid flow in a so-called
Hele-Shaw cell [37]. This cell consists of two flat transparent parallel plates that are sep-
arated by a very small distance (see Figure 1.1). In the space between the plates a liquid
layer is confined. In horizontal cells, gravity effects can be neglected. After averag-
ing over the interstice, the liquid layer can be regarded as a two-dimensional bounded
domain. It moves in the presence of one or more driving mechanisms. Dimensionless
pressure p and velocity v are functions depending on two space variables x1 and x2 and
time t. They are related via Darcy’s law, named after a 19th century French hydraulic
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(a) (b)

Figure 1.2: (a) An unbounded liquid region with uniform suction at infinity. (b) A bounded
liquid region with suction at a single point.

engineer,
v = −∇p. (1.1)

Furthermore, the fluid is assumed to be incompressible. Therefore

div v = 0. (1.2)

As a consequence, pressure is harmonic. Equations (1.1) and (1.2) are assumed to hold
inside the moving liquid domain t 7→ Ω(t).

In so-called classical Hele-Shaw flow p is zero on Γ(t) := ∂Ω(t). This models conti-
nuity of pressure over Γ(t), assuming that pressure is zero outside the domain. We will
discuss other boundary conditions later in this section.

On Γ(t) we impose a kinematic boundary condition that says that the normal velocity
vn of the boundary is equal to v · n where n is the normal vector field. This is based on
the assumption that the boundary moves with the particles, such that for any time t the
set of particles at Γ(t) is exactly the same. Completed with driving mechanisms we have
defined a Hele-Shaw moving boundary problem.

Let us briefly discuss some applications of Hele-Shaw flow besides two-dimensional
liquid flow in a Hele-Shaw cell. First of all, the three-dimensional version of the model
is used to describe flows in porous media, like groundwater flow. Furthermore, the
relatively simple model plays a paradigmatic role for understanding more complicated
problems. Variations of the model are used to describe the growth of tumours that
have the structure of a porous medium [7]. A problem that is related to the one-phase
Hele-Shaw problem as well is the Muskat problem [57] in which two immiscible fluids
are in contact with another and form an interface, on which continuity of pressure is
assumed. Another related problem is the Stefan problem, that models melting of ice.
Hele-Shaw flow can be regarded as the limit of this problem for small specific heat, see
for instance [18].

An overview of the history of the Hele-Shaw problem is given in [41] and an overview
of articles on Hele-Shaw flow until 1998 is given in [40]. To complete the specification of
the classical Hele-Shaw problem we assume a driving mechanism. Let us consider the
following two configurations:

• For unbounded domains, one can have uniform injection or suction at infinity as
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Figure 1.3: An approximation of a solution to the classical Hele-Shaw moving boundary prob-
lem with injection. The lines denote boundaries of the domain for several values of time. As time
tends to infinity, the domain ”converges” to an expanding ball. The picture is generated from
the linearised model (see Chapter 2).

in Figure 1.2(a). This is incorporated in the model by assuming that

v ∼ (−µ, 0)T , x1 → +∞. (1.3)

For µ < 0 the fluid retreats and for µ > 0 the fluid expands.

• For bounded domains, one can have injection or suction at the origin (see Figure
1.2(b)). This is modeled by replacing (1.2) by

div v = µδ, (1.4)

where δ is the Dirac-delta distribution. The area of the moving domain increases
if µ > 0 and shrinks for µ < 0 with rate |µ|.

Many other configurations have been considered. An example is a flow outside
bubbles in a parallel-sided channel with a uniform translational motion ( [55], [69]).
Fluids outside bubbles with radial suction of fluid at infinity or injection of air in the
origin have been studied by Howison and Gustafsson ( [35], [42], [43], [44]).

In this thesis we focus on the situation in Figure 1.2(b) with a bounded domain and
one source or sink such that (1.4) holds. The domain Ω(0) is assumed to be a small per-
turbation of a ball. It is clear that if the initial domain is exactly a ball, then the moving
domain will be an expanding/shrinking ball. One of our goals is to answer the question
of stability for this solution. We consider an initial domain that is a perturbed ball and
investigate whether the moving domain ”converges” to an expanding/shrinking ball.
Moreover, we investigate the decay rate of perturbations. Figure 1.3 shows how due
to injection a nearly spherical domain gradually takes more and more the shape of an
expanding ball.

Many results in this thesis are based on linearisation of a parabolic equation that
describes the domain evolution. Let us briefly discuss how linearisation methods have
been used in the stability analysis for a travelling wave solution in the case of an un-
bounded domain with uniform injection or suction at infinity in two dimensions as in
Figure 1.2(a) (see also Howison [45]). Identifying R2 and C, the moving boundary Γ(t)
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consisting of points with real part −µt is a travelling wave solution that is initially (at
t = 0) located at the imaginary axis. Let us consider a small perturbation of the initial
boundary:

Γ(0) = {ε sin(|k|y) + iy : y ∈ R}, (1.5)

with ε small and k ∈ Z. A stability analysis by Saffman and Taylor [66] shows that the
solution to the linearised problem with homogeneous boundary conditions is given by

Γ(t) = {−µt +εe−µ|k|t sin(|k|y) + iy : y ∈ R}.

The travelling wave solution with an advancing boundary (µ > 0) is linearly stable be-
cause all Fourier modes decay when t becomes large. On the other hand, the travelling
wave solution for the receding boundary (µ < 0) is linearly unstable. For this suction
problem we discuss two regularisation methods that play an important role in this the-
sis. The homogeneous Dirichlet boundary condition for p is replaced by two types of
other boundary conditions. We discuss what implications these conditions have for the
linear analysis in the two-dimensional case.

• Surface tension: At the moving boundary we have the relation

p = −γκ, (1.6)

where κ is the mean curvature of the boundary of the liquid domain, taken neg-
ative for convex domains, and γ is a positive constant called the surface tension
coefficient. In the context of the Stefan problem this equation is known as the
Gibbs-Thomson relation. In Hele-Shaw models it is used to describe the influence
of surface tension forces. If the initial boundary is the perturbed version (1.5) of
the travelling wave solution, then the moving boundary will be

Γ(t) = {−µt +εe(−γ|k|3−µ|k|)t sin(|k|y) + iy : y ∈ R},

for the linearised problem, see also [45]. All Fourier modes decay if γ > −µ.

• Kinetic undercooling regularisation: At the moving boundary we assume

p +β
∂p
∂n

= 0,

where n is the normal in outward direction and β > 0 is called the kinetic un-
dercooling coefficient. The name kinetic undercooling originates from the Stefan
problem, in which it models certain thermodynamic effects on the interface be-
tween ice and water. In a Hele-Shaw setting Romero [65] proposed to relate the
term β

∂p
∂n to the second principal curvature of the liquid domain in the Hele-Shaw

cell. This is the curvature of the thin meniscus of the liquid in the narrow gap
between the two plates. The linear behaviour is

Γ(t) = {−µt +εe−µ
|k|

1+β|k| t sin(|k|y) + iy : y ∈ R}

(see [45]). We see that for the linearised suction problem, Fourier modes grow at
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most exponentially with a factor e
|µ|
β

t (that is independent of k).

Now we briefly discuss a method to construct exact solutions for the two-dimensional
configuration with a bounded domain and a source or a sink (also discussed in [45]). On
the boundary we assume p = 0.

Since p is harmonic, the two-dimensional problem can be treated as a problem in the
complex plane in which p is the real part of a complex analytic function [31], [59]. By the
Riemann mapping theorem there are time-dependent conformal mappings f = f (ζ , t)
from the unit disk to the domain. These conformal mappings satisfy the Polubarinova-
Galin evolution equation

Re

(
ζ

∂ f
∂ζ

∂ f
∂t

)
= −µ, for |ζ | = 1. (1.7)

In [31], [45], [59], and [64] polynomial solutions to (1.7) with time dependent coefficients
are discussed. Let us discuss the simplest non-trivial example given by

f (ζ , t) = a1(t)ζ + a2(t)ζ2,

with (
ȧ1
ȧ2

)
=

µ

a2
1 − 4a2

2

(
a1
−2a2

)
. (1.8)

Figure 1.4 shows a corresponding domain evolution for the case of suction with |a2(0)| <
1
2 |a1(0)|. Note that a blow-up via a 3

2 -power cusp in the boundary occurs in finite time.
At the time that the cusp is formed we have |a2| = 1

2 |a1|. If |a2| > 1
2 |a1|, then f (·, t)

would no longer be injective. This results into self-intersecting boundaries and self-
overlapping domains which is unacceptable. More generally, there are conditions on
the coefficients of the polynomial solutions to (1.7). Huntingford [48] discusses these
for Hele-Shaw flow and polynomials of degree 3. For more theory on injectivity of
polynomials on the unit disk, see [16].

For a receding fluid in an unbounded domain finite-time blow-up results via cusp
development have been found in [46].

We conclude this section by discussing some existence results for solutions to the
Hele-Shaw problem.

The classical injection problem has been reduced to a variational inequality ( [5],
[17], [34]). Weak solutions have been introduced and existence results for all time have
been proved. Moreover, a monotonicity result has been derived in [34]. The concept
of a weak solution is more flexible than that of a classical solution since regularity and
connectivity of domains are no issues.

In this thesis we are concerned with classical solutions. We want to obtain asymp-
totic stability results for the spherical solutions in the strongest possible norm. From
the monotonicity for weak solutions we only obtain convergence in the C0-topology
(see Section 2.1 for explanation). Moreover, the monotonicity result only holds for the
zero surface tension problem. An important restriction on our evolving domains is that
they must be small star-shaped perturbations of balls. A bounded domain is said to be
star-shaped (with respect to the origin) if each ray starting in the origin intersects the
boundary of the domain at at most one point. Vasiliev and Markina [73] proved that
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Figure 1.4: Cusp development for the Hele-Shaw suction problem. The largest domain is the
initial domain. For several values of time the moving domain is plotted. In finite time a cusp
occurs.

star-shapedness is preserved on some time interval for the 2D problem with injection
and small surface tension. In [36] infinite lifetime of solutions is proved for the version
of this problem without surface tension, assuming star-shapedness and analyticity of
the initial boundary. Existence of classical short-time solutions for more general initial
domains for a closely related problem has been proved by Escher and Simonett [21], [22].
Prokert [61] proved a global existence result in time for classical solutions for the case
without a source or sink and γ > 0, assuming nearly spherical initial domains. More-
over, he proved that perturbations of a ball decay exponentially fast.

1.3 Stokes flow

Besides Hele-Shaw flow, Stokes flow with surface tension will be considered in this
thesis. For Stokes flow we have

−∆v +∇p = 0 (1.9)

and on the boundary
(∇v +∇vT − pI)n = γκn (1.10)

is assumed. Here I stands for the identity matrix. Again the fluid is assumed to be
incompressible. The equations can be derived from the Navier-Stokes equations if one
omits inertial terms.

Stokes flow appears in many moving boundary problems. As an example, the pro-
cess of viscous sintering in glass industry can be modeled by means of a Stokes flow [51].
To study the growth of tumours, Stokes models are sometimes more apt than Hele-Shaw
models. Although many tumours have a porous medium structure, there are tumours
(e.g. breast cancers) that are more naturally modeled as a fluid ( [25], [26], and [27]).
More applications where Stokes flows are involved are given in [68].

Although for Stokes flow the components of v are not harmonic, in two dimensions
it is still possible to represent v by means of two analytic functions since they are bi-
harmonic [58]. Many authors used this representation to apply methods from complex



8 Introduction

analysis, see for instance [60]. Cummings, Howison, and King [12] found a set of con-
served quantities for two-dimensional Stokes flow without surface tension. Further-
more, exact solutions can be constructed by means of conformal mappings from the
unit disc. In [47] the particular case

f (ζ , t) = a(t)
(
ζ − b(t)

n
ζ

n
)

,

with b(t) < 1 is studied and in [11] general cubic polynomials are treated, both with
and without surface tension.

In [33] short-time existence results have been proved for the problem without injec-
tion or suction. In the same work, the authors show global existence for the case of an
initial domain that is a small perturbation of a ball. In [19] joint spacial and temporal
analyticity of the moving boundary has been proved. For the problem with injection or
suction short-time existence and smoothness results have been proved in [60].

1.4 Objectives and main results

Again we denote a domain evolution by t 7→ Ω(t) and t 7→ Γ(t) is its moving boundary.
Consider the situation with a source or a sink located at the origin, such that (1.4)

holds. Suppose that the initial domain Ω(0) is the N-dimensional unit ball BN := {x ∈
RN : |x| < 1}. It is clear that for both injection and suction the evolving domain Ω(t)
will be a ball for all t with volume equal to

V(t) = µt + V(0) = µt +
σN

N
, (1.11)

where σN is the area of the unit sphere SN−1. This follows from

dV(t)
dt

=
d
dt

∫
Ω(t)

dx =
∫

Γ(t)
v · ndσ =

∫
Ω(t)

div vdx = µ,

which is a consequence of (1.4) and the fact that the volume of BN is equal to the quotient
of the area of SN−1 and N. The radius of the evolving ball is therefore equal to

α(t) = N

√
µNt
σN

+ 1. (1.12)

The expanding ball in the presence of a source (µ > 0) has infinite lifetime, whereas
the shrinking ball (µ < 0) vanishes at t = σN

|µ|N . Throughout the thesis we refer to
this expanding/shrinking ball as the trivial (spherical) solution or the trivial domain
evolution.

One of our goals is to answer the stability question for this spherical solution in
the context of Hele-Shaw and Stokes flow. By stability we mean that a domain that is
initially a small perturbation of BN gradually takes more and more the shape of the
expanding/shrinking ball α(t)BN . For the case of injection we intuitively expect that
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this is true, as Figure 1.3 suggests. We will prove this for Hele-Shaw flow with the
three boundary conditions that we discussed. For Stokes flow we restrict ourselves to
condition (1.10).

For the suction problem we expect that this is in general not the case. As we have
seen in Section 1.2, it may even happen that domain evolutions do not continue up to
complete extinction (i.e. the situation in which all fluid is sucked out).

Our stability analysis has a certain analogy with the stability analysis of the trivial
travelling wave solution for the unbounded configuration with injection/suction at in-
finity that we discussed earlier. The role of the travelling wave solution is played by the
trivial spherical solution in our work. Including surface tension via boundary condition
(1.6) the suction problem is regularised in our case as well. As for the unbounded do-
main this can be concluded from the eigenvalues that appear in a linearised evolution
problem. For the travelling wave a bound on the suction rate is necessary to make sure
that all eigenvalues have the desired sign. Also in the stability analysis of the spheri-
cal solution for the bounded case in Hele-Shaw flow a similar condition is sometimes
necessary. This strongly depends on the space dimension.

Moreover, another condition must be satisfied. In order to exclude some eigenvalues
with positive sign we need to ensure that∫

Ω(t)
xdx = 0. (1.13)

Note that this means that the geometric centre of the domain is located at the position
of the sink. Since the geometric centre is invariant, both for Hele-Shaw flow and Stokes
flow, (1.13) holds for all t if it holds for t = 0. It has been proved by Tian [70], [71]
for Hele-Shaw flow with boundary condition (1.6) that if (1.13) is not satisfied, then the
solution breaks down before all liquid is sucked out or the domain becomes unbounded
with zero area. It is interesting to investigate the reverse question. Can all liquid be
sucked out in certain situations? This question is answered with ”yes” in Chapter 3 for
the 3D Hele-Shaw problem. We assume a nearly spherical initial domain that satisfies
(1.13) at t = 0. Furthermore the suction rate must be lower than a certain value. This
gives a partial solution to an open problem posed in 1993 [39].

In Chapter 5 we conclude that also for the 2D case this is true. Moreover, there is
no bound on the suction rate. Also the case in which kinetic undercooling is included
is discussed. An important consequence for this type of regularisation is that in general
invariance of the geometric centre is lost. Therefore we want to know whether it is still
possible to obtain similar results, forcing (1.13) to hold for all t, for instance by restricting
ourselves to domains that are initially symmetric with respect to all coordinate planes.

The linear analysis of the trivial travelling wave solution, that we discussed in Sec-
tion 1.2, shows that for the zero surface tension case with µ > 0 perturbations with
shorter wavelengths decay faster than those with longer wavelengths. We will prove
that a similar result holds in the case of the trivial spherical solution. The eigenfunc-
tions for the linearised problem are related to Richardson moments, which have invari-
ance properties for the zero surface tension case. It is interesting to ask whether in the
nonlinear evolution perturbations decay faster if certain moments vanish.

Another important aspect is to investigate suction outside the geometric centre and
in particular stability with respect to the suction point. We want to know whether in a
fixed initial domain there is a continuous dependence near the geometric centre between
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Figure 1.5: Parametrisation of a domain Ω f by means of a function f : SN−1 → (−1, ∞)

the position of the suction point and the length of the maximal time interval on which a
solution exists.

The trivial domain evolution shows self-similar behaviour,

Ω(t) = α(t)Ω(0).

In other words, the size of the domain changes in time but the shape does not. It is
interesting to investigate whether existence of more solutions with this self-similarity
can be proved using linearisation and bifurcation theory. We will do this for 3D Hele-
Shaw flow with surface tension. We will show that for certain negative values of µ,
families of non-trivial self-similarly vanishing solutions exist that bifurcate from the
trivial spherical solution. These solutions are domains that can be parameterised by
approximations of zonal spherical harmonics in the way that is described in Section 1.5.
After proving existence we ask ourselves whether some of the constructed non-trivial
solutions are stable.

1.5 What methods will we use?

Domain evolutions are studied by means of scalar functions. Any continuous function
f : SN−1 → (−1, ∞) describes a star-shaped domain in RN as follows:

Ω f :=
{

x ∈ RN \ {0} : |x| < 1 + f
(

x
|x|

)}
∪ {0}, (1.14)

see also Figure 1.5. The domain evolutions t 7→ Ω(t) that we consider in this thesis will
be described by means of a function R(·, t) that satisfies Ω(t) = ΩR(·,t).

For instance, the trivial solution is parameterised by

R(ξ , t) = α(t)− 1.

In order to investigate stability it is convenient to regard the trivial domain evolution
t 7→ α(t)BN as a stationary solution. This is done by rescaling the moving domain
t 7→ Ω(t) by a factor α(t). The evolution of the rescaled domain is parameterised by
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Figure 1.6: Evolution t 7→ Ωr(·,t) for Hele-Shaw flow with injection and γ = 0. This picture
is generated from the linearised model (see Chapter 2). The moving domain converges to BN . In
Figure 1.3, the evolution t 7→ ΩR(·,t) starting from the same initial shape Ω(0) = ΩR(·,0) =
Ωr(·,0) is plotted.

r(·, t) given by

r(·, t) =
1 + R(·, t)
α(t)

− 1. (1.15)

As a consequence, Ωr(·,t) = α(t)−1
ΩR(·,t) = α(t)−1

Ω(t). In the case of the trivial solution
we have r ≡ 0 for all t. In Figures 1.3 and 1.6 possible domain evolutions t 7→ ΩR(·,t)
and t 7→ Ωr(·,t) are sketched for some initial domain Ω(0). Figure 1.6 suggests that
Ωr(·,t) converges to BN as t approaches infinity. In other words, r goes to zero as t tends
to infinity.

For Hele-Shaw flow with surface tension an equation of type

∂r
∂t

=
γ

α(t)3F1(r) +
µ

α(t)NF2(r), (1.16)

for some operators F1 and F2, will be derived in Chapter 3. For Stokes flow we find

∂r
∂t

=
γ

α(t)
G1(r) +

µ

α(t)N G2(r), (1.17)

for some operators G1 and G2 in Chapter 6.
An important property that will be used both for Hele-Shaw and Stokes flow is

smoothness of these operators. They turn out to be analytic near zero. We briefly dis-
cuss the concept of analyticity for operators between function spaces and mention some
properties. For details and proofs, see [15] or [60]. An operator F : X → Y, for X and Y
Banach spaces, is called analytic near zero when for small ‖r‖ it can be written as

F (r) =
∞
∑
k=0
F k(r, r, . . . , r),
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where F k are bounded symmetric k-linear mappings such that for some ε > 0

∞
∑
k=0
‖F k‖εk < ∞,

where
‖F k‖ := sup

‖x1‖=‖x2‖=···=‖xk‖=1
‖F k(x1, x2, . . . , xk)‖. (1.18)

The term F 1(r) is called the Fréchet derivative of F at zero in the direction r or the
linearisation around zero of F . The following notation will be used:

F ′(0)[r] := F 1(r).

Analyticity at r ∈ X and Fréchet derivative at r ∈ X (linearisation around r) for
r 6= 0 are defined analogously. Analyticity is a useful property mainly because it enables
us to study nonlinear problems by looking at the linear ones and using perturbation
arguments. Often it is enough to demand lower regularity. However, we choose to show
analyticity since it is often not more complicated than showing Fréchet differentiability.

Important properties of analytic operators that we will use are the following ones:

• Compositions of analytic operators are analytic.

• Point-wise multiplications of analytic operators (if well defined) are analytic.

• Fréchet derivatives of analytic operators are analytic.

The following lemma is an extension of the Implicit Function Theorem for functions in
RN to operators on function spaces.

Lemma 1.1. Let X, Y, and Z be Banach spaces, let f : X × Y → Z be analytic near (x0, y0),
and suppose that f (x0, y0) = 0. Suppose that the Fréchet derivative w.r.t. the second argument
at (x0, y0) given by

h 7→ f ′(x0, y0)[0, h]

is bijective from Y to Z. Then there exists a unique analytic mapping y : U → Y, for U a small
neighbourhood of x0 in X, that satisfies

f (x, y(x)) = 0

and y(x0) = y0.

Proof. See [80, Ch. 8].

The function spaces in which we consider our evolutions must be closed under
point-wise multiplication and they must be Banach algebras. This means that they are
Banach spaces for which there exists a C > 0 such that for all elements r1 and r2 the
point-wise product r1r2 satisfies

‖r1r2‖ ≤ C‖r1‖‖r2‖.

Two types of Banach algebras that will be considered in this thesis are Hölder spaces
and Sobolev spaces.
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• The Hölder spaces Ck,β(SN−1) and Ck,β(BN) for k ∈ N0 and β ∈ (0, 1) are Banach
algebras.

• The Sobolev spaces Hs(SN−1) and Hs+ 1
2 (BN) for real s > N−1

2 are Banach algebras.

We call an element of a Banach algebra invertible if there exists another element such
that the product is equal to the multiplicative identity. Banach algebras have the prop-
erty that for each invertible element there exists a neighbourhood on which inversion is
a well-defined analytic operation.

Let us now discuss some methods and concepts that we will use to prove our ex-
istence results. For classical Hele-Shaw flow (γ = 0), we can get rid of the factor
α(t)−N in (1.16) to make the evolution operator on the right-hand side of the equation
autonomous. This is done by introducing a new time variable (see Chapter 2). For such
autonomous operators the principle of linearised stability [53] will be used to prove
global existence results in Hölder spaces. We need to prove that the Fréchet derivative
F ′2(0) has certain properties. It must be a sectorial operator and its spectrum must be
located in the left half-space of the complex plane away from the imaginary axis.

For γ > 0 only the three-dimensional version of Hele-Shaw flow with source/sink
can be treated in this way. For N 6= 3 it is impossible to make the right-hand side of
(1.16) autonomous. The eigenvalues are different from the zero surface tension case.
Nevertheless, the linearisation of the evolution operators for these problems have a lot
in common. In both cases it is possible to express the Fréchet derivatives in terms of the
Dirichlet-to-Neumann operator N on the unit sphere. This is a mapping of order one
that maps a function f : SN−1 → R to g : SN−1 → R where g is the normal derivative
of the unique harmonic extension of f inside BN . Furthermore, we find the same set of
eigenfunctions, namely the spherical harmonics.

Let HN
k be the vector space of harmonic homogeneous polynomials of degree k in N

variables. Spherical harmonics are defined as the restrictions of these polynomials to
the unit sphere,

SN
k :=

{
q |SN−1 : q ∈ HN

k

}
.

From [56, Lemma 4] we get

ν(N, k) := dim SN
k =


(2k + N − 2)(k + N − 3)!

k!(N − 2)!
k ∈ N,

1 k = 0.

For example for N = 2 we have ν(2, k) = 2 for k 6= 0 and ν(2, 0) = 1, while for N = 3
we have ν(3, k) = 2k + 1. For each SN

k we choose an orthonormal basis with respect to
the L2(SN−1)-inner product

SN
k =

〈
sN

k1, sN
k2, . . . , sN

kν(N,k)

〉
.

We will often omit the index N in sN
k j and SN

k .
In the literature the complex-valued spherical harmonics for N = 3 are often de-

noted by Yk j, with k ∈ N0 and j ∈ {−k,−k + 1, . . . , k}. Some corresponding domains
are plotted in Figure 1.7. For each k ∈ N0 the linear subspace of S3

k consisting of func-
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Figure 1.7: Some three-dimensional domains that are parameterised by spherical harmonics of
degree 1,2,3,4,5,6. The Spherical harmonics of degree zero are constants. Therefore they param-
eterise balls around the origin.

tions that are axially symmetric around the vertical axis is one-dimensional and spanned
by the so-called zonal harmonics Yk0. In this thesis we will use the notation Yk := Yk0
for the sake of brevity.

The 2D spherical harmonics s2
k j are the functions sin kθ and cos kθ where θ is the

polar variable, see Figure 1.8.
The following two facts on the spherical harmonics will frequently be used in this

thesis:

• The harmonic extension of sk j inside BN is given by x 7→ |x|ksk j

(
x
|x|

)
.

• If h ∈ SN
k , then N h = kh.

Note that both properties follow immediately from the definition of spherical harmon-
ics.

In order to treat the non-autonomous cases N = 2 and N ≥ 4 we find estimates
for (r,F (r, t))s, where F (r, t) denotes the time-dependent right-hand side of (1.16) and
(·, ·)s is the Hs-inner product. The same method will be used for Stokes flow. In the case
of Hele-Shaw flow with kinetic undercooling, time dependence appears in a much more
complicated way than in (1.16). Therefore, finding useful estimates is much harder.

In Appendix A, we discuss a modification of a theorem by Kato and Lai [50, Thm.
A] that will be used to derive existence results from these energy estimates.

An important tool that is necessary to obtain useful energy estimates is a generalised
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Figure 1.8: The two-dimensional spherical harmonics are sines and cosines in the polar variable.
Some domains that are parameterised by the cosines are plotted.

version of the chain rule of differentiation. It says that for the differential operators

Di j = xi
∂

∂x j
− x j

∂

∂xi
, 1 ≤ i < j ≤ N,

one has for r : SN−1 → R smooth enough

Di jF (r) = F ′(r)[Di jr], (1.19)

for our evolution operators F = Fk, for k = 1, 2. This rule is based on equivariance
properties of Fk with respect to rotations and it will be proved in Chapter 5. In the
next example the power of this chain rule is demonstrated by means of an autonomous
equation. The symbol C > 0 is a constant that may vary throughout the calculations.

Example 1.2. Consider an equation of type

∂r
∂τ

= F (r),

where F is an analytic operator on functions on SN−1 that satisfies (1.19) and F (0) = 0.
As said before, Hele-Shaw flow with γ = 0 can be described by such an equation with
an evolution operator that does not depend on τ . We assume F to be time-independent
to keep this example as simple as possible. Assume further that F is of order one and
suppose that one obtains from linear analysis that

(r,F ′(0)[r])s ≤ −λ‖r‖2
s+ 1

2
,

for some λ > 0. We want to find a similar estimate for the nonlinear operator F for r ∈
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Hs+1(SN−1) with ‖r‖s < δ for some δ > 0 small enough, making use of the inequality

(y, ỹ)s ≤ ‖y‖s+ 1
2
‖ỹ‖s− 1

2

for y ∈ Hs+ 1
2 (SN−1) and ỹ ∈ Hs(SN−1). Note that analyticity implies that

‖F (r)−F ′(0)r‖s− 1
2
≤ C‖r‖2

s+ 1
2
, (1.20)

for some C > 0 and ‖r‖s+ 1
2

small. However, we cannot conclude that ‖r‖s+ 1
2

is small
from the fact that ‖r‖s is small. If ‖r‖s+ 1

2
would be small, then we were able to derive

1
2

d
dτ

(
‖r(τ)‖2

s

)
≤ (r,F (r))s = (r,F ′(0)[r])s + (r,F (r)−F ′(0)[r])s

≤ (−λ+ C‖r‖s+ 1
2
)‖r‖2

s+ 1
2
. (1.21)

This would automatically imply stability for ‖r‖s+ 1
2

small. However, we do not control
‖r‖s+ 1

2
and fail to get a useful estimate. Now we introduce the following inner product

on Hs(SN−1) that is equivalent to (·, ·)s:

(r, r̃)s−1,1 := (r, r̃)s−1 + ∑
1≤i< j≤N

(Di jr, Di j r̃)s−1. (1.22)

Because ‖r‖s− 1
2

is small it is allowed to apply (1.21), replacing s by s− 1 and s + 1
2 by

s− 1
2 , to obtain

(r,F (r))s−1 ≤ (−λ+ C‖r‖s− 1
2
)‖r‖2

s− 1
2
. (1.23)

The chain rule yields

(Di jr, Di jF (r))s−1 = (Di jr,F ′(r)[Di jr])s−1

= (Di jr,F ′(0)[Di jr])s−1

+(Di jr,
{
F ′(r)−F ′(0)

}
[Di jr])s−1

≤ −λ‖Di jr‖2
s− 1

2

+C‖Di jr‖s− 1
2

∥∥∥{F ′(r)−F ′(0)
}

[Di jr]
∥∥∥2

s− 3
2

≤ −λ‖Di jr‖2
s− 1

2
+ C‖r‖s− 1

2
‖Di jr‖2

s− 1
2
, (1.24)

for some C > 0. In the last step we used local Lipschitz continuity of F ′ near zero. Now
it follows from (1.22)-(1.24) that

(r,F (r))s−1,1 ≤ −λ‖r‖2
s− 1

2 ,1 + C‖r‖s− 1
2
‖r‖2

s− 1
2 ,1

= (−λ+ C‖r‖s− 1
2
)‖r‖2

s− 1
2 ,1.
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For any λ̃ ∈ (0, λ) there exists a δ > 0 such that for ‖r‖s < δwe get−λ+ C‖r‖s− 1
2

< −λ̃.
As a consequence

(r,F (r))s−1,1 < −λ̃‖r‖s− 1
2 ,1,

for ‖r‖s < δ. 2

1.6 Outline of the thesis

This thesis consists of three parts. In the first part we focus on stability results for the
problems that can be described by autonomous evolution operators.

• In Chapter 2 we treat Hele-Shaw flow for the case γ = 0. Only the injection
problem is well-posed. We prove infinite lifetime for solutions assuming that the
initial domain is nearly a ball. Perturbations of the spherical solution turn out to
decay algebraically fast. We also show that convergence is faster if low Richardson
moments vanish.

• Chapter 3 is dedicated to Hele-Shaw flow in R3 with γ > 0 for nearly spherical
initial domains. Again the lifetime for the injection problem is infinite, but we
also have global existence of solutions to the suction problem if the conditions on
the geometry of the initial domain, that we mentioned before, are satisfied and
|µ|/γ < 32π/5.

In Chapter 4 we use bifurcation theory to find non-spherical solutions that vanish self-
similarly from bifurcation theory. We also show that the ones that are approximated by
Ω−εY2

for ε > 0 are stable w.r.t. a certain class of perturbations.
In the third part we tackle the problems where time dependence in the evolution

operator occurs.

• Hele-Shaw flow with γ > 0 for N = 2 and N ≥ 4 is treated in Chapter 5. For the
injection problems the lifetime is again infinite. For the suction problem we prove
a similar result as for the 3D suction problem. There is no bound on the suction
rate for N = 2 because for large time the effect of surface tension dominates the
effect of the sink, as (1.16) shows. For N ≥ 4 the sink is dominant and we have
linear instability.

• In Chapter 6 Stokes flow with surface tension is treated. In comparison to Hele-
Shaw flow determining the Fréchet derivative of the evolution operator is more
complicated. To find this Fréchet derivative we use vector valued spherical har-
monics to solve a boundary value problem on the ball. As (1.17) suggests, results
for Stokes flow in dimensions 2 and 3 are similar to those for Hele-Shaw flow for
N ≥ 4.

• In Chapter 7 we return to Hele-Shaw flow and consider the case in which both
surface tension and kinetic undercooling are present.

An article with the contents of Chapters 2 and 3 has been published (see [76]) and the
contents of Chapters 4-6 have been submitted (see [62], [77], [75], and [74]).
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Chapter 2

Classical Hele-Shaw flow

2.1 Introduction

The classical Hele-Shaw model, characterised by (1.1), (1.4), and zero pressure on the
boundary, is the simplest model that we will discuss. The main goal of this chapter is to
prove stability of the spherical solution when a source is located at the centre. The first
step is to derive an equation for the evolution (see (2.17) and (2.29)). After that we show
that the nonlinear non-local operator F that describes this evolution has the following
properties:

• It is smooth.

• The spectrum of the linearisation F ′(0) consists of negative numbers away from
the imaginary axis.

• The linearisation is a sectorial operator.

In Section 2.2 we discuss the smoothness of the evolution operator in full detail. Its
crucial ingredient is a solution operator for an elliptic boundary value problem. To
show smoothness of the solution operator the Implicit Function Theorem is used.

In Section 2.3 the linearisation around the spherical solution is discussed. This lin-
earisation is of first order and essentially given by the Dirichlet-to-Neumann operator
on the unit ball. Based on the spectral properties a global existence result is derived and
it is shown that perturbations of the spherical solution decay algebraically.

In Section 2.4 we show that convergence for domains for which low Richardson
moments vanish, is faster. This is done by discussing the linearisation of the evolution
operator restricted to the corresponding invariant manifolds.

Let us now define the moving boundary problem. The parameter µ in Chapter 1
will be fixed to 1 here, because situations with different injection rates are equivalent
after rescaling time. We seek both a family of domains t 7→ Ω(t) ⊆ RN , 0 ∈ Ω(t),
parameterised by time and two functions v(·, t) : Ω(t) → RN and p(·, t) : Ω(t) → R
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Figure 2.1: The fixed time problem for classical Hele-Shaw flow with a source at the centre

such that

div v = δ in Ω(t), (2.1)
v = −∇p in Ω(t), (2.2)
p = 0 on Γ(t) := ∂Ω(t), (2.3)

see Figure 2.1.
The normal velocity vn of the boundary t 7→ Γ(t) is given by

vn = v · n. (2.4)

The fixed time problem given by (2.1), (2.2), and (2.3) can be reduced to

∆p = −δ in Ω(t),
p = 0 on Γ(t).

On Γ(t) we have

vn = −∂p
∂n

.

In Chapter 1 we already mentioned that if we start with Ω(0) = BN where BN =
{x ∈ RN : |x| < 1}, then Ω(t) = α(t)BN withα(t) given by

α(t) = N

√
Nt
σN

+ 1, (2.5)

where σN is the area of the unit sphere SN−1.
For the classical Hele-Shaw problem a variational inequality has been derived by

Elliott and Janovsky [17] and Gustafsson [34]. Weak solutions have been investigated
by Gustafsson [34] and Begehr and Gilbert [5].

Gustafsson [34] proved the following monotonicity result. If t 7→ Ω(t) and t 7→
Ω
′(t) are two solutions such that Ω(0) ⊆ Ω

′(0), then Ω(t) ⊆ Ω
′(t) for all t. This result

can be used to show a stability result as follows. Let t 7→ Ω(t) be a solution to the
problem (2.1)-(2.4) such that Ω(0) is a small perturbation of the unit ball BN , let us say
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in the C0-topology, such that there exists an ε > 0 for which

(1−ε)BN ⊆ Ω(0) ⊆ (1 +ε)BN .

In other words, the initial domain is a subset of some ball of radius larger than 1 and
there exists a ball with radius smaller than 1 that lies inside the initial domain. Because
of monotonicity we have at time t:

f1−ε(t)BN ⊆ Ω(t) ⊆ f1+ε(t)BN

with

f1±ε(t) := N

√
Nt
σN

+ (1±ε)N .

It is clear that for large time f1+ε(t)− f1−ε(t) goes to zero. The gap between the bound-
aries of the two growing balls f1±ε(t)BN becomes smaller and smaller and Γ(t) := ∂Ω(t)
is forced to stay in between. This suggests convergence of Ω(t) to an expanding ball.

However, there is no guarantee yet that for an initial perturbation of a ball a classical
solution with infinite lifetime indeed exists. In this chapter we prove a global existence
result in time in terms of functions r that parameterise domain evolutions as explained
in Section 1.5. We will consider classical solutions in the so-called little Hölder spaces.
Existence of classical short-time solutions and uniqueness have been proved by Escher
and Simonett [22].

2.2 The evolution equation and its linearisation

Define for any star-shaped domain evolution t 7→ Ω(t) that solves (2.1)-(2.4) the con-
tinuous function R : SN−1 × [0, ∞) → (−1, ∞) such that Ω(t) = ΩR(·,t) conform (1.14).
Often we will write R(t) for R(·, t). Let r : SN−1 × [0, ∞)→ (−1, ∞) be given by

r(t) =
1 + R(t)
α(t)

− 1, (2.6)

so that
Ωr(t) = α(t)−1

ΩR(t). (2.7)

The trivial spherical solution is described by r(t) ≡ 0. We will often omit the argument
t in r(t) if we consider a fixed domain.

Define for any r : SN−1 → (−1, ∞) the set Γr as the boundary of Ωr and introduce
for suitable r

• z̃(r, ·) : SN−1 → Γr by
z̃(r,ξ) = (1 + r(ξ))ξ , (2.8)

• n(r, ·) by the function that maps an element ξ ∈ SN−1 to the exterior unit normal
vector on Γr at the point z̃(r,ξ).

We will often use the notations z̃(r) and n(r) instead of z̃(r, ·) and n(r, ·).
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Lemma 2.1. Suppose that t 7→ ΩR(t) solves the moving boundary problem given by (2.1)-(2.4)
and assume that R is differentiable with respect to both arguments. Then

∂R
∂t

(ξ) =
v(z̃(R,ξ)) · n(R,ξ)

n(R,ξ) ·ξ , ξ ∈ SN−1.

Proof. Let t∗ be a fixed value for t. Let p(t∗) be the position of a particle on ΓR(t∗) at time
t∗ and let p(t) be its position at time t near t∗. We have

p(t) = p(t∗) +
∫ t

t∗
v(p(t̃), t̃)dt̃.

Define the function f (·, t) : SN−1 → SN−1 that maps ξ ∈ SN−1 to ξ ′ ∈ SN−1 such that
z̃(R(t),ξ ′) is the position at time t of the particle that was located at z̃(R(t∗),ξ) at time
t∗. Then[

1 + R
(

f (ξ , t), t
)]

f (ξ , t) =
[
1 + R

(
ξ , t∗

)]
ξ +

∫ t

t∗
v
([

1 + R
(

f (ξ , t̃), t̃
)]

f (ξ , t̃), t̃
)

dt̃,

(2.9)
because f (ξ , t∗) = ξ . Define for small ε > 0 the mapping F : SN−1 × (t∗ −ε, t∗ +ε) →
ΓR(t∗) by

F(ξ , t) =
(

1 + R( f (ξ , t), t∗)
)

f (ξ , t).

Differentiating (2.9) with respect to t at t = t∗ one gets

∂R
∂t

(ξ , t∗)ξ +
∂F
∂t

(ξ , t∗) = v
(
(1 + R(ξ , t∗))ξ , t∗

)
.

Taking the inner product with n(R(t∗),ξ) and knowing that the term with ∂F
∂t is tangen-

tial to ΓR(t∗) we obtain

∂R
∂t

(ξ , t∗)(n(R(t∗),ξ) ·ξ) = v
(
(1 + R(ξ , t∗))ξ , t∗

)
· n(R(t∗),ξ).

This proves the lemma.

Define Φ : RN → R by

Φ(x) =


− 1

2π
ln |x| N = 2,

1
(N − 2)σN |x|N−2 −

1
(N − 2)σN

N ≥ 3.
(2.10)

Up to a constant this function is the fundamental solution of the Laplacian. Define
U : ΩR → R by

U := p−Φ. (2.11)
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Because ∆Φ = −δ we have

∆U = 0, in Ω(t),
U = −Φ, on Γ(t).

Define for each continuous f : SN−1 → (−1, ∞) the function L f : Ω f → R as the
harmonic function that coincides with −Φ at the boundary Γ f :

L f (ξ) = −Φ(ξ), ξ ∈ Γ f .

Lemma 2.2. If R(t) and r(t) are related via (2.6), then for ξ ∈ Ωr(t)

Lr(t)(ξ) = α(t)N−2LR(t)(α(t)ξ) + c(t) (2.12)

and
∇Lr(t)(ξ) = α(t)N−1∇LR(t)(α(t)ξ) (2.13)

where c(t) only depends on t.

Proof. It is clear that the right-hand side of (2.12) is an harmonic expression inξ on Ωr(t).
Let ξ ∈ Γr(t) such that α(t)ξ ∈ ΓR(t). Due to the scaling behaviour of Φ we have on the
boundary

α(t)N−2LR(t)(α(t)ξ) = −α(t)N−2
Φ(α(t)ξ) = −Φ(ξ)− c(t).

For N = 2 we have
c(t) = − 1

2π
lnα(t)

and for N ≥ 3

c(t) =
1−α(t)N−2

(N − 2)σN
.

This proves (2.12) and (2.13) follows from (2.12).

Since
∇Φ(x) = − 1

σN |x|N
x,

it follows from (2.2), (2.11), and Lemma 2.1 that

∂R
∂t

(ξ) = −∇U(z̃(R,ξ)) · n(R,ξ)
n(R,ξ) ·ξ +

1

σN |z̃(R,ξ)|N−1

= −∇U(z̃(R,ξ)) · n(R,ξ)
n(R,ξ) ·ξ +

1
σN(1 + R(ξ))N−1

= −∇U(z̃(R,ξ)) · n(r,ξ)
n(r,ξ) ·ξ +

1

σNα(t)N−1(1 + r(ξ))N−1 , (2.14)

because r(ξ) > −1 and n(R,ξ) = n(r,ξ). It is clear that U = LR and from (2.13) it
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follows that
∇Lr(t)(z̃(r,ξ)) = α(t)N−1∇LR(t)(z̃(R,ξ)).

As a consequence,
∇U(z̃(R,ξ)) = α(t)1−N∇Lr(z̃(r,ξ)). (2.15)

Note that because of (2.6) andα′ = σ
−1
N α

1−N we have

∂r
∂t

=
1
α

∂R
∂t
− α

′(1 + R)
α

2 =
1
α

∂R
∂t
− 1 + R
α

N+1
σN

=
1
α

∂R
∂t
− 1 + r
α

N
σN

, (2.16)

where we omitted t arguments and ′ denotes differentiation with respect to t. It follows
from (2.14), (2.15), and (2.16) that

∂r
∂t

(ξ) =
1

α(t)N

(
−∇Lr(z̃(r,ξ)) · n(r,ξ)

n(r,ξ) ·ξ +
1

σN(1 + r(ξ))N−1 −
1 + r(ξ)
σN

)
.

We rewrite this evolution equation as

∂r
∂t

=
1

α(t)NF (r) (2.17)

with

(F (r)) (ξ) = −∇Lr(z̃(r,ξ)) · n(r,ξ)
n(r,ξ) ·ξ +

1

σN(1 + r(ξ))N−1 −
1 + r(ξ)
σN

. (2.18)

Introducing the transformation τ = τ(t), such that τ(0) = 0 and

dτ
dt

=
1

α(t)N =
1

Nt
σN

+ 1
,

which implies

τ(t) =
σN

N
ln
(

Nt
σN

+ 1
)

, (2.19)

we get an autonomous evolution equation

∂r̄
∂τ

= F (r̄) (2.20)

where r̄(τ) = r(t). In the sequel we will write r instead of r̄.
Now we transform the problem to the fixed reference domain BN . Let for k ∈ N0

and β ∈ (0, 1) the little Hölder spaces hk,β(K) on a compact domain K be defined as
the closure of C∞(K) in the Hölder spaces Ck,β(K). These spaces have the property that
hk,β(K) is dense in hk′ ,β′(K) if k′ +β′ < k +β. Furthermore, the embedding of hk,β(K) in
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hk′ ,β′(K) is compact (see [1, Thm. 8.6]). In this chapter we study domain evolutions by
means of functions r in the little Hölder spaces h2,β(SN−1). Endowed with the norm of
Ck,β(SN−1) the little Hölder spaces are Banach spaces.

By ‖ · ‖k,β we denote the standard norm of Ck,β(SN−1) and ‖ · ‖k denotes the norm

of Ck(SN−1) for k ∈ N0. The norm of Ck,β(BN) will be denoted by ‖ · ‖Ck,β(BN)
. All other

norms will be denoted in a similar way, for example ‖ · ‖L2(SN−1), ‖ · ‖Ck,β(Ωr)
.

By [53, Thm. 0.3.2] there exists an extension operator E ∈ L(Ck,β(SN−1), Ck,β(BN))
for k ∈ {0, 1, 2} and β ∈ [0; 1), such that

E(r)|SN−1 = r.

Define z : C2,β(SN−1)→
(
C2,β(BN)

)N
by

z(r, x) = (1 + E(r, x)) x,

where z(r, ·) = z(r) and E(r, ·) = E(r). Note that z(r) is an extension of z̃(r) to BN .

Lemma 2.3. There exists a δ > 0 such that if ‖r‖2,β < δ then z(r) : BN → Ωr is bijective.

Proof. In this proof we write rE(x) instead of E(r, x). Let x and x′ be in BN \ {0} such that
z(r, x) = z(r, x′) but x 6= x′. If x and x′ are linearly independent, then rE(x) = −1. This
is impossible if ‖r‖2,β is small. So there exists a λ ∈ R such that x′ = λx. Without loss of
generality we assume that λ ∈ [−1, 1), because the roles of x and x′ can be interchanged.
We get 1− λ = λrE(λx)− rE(x). Define f : [−1, 1]→ R by

f (σ) := −σrE(σx).

We have f (1)− f (λ) = 1− λ. By the Mean Value Theorem there exists a σ∗ ≤ 1 such
that

1 = f ′(σ∗) = −rE(σ∗x)−σ∗∑
i

xi
∂rE(σ∗x)

∂xi
,

where f ′ is the derivative of f . This leads to a contradiction if ‖r‖2,β is small. To com-
plete the proof of injectivity, suppose that z(r, x) = 0. If x 6= 0, then we have again
rE(x) = −1 which is impossible. To prove surjectivity let y ∈ Ωr. Since the case y = 0
is trivial we assume y 6= 0. Because Ωr is star-shaped there exists a λ ∈ (0; 1] such that

y = λz̃
(

r,
y
|y|

)
= λ

(
1 + rE

(
y
|y|

))
y
|y| . (2.21)

Define g : [0, 1]→ R by

g(σ) = σ

(
1 + rE

(
σ

y
|y|

))
.

We have g(0) = 0 and g(1) = 1 + rE

(
y
|y|

)
. By continuity there exists a σ∗ ∈ [0, 1] such
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that

g(σ∗) = λ

(
1 + rE

(
y
|y|

))
. (2.22)

We conclude from (2.21) and (2.22) that

z
(

r,σ∗
y
|y|

)
= σ

∗
(

1 + rE

(
σ
∗ y
|y|

))
y
|y| = g(σ∗)

y
|y|

= λ

(
1 + rE

(
y
|y|

))
y
|y| = y.

Define J : C2,β(SN−1)→
(
C1,β(BN)

)N×N
by

J (r) =
∂z(r)

∂x
.

Again we make no difference between J (r) and J (r, ·).

Lemma 2.4. There exists an δ > 0 such that if r ∈ C2,β(SN−1) satisfies ‖r‖2,β < δ, then

J (r, x) is an invertible matrix for every x ∈ BN and x 7→ J (r, x)−1 ∈
(
C1,β(BN)

)N×N
.

Furthermore, z(r)−1 ∈
(
C2,β(Ωr)

)N
.

Here, z(r)−1 denotes the inverse of z(r) as a mapping, whereas J (r, x)−1 is the inverse
of J (r, x) as a matrix.

Proof. First of all, J (0, x) ≡ I (the identity matrix). We will make use of the fact

that the spaces
(
Ck,β(BN)

)N×N
are Banach algebras. The mapping J is continuous

near zero from C2,β(SN−1) to
(
C1,β(BN)

)N×N
. Invertible elements in

(
C1,β(BN)

)N×N

form an open set. We conclude that J (r) is invertible for ‖r‖2,β small and J (r)−1 ∈(
C1,β(BN)

)N×N
. It is clear that z(r)−1 is continuously differentiable and the compo-

nents ∂(z(r)−1)i
∂x j

satisfy

∂(z(r)−1)i

∂x j
= [J (r)−1]i j ◦ z(r)−1, (2.23)

Differentiation leads to

∂
2(z(r)−1)i

∂x j∂xk
=
(
∇[J (r)−1]i j ◦ z(r)−1

)
· ∂z(r)−1

∂xk
. (2.24)

Since the composition of an element of C0,β(BN) and an element of C1(Ωr, B
N) is in

C0,β(Ωr) we get from (2.23) ∂(z(r)−1)i
∂x j

∈ C0,β(Ωr). Combining this and (2.24) it follows



2.2 The evolution equation and its linearisation 27

that ∂
2(z(r)−1)i
∂x j∂xk

∈ C0,β(Ωr). This completes the proof.

We denote the components of J (·)−1 by ji,k : U → C1,β(BN). By Lemma 2.3 and Lemma
2.4 we see that there exists a neighbourhood U of 0 in C2,β(SN−1) and two mappings

A : U → L(C2,β(BN), C0,β(BN)) and Q : U → L
(
C2,β(BN),

(
C1,β(BN)

)N
)

such that

A(r)u =
(
∆
(

u ◦ z(r)−1
))
◦ z(r) = ∑

i,k,l
ji,l(r)

∂

∂xi

(
jk,l(r)

∂u
∂xk

)
(2.25)

and

Q(r)u =
(
∇
(

u ◦ z(r)−1
))
◦ z(r) = ∑

i,k
jk,i(r)

∂u
∂xk

ei , (2.26)

where ei is the i-th unit vector in RN . Let S : U → L(C2,β(BN), C0,β(BN)× C2,β(SN−1))
be defined by

S(r)u =
(
A(r)u

Tru

)
. (2.27)

and introduceϕ : U → C2,β(SN−1) by

ϕ(r, x) = Φ((1 + r(x))x). (2.28)

Using this notation, (2.18) formally can be written as

F (r) :=
Tr
(
Q(r)

[
S(r)−1

[
0

ϕ(r)

]])
· n(r)

n(r) · id +
1

σN(1 + r)N−1 −
1 + r
σN

, (2.29)

where id is the identity on SN−1. To show that F is well-defined in this way we need
to show that S(r) is invertible for small r. We also show that F is analytic near zero
by proving that the operators A, Q, n, and ϕ are analytic, using the Implicit Function
Theorem and Banach algebra properties. Many of the following lemmas have already
been proved in [60].

Lemma 2.5. The operatorϕ is analytic around zero from C2,β(SN−1) to C2,β(SN−1).

Proof. Because of analyticity and radial symmetry of Φ, there exists an analytic function
f : G→ R, for G a neighbourhood of 0 in R, such that

ϕ(r, x) = f (r(x)).

Hence for small r

ϕ(r) =
∞
∑
k=1

f (k)(0)
k!

rk.
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Define for each k ∈ N0 the k-linear formϕk :
(
C2,β(SN−1)

)k
→ C2,β(SN−1) by

ϕk(r1, . . . , rk) =
f (k)(0)

k!

k

∏
i=1

ri .

Because C2,β(SN−1) is a Banach algebra we have

‖ϕk‖X = sup
∀i:‖ri‖2,β=1

‖ϕk(r1, . . . , rk)‖2,β ≤ Ck−1 | f (k)(0)|
k!

,

for some constant C > 0. The norm ‖ · ‖X on X = Lk(C2,β(SN−1), C2,β(SN−1)) is defined
in (1.18). For small ε > 0 the analyticity of f yields

∞
∑
k=0
‖ϕk‖Xε

k < ∞.

This completes the proof.

Lemma 2.6. The operator n is analytic around zero from C2,β(SN−1) to
(
C1,β(SN−1)

)N
.

Proof. This proof can also be found in [60]. First we take two open non-empty sets W1

and W2 in RN−1 and smooth regular parameterizations Ξ1 : W1 → U1 and Ξ2 : W1 → U2

of two subsets of the unit-sphere U1 and U2 such that U1 ∪ U2 = SN−1. We also choose
a smooth partition of unity {χ1, χ2} subordinate to the covering {U1, U2}. Defining
n[k](r, ·) : Wk → RN by n[k](r) = n[k](r, ·) = n(r) ◦ Ξk we have for all ξ ∈ SN−1

n(r,ξ) = χ1(ξ)n[1](r, Ξ−1
1 (ξ)) + χ2(ξ)n[2](r, Ξ−1

2 (ξ)).

Here we define χ j(ξ)n[ j](r, Ξ−1
j (ξ)) = 0 if ξ is not in U j. We can reduce the problem

to proving analyticity of n[1] and n[2] around zero. Let k be either 1 or 2. Introduce
ηk(r) : Wk → RN by

ηk(r) : w 7→ (1 + r(Ξk(w))) Ξk(w).

We define F[k] : C2,β(SN−1)×
(
C1,β(Wk)

)N
→
(
C1,β(Wk)

)N
by

F[k](r, ñ) :=

 (
∂ηk(r)

∂w

)T

ñT

 ñ−
(

0
1

)
.

F[k] is analytic because ηk is analytic. The derivative of F[k] with respect to the second
argument at (0, n[k](0)) is given by

F[k] ′(0, n[k](0))[0, h] =


(

∂Ξk

∂w

)T

2n[k](0)T

 h.
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The matrix on the right-hand side in nonsingular since the first N − 1 rows are inde-
pendent vectors that are tangential to SN−1 and the last row is orthogonal to SN−1 since
n[k](0) = n(0) ◦ Ξk = Ξk. We now apply the Implicit Function theorem to

F[k](r, n(r)) = 0,

to complete the proof.

Lemma 2.7. The operator S is analytic near zero from C2,β(SN−1) to L(C2,β(BN), C0,β(BN)×
C2,β(SN−1)).

Proof. It is clear that z : C2,β(SN−1) →
(
C2,β(BN)

)N
is analytic. Hence, we also have

analyticity of J : C2,β(SN−1) →
(
C1,β(BN)

)N×N
and the components ji,k of the inverse

J (·)−1 : C2,β(SN−1) →
(
C1,β(BN)

)N×N
for small ‖r‖2,β. This is due to analyticity of

inversion near the multiplicative identity in the Banach algebra
(
C1,β(BN)

)N×N
. From

(2.25) it follows that A and S are analytic around zero.

Lemma 2.8. There is a neighbourhood U of zero in C2,β(SN−1) such that if r ∈ U , then
S(r) : C2,β(BN) → C0,β(BN) × C2,β(SN−1) is invertible. Furthermore, the mapping Π :

U → C2,β(BN) defined by

Π : r 7→ S(r)−1
(

0
−ϕ(r)

)
(2.30)

is analytic around zero.

Proof. The first step is showing that S(0) = [∆, Tr]T is invertible. Injectivity is a direct

consequence of the maximum principle. Let ( f , g) ∈ C0,β(BN) × C2,β(SN−1). Define

g̃ ∈ C2,β(BN) by g̃ = Eg. Then by [32, Cor. 4.14] there is a unique h ∈ C2,β(BN)
satisfying ∆h = f and h(x) = g̃(x) for x ∈ SN−1. This proves surjectivity. Invertible

operators form an open set in L(C2,β(BN), C0,β(BN)× C2,β(SN−1)). Combining this and
continuity of S near zero, we see that S(r) is invertible for r small in C2,β(SN−1).

Because of Lemma 2.7 we have analyticity of (r,ψ) 7→ S(r)ψ. This is easily derived
from the definition of analyticity and the fact that S(r) is linear and bounded. Define

F : U × C2,β(BN)→ C0,β(BN)× C2,β(SN−1) by

F(r,ψ) = S(r)ψ−
(

0
−ϕ(r)

)
.

Analyticity of this mapping follows from Lemma 2.5. The Fréchet derivative with re-
spect to the second argument at (0, 0) is

F′(0, 0)[0, h] = S(0)h =
(

∆h
Trh

)
.
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Since S(0) is an isomorphism, there exists by the Implicit Function Theorem a unique

analytic mapping Π : U → C2,β(BN) that satisfies

F(r, Π(r)) = 0.

Lemma 2.9. The operator Q is analytic from a neighbourhood U of zero in C2,β(SN−1) to

L
(
C2,β(BN),

(
C1,β(BN)

)N
)

and the operator

Θ : r 7→ Q(r)S(r)−1
(

0
−ϕ(r)

)
is analytic from a neighbourhood U of zero in C2,β(SN−1) to (C1,β(BN))N .

Proof. The first part follows from (2.26) and analyticity of ji,k that we obtained in the

proof of Lemma 2.7. As a consequence, the mapping F : U × C2,β(BN) → (C1,β(BN))N

defined by
F(r,ψ) = Q(r)ψ

is analytic. Define G : U → C2,β(SN−1)× C2,β(BN) by

G(r) :=

 r

S(r)−1
(

0
−ϕ(r)

)  =
(

r
Π(r)

)
.

This mapping is analytic by Lemma 2.8. Therefore Θ = F ◦ G is analytic.

Lemma 2.10. The operator F is analytic from a neighbourhood U of zero in C2,β(SN−1) to
C1,β(SN−1).

Proof. The composition of the trace operator and the operator Θ in Lemma 2.9 is ana-
lytic near zero. Taking the inner product with n(r) results into a new analytic operator
because of Lemma 2.6. Near r = 0 the operator r 7→ 1

n(r)·id is analytic since it is the
composition of two analytic operators namely inversion near 1 in the Banach algebra
C1,β(SN−1) and a pointwise product of the two analytic operators, n and r 7→ id. The
analyticity of r 7→ 1

1+r can be proved using the methods in the proof of Lemma 2.5.

Lemma 2.11. The operator F is analytic from a neighbourhood U of zero in h2,β(SN−1) to
h1,β(SN−1).

Proof. By Lemma 2.10 it is sufficient to show that the image of h2,β(SN−1)∩U underF is
contained in h1,β(SN−1). Let r be a small element of h2,β(SN−1)∩U . Choose any positive
ε such that β+ε < 1. By [53, Prop. 0.2.1] we have

h2,β(SN−1) = C2,β+ε(SN−1)
C2,β(SN−1)

, h1,β(SN−1) = C1,β+ε(SN−1)
C1,β(SN−1)

.
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There are rn ∈ C2,β+ε(SN−1) such that rn → r in C2,β(SN−1). By continuity of the map-
ping F : U → C1,β(SN−1) on a neighbourhood U of zero in C2,β(SN−1) (this follows
from Lemma 2.10), we have F (rn) → F (r) in C1,β(SN−1) and F (rn) ∈ C1,β+ε(SN−1).
This implies that F (r) ∈ h1,β(SN−1).

The next step is finding the linearisation of the evolution operator F around zero.

Lemma 2.12. For Π : U → C2,β(BN) as defined in (2.30) we have

∆Π
′(0)[h] = 0 in BN

and
Π
′(0)[h] =

1
σN

h in SN−1.

Proof. We have seen in Lemma 2.8 that Π is analytic near zero. From the definition ofϕ
it follows that

ϕ
′(0)[h] = − 1

σN
h. (2.31)

Differentiating S(r)Π(r) =
(

0
−ϕ(r)

)
one obtains

(S ′(0)[h])(Π(0)) + (S(0))(Π′(0)[h]) =
(

∆(Π′(0)[h])
Tr(Π′(0)[h])

)
=
(

0
1
σN

h

)
,

where we used Π(0) = 0.

Lemma 2.13. The Fréchet derivative of F at 0 is

F ′(0)[h] = − 1
σN
N h− N

σN
h, (2.32)

where N : C2,β(SN−1) → C1,β(SN−1) is the Dirichlet-to-Neumann operator on the unit ball
given by

N h := Tr∇S(0)−1
(

0
h

)
· n(0). (2.33)

Proof. Write F as

F (r) = −TrQ(r)Π(r) · n(r)
n(r) · id +

1
σN(1 + r)N−1 −

1 + r
σN

,

where id is the identity ξ 7→ ξ on SN−1. Using Π(0) = 0, n(0) = id, and a Taylor
expansion, we get

F ′(0)[h] = −TrQ(0)Π′(0)[h] · n(0)
n(0) · id − N

σN
h = −Tr∇Π

′(0)[h] · n(0)− N
σN

h. (2.34)
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From Lemma 2.12 it follows that

Π
′(0)[h] =

1
σN
S(0)−1

(
0
h

)
. (2.35)

The lemma follows from (2.33), (2.34), and (2.35).

2.3 The spectrum of the linearisation and stability

In this section we apply the principle of linearised stability to the evolution equation,
given by (2.20) and (2.29), in order to derive a stability result for the stationary solu-
tion r ≡ 0. For this purpose we study the spectral properties of the operator F ′(0) :
h2,β(SN−1) → h1,β(SN−1) given by (2.32). First we find the eigenvalues of the Dirichlet-
to-Neumann operator N : h2,β(SN−1) → h1,β(SN−1). We do this by studying the spher-
ical harmonics sk j, that form an orthonormal basis of eigenvectors of N for L2(SN−1)
(see Chapter 1).

Lemma 2.14. If q ∈ HN
k , then for all x ∈ SN−1

∂q
∂n

(x) = kq(x), (2.36)

where n is the normal on SN−1. For s ∈ SN
k we have

N s = ks. (2.37)

Proof. Define q̃ ∈ SN
k by q̃ = q |SN−1 such that

q(x) = |x|k q̃
(

x
|x|

)
.

We obtain (2.36) differentiating this identity in radial direction and taking x ∈ SN−1. The
second statement is a consequence of the first statement and the fact that any s ∈ SN

k

has a unique harmonic extension in HN
k given by x 7→ |x|ks( x

|x| ).

Since the functions sk j form a complete orthonormal set, the spectrum ofN in L2(SN−1)
consists entirely of eigenvalues and coincides with N0. Eigenvectors in h2,β(SN−1) are
also eigenvectors in L2(SN−1) and vice versa because spherical harmonics are smooth.

Corollary 2.15. The set of eigenvalues of N : h2,β(SN−1) → h1,β(SN−1) is exactly N0. For
k ∈ N0 the corresponding eigenspace is SN

k . The point spectrum of F ′(0) is therefore

π(F ′(0)) =
{
− N
σN

,−N + 1
σN

,−N + 2
σN

, . . .
}

and the eigenspace for eigenvalue − N+k
σN

is SN
k .
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Lemma 2.16. For each λ ∈ C, the mapping λI − F ′(0) maps h2,β(SN−1) continuously into
h1,β(SN−1) .

Proof. This is a consequence of Lemma 2.11 and h2,β(SN−1) ↪→ h1,β(SN−1).

Lemma 2.17. The spectrum ofN : h2,β(SN−1)→ h1,β(SN−1) consists entirely of eigenvalues,

sp(N ) = π(N ) = N0.

The resolvent (λI − N )−1 : h1,β(SN−1) → h1,β(SN−1) is compact for all λ /∈ sp(N ). The
spectrum of F ′(0) : h2,β(SN−1)→ h1,β(SN−1) also consists entirely of eigenvalues

sp(F ′(0)) = π(F ′(0)) =
{
− N
σN

,−N + 1
σN

,−N + 2
σN

, . . .
}

and the resolvent (λI −F ′(0))−1 : h1,β(SN−1)→ h1,β(SN−1) is compact for all λ /∈ sp(F ′(0)).

Proof. By [19, Thm. B.3, B.4], F ′(0) generates an analytic semigroup on h1,β(SN−1) with
dense domain of definition h2,β(SN−1). This implies that the resolvent set of F ′(0) is not
empty. There exists a λ∗ ∈ C such that

λ
∗I − F ′(0) : h2,α(SN−1)→ h1,α(SN−1)

is invertible and by the Open Mapping Theorem the inverse is bounded. Since h2,α(SN−1)
↪→↪→ h1,α(SN−1) (see [1, Thm. 8.6]),

λ
∗I − F ′(0) : h1,α(SN−1)→ h1,α(SN−1)

is compact. From [49, Ch. 3 Thm. 6.29] we have sp(F ′(0)) = π(F ′(0)) and the resolvent
is compact for λ /∈ π(F ′(0)). It is clear that similar results hold for N .

Now we apply these results for the linearisation to the nonlinear problem (2.20), using
the principle of linearised stability.

Theorem 2.18. Let 0 < λ0 < N
σN

. There exists a δ > 0 and an M > 0 such that if r0 ∈
h2,β(SN−1) with ‖r0‖2,β < δ, then the problem

∂r
∂τ

= F (r), r(0) = r0,

has a solution r ∈ C
(
[0, ∞), h2,β(SN−1)

)
∩ C1

(
[0, ∞), h1,β(SN−1)

)
satisfying

‖r(τ)‖2,β ≤ Me−λ0τ‖r0‖2,β. (2.38)

Proof. As mentioned before, F ′(0) generates an analytic semigroup on h1,β(SN−1). Be-
cause of Lemma 2.17 the spectrum is left of the imaginary axis and it has distance− N

σN
to

it. Furthermore, since I +F ′(0) is an isomorphism between h2,β(SN−1) and h1,β(SN−1),
the graph norm ofF ′(0) is equivalent to the norm of h2,β(SN−1). We can apply [53, Thm.
9.1.2] to show the global existence of r in time and the estimate.
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Combining Theorem 2.18 and equation (2.19) we get the following estimate for the non-
autonomous problem (2.17):

‖r(t)‖2,β ≤ M
(

Nt
σN

+ 1
)−ζ
‖r0‖2,β. (2.39)

for any ζ ∈ (0, 1).

2.4 Faster convergence in absence of low-order moments

In this section we show that if the integrals of harmonic polynomials with low degrees
over the moving domain vanish, then convergence to the equilibrium will be faster than
in Theorem 2.18.

Let hk j be the unique harmonic extension of sk j given by hk j(x) = |x|ksk j( x
|x| ). For a

domain Ω, the Richardson moments of order k are defined by the quantities
∫
Ω hk jdx

(see also [64]). Define for K ∈ N0

MN
K :=

{
r ∈ C0(SN−1)

∣∣∣ ∫
Ωr

dx =
σN

N
∧ ∀q ∈ ∪K

j=1H
N
j :
∫

Ωr

q(x)dx = 0
}

. (2.40)

We have r ∈ MN
K if the corresponding domain Ωr has the same volume as the unit ball

and the Richardson moments of order 1, 2 . . . , K vanish.
Note that by a suitable length scaling we can at least achieve r(0) ∈MN

0 .

Lemma 2.19. Let r be a solution to (2.17). If r(0) is in MN
K , then r(t) ∈MN

K for all t ≥ 0.

Proof. Let nR(t) be the normal vector field on ΓR(t). Because of (2.1)-(2.4) and Green’s
identities we have for k 6= 0

d
dt

∫
ΩR(t)

hk jdx =
∫

ΓR(t)

hk jv · nR(t)dx

= −
∫

ΓR(t)

hk j
∂p
∂n

dx =
∫

ΓR(t)

(
p

∂hk j

∂n
− hk j

∂p
∂n

)
dx =

=
∫

ΩR(t)

(
p∆hk j − hk j∆p

)
dx = hk j(0) = 0.

Thus for k 6= 0∫
Ωr(t)

hk j(x)dx =
∫

ΩR(t)

hk j(α(t)−1 y)α(t)−Ndy = α(t)−N−k
∫

ΩR(t)

hk j(y)dy =

= α(t)−N−k
∫

ΩR(0)

hk j(y)dy = α(t)−N−k
∫

Ωr(0)

hk j(y)dy.

For k 6= 0 we conclude that if
∫
Ωr(0)

hk jdx = 0, then
∫
Ωr(t)

hk jdx = 0 for all t ≥ 0. If
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∫
Ωr(0)

dx = σN
N , then it follows from (1.11) and (2.5) that

∫
Ωr(t)

dx =
1

α(t)N

∫
ΩR(t)

dx =
1

α(t)N

(σN

N
+ t
)

=
σN

N
.

Define for K, L ∈ N0 the vector spaces

hL,β
K (SN−1) := {r ∈ hL,β(SN−1) : (r, sk j)L2(SN−1) = 0, k ≤ K}. (2.41)

Now hL,β
K (SN−1), equipped with the norm ‖ · ‖L,β, is a closed subspace of hL,β(SN−1) and

therefore a Banach space. Define the index sets

IK := {(k, j) ∈ N0 ×N : k ∈ {0, 1, . . . .K}, j ∈ {1, 2, . . . ,ν(N, k)}},

and define the operators fK : h2,β(SN−1)→ RIK by

fK(r)k j :=
∫

Ωr

hk jdx−
√
σN

N
δk0, (2.42)

where δk0 = 0 if k 6= 0 and δk0 = 1 if k = 0. Since the constant function s00 satisfies
‖s00‖L2(SN−1) = 1 we have s00 ≡ 1√

σN
. Consequently h00 ≡ 1√

σN
. We conclude from

(2.40) that fK(r) = 0 if and only if r ∈ MN
K . Let PK : h2,β(SN−1) → h2,β

K (SN−1) be the
orthogonal projections on h2,β

K (SN−1) with respect to the L2(SN−1)-inner product and
defineφK : h2,β(SN−1)→ RIK × h2,β

K (SN−1) by

φK(r) :=
(

fK(r)
PKr

)
. (2.43)

Because hk j(x) = |x|ksk j( x
|x| ) we have

fK(r)k j =
∫

SN−1

∫ 1+r(ϕ)

0
ρ

k+N−1sk j(ϕ)dρdϕ−
√
σN

N
δk,0

=
∫

SN−1

(1 + r(ϕ))k+N

k + N
sk j(ϕ)dϕ−

√
σN

N
δk,0,

where ϕ = x
|x| ∈ SN−1. The operators fK : h2,β(SN−1) → RIK are analytic because

the components ( fK(·))k j are finite sums of bounded multilinear operators. Frechét-
differentiation of fK leads to

f ′K(0)[r]k j = (r, sk j)L2(SN−1). (2.44)

By linearity of PK we have

φ
′
K(0)[r] =

(
f ′K(0)[r]
PKr

)
.
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Figure 2.2: A local bijection between MN
K and h2,β(SN−1)

If φ′K(0)[r] = 0, then (r, sk j)L2(SN−1) = 0 for all k and j which implies r = 0. If (v, r̃) ∈
RIK × h2,β

K (SN−1), then r := r̃ + ∑k≤K ∑
ν(k,N)
j=1 vk jsk j satisfies φ′K(0)[r] = (v, r̃). Therefore

φ
′
K(0) is an isomorphism between h2,β(SN−1) and RIK × h2,β

K (SN−1). By the Implicit
Function Theorem,φK is invertible in a neighbourhood U of 0 in h2,β(SN−1). Define the
analytic operator ψK : h2,β

K (SN−1) ∩ U →MN
K by

ψK(r) := φ
−1
K (0, r),

see Figure 2.2. DifferentiatingφK(ψk(r)) = (0, r) results into

φ
′
K(ψK(0))[ψ′K(0)[r]] = (0, r).

Since ψK(0) = 0 it follows that

f ′K(0)[ψ′K(0)[r]] = 0

and
PK(ψ′K(0)[r]) = r.

From (2.44) we conclude that ψ′K(0) is the identity on h2,β
K (SN−1).

Corollary 2.20. The tangent space of MN
K at 0 in h2,β(SN−1) is equal to h2,β

K (SN−1) and for
r ∈ h2,β

K (SN−1) we have
ψ
′
K(0)[r] = r.

Define the operator GK : h2,β
K (SN−1)→ h1,β(SN−1) as the restriction ofF to h2,β

K (SN−1).
From Lemma 2.13 it follows that

G ′K(0) =
(
− 1
σN
N − N

σN
I
) ∣∣∣∣∣

h2,β
K (SN−1)

.

In order to determine the spectrum of G ′K(0), we write

h2,β(SN−1) = h2,β
K (SN−1)⊕

(
h2,β

K (SN−1)
)⊥

,

where the orthoplement is taken with respect to the L2(SN−1)-inner product. We have
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the following lemma, which holds in general for direct sums of closed subspaces of
Banach spaces.

Lemma 2.21. Let X be a Banach space and D a dense subspace of X. Let A : D → X be a
linear closed sectorial operator on X and suppose that sp(A) = π(A). Let X1 and X2 be closed
disjoint subspaces of X such that X1 ⊕ X2 = X and (D ∩ X1)⊕ (D ∩ X2) = D. Define for
i = 1, 2, the operators Ai : D ∩ Xi → X by Ai = A |D∩Xi

. Suppose that Ai(D ∩ Xi) ⊆ Xi and
suppose that all eigenspaces of A are subspaces of either X1 or X2. Regard Ai as operators on Xi
with dense domain of definition D ∩ Xi. The following statements are true:

i) Ai is closed ,

ii) sp(A) = sp(A1) ∪ sp(A2).

If furthermore D endowed with the graph norm is compactly embedded in X, then the following
statements are true as well:

iii) sp(Ai) = π(Ai),

iv) sp(A1) ∩ sp(A2) = ∅,

v) if λ ∈ ρ(A), then (λI − A)−1 |Xi
= (λI − Ai)

−1,

vi) Ai is sectorial.

Proof. Statement i) follows immediately from the closedness of the operator A and the
spaces Xi. To prove ii) we take λ ∈ ρ(A). It is clear that λI − Ai : D ∩ Xi → Xi is
injective, for both i = 1 and i = 2. To prove surjectivity, take g ∈ X1. There exists
an f ∈ D such that (λI − A) f = g. Then f = f1 + f2 with fi ∈ D ∩ Xi. Because
(λI − Ai) fi ∈ Xi we have (λI − A) f1 = g. Therefore λI − Ai : D ∩ Xi → Xi is bijective.
If (λI − Ai)

−1 : Xi → D ∩ Xi were unbounded, then there would be a sequence ( fn)
∞
n=1

in D ∩ Xi with ‖ fn‖ = 1 (taking the graph norm) such that ‖(λI − Ai) fn‖ < 1
n . Since

this contradicts λ ∈ ρ(A), we conclude that λ ∈ ρ(A1) ∩ ρ(A2). To complete the proof
of ii) we take a λ ∈ sp(A) = π(A). There exists an f ∈ D ∩ X not equal to zero
such that A f = λ f . This f is in either X1 or in X2. We conclude that λ ∈ π(A1) ∪
π(A2) ⊆ sp(A1) ∪ sp(A2). To prove iii), take a fixed λ∗ ∈ ρ(A) such that λ∗ ∈ ρ(Ai)
for i = 1, 2. Now λ

∗I − Ai is a continuous bijection from D ∩ Xi to Xi. By the Open
Mapping Theorem the inverse is continuous as well. By compactness of the embedding
of D ∩ Xi in Xi we conclude that (λ∗I − Ai)

−1 : Xi → Xi is compact. From [49, Ch. 3
Thm. 6.29] it follows that sp(Ai) = π(Ai). Now, iv) is a direct result from the fact that
eigenspaces of A are subspaces of either X1 or X2. Statement v) follows from the fact
that if (λI − Ai)

−1g = f for g ∈ Xi, then g = (λI − Ai) f = (λI − A) f . Statement vi)
follows immediately from statement v).

Corollary 2.22. G ′K(0) is a closed sectorial operator on h1,β
K (SN−1) withD(G ′K[0]) = h2,β

K (SN−1).

Lemma 2.23. The spectrum of G ′K(0) consists entirely of eigenvalues and

sp(G ′K(0)) = sp(F ′(0)) \
{
− N
σN

,−N + 1
σN

, . . . ,−N + K
σN

}
.
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Proof. An eigenvector of F ′(0) is in h2,β
K (SN−1) if and only if the corresponding eigen-

value is in sp(F ′(0)) \
{
− N
σN

,− N+1
σN

, . . . ,− N+K
σN

}
. Therefore π(G ′K(0)) = sp(F ′(0)) \{

− N
σN

,−N+1
σN

, . . . ,− N+K
σN

}
. Now the lemma follows from Lemma 2.21.

Theorem 2.24. Let 0 < λ0 < N+K+1
σN

. There exists a δ > 0 and an M > 0 such that if

r0 ∈ h2,β(SN−1) ∩MN
K and ‖r0‖2,β < δ, then the problem

∂r
∂τ

= F (r), r(0) = r0,

has a solution r ∈ C
(
[0, ∞), h2,β(SN−1)

)
∩ C1

(
[0, ∞), h1,β(SN−1)

)
∩MN

K satisfying

‖r(τ)‖2,β ≤ Me−λ0τ‖r0‖2,β.

Proof. Existence follows from Theorem 2.18. Note that if r ∈MN
K is small enough, then

ψK(PKr) = r.

The following evolution equation holds for PKr:

∂ (PKr)
∂τ

= PK
∂r
∂τ

= PKF (r) = (PK ◦ F ◦ψK) (PKr).

Linearising the evolution operator PK ◦ F ◦ψK : h2,β
K (SN−1) ∩ U → h1,β

K (SN−1) around
zero leads to

(PK ◦ F ◦ψK)′ (0) = PK ◦ F ′(ψK(0)) ◦ψ′K(0) = PK ◦ F ′(0) |h2,β
K (SN−1)= G

′
K(0). (2.45)

We used Corollary 2.20 and ψK(0) = 0. Since 0 < λ0 < N+K+1
σN

we have by Corollary
2.22, Lemma 2.23, [53, Thm. 9.1.2], analyticity of ψK, and ψK(0) = 0

‖r(τ)‖2,β = ‖(ψK ◦ PK)r(τ)‖2,β ≤ C‖PKr(τ)‖2,β ≤

≤ Ce−λ0τ‖PKr0‖2,β ≤ Ce−λ0τ‖r0‖2,β.

Combining Theorem 2.24 and (2.19) we get the following estimate for the non-autonomous
problem (2.17):

‖r(t)‖2,β ≤ M
(

Nt
σN

+ 1
)−ζ
‖r0‖2,β, (2.46)

for any ζ ∈
(
0, 1 + K+1

N

)
.



Chapter 3

Hele-Shaw flow with surface
tension in R3

3.1 Introduction

In Chapter 1 we briefly discussed how the suction problem is regularised by boundary
condition (1.6) in the case of an unbounded domain and parallel suction at infinity. This
condition includes the influence of surface tension forces on the free surface of the liquid
in the model.

An example from physics where surface tension is present is a drop of mercury that
contracts to a spherical drop due to surface tension. Also the process of viscous sintering
in glass industry is modeled as a moving boundary problem with surface tension on the
boundary (see e.g. [51]).

In Chapter 2 a stability result for the zero surface tension Hele-Shaw model with a
source was derived based on linearisation. If we replace the source by a sink, then the
linear problem becomes unstable. The suction problem is the reverse injection prob-
lem. Hence the negative eigenvalues for the operator (2.13), describing the linearised
evolution, change sign.

If surface tension on the boundary is included, then the suction problem is no longer
the reverse injection problem. The goal of this chapter is to show stability results for the
spherical solution both for injection and suction in combination with surface tension. As
in the previous chapter this is done by linearising a nonlinear parabolic equation around
this trivial solution. Again the spherical harmonics are the eigenfunctions. Escher and
Simonett [21] already proved existence of short-time solutions.

For the suction problem, Tian [70] proved that if the geometric centre and the suction
point do not coincide, then the solution breaks down before all fluid is sucked out or
the domain becomes unbounded with zero area. We answer the reverse question, by
showing that all liquid can be removed under the conditions that suction takes place in
the geometric centre and the ratio |µ|

γ
is small enough. This gives a partial answer to an

open problem posed in 1993 [39].
In Section 3.4 we prove that any smaller amount can be removed if the geometric

centre is close enough to the suction point. Here we use the fact that the evolution
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induces a semiflow. This follows from the abstract theory of quasilinear parabolic equa-
tions [3].

In the previous chapter invariance of Richardson moments is used to show faster
decay rates than (2.38) indicates. In this chapter this invariance property is crucial to
obtain stability for the case of suction. Although all other moments are not invariant
in the presence of surface tension, the zeroth and first Richardson moments still are.
The eigenvalues corresponding to spherical harmonics of degree zero and one are the
only ones that are positive for any combination of the surface tension coefficient γ and
suction rate µ < 0. Assuming that the zeroth and first moments are absent we study a
projected version of the nonlinear evolution equation on the orthoplement of the spher-
ical harmonics of degree zero and one. Positive eigenvalues can be excluded, making
use of the local bijection, that we calledψ1 in Chapter 2, between this orthoplement and
the invariant manifold describing domains for which some Richardson moments are
zero.

In general, the evolution equation cannot be transformed to an autonomous equa-
tion after introducing another time variable. Time dependence occurs in the parabolic
equation (3.22) because of the rescaling of the domain. By rescaling a domain by a fac-
tor α, the mean curvature of its boundary is scaled by a factor α−1. On the other hand
the fundamental solution of the Laplacian scales as Φ(αx) = α

2−N
Φ(x) modulo a con-

stant. Only in the three-dimensional case both effects (surface tension and strength of
source/sink) scale in the same way.

Because of this difference in scaling behaviour, the right-hand side of (3.22) is the
sum of two terms in which time dependence appears in different ways. The second
term is equal to the evolution operator for classical Hele-Shaw flow (2.29) multiplied
by the parameter µ. We have seen that this term is related to a solution operator of a
boundary value problem with Φ as boundary data. In the other term this boundary
data is related to the mean curvature of the moving domain.

Only the three-dimensional case can be treated as autonomous by introducing a new
time variable to eliminate the factor α−3 in (3.22). The calculations up to (3.22) hold in
any space dimension. After that we restrict ourselves to N = 3. The question of stability
in dimensions 2 and N ≥ 4 is answered in Chapter 5. There other methods are used that
are based on energy estimates in Hilbert spaces.

The fixed time problem is modified in the following way:

div v = µδ in Ω(t), (3.1)
v = −∇p in Ω(t), (3.2)
p = −γκ on Γ(t) := ∂Ω(t). (3.3)

Here, κ(·, t) : Γ(t) → R is the mean curvature of the moving boundary t 7→ Γ(t) (taken
negative if Ω(t) is convex), µ is the injection rate ifµ > 0 or the suction rate ifµ < 0, and
γ > 0 is the surface tension coefficient. The normal velocity vn of the moving boundary
Γ(t) is given by

vn = v · n. (3.4)
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From (3.1), (3.2), and (3.3) it follows that

∆p = −µδ in Ω(t), (3.5)
p = −γκ on Γ(t) = ∂Ω(t). (3.6)

On Γ(t) we have

vn = −∂p
∂n

.

In contrast to Chapter 2, µ may take other values than 1 here. Therefore, there are some
modifications. Assume that the initial domain Ω(0) has a volume that is equal to the
volume of the unit ball, which is σN

N . Then

V(t) =
σN

N
+µt. (3.7)

Note that for negative µ, the problem only makes sense if

t ≤ T := − σN

µN
.

If Ω(0) = BN , then Ω(t) = α(t)BN , where

α(t) = N

√
µNt
σN

+ 1.

This is in accordance with the notation in Chapter 2 if µ = 1.

3.2 The evolution equation and its linearisation

In this section we derive a nonlinear non-local evolution equation describing the motion
of the domain, in a similar way as we did in Chapter 2 for γ = 0. We introduce R(·, t) :
SN−1 → (−1, ∞) such that ΩR(·,t) = Ω(t) and rescale by introducing r(·, t) : SN−1 →
(−1, ∞) such that (2.6) and (2.7) hold. We introduce the bijection z̃(r) : SN−1 → Γr by
(2.8). Note that Lemma 2.1 still holds for the problem with surface tension. Therefore,

∂R
∂t

(ξ) = −∇p(z̃(R,ξ)) · n(R,ξ)
n(R,ξ) ·ξ , ξ ∈ SN−1. (3.8)

Defining U : ΩR → R by
U := p−µΦ, (3.9)

we get from (3.5) and (3.6)

∆U = 0 in Ω(t),
U = −γκR −µΦ on Γ(t).

Here κR : ΓR → R stands for the mean curvature of ΓR. Define for each continuous
f : SN−1 → (−1, ∞) the function K f : Ω f → R as the harmonic function that meets
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−κ f : Γ f → R at the boundary Γ f :

K f (ξ) = −κ f (ξ), ξ ∈ Γ f .

Lemma 3.1. If R(t) and r(t) are related via (2.6), then for ξ ∈ Ωr(t)

Kr(t)(ξ) = α(t)KR(t)(α(t)ξ), (3.10)

and
∇Kr(t)(ξ) = α(t)2∇KR(t)(α(t)ξ). (3.11)

Proof. This follows directly from the scaling behaviour of the curvature

κr(t)(ξ) = α(t)κR(t)(α(t)ξ)

and the fact that ξ 7→ KR(t)(α(t)ξ) is harmonic in Ωr(t).

It follows that
U = γKR(t) +µLR(t),

with LR(t) as defined in Section 2.2. From (2.13) and (3.11) it follows that

∇U(z̃(R,ξ)) =
γ

α(t)2∇Kr(z̃(r,ξ)) +
µ

α(t)N−1∇Lr(z̃(r,ξ)). (3.12)

In the same way as (2.14) we derive from (3.8) and (3.9)

∂R
∂t

(ξ) = −∇U(z̃(R,ξ)) · n(r,ξ)
n(r,ξ) ·ξ +

µ

σNα(t)N−1(1 + r(ξ))N−1 . (3.13)

Substituting (3.12) in (3.13) and using

∂r
∂t

=
1
α

∂R
∂t
−µ 1 + r

α
N
σN

(3.14)

we obtain the following evolution equation for r:

∂r
∂t

(ξ) = − γ

α(t)3
∇Kr(z̃(r,ξ)) · n(r,ξ)

n(r,ξ) ·ξ

+
µ

α(t)N

(
−∇Lr(z̃(r,ξ)) · n(r,ξ)

n(r,ξ) ·ξ +
1

σN(1 + r(ξ))N−1 −
1 + r(ξ)
σN

)
.

(3.15)

Definition 3.2. For any r defineκ(r, ·) as the function that maps an elementξ of the unit sphere
to the mean curvature of Γr at z̃(r,ξ). We will often use the notation κ(r) instead of κ(r, ·).

Let Ξ : W → SN−1 be a smooth regular parametrisation of (a part of) SN−1 and define



3.2 The evolution equation and its linearisation 43

G(r) : W → R(N−1)×(N−1) by

G(r) =
(

∂ (z̃(r) ◦ Ξ)
∂ω

)T
∂ (z̃(r) ◦ Ξ)

∂ω
, (3.16)

whereω = (ω1,ω2, . . . ,ωN−1)
T denotes an element in W. The Laplace-Beltrami opera-

tor on Γr is defined by

∆ru =

(
∑
i, j

1√
g(r)

∂

∂ωi

(√
g(r)gi j(r)

∂(u ◦ z̃(r) ◦ Ξ)
∂ω j

))
◦ Ξ
−1 ◦ z̃(r)−1. (3.17)

Here gi j(r) are the coefficients of G(r)−1 and

g(r) = det G(r).

In fact, we need to introduce at least two parametrisations and a partition of unity as
we did in the proof of Lemma 2.6. Since the operators that we define here are all local
we allow ourselves to work with only one to simplify notation.

Lemma 3.3. The Laplace-Beltrami operator ∆r is symmetric on L2(Γr).

Proof. This is a straightforward calculation.

Introduce for u : SN−1 → R smooth enough,

B(r)u := ∆r

(
u ◦ z̃(r)−1

)
◦ z̃(r)

=

(
∑
i, j

1√
g(r)

∂

∂ωi

(√
g(r)gi j(r)

∂(u ◦ Ξ)
∂ω j

))
◦ Ξ
−1. (3.18)

Let nr and κr be the normal and curvature on Γr such that n(r) = nr ◦ z̃(r) and κ(r) =
κr ◦ z̃(r). By [14, Sec. 2.5 Thm. 1] we have

∆rid = κrnr, (3.19)

where ∆r acts on every component of z̃(r) separately. This formula is equivalent to

B(r)z̃(r) = κ(r)n(r). (3.20)

Lemma 3.4. There exists a neighbourhood U of zero in C4,β(SN−1) such that κ is analytic from
U to C2,β(SN−1).

Proof. By (3.20) we have
κ(r) =

(
B(r)z̃(r)

)
· n(r) (3.21)

The operator n is analytic from a neighbourhood of zero in C4,β(SN−1) to
(
C1,β(SN−1)

)N

(This follows from Lemma 2.6 and C4,β(SN−1) ↪→ C2,β(SN−1)). Take two smooth regular
parametrisations Ξ1 : W2 → SN−1 and Ξ2 : W2 → SN−1 and two operators G1 and G2
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defined for these Ξ1 and Ξ2 by (3.16). From now on let k be either 1 or 2. Both Gk :

C4,β(SN−1) →
(
C3,β(Wk)

)(N−1)×(N−1)
and det(Gk(·)) : C4,β(SN−1) → C3,β(Wk) are ana-

lytic around zero, because C3,β(Wk) is a Banach algebra. Since Gk(0) =
(

∂Ξk
∂ω

)T
∂Ξk
∂ω

is in-

vertible on Wk (as a matrix) the mapping Gk(·)−1 : h4,β(SN−1)→
(
C3,β(Wk)

)(N−1)×(N−1)

is analytic around zero. Since det(Gk(0)) is away from zero, r 7→
√

det Gk(r) is a ana-
lytic near zero. For this see [60, Ch. 3 Lemma 7] that is based on the Implicit Function
Theorem. We conclude that both B and n are analytic near zero. The lemma follows
from this.

Reintroducing the operators z, A, Q, S , andϕ from Section 2.2 on a neighbourhood U
of zero in C2,β(SN−1), we obtain

∂r
∂t

=
γ

α(t)3F1(r) +
µ

α(t)NF2(r), (3.22)

with

F1(r) =
Tr
(
Q(r)

[
S(r)−1

[
0
κ(r)

]])
· n(r)

n(r) · id
and

F2(r) =
Tr
(
Q(r)

[
S(r)−1

[
0

ϕ(r)

]])
· n(r)

n(r) · id +
1

σN(1 + r)N−1 −
1 + r
σN

,

conform (2.29).

Lemma 3.5. The operatorsF1 : h4,β(SN−1)→ h1,β(SN−1) andF2 : h4,β(SN−1)→ h1,β(SN−1)
are analytic in a neighbourhood U of zero in h4,β(SN−1).

Proof. Analyticity of F2 follows from Lemma 2.11 in combination with

h4,β(SN−1) ↪→ h2,β(SN−1).

Analyticity of F1 can be proved in the same way as analyticity of F2, using Lemma
3.4.

To find an expression for the linearisation of F1 around zero in terms of N we lin-
earise κ.

Lemma 3.6. The linearisation around zero of the curvature operator κ is given by

κ
′(0)[h] = ∆0h + (N − 1)h

where ∆0 denotes the Laplace-Beltrami operator on the unit sphere, that satisfies

∆0h = −N 2h− (N − 2)N h. (3.23)



3.2 The evolution equation and its linearisation 45

Proof. See [60, Ch. 6] for the first part. For the second part see [56].

Lemma 3.7. We have

F ′1(0)[h] = N (κ′(0)[h]) = N (∆0h + (N − 1)h)

= N
(
−N 2h− (N − 2)N h + (N − 1)h

)
and

F ′2(0)[h] = − 1
σN
N h− N

σN
h.

Proof. Note that we calculated F ′2(0) in Lemma 2.13. Introduce

K(r) = S(r)−1
(

0
κ(r)

)
.

Following the proof of Lemma 2.12 and using the fact that K(0) is constant we derive(
∆K′(0)[h]
TrK′(0)[h]

)
=
(

0
κ
′(0)[h]

)
.

In other words,

K′(0)[h] = S(0)−1
(

0
κ
′(0)[h]

)
.

Now the linearisation of F1 can be found in the same way as the linearisation of F2 in
Lemma 2.13, replacingϕ by κ. We get

F ′1(0)[h] =
TrQ(0)K′(0)[h] · n(0)

n(0) · id =
∂K′(0)[h]

∂n
= Nκ′(0)[h].

The lemma follows from Lemma 3.6.

From now on we consider the case N = 3. We get from (3.22)

∂r
∂t

=
1

α(t)3 (γF1(r) +µF2(r)) . (3.24)

Introducing the time variable τ = τ(t) such that τ(0) = 0 and

dτ
dt

=
1

α(t)3 , (3.25)

implying that

τ(t) =
4π
3µ

ln
(

3µt
4π

+ 1
)

, (3.26)

we obtain the autonomous equation

∂r̄
∂τ

= F (r̄), (3.27)
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where r̄(τ) = r(t) and
F (r̄) := γF1(r̄) +µF2(r̄). (3.28)

(This is in accordance with Chapter 2 if γ = 0 and µ = 1.) For the suction problem,
the vanishing time t = Tµ corresponds to τ = ∞. From now on we write r instead of
r̄. Combining (3.28) and Lemma 3.7 one finds the following linearisation for F around
zero:

F ′(0)[h] = γN
(
−N 2h−N h + 2h

)
− µ

4π
(N h + 3h). (3.29)

3.3 The spectrum of the linearisation and stability for N =
3

In order to apply the principle of linearised stability to the evolution equation (3.27) for
the three-dimensional problem we need to study the spectral properties of the operator
F ′(0) : h4,β(S2) → h1,β(S2) given by (3.29). Since the point spectrum of N is equal to
N0, the eigenvalues of F ′(0) are given by

gk := γk(−k2 − k + 2)− µ

4π
(k + 3) , k ∈ N0

and the corresponding eigenspaces are
(
S3

k

)∞
k=0

. In the case µ > 0, all gk are negative.
Let us consider the case µ < 0 for which g0 and g1 are positive. If

|µ|
γ

= −µ
γ

<
32π

5
, (3.30)

then all other eigenvalues are negative. This follows from the fact that for k ≥ 2 the
sequence (gk)

∞
k=0 decreases and g2 < 0.

Corollary 3.8. The point spectrum of F ′(0) : h4,β(S2)→ h1,β(S2) is

π(F ′(0)) = {g0, g1, g2, . . . } .

The eigenspace for eigenvalue gk is S3
k . If µ > 0, then all eigenvalues of F ′(0) : h4,β(S2) →

h1,β(S2) are negative. If µ < 0, then the eigenvalues g0 and g1 are positive. All other eigenval-
ues g2, g3, . . . are negative if and only if (3.30) holds.

For two Banach spaces X and Y such that X ↪→ Y dense we define H(X, Y) as the
collection of operators A ∈ L(X, Y) for which −A is the infinitesimal generator of a
strongly continuous analytic semigroup on Y with dense domain of definition X.

We will prove that −F ′(0) ∈ H
(

h4,β(S2), h1,β(S2)
)

. For this we need the following
two lemmas.

Lemma 3.9. Let X and Y be Banach spaces such that X ↪→ Y and X dense in Y. Suppose that
F : X → Y and K : X → Y are bounded linear operators such that F ∈ H(X, Y) and suppose
that K is compact. Then F + K ∈ H(X, Y).

Proof. See [8, Thm. 5.6].
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Lemma 3.10. The mapping N : hk+1,β(SN−1)→ hk,β(SN−1) is continuous for all k ∈ N.

Proof. Define the Banach space X by

X = {ψ ∈ Ck+1,β(BN) : ∆ψ = 0}.

Let it inherit the norm of Ck+1,β(BN). Because of the maximum principle, the mapping
Tr : X → Ck+1,β(SN−1) is injective. To prove that it is surjective as well, let g be an
element of Ck+1,β(SN−1). Let f : [0, 1] → [0, 1] be a smooth function such that f (x) = 0
for all x ∈ [0, 1

3 ] and f (x) = 1 for all x ∈ [ 2
3 , 1]. Define g̃(x) = f (|x|)g( x

|x| ). Then

g̃ ∈ Ck+1,β(BN). By [32, Cor. 4.14] there exists a u ∈ C2,β(BN), such that u is harmonic

and u meets g̃ on the boundary. By [32, Thm. 6.19] we have u ∈ Ck+1,β(BN). Therefore,
the bounded operator Tr : X → Ck+1,β(SN−1) is surjective and by the Open Mapping
Theorem it has a bounded inverse Tr−1 : Ck+1,β(SN−1)→ X. From

N =
∂

∂n
◦ Tr−1

and the boundedness of ∂

∂n : X → Ck,β(SN−1) we get the desired result.

Lemma 3.11. We have −F ′(0) ∈ H
(

h4,β(S2), h1,β(S2)
)

.

Proof. See Section 3.5.

Lemma 3.12. The spectrum of F ′(0) : h4,β(S2)→ h1,β(S2) consists entirely of eigenvalues,

sp(F ′(0)) = {g0, g1, g2, . . . } .

The resolvent
(
λI − F ′(0)

)−1 : h1,β(S2)→ h1,β(S2) is compact for all λ /∈ sp(F ′(0)).

Proof. Define for each λ ∈ R the polynomial

pλ(X) = γ(X3 + X2 − 2X) +
µ

4π
(X + 3) + λ.

Note that pλ(N ) = λI − F ′(0). Take λ∗ large, such that pλ∗ has one negative zero ζ1
and two zeros ζ2 and ζ3 = ζ2 in C \R. Then

(
λ
∗I − F ′(0)

)−1 = − 1
γ

(ζ1I −N )−1 (ζ2I −N )−1 (ζ3I −N )−1 .

Sinceζi /∈ N0 for i ∈ {1, 2, 3}we conclude from Lemma 2.17 that (ζiI −N )−1 : h1,β(S2)→
h1,β(S2) is compact. As a consequence,

(
λ
∗I − F ′(0)

)−1
: h1,β(S2) → h1,β(S2) is com-

pact. From the Hille-Yosida Theorem and Lemma 3.11 it follows that F ′(0) is a closed
operator on h1,β(S2) with domain h4,β(S2). Applying [49, Thm. III.6.29] we see that
the spectrum of F ′(0) : h2,β(S2) → h1,β(S2) consists entirely of eigenvalues and the
resolvent

(
λI − F ′(0)

)−1
: h1,β(S2)→ h1,β(S2) is compact for all λ /∈ sp(F ′(0)).
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Theorem 3.13. Let µ > 0 and 0 < λ0 < 3µ
4π . There exists a δ > 0 and an M > 0 such that if

r0 ∈ h4,β(S2) with ‖r0‖4,β < δ, then the problem

∂r
∂τ

= F (r), r(0) = r0,

has a solution r ∈ C
(
[0, ∞), h4,β(S2)

)
∩ C1

(
[0, ∞), h1,β(S2)

)
satisfying

‖r(τ)‖4,β ≤ Me−λ0τ‖r0‖4,β. (3.31)

Proof. Combining Lemma 3.11 with [63, Thm. 11.31] we see that F ′(0) is sectorial. Note
that − 3µ

4π is the largest eigenvalue of F ′(0). The theorem follows if we combine this,
Lemmas 3.5, 3.12, and [53, Thm. 9.1.2].

From (3.26) and (3.31) we get for the non-autonomous problem (3.24),

‖r(t)‖4,β ≤ M
(

3µt
4π

+ 1
)−ζ
‖r0‖4,β,

for ζ = 4π
3µ λ0 ∈ (0, 1).

The case µ < 0 is more complicated. We restrict ourselves to evolutions in M3
1 given by

M3
1 =

{
r ∈ C0(S2) :

∫
Ωr

dx =
4π
3

,
∫

Ωr

x jdx = 0, j ∈ {1, 2, 3}
}

, (3.32)

where x j denotes the j-th component of x. Note that (3.32) follows from H3
1 = 〈x1, x2, x3〉

and (2.40). We have r ∈M3
1 if and only if the corresponding domain Ωr has the volume

of the unit ball and its geometric centre is located at the origin.
In general, Lemma 2.19 does not hold if surface tension is included. However, for

the Richardson moments of order zero and one we still have the following invariance
property.

Lemma 3.14. Let r solve (3.27). If r0 ∈M3
1, then r(t) ∈M3

1 for all t > 0.

Proof. It can be checked in the same way as in Lemma 2.19 that if Ωr(0) has the same
volume as the unit ball, then Ωr(t) has the same volume as the unit ball for all t. By
Green’s second identity, (3.1)-(3.4), (3.19), and Lemma 3.3 we have for j ∈ {1, 2, 3}

d
dt

∫
ΩR(t)

x jdx =
∫

ΓR(t)

x j(v, n)dx =
∫

ΓR(t)

−x j
∂p
∂n

dx

=
∫

ΩR(t)

p∆x jdx−
∫

ΩR(t)

x j∆pdx−
∫

ΓR(t)

p
∂x j

∂n
dx

= −
∫

ΓR(t)

p
∂x j

∂n
dx = γ

∫
ΓR(t)

κn jdx = γ

∫
ΓR(t)

∆R(t)x jdx = 0.

The lemma follows from this.
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Theorem 3.15. Let µ < 0 satisfy (3.30) and let 0 < λ0 < 5
4πµ + 8γ. There exists a δ > 0

and an M > 0 such that if r0 ∈ h4,β(S2) ∩M3
1 and ‖r0‖4,β < δ, then the problem

∂r
∂τ

= F (r), r(0) = r0, (3.33)

has a solution r ∈ C
(
[0, ∞), h4,β(S2)

)
∩ C1

(
[0, ∞), h1,β(S2)

)
satisfying

‖r(τ)‖4,β ≤ Me−λ0τ‖r0‖4,β. (3.34)

Proof. Let for all L ∈ N0 the subspaces hL,β
1 (S2) of hL,β(S2) be defined as in (2.41) and let

F̂ be the restriction of F to h4,β
1 (S2), such that F̂ ′(0) = F ′(0) |h4,β

1 (S2). Remember that

F ′(0) respects to the decomposition hk,β(S2) = hk,β
1 (S2)⊕S3

0 ⊕S3
1 such that

F̂ ′(0)
[

h4,β
1 (S2)

]
⊆ h1,β

1 (S2).

Based on Lemma 2.21, F̂ ′(0) is a closed sectorial operator on h1,β
1 (S2) with dense domain

of definition h4,β
1 (S2) and

sp(F̂ ′(0)) = {g2, g3, g4, . . . } .

This spectrum consists of negative real numbers. The largest element is − 5
4πµ − 8γ.

Reintroduce P1, φ1, and ψ1 from Chapter 2 and consider the following equation for
P1r:

∂(P1r)
∂τ

= (P1 ◦ F ◦ψ1) (P1r). (3.35)

Since
(P1 ◦ F ◦ψ1)

′ (0) = F̂ ′(0)

(as in (2.45)), we can apply [53, Thm. 9.1.2] to get a δ > 0 such that if r̃0 = P1r0 ∈ h4,β
1 (S2)

with ‖r̃0‖4,β < δ, then the problem

∂r̃
∂τ

= (P1 ◦ F ◦ψ1) (r̃), r̃(0) = r̃0,

has a unique solution r̃ ∈ C
(
[0, ∞), h4,β

1 (S2)
)
∩ C1

(
[0, ∞), h1,β

1 (S2)
)

. Furthermore,

there exists an M′ > 0 independent of r̃0 such that

‖r̃(τ)‖4,β ≤ M′e−λ0τ‖r̃0‖4,β.

Now construct
r := ψ1(r̃).

We will show that this is a solution to the original problem. Because P1 is the local
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inverse of ψ1 it is clear that P1r = r̃. Therefore

∂r
∂τ

= ψ
′
1(r̃)

[
∂r̃
∂τ

]
= ψ

′
1(r̃) [P1F (r)] = ψ

′
1(P1r)[P1F (r)]. (3.36)

Because ψ1(P1r) = r for all r ∈M3
1 with ‖r‖4,β small, we have

ψ
′
1(P1r)[P1h] = h, (3.37)

for all h ∈ TrM
3
1. Lemma 3.14 yields F (r) ∈ TrM

3
1. Therefore from (3.36) and (3.37) it

follows that
∂r
∂τ

= F (r).

Analyticity of ψ1 (see Chapter 2) and ψ1(0) = 0 imply existence of a δ > 0 and an
M > 0 such that for r0 ∈M3

1 with ‖r0‖4,β < δ we have

‖r(τ)‖4,β = ‖(ψ1 ◦ P1)(r(τ))‖4,β ≤ M‖P1r(τ)‖4,β

≤ Me−λ0τ‖P1r0‖4,β ≤ Me−λ0τ‖r0‖4,β.

This proves the theorem.

If we combine (3.26) and (3.34) we get for the non-autonomous problem (3.24),

‖r(t)‖4,β ≤ M
(

3µt
4π

+ 1
)ζ
‖r0‖4,β,

for ζ = − 4π
3µ λ0 and t ∈ [0, Tµ).

3.4 Stability with respect to perturbations of the suction
point

If the suction point is not at the geometric centre of the initial domain then the result
of Theorem 3.15 does not hold. As shown in [70] and [71], the solution either becomes
unbounded or it breaks down before all liquid is sucked out. In this section we show
that for an initial domain that satisfies the conditions of Theorem 3.15 (a nearly spher-
ical shape with geometric centre located at origin) a slight modification of the place of
suction leads to a small change of the maximal time of existence.

Let X be a metric space and let T+ : X → (0, ∞) ∪ {∞} be some mapping. Define

V :=
{
(x, τ) ∈ X× [0, ∞) : τ < T+(x)

}
.

A mapping f : V → X is called a semiflow on X if

1. V is open in X× (0, ∞);

2. f ∈ C(V, X);

3. f (·, 0) = id;
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4. If x ∈ X, τ ∈ [0, T+(x)), and τ∗ ∈ [0, T+( f (x, τ))), then τ + τ
∗ < T+(x) and

f (x, τ + τ∗) = f ( f (x, τ), τ∗).

Define E : U → L(C2,β(S2), C1,β(S2)) and l : U → C2,β(S2) by

E(r)ψ =
Tr
(
Q(r)

[
S(r)−1

[
0
ψ

]])
· n(r)

n(r) · id (3.38)

and

l(r) =
1

4π

(
1

(1 + r)2 − 1− r
)

, (3.39)

where U is a suitable neighbourhood of zero in C2,β(S2). Now we rewrite (3.27) in this
way:

∂r
∂τ

= γE(r)κ(r) +µE(r)ϕ(r) +µl(r).

Lemma 3.16. The mapping E is analytic around zero from U to L(C2,β(S2), C1,β(S2)).

Proof. First we prove analyticity of r 7→ S(r)−1 via the Implicit Function Theorem. De-

fine f : C2,β(S2)×L
(
C0,β(B3)× C2,β(S2), C2,β(B3)

)
→ L

(
C2,β(B3)

)
by

f (r, X) := X ◦ S(r)− I .

We have f (0, S(0)−1) = 0 and f is analytic near (0, S(0)−1) because of Lemma 2.7.
From differentiation we obtain

f ′(0, S(0)−1)[0, h] = h ◦ S(0).

Since f ′(0, S(0)−1)[0, ·] is bijective from L
(
C0,β(B3)× C2,β(S2), C2,β(B3)

)
to

L
(
C2,β(B3)

)
, with inverse h 7→ h ◦ S(0)−1, there exists an analytic mapping

r 7→ X(r) satisfying
f (r, X(r)) = 0.

Clearly X = S(·)−1. Analyticity of n and Q are proved in Lemmas 2.6 and 2.9.

Lemma 3.17. Let µ < 0 andα1 < α < β < 1. There exists a neighbourhood U of 0 in h3,β(S2)
and a function T+ : U ∩ h4,α1(S2) → (0, ∞) ∪ {∞} such that if r0 ∈ U ∩ h4,α1 (S2), then the
problem

∂r
∂τ

= F (r), r(0) = r0,

has a unique maximal solution

r ∈ C([0, T+(r0)), h4,α1(S2)) ∩ C0,η([0, T+(r0)), h1,α(S2)),

where η = 1 − α−α1
3 . The mapping (r0, τ) 7→ r(τ) is a semiflow on U ∩ h4,α1(S2) (in the



52 Hele-Shaw flow with surface tension in R3

h4,α1(S2)-topology) defined on the set

V :=
{
(r0, τ) ∈ (U ∩ h4,α1(S2))× [0, ∞) : τ < T+(r0)

}
.

Proof. According to [21, Lemma 3.1], there exists a neighbourhood Û of 0 in h2,β(S2),

κ1 ∈ Cω(Û ,L(h3,α(S2), h1,α(S2))),

and
κ2 ∈ Cω(Û , h1,β(S2))

such that
κ(r) = κ1(r)r +κ2(r). (3.40)

From (3.19) it follows that κ1 is a quasilinear differential operator of second order and
κ2 is of first order. There exists a small neighbourhood of zero U ⊂ Û in h3,β(S2) such
that

κ1 ∈ Cω(U ,L(h4,α(S2), h2,α(S2)))

and
κ2 ∈ Cω(U , h2,β(S2)).

Combining this with Lemma 3.16 we can choose U such that

r 7→ E(r)κ1(r) ∈ Cω(U ,L(h4,α(S2), h1,α(S2))). (3.41)

Calculating the Fréchet derivative of κ at zero using (3.40), we get from Lemma 3.6

κ1(0) +κ′2(0) = −N 2 −N + 2I ,

from which it follows that

E(0)κ1(0) = Nκ1(0) = −N 3 +K,

where K : h4,α(S2)→ h1,α(S2) is compact. Lemma 3.9 and Lemma 3.11 yield

−E(0)κ1(0) ∈ H(h4,α(S2), h1,α(S2)),

because − 1
γ
F ′(0) is in highest order equal to N 3. By [3, Thm. I.1.3.1]

H(h4,α(S2), h1,α(S2)) is open in L(h4,α(S2), h1,α(S2)). Combining this with (3.41) it fol-
lows that we can choose U such that

r 7→ −γE(r)κ1(r) ∈ Cω(U ,H(h4,α(S2), h1,α(S2))). (3.42)

We have proven analyticity near zero ofϕ and E in Lemmas 2.5 and 3.16. Analyticity of
l can be obtained from the same arguments as in the proof of Lemma 2.5. It follows that
we can choose U such that

r 7→ γE(r)κ2(r) +µE(r)ϕ(r) +µl(r) ∈ Cω(U , h1,β(S2)). (3.43)
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The little Hölder spaces satisfy(
h4,α(S2), h1,α(S2)

)0

1−α−α1
3 ,∞ = h4,α1 (S2).

For more information about continuous interpolation of Hölder spaces, see [53, Ch. 1].
The result follows from (3.42), (3.43), and [2, Thm. 12.1].

Theorem 3.18. Let µ < 0, T ∈ (0, ∞) and η ∈ (0, 1). Define

α1 = α + 3(η− 1). (3.44)

There exists a δ > 0 such that if r0 ∈ h4,α1 (S2) and ‖r0‖4,α1
< δ, then the problem

∂r
∂τ

= F (r), r(0) = r0,

has a solution r ∈ C
(
[0, T), h4,α1(S2)

)
∩ C0,η

(
[0, T), h1,α(S2)

)
.

Proof. Because of the semiflow property, that is proved in Lemma 3.17, the set{
(r0, τ) ∈ (U ∩ h4,α1(S2))× [0, ∞) : τ < T+(r0)

}
is open in h4,α1(S2)× (0, ∞). Since

T+(0) = ∞,

the point (0, T) is an interior point of V. Therefore there exists a neighbourhood Ũ of
zero in h4,α1(S2) such that for all r0 ∈ Ũ we have

T+(r0) ≥ T.

In the following theorems U denotes a sufficiently small neighbourhood of zero in
h3,β(S2).

Theorem 3.19. Let T > 0 and suppose that r∗ ∈ U ∩ h4,α1(S2) satisfies T+(r∗) = ∞. There
exists a δ > 0 such that if r0 ∈ h4,α1 (S2) with ‖r0 − r∗‖4,α1

< δ, then the problem

∂r
∂τ

= F (r), r(0) = r0,

has a solution r ∈ C
(
[0, T), h4,α1(S2)

)
∩ C0,η

(
[0, T), h1,α(S2)

)
, where η satisfies (3.44).

Proof. Since (r∗, T) is an interior point of V we can argue as in the proof of Theorem 3.18
to prove this theorem, see Figure 3.1

Now we will prove the main result of this section. Instead of changing the suction
point in a fixed domain we translate the domain in the opposite direction and leave the
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Figure 3.1: Since (r∗, T) is an interior point of V there exists an open ball around r∗ of initial
functions r0 with T+(r0) > T.

suction point at the same position.

Theorem 3.20. Let T > 0 and suppose that r∗ ∈ U ∩ h4,α1(S2) satisfies T+(r∗) = ∞. There
exists a δ > 0 such that for all z ∈ R3 with |z| < δ there is a r̃ ∈ U ∩ h4,α1(S2) such that
Ωr̃ = Ωr∗ + {z} (i.e. a translation of Ωr∗ ). Furthermore, the problem

∂r
∂τ

= F (r), r(0) = r̃,

has a solution r ∈ C
(
[0, T), h4,α1(S2)

)
∩ C0,η

(
[0, T), h1,α(S2)

)
, where η satisfies (3.44).

Proof. Define for small δ > 0 the ball B = {z ∈ RN : |z| < δ}. It is known that Ωr is
convex for r small in h3,β(S2). Consequently, for small ‖r‖3,β and small z the domain
Ωr + {z} is convex. As a result, there is a r̃ ∈ C0(SN−1) for which Ωr̃ = Ωr + {z}. Define
on B the mapping S by S : z 7→ Sz where

Sz : r 7→ r̃,

such that r̃ has the property Ωr̃ = Ωr + {z}. By Theorem 3.19, it is sufficient to show
that z 7→ Szr∗ is continuous near zero from B to h4,α1 (S2). In [10, Lemma 4.3] continuity
from B to Besov spaces is proved. The same arguments can be used for little Hölder
spaces.

3.5 Proof of Lemma 3.11

The structure of this proof is as follows. We relate N 3 to a Fourier multiplier operator
N̂ 3

0 on R2. The operator −N̂ 3
0 generates a strongly continuous analytic semigroup. Us-

ing techniques from [19], [21], and [22] together with additional perturbation arguments
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Figure 3.2: Chart of V

we see that N 3 ∈ H
(

h4,β(S2), h1,β(S2)
)

. Since −F ′(0) is in highest order equal to N 3

the lemma follows from Lemma 3.9.

1. Let (Ui , Ξ
−1
i )M

i=1 be an atlas of S2 consisting of smooth regular charts, with W̃i :=
Ξ
−1
i (Ui) such that 0 ∈ W̃i. Define

Wi := W̃i × (0,ρ) ,

for some ρ < 1,
Vi := {x ∈ B3 : 1− ρ < |x| < 1,

x
|x| ∈ Ui}

and introduce Xi : Vi →Wi by

Xi(x) :=
(

Ξ
−1
i

(
x
|x|

)
, 1− |x|

)T

,

see Figure 3.2. Let Âi : h2,β(W i) → h0,β(W i) and Q̂i : h2,β(W i) → h1,β(W̃ i) be
defined by

Âi p := ∆ (p ◦ Xi) ◦ X −1
i ,

Q̂i p :=
∂

∂n
(p ◦ Xi) ◦ X −1

i = − ∂p
∂x3

,

where n is the normal on S2. From now on we restrict our attention to one chart
and omit the index i in W̃i, Wi, Xi, Vi, Ui, Âi and Q̂i. There exist functions â jk,
â j ∈ C∞(W) such that

Â =
3

∑
j,k=1

â jk
∂

2

∂x j∂xk
−

3

∑
j=1

â j
∂

∂x j
.

The little Hölder spaces on open sets are defined as the closure of the Schwarz
space in the topology of the bounded uniformly Hölder continuous functions.
Here we will only work with functions with compact support. Define the half-
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space R3
+ := {x ∈ R3 : x3 ≥ 0)} and introduce Â0 : h2,β(R3

+)→ h0,β(R3
+) by

Â0 := −1 +
3

∑
j,k=1

â jk(0)
∂

2

∂x j∂xk
.

Note that â33(0) = 1 and â13(0) = â23(0) = â31(0) = â32(0) = 0. In this proof Tr
denotes the trace operator for functions on the halfspace R3

+. Define R̂0 : h1,β(R2×
{0})→ h1,β(R3

+) as the solution operator, R̂0g = u, of the problem{
−Â0u = 0 in R3

+

Tru = g in R2 × {0}.

Define the operator N̂0 by
N̂0 := Q̂ ◦ R̂0.

From [22, eqn. (4.10)] we get

FN̂0F
−1 =M f (·,1), (3.45)

where F denotes Fourier transform in R2, f : R2 ×R→ R is defined by

f (x, y) =

√√√√y2 +
2

∑
j,k=1

â jk(0)x jxk,

andM f (·,1) stands for multiplication with the function f (·, 1). Because ( f (x, y))3

is positively homogeneous of degree 3 and its derivatives are bounded on |x|2 +
y2 = 1 it follows that N̂ 3

0 ∈ H
(

h4,β(R2 × {0}), h1,β(R2 × {0})
)

, see [4]. For posi-
tively homogeneous functions of degree 1, see [20, Thm. A.2]. In [21, Cor. 5.2], the
same argument is used for a different operator of order three.

2. The next step is relating N̂ 3
0 toN 3 if the chart domains are small. For convenience

we use the notation
X∗g := g ◦ X −1,

for functions g on V . The following statement holds true. For any ε > 0 and ζ ∈
(0,β) there is a ρ > 0, an atlas (Ui , Ξ

−1
i )M

i=1, a partition of unity (ψi)
M
i=1 subordinate

to (Vi)
M
i=1, and a Cε > 0 such that for l ∈ {1, 2, 3} and N̂0 constructed from the

atlas as described above we have for all p ∈ hl+1,β(S2) and for all charts

‖X∗(ψN p)− N̂0X∗(ψp)‖C l,β(R2) ≤ ε‖X∗(ψp)‖C l+1,β(R2) + Cε‖p‖l+1,ζ . (3.46)

To see this, we argue as in the proof of [19, Thm. B.4] and choose ρ sufficiently
small, depending on ε. Here and in the sequel we identify C l,β(R2) and C l,β(R2 ×
{0}). Functions X∗(ψp) can be extended to the entire R2 without losing regularity
because of the smoothness of the partition of unity. We want to show that for any
δ > 0 and fixed ζ ∈ (0,β) the atlas can be chosen such that there is a Cδ > 0 such
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that for all p ∈ h4,β(S2) and all charts

‖X∗(ψN 3 p)− N̂ 3
0 X∗(ψp)‖C1,β(R2) ≤ δ‖X∗(ψp)‖C4,β(R2) + Cδ‖p‖4,ζ . (3.47)

In the sequel, we will often use the fact that for each k ∈ N

N ∈ L(hk+1,β(S2), hk,β(S2))

and
N̂0 ∈ L(hk+1,β(R2), hk,β(R2)).

For this, see Lemma 3.10 and [19, App. B]. First we show that there exists a
suitable atlas and a constant C′ independent of p such that

‖X∗(ψN p)‖C3,β(R2) ≤ C′
(
‖X∗(ψp)‖C4,β(R2) + ‖p‖4,ζ

)
(3.48)

and
‖X∗(ψN 2 p)‖C2,β(R2) ≤ C′

(
‖X∗(ψp)‖C4,β(R2) + ‖p‖4,ζ

)
. (3.49)

Let us start with the first estimate. Apply (3.46) with ε = 1 and l = 3. Let C > 0
denote a varying constant. We get

‖X∗(ψN p)‖C3,β(R2)

≤ ‖X∗(ψN p)− N̂0X∗(ψp)‖C3,β(R2) + ‖N̂0X∗(ψp)‖C3,β(R2)

≤ ‖X∗(ψp)‖C4,β(R2) + C‖p‖4,ζ + C‖X∗(ψp)‖C4,β(R2).

Estimate (3.48) follows. Replace p by N p in (3.46) and take ε = 1 and l = 2. From
(3.48) it follows that

‖X∗(ψN 2 p)‖C2,β(R2)

≤ ‖X∗(ψN 2 p)− N̂0X∗(ψN p)‖C2,β(R2) + ‖N̂0X∗(ψN p)‖C2,β(R2)

≤ ‖X∗(ψN p)‖C3,β(R2) + C‖N p‖3,ζ + C‖X∗(ψN p)‖C3,β(R2)

≤ C‖X∗(ψp)‖C4,β(R2) + C‖p‖4,ζ .

Now we prove estimate (3.47). Let δ > 0. Let η > 0 be a small number to be fixed
later. By the triangle inequality,

‖X∗(ψN 3 p)− N̂ 3
0 X∗(ψp)‖C1,β(R2) ≤ ‖X∗(ψN 3 p)− N̂0X∗(ψN 2 p)‖C1,β(R2) +

+‖N̂0X∗(ψN 2 p)− N̂ 2
0 X∗(ψN p)‖C1,β(R2) +

+‖N̂ 2
0 X∗(ψN p)− N̂ 3

0 X∗(ψp)‖C1,β(R2).

We will estimate the three terms on the right separately, denoting by Cη constants
that depend on η while C denotes constants that are independent of η. Applying
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(3.46) to N 2 p with l = 1 and using (3.49) we get

‖X∗(ψN 3 p)− N̂0X∗(ψN 2 p)‖C1,β(R2)

≤ η‖X∗(ψN 2 p)‖C2,β(R2) + Cη‖N 2 p‖2,ζ

≤ ηC
(
‖X∗(ψp)‖C4,β(R2) + ‖p‖4,ζ

)
+ Cη‖p‖4,ζ

≤ ηC‖X∗(ψp)‖C4,β(R2) + Cη‖p‖4,ζ . (3.50)

Applying (3.46) with l = 2, replacing p by N p, gives us

‖N̂0X∗(ψN 2 p)− N̂ 2
0 X∗(ψN p)‖C1,β(R2)

≤ C‖X∗(ψN 2 p)− N̂0X∗(ψN p)‖C2,β(R2)

≤ ηC‖X∗(ψN p)‖C3,β(R2) + Cη‖N p‖3,ζ

≤ ηC‖X∗(ψN p)‖C3,β(R2) + Cη‖p‖4,ζ . (3.51)

From (3.48) it follows that

‖N̂0X∗(ψN 2 p)− N̂ 2
0 X∗(ψN p)‖C1,β(R2) ≤ ηC‖X∗(ψp)‖C4,β(R2) + Cη‖p‖4,ζ .

Analogously,

‖N̂ 2
0 X∗(ψN p)− N̂ 3

0 X∗(ψp)‖C1,β(R2)

≤ C‖X∗(ψN p)− N̂0X∗(ψp)‖C3,β(R2)

≤ ηC‖X∗(ψp)‖C4,β(R2) + Cη‖p‖4,ζ . (3.52)

From (3.50)-(3.52) one obtains

‖X∗(ψN 3 p)− N̂ 3
0 X∗(ψp)‖C1,β(R2) ≤ ηC‖X∗(ψp)‖C4,β(R2) + Cη‖p‖4,ζ .

We take η = δ
C and get the desired result (3.47).

3. The next step is proving that for all λ > 0,

λI +N 3 : h4,β(S2)→ h1,β(S2)

is an isomorphism. Note that

λI +N 3 = ( 3
√
λI +N )( 3

√
λe

2π
3 iI +N )( 3

√
λe−

2π
3 iI +N ). (3.53)

Parallel to the proof of Lemma 2.17 we can derive surjectivity ofµI+N : hk+1,β(S2)
→ hk,β(S2), forµ ∈ C \−N0 and for all k ∈ N. Surjectivity of λI +N 3 : h4,β(S2)→
h1,β(S2) follows if we apply this result for k = 1, 2, 3 and µ = 3

√
λ, 3
√
λe

2π
3 i , 3
√
λe−

2π
3 i.

4. There exist C > 0 and λ∗ > 0 such that for all r ∈ h4,β(S2) and λ ∈ C with
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Re λ ≥ λ∗ we have

|λ|‖r‖1,β + ‖r‖4,β ≤ C‖(λI +N 3)r‖1,β. (3.54)

This can be obtained from (3.47) via exactly the same procedure that is used in the
proof of [19, Thm. B.4]. Estimate (3.54) and the fact that

λ∗I +N 3 : h4,β(S2)→ h1,β(S2)

is an isomorphism imply thatN 3 ∈ H
(

h4,β(S2), h1,β(S2)
)

, see [3, Remark I.1.2.1.(a)].
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Chapter 4

Bifurcation solutions

4.1 Introduction

In the previous chapter we showed that (3.30) is a necessary condition for r = 0 to
be an asymptotically stable stationary solution to (3.24) for the 3D suction problem. If
µ/γ = −32π/5, then zero is an eigenvalue for the linearised evolution problem and if
µ/γ < −32π/5, then r = 0 is linearly unstable. This motivates us to find stationary so-
lutions to the nonlinear problem that appear as transcritical bifurcation solutions. More
generally, for any k ∈ N \ {1} there is a negative value for µ for which the spherical har-
monics of degree k are the kernel of the linearised evolution problem. We investigate
existence of branches of stationary solutions r = ρk(σ) to the nonlinear problem that are
approximated by some elements in Sk for µ = mk(σ).

For such families of solutions, investigation of their stability is a natural and impor-
tant issue. Therefore we also present a stability result.

Our existence result is given in Section 4.2, where we apply a well-known result on
“bifurcation from a simple eigenvalue”. To ensure that the eigenvalue under consid-
eration is simple, we have to restrict our basic space, thereby introducing a symmetry
breaking. The new basic space consists of functions corresponding to domains that are
symmetric with respect to rotations around the vertical axis. Similar approaches are
used for the study of viscous drops in electric fields and for tumour models in [24], [26],
and [28].

In Section 4.3 we obtain a stability result for one class of stationary solutions that
we found. This concept of stability is weaker than the stability in Chapter 2 and 3 in
the following sense. Only perturbations that respect the axial symmetry are allowed.
Furthermore, the perturbed domain must satisfy the conditions on the geometry that
were crucial in the theory for the suction problem in Section 3.3.

In Section 4.4 a technical result is proved that characterises the local bifurcation pic-
ture. For µ slightly smaller than µ2 we find disc-like shapes and for µ slightly larger
than µ2 we have cigar-like shapes, see Figure 4.2. Our main stability result is given
in Theorem 4.5. It states that the branch of bifurcation solutions consisting of disc-like
shapes is nonlinearly stable (near the bifurcation point). This relies on analysing the
linearisation of the evolution operator around the bifurcation solution and applying the
results of Crandall and Rabinowitz [9]. This method is also used in [24] and [26].
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We would like to point out that the results of this chapter crucially depend on the
space dimension 3. As we have seen, the evolution operator in other dimensions is
essentially time dependent. Hence, its kernel is time dependent for N 6= 3.

Any solution r to (3.24) parameterises a domain ΩR(·,t) that solves the Hele-Shaw
problem (3.1)-(3.4), where r and R are related via (2.6). This implies that stationary
solutions r to (3.24) parameterise domains that have the property

ΩR(·,t) = α(t)ΩR(·,0),

withα : [0, 4π
3|µ| )→ (0, 1] given by

α(t) := 3

√
1− 3|µ|t

4π
.

We call domain evolutions with this property self-similarly vanishing. An example is
the trivial domain evolution Ω(t) = α(t)B3 that is represented by r = 0.

Let Hs(S2) be the Sobolev space of order s of functions on the unit sphere S2. Let
(·, ·)s denote its inner product defined by

(r, r̃)s := ∑
k, j

(k2 + 1)srk j r̃k j,

with rk j = (r, sk j)0 and r̃k j = (r̃, sk j)0, where (·, ·)0 is the L2(S2)-inner product and sk j

are the spherical harmonics that are chosen to be L2(S2)-orthonormal (as in Chapter 1).
In the following, U is a suitable small neighbourhood of zero in Hs(S2) for s > 5. It is
possible to define F1 : U → Hs−3(S2) and F2 : U → Hs−1(S2) in the same way as in
Chapter 3, replacing Hölder spaces by Sobolev spaces. For more detail, see Chapter 5.
It is clear that stationary solutions to (3.24) satisfy

γF1(r) +µF2(r) = 0. (4.1)

The linearisations of F1 and F2 around r ≡ 0 are given in Lemma 3.7 where N = 3 and
N : Hσ (S2) → Hσ−1(S2) for σ > 1 is defined in the same way as in (2.33). Because
N h = kh for h ∈ Sk it is clear that if µ = µk := −γζk with

ζk := 4π
k3 + k2 − 2k

k + 3
, k = 2, 3, 4 . . . ,

then kerF ′(0) = Sk.

4.2 Non-trivial stationary solutions via bifurcation

Define for σ ≥ 0 the subspace Hσ
×(S2) of Hσ (S2) consisting of those functions r that

parameterise domains Ωr that are invariant with respect to rotations around the z-axis.
It is well known that

Sl ∩Hσ
×(S2) = 〈Yl〉,
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Figure 4.1: The domains ΩcYk
, for k = 2, 3, 4 and several values of c ∈ R. For |c| small but

nonzero, these domains approximate non-trivial stationary solutions to the rescaled problem, i.e.
shapes of self-similarly vanishing domains.

where Yl are the zonal harmonics given by

Yl(θ) = Pl(cosθ),

where θ denotes the polar coordinate on S2 and Pl are the Legendre polynomials.
The mappings F1 and F2 respect rotational symmetries. Therefore, on a suitable

neighbourhood U× of zero in Hs
×(S2), we have a smooth mappingF×,µ : U× → Hs−3

× (S2)
given by

F×,µ := (γF1 +µF2)|U× .

We shall now state the existence result. We keep s and γ fixed and denote by Xk the
orthoplement of 〈Yk〉 in Hs

×(S2).

Theorem 4.1. (Existence of bifurcation solutions) Let k ≥ 2 be an integer. There exists a δk > 0
and a curve (ρk, mk) : (−δk, δk) → Hs

×(S2)×R with ρk(0) = 0 and mk(0) = µk such that
for all σ ∈ (−δk, δk)

F×,mk(σ)(ρk(σ)) = 0. (4.2)

Furthermore, there exist C1-functions νk : (−δk, δk) → Xk with νk(0) = 0 such that for
σ ∈ (−δk, δk) we have

ρk(σ) = σYk +σνk(σ). (4.3)

Moreover, there is a neighbourhood of (0,µk) in Hs
×(S2) × R on which any zero of (r,µ) 7→



64 Bifurcation solutions

F×,µ(r) is either of the form
(
σYk +σνk(σ), mk(σ)

)
or of the form (0,µ).

This theorem ensures the existence of non-trivial stationary solutions to (4.1). In par-
ticular, Yk gives the direction in which these solutions bifurcate from the trivial solution
r = 0, see Figure 4.1. The proof of Theorem 4.1 uses the following lemma.

Lemma 4.2. Let k ≥ 2 be an integer. We have kerF ′×,µk
(0) = 〈Yk〉 and R(F ′×,µk

(0)) is the
orthoplement of 〈Yk〉 in Hs−3

× (S2).

Proof. The zonal harmonics form a complete orthogonal system in Hs
×(S2). Conse-

quently, we get from Lemma 3.7 and the fact that NYl = lYl

F ′×,µk
(0)[h] =

∞
∑
l=0

gl,µk
(h, Yl)0Yl , h ∈ Hs

×(S2),

where gl,µ are the eigenvalues of F ′×,µ(0):

gl,µ := −γ(l3 + l2 − 2l)− µ

4π
(l + 3). (4.4)

As gl,µk
= 0 if and only if l = k and gl,µk

∼ −γl3 for large l, both statements follow
immediately.

The proof of Theorem 4.1 follows if we combine Lemma 4.2, [67, Thm. 13.5], and the
fact that

∂µ(F ′×,µ(0))|µ=µk
[Yk] = F ′2(0)[Yk] = − k + 3

4π
Yk /∈ R(F ′×,µk

(0)).

4.3 Stability of bifurcation solutions

The mappings ψ1 and P1 defined in Chapter 2 form a local bijection between the man-
ifold M3

1 and its tangent space at r = 0. In order to study stability with respect to
perturbations that preserve axial symmetry we need to introduce a suitable local bijec-
tion between the submanifold of M3

1 consisting of axially symmetric functions and its
tangent space in Hs

×(S2). After that, we obtain an evolution equation for the projection
of r on this tangent space.

Introduce

M3
×,1 := M3

1 ∩Hs
×(S2) =

{
r ∈ Hs

×(S2) :
∫

Ωr

dx =
4π
3

,
∫

Ωr

x3dx = 0
}

, (4.5)

where x3 denotes the third component of the spacial variable x. This manifold consists
of the functions r in Hs

×(S2) for which the corresponding domains Ωr have the volume
of the unit ball and a geometric centre that is located at the origin. It is invariant under
the nonlinear evolution, i.e. if r solves (3.24) and r(0) ∈ M3

×,1 then r(t) ∈ M3
×,1 for all

t. This is a consequence of Lemma 3.14 and preservation of axial symmetry. Since the
solutions ρk(σ) exists up to complete extinction it is clear from the theory of Tian [71]
that ρk(σ) ∈M3

×,1. Introduce

Hs
×,1(S

2) := {r ∈ Hs
×(S2) : (r, Y0)0 = (r, Y1)0 = 0}
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and let Xk,1 be the orthoplement of 〈Yk〉 in Hs
×,1(S

2). On a sufficiently small neighbour-
hood U× of zero in Hs

×(S2) we introduce the operatorφ×,1 : U× → R2 ×Hs
×,1(S

2) by

φ×,1(r) := ( f×,1(r),P1r)T ,

where P1 is the L2(S2)-orthogonal projection on Hs
×,1(S

2) and

f×,1(r) :=
(∫

Ωr

dx− 4π
3

,
∫

Ωr

x3dx
)T

. (4.6)

The mapping φ×,1 is a local bijection between a neighbourhood of zero in Hs
×(S2) and

a neighbourhood of zero in R2 ×Hs
×,1(S

2). This follows in the same way as analytic
bijectivity ofφ1 making use of the Implicit Function Theorem (see Chapter 2),

f ′×,1(0)[h] =
(

(h, x 7→ 1)0, (h, x 7→ x3)0

)T

,

〈Y0〉 = 〈1〉, and 〈Y1〉 = 〈x3〉. Note that in contrast to the definition of f1 in (2.42),
integrals over x1 and x2 are left out in the definition of f×,1.

On a neighbourhood U×,1 of zero in Hs
×,1(S

2) we define the analytic bijection ψ×,1 :
U×,1 →M3

×,1 by
ψ×,1(r) = φ

−1
×,1(0, r). (4.7)

Define F̃×,µ : U×,1 → Hs−3
×,1 (S2) by

F̃×,µ := P1 ◦ F×,µ ◦ψ×,1.

From the argument that we used to prove Corallary 2.20, we see that Hs
×,1(S

2) is the
tangent space of M3

×,1 at zero and ψ′×,1(0) : Hs
×,1(S

2)→ Hs
×,1(S

2) is the identity. Conse-
quently for h ∈ Hs

×,1(S
2)

F̃ ′×,µ(0)[h] = P1F ′×,µ(0)[ψ′×,1(0)[h]] = F ′×,µ(0)[h]

and for the spectra of the operators F̃ ′×,µ(0) and F ′×,µ(0) we have

sp(F̃ ′×,µ(0)) = sp(F ′×,µ(0)) \ {g0,µ , g1,µ} = {g2,µ , g3,µ , . . . } (4.8)

and F̃ ′×,µ(0)[Yk] = gk,µYk, where gk,µ is defined by (4.4). Fix now k ≥ 2. Introducing
ρ̃k(σ) := P1ρk(σ) one gets from (4.2)

F̃×,mk(σ)(ρ̃k(σ)) = 0.

From Lemma 4.2 it is known that

ker F̃ ′×,µk
(0) =

(
R(F̃ ′×,µk

(0))
)⊥ = 〈Yk〉 .

Here the orthoplement is taken in Hs−3
×,1 (S2). From Theorem 4.1 we know that in a neigh-
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bourhood of (0,µk) in Hs
×(S2) × R any zero of (r,µ) 7→ F×,µ(r) is either of the form

(0,µ) or (ρk(σ), mk(σ)). As a consequence, in a neighbourhood of (0,µk) in Hs
×,1(S

2)×
R, any zero of (r,µ) 7→ F̃×,µ(r) is either of the form (0,µ) or (ρ̃k(σ), mk(σ)). Com-
bining these results one applies [9, Cor. 1.13] to find an interval Ik containing µk, a
δk > 0, and continuously differentiable functions ξk : Ik → R, ηk : (−δk, δk) → R,
uk : Ik → Hs

×,1(S
2), and wk : (−δk, δk)→ Hs

×,1(S
2) such that for σ̃ ∈ Ik andσ ∈ (−δk, δk)

F̃ ′×,σ̃ (0)[uk(σ̃)] = ξk(σ̃)uk(σ̃)

and
F̃ ′×,mk(σ)(ρ̃k(σ))[wk(σ)] = ηk(σ)wk(σ).

Moreover, ξk(µk) = ηk(0) = 0, uk(µk) = wk(0) = Yk , uk(σ̃)− Yk ∈ Xk,1 for σ̃ ∈ Ik and
wk(σ)− Yk ∈ Xk,1 for σ ∈ (−δk, δk). However, from (4.4), (4.8), and continuity of ξk it
follows that uk is constant:

∀σ̃ ∈ Ik : ξk(σ̃) = gk,σ̃ , uk(σ̃) = Yk.

Consequently for all k ≥ 2 and σ̃ ∈ Ik

ξ
′
k(σ̃) = − k + 3

4π
< 0. (4.9)

Lemma 4.3. We have m′k(0) > 0 for k even and m′k(0) = 0 for k odd.

Proof. This is proved in Section 4.4.

Now we restrict our attention to k ∈ 2N. Because of Lemma 4.3, mk(σ) is nonzero
for small nonzero |σ |. From [9, Thm. 1.16] and (4.9) we get for small |σ |

sgn(ηk(σ)) = − sgn(σm′k(σ)ξ ′k(µk)) = sgn(σm′k(σ)).

Lemma 4.3 yields
sgn(ηk(σ)) = sgnσ . (4.10)

We conclude that for small positive σ , ηk(σ) is a positive eigenvalue of F̃ ′×,mk(σ)(ρ̃k(σ))
and for small negative σ , ηk(σ) is a negative eigenvalue of F̃ ′×,mk(σ)(ρ̃k(σ)). Now we
consider the curve of bifurcation solutions for k = 2. Observe that zero is the largest
element of sp(F̃ ′×,m2(0)(0)). We prove that for small negative σ , sp(F̃ ′×,m2(σ)(ρ̃2(σ))) is
situated on the left of the imaginary axis to show stability of the disc-like shapes, see
Figure 4.2.

Lemma 4.4. There exists a positive δ such that for σ ∈ (−δ, 0) the operator F̃ ′×,m2(σ)(ρ̃2(σ))
generates an analytic contraction semigroup on Hs−3

×,1 (S2) with domain of definition Hs
×,1(S

2).

Proof. To shorten notation we introduce Fσ := F̃ ′×,m2(σ)(ρ̃2(σ)), Y := Hs
×,1(S

2), and
X := Hs−3

×,1 (S2) with norms ‖ · ‖Y and ‖ · ‖X.
It is not hard to prove that −F0 ∈ H(Y, X), because showing that (3.54) holds for

Sobolev norms is straightforward. There are M > 0, ω ∈ R, and ϑ ∈ ( π2 , π) such that
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Figure 4.2: A sketch of the curves of nontrivial stationary domains bifurcating from the unit
ball. Domains of the type Ω±εYk

approximate these bifurcation solutions. The solutions approx-
imated by Ω−εY2

for positive ε are stable. Due to the additional symmetry of the problem with
respect to the reflection (x, y, z) 7→ (x, y,−z), if (ρ,µ) is a solution to the bifurcation problem
then so is (ρ̂,µ) where ρ̂ is defined by Ωρ̂ = −Ωρ. For even k, uniqueness and Lemma 4.3
imply ρ = ρ̂ on the bifurcation branches. Thus, Ωρ is symmetric with respect to the x1x2-plane.
If k is odd, then the branch consists of pairs of different solutions ρ and ρ̂ for the same value of
µ, and a pitchfork bifurcation occurs. However, we do not know whether µ < µk or µ > µk on
these branches.
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S := {z ∈ C : | arg(z−ω)| < ϑ} ⊆ ρ(F0) and for λ ∈ S we have

‖R(λ, F0)‖L(X) ≤
M

|λ−ω| .

Here R(λ, F0) : X → X is the resolvent of F0 and (L(X), ‖ · ‖L(X)) is the space of
bounded operators on X. Endow Y with the graph norm

‖x‖D(F0) := ‖x‖X + ‖F0x‖X ,

which is equivalent to the norm ‖ · ‖Y.
Fix κ ∈ (0, 1). Note at first that due to continuity of ρ2 and m2 (see Theorem 4.1) the

mapping σ 7→ Fσ is continuous with values in L(Y, X). Therefore, Fσ ∈ H(Y, X) and

‖Fσ − F0‖L(D(F0),X) <
κ

1 + 2M
, (4.11)

for |σ | sufficiently small.
For λ ∈ S

‖R(λ, F0)‖L(X,D(F0)) ≤ ‖R(λ, F0)‖L(X) + ‖F0R(λ, F0)‖L(X)

≤ ‖R(λ, F0)‖L(X) + ‖(λI − F0)R(λ, F0)‖L(X) + |λ|‖R(λ, F0)‖L(X)

≤ 1 +
(1 + |λ|)M
|λ−ω| .

Combining this and (4.11) one sees that there exists a Λ > 0 such that if λ ∈ SΛ := {z ∈
S : |z| > Λ}, then

‖(Fσ − F0)R(λ, F0)‖L(X) < κ. (4.12)

For λ ∈ SΛ ⊆ ρ(F0) and f ∈ X we consider the problem

λu− Fσu = f , (4.13)

that is to be solved for u ∈ D(F0) = Y. Introducing

v := λu− F0u,

we get the following problem that is equivalent to (4.13):

v = (Fσ − F0)R(λ, F0)v + f . (4.14)

From (4.12) it follows that the mapping

Z : v 7→ (Fσ − F0)R(λ, F0)v + f

defines a contraction on X. The Banach Contraction Theorem yields that there exists a
unique v′ ∈ X such that Z(v′) = v′. As a consequence,

u′ := R(λ, F0)v′ (4.15)



4.3 Stability of bifurcation solutions 69

Figure 4.3: The stars denote the elements in the spectrum of F0. There is one zero eigenvalue.
All other elements in the spectrum are in the region A := C \ (SΛ ∪ K). For negative values of
σ close enough to zero, one element η2(σ) of the spectrum of Fσ is still located in the little ball
{z ∈ C : |z| < ζ}. All other elements are in A. Since η2(σ) is negative all elements in sp(Fσ )
have negative real part.

solves (4.13) uniquely. Because of (4.12) and (4.14) we have ‖v′‖X ≤ κ‖v′‖X + ‖ f ‖X and
get

‖u′‖X ≤
M

|λ−ω| ‖v
′‖X ≤

1
1−κ

M
|λ−ω| ‖ f ‖X .

Consequently, SΛ ⊆ ρ(Fσ ) and−Fσ ∈ H(Y, X). It follows from the continuity ofσ 7→ Fσ
around 0 and the perturbation result given in [9, Lemma 1.3], that for sufficiently small
δ,ζ > 0 we have

sp(Fσ ) ∩ {z ∈ C : |z| < ζ} = {η2(σ)}, (4.16)

if |σ | < δ. Define the compact sets

K :=
{

z ∈ C \ SΛ : Re z ≥ 1
2

g3,µ2

}
, Kζ := {z ∈ K : |z| ≥ ζ} ,

see Figure 4.3. We will show that for fixed ζ

sp(Fσ ) ∩ Kζ = ∅ (4.17)

for allσ sufficiently close to zero. Forσ = 0 this is obvious. From continuity of (λ,σ) 7→
λI − Fσ and the fact that isomorphisms form an open subset in L(Y, X) we get the
following result. For all λ̂ ∈ Kζ there exist χ(λ̂) > 0 and σ(λ̂) > 0 such that for all
λ ∈ C with |λ − λ̂| < χ(λ̂) and for all σ with |σ | < σ(λ̂) the operator λI − Fσ is an
isomorphism between Y and X. Since Kζ is compact, the open covering of Kζ consisting
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of the balls
B(λ̂) := {z ∈ C : |z− λ̂| < χ(λ̂)}

has a finite subcovering
(

B(λ̂i)
)

i∈I. Define σ∗ := mini∈Iσ(λ̂i). Let |σ | < σ
∗ and λ ∈ Kζ .

There exists an i∗ ∈ I such that λ ∈ B(λ̂i∗). It is obvious that |σ | < σ(λ̂i∗). As a
consequence λI − Fσ is an isomorphism between Y and X. In other words λ /∈ sp(Fσ ).
This proves (4.17).

From (4.16), (4.17), and (4.10) we conclude that forσ negative and near zero, sp(Fσ ) is
in the open left half-space of the complex plane at a positive distance from the imaginary
axis. This completes the proof.

Now we state the main result of this chapter. Again we regard r as a function of the
time variable τ that we introduced in (3.26).

Theorem 4.5. (Stability of bifurcation solutions) Suppose that s > 5. There exists a δ1 > 0,
such that if σ ∈ (−δ1, 0) and λ0 ∈ (0,−Re η2(σ)), then there exists a δ2 > 0 and an M > 0
such that the following statement holds. If r0 ∈M3

×,1 and ‖r0−ρ2(σ)‖s < δ2, then there exists
a solution r ∈ C([0, ∞), Hs(S2)) ∩ C1([0, ∞), Hs−3(S2)) to

∂r
∂τ

= F×,m2(σ)(r), r(0) = r0.

Furthermore, for τ ∈ [0, ∞) we have r(τ) ∈M3
×,1 and

‖r(τ)− ρ2(σ)‖s ≤ Me−λ0τ‖r0 − ρ2(σ)‖s. (4.18)

Proof. First we show solvability of the problem

∂r̃
∂τ

= F̃×,m2(σ)(r̃), r̃(0) = P1r0, (4.19)

for P1r0 near ρ̃2(σ). Since I + F̃ ′×,m2(0)(0) is an isomorphism between Hs
×,1(S

2) and
Hs−3
×,1 (S2), I + F̃ ′×,m2(σ)(ρ̃2(σ)) is an isomorphism between Hs

×,1(S
2) and Hs−3

×,1 (S2) as
well for σ near zero. This implies that the graph norm of F̃ ′×,m2(σ)(ρ̃2(σ)) is equivalent
to ‖ · ‖s. Because F̃×,m2(σ) is analytic near zero and F̃×,m2(σ)(ρ̃2(σ)) = 0, it follows from
Lemma 4.4 and [53, Thm. 9.1.2] that there exists a solution to (4.19) that satisfies

‖r̃(τ)− ρ̃2(σ)‖s ≤ M̃e−λ0τ‖P1r0 − ρ̃2(σ)‖s,

for M̃ independent of P1r0. This estimate follows from the fact that sp(F̃ ′×,m2(σ)(ρ̃2(σ)))
is on the left of the line Re z = −λ0. Now r := ψ×,1(r̃) solves the original problem and
we obtain (4.18) from the analyticity of ψ×,1.

In view of (3.26), this exponential decay in τ translates into algebraic decay in t:

‖r(t)− ρ2(σ)‖s ≤ M
(

1− 3|µ|t
4π

)λ0
4π

3|µ|

‖r0 − ρ2(σ)‖s. (4.20)
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4.4 Proof of Lemma 4.3

Parameterise S2 by spherical coordinates:

Ξ : (θ,φ) 7→

 sinθ cosφ
sinθ sinφ

cosθ

 . (4.21)

Let ρ be the radial coordinate ρ = |x|.
In this appendix, m′k(0) will be calculated in terms of the Clebsch-Gordan coefficients

Ik and Jk that are defined by

Ik :=
∫

S2
(Yk)

3dσ , Jk :=
∫

S2
Yk

(
∂Yk

∂θ

)2

dσ . (4.22)

It is known that

Ik =

{
(4π)−1/2(2k + 1)3/2 k!3(3k/2)!2

(3k+1)!(k/2)!6 k even,
0 k odd,

(4.23)

see e.g. [54, eqns. (C.16), (C.23)].
Define Ỹk : R3 \ {0} → R by

Ỹk(x) = Yk

(
x
|x|

)
.

Since Ỹk (regarded as a function of ρ, θ, andφ) only depends on θ we have

Jk =
∫

S2
Ỹk|∇Ỹk|2dσ

and
∆0Yk = ∆Ỹk |S2 ,

where ∆0 is the Laplace-Beltrami operator on the sphere. Integration by parts shows

Jk = −
∫

S2
div (Ỹk∇Ỹk)Ỹkdσ

= −
∫

S2
(∇Ỹk · ∇Ỹk)Ỹkdσ −

∫
S2

Ỹ2
k ∆Ỹkdσ

= −Jk −
∫

S2
Y2

k ∆0Yk dσ = −Jk + k(k + 1)Ik.

In the last step we used (3.23). It follows that

Jk =
1
2

k(k + 1)Ik. (4.24)

Thus, Ik and Jk are positive for k even and zero for k odd. Lemma 4.3 will follow if we
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combine this fact with Lemmas 4.6 and 4.11.
For the operators E , κ,ϕ, and l defined by (3.38), Definition 3.2, (2.28), and (3.39), we

found the following identities in Chapter 2 and 3:

E(0) = N , (4.25)

κ
′(0) = −N 2 −N + 2I , (4.26)

ϕ
′(0) = − 1

4π
I , (4.27)

l′(0) = − 3
4π
I ,

where I is the identity operator.

Lemma 4.6. We have
m′k(0) =

2π
k + 3

(F ′′×,µk
(0)[Yk, Yk], Yk)0.

Proof. Differentiating the expression

γF1(ρk(σ)) + mk(σ)F2(ρk(σ)) = 0

twice with respect to σ gives

0 = γF ′′1 (ρk(σ))[ρ′k(σ),ρ′k(σ)] + mk(σ)F ′′2 (ρk(σ))[ρ′k(σ),ρ′k(σ)]

+γF ′1(ρk(σ))[ρ′′k (σ)] + mk(σ)F ′2(ρk(σ))[ρ′′k (σ)]

+2m′k(σ)F ′2(ρk(σ))[ρ′k(σ)] + m′′k (σ)F2(ρk(σ)).

Setting σ = 0 and using ρk(0) = 0, mk(0) = µk, F2(0) = 0, and ρ′k(0) = Yk one obtains

F ′′×,µk
(0)[Yk, Yk] +F ′×,µk

(0)[ρ′′k (0)] = −2m′k(0)F ′2(0)[Yk]. (4.28)

From Lemma 3.7 it follows that

(F ′2(0)[Yk], Yk)0 = − 1
4π

(k + 3).

Moreover, since ρ′′k (0) = 2ν′k(0) ∈ 〈Yk〉
⊥ (see Theorem 4.1) and F ′1(0) and F ′2(0) respect

the decomposition Hs
×(S2) = 〈Yk〉 ⊕ Xk, we get

(F ′×,µk
(0)[ρ′′k (0)], Yk)0 = 0.

Taking the inner product with Yk on both sides of (4.28) and applying the last two equa-
tions yields the result.

Now we introduce the vector spherical harmonics ~Vk, ~Wk : S2 → R3 conform [29] and
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[38] (where they are denoted by ~Vk0 and ~Wk0) in the following way:

~Vk := −
√

k + 1
2k + 1

Ykeρ +
1√

(k + 1)(2k + 1)
∂Yk

∂θ
eθ ,

~Wk :=
√

k
2k + 1

Ykeρ +
1√

k(2k + 1)
∂Yk

∂θ
eθ , (4.29)

for k ∈ N and ~V0 := −Y0eρ. Here eρ and eθ are the usual unit vectors corresponding to
spherical coordinates.

Let ∇0 be the surface gradient defined by

∇0 y = ∇Ey− ∂Ey
∂ρ

eρ, (4.30)

where Ey is a smooth extension of y : S2 → R inside B3. From [29] or [38] we have the
following formulas:

Ykeρ = −
√

k + 1
2k + 1

~Vk +
√

k
2k + 1

~Wk, (4.31)

∇0Yk = k

√
k + 1

2k + 1
~Vk + (k + 1)

√
k

2k + 1
~Wk =

∂Yk

∂θ
eθ , (4.32)

∇(ρkYk) = ρ
k−1
√

k(2k + 1)~Wk, (4.33)

Here and in the sequel the expression ρkYk should be interpreted as the function that
maps an element of B3 characterised by spherical coordinates to ρkYk(θ,φ). Note that
(4.33) can be obtained combining (4.31) and (4.32).

Lemma 4.7. For the operators A and Q defined by (2.25) and (2.26) we have

A′(0)[y] = −∆((Ey)id · ∇) + ((Ey)id · ∇)∆,

Q′(0)[y] = −(∇Ey)(id · ∇)− (Ey)∇.

Proof. One obtains the first identity taking the Fréchet derivative of the identity

A(r) (u ◦ z(r)) = (∆u) ◦ z(r),

for any twice differentiable function u, at r = 0 and using A(0) = ∆, z(0) = id, and
z′(0)[y] = (Ey)id. In a similar way one finds from Q(0) = ∇

Q′(0)[y] = −∇((Ey)id · ∇) + (Ey)idT H, (4.34)
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where H is the Hessian: [Hu]i j = ∂
2u

∂xi∂x j
. It follows from (4.34) that

Q′(0)[y] = −(∇Ey)(id · ∇)− (Ey)∇(id · ∇) + (Ey)idT H

= −(∇Ey)(id · ∇)− (Ey)∇− (Ey)idT H + (Ey)idT H

= −(∇Ey)(id · ∇)− (Ey)∇.

This completes the proof.

Lemma 4.8. We have

(E ′(0)[Yk]κ
′(0)[Yk], Yk)0 = (k2 + k− 2)(kIk + Jk).

Proof. From (4.26) we have

κ
′(0)[Yk] = −(k2 + k− 2)Yk.

The lemma will be proved by showing

(E ′(0)[Yk]Yk, Yk)0 = −(kIk + Jk). (4.35)

Differentiating the identity
n(r) · n(r) = 1

one obtains for all h
n′(0)[h] · n(0) = n′(0)[h] · id = 0. (4.36)

By the product rule of differentiation, (4.36), and the definition of E (see (3.38)) we have

E ′(0)[Yk]Yk = A + B + C,

where A, B, and C are given by

A = ∇S(0)−1(0, Yk)
T · n′(0)[Yk],

B = Q′(0)[Yk]S(0)−1(0, Yk)
T · n(0),

C = −∇S(0)−1S ′(0)[Yk]S(0)−1(0, Yk)
T · n(0),

with the trace operators suppressed for the sake of brevity. We used the fact that the
Fréchet derivative of r 7→ S(r)−1 at r = 0 in direction h is given by−S(0)−1S ′(0)[h]S(0)−1.

Introduce U : B3 → R by

U := S(0)−1(0, Yk)
T = ρ

kYk.

For later use we note that by (4.33) and (4.29)

∇U = ρ
k−1
√

k(2k + 1)~Wk, id · ∇U = kρkYk. (4.37)
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From (6.30) we get

n′(0)[Yk] = −∇0Yk = −∂Yk

∂θ
eθ . (4.38)

Using (4.29) and (4.37) it follows that

A = Tr∇U · n′(0)[Yk] = −
√

k(2k + 1)Tr(ρk−1 ~Wk) ·
(

∂Yk

∂θ
eθ
)

= −
(

∂Yk

∂θ

)2

.

Further, Lemma 4.7 and (4.37) yield

Q′(0)[Yk]U = −∇(EYk)kρkYk − EYk

[
ρ

k−1
√

k(2k + 1)~Wk

]

and by (4.29)

B = Tr(Q′(0)[Yk]U) · eρ = −k
(

∂

∂n
(EYk) + Yk

)
Yk,

where ∂

∂n is the normal derivative on S2. Set

Ψ := (EYk)id · ∇U = k(EYk)ρ
kYk.

From Lemma 4.7 and the fact that U is harmonic it follows that

C = − ∂

∂n
S(0)−1(A′(0)[Yk]U, 0)T

=
∂

∂n
S(0)−1(∆Ψ, 0)T =

∂

∂n
(
S(0)−1(∆Ψ, TrΨ)T − S(0)−1(0, TrΨ)T)

=
∂Ψ

∂n
−N (TrΨ) = k

∂

∂n
(EYk)Yk + k2Y2

k − kN (Y2
k ).

Adding the results, taking the inner product with Yk, and using

(Yk,NY2
k )0 = (NYk, Y2

k )0 = kIk

(4.35) follows.

Lemma 4.9. We have

(Nκ′′(0)[Yk, Yk], Yk)0 = 4k(k2 + k− 1)Ik.

Proof. Let G(r) be defined by (3.16), with Ξ given by (4.21) andω1 = θ,ω2 = φ. Intro-
duce

g(r) := det G(r).

Note that

G(r) = (1 + r)2G0 +
∂r
∂ω
⊗ ∂r

∂ω
,
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where

G0 :=
(

1 0
0 sin2

θ

)
and

∂r
∂ω
⊗ ∂r

∂ω
:=

 (
∂r
∂θ

)2 ∂r
∂θ

∂r
∂φ

∂r
∂θ

∂r
∂φ

(
∂r
∂φ

)2

 .

From G(r) we construct B(r) as in (3.18). The Laplace-Beltrami operator on S2 satisfies

∆0 = B(0) = −N 2 −N . (4.39)

The following expansions around r = 0 are easily derived:

G(r) = G0

(
I + 2rI + r2 I + G−1

0
∂r
∂ω
⊗ ∂r

∂ω

)
,

G(r)−1 = G−1
0

(
I − 2rI + 3r2 I − ∂r

∂ω
⊗ ∂r

∂ω
G−1

0 +O(r3)
)

,

g(r) = sin2
θ

(
1 + 4r + 6r2 +

(
∂r
∂θ

)2

+ csc2
θ

(
∂r
∂φ

)2

+O(r3)

)
,

√
g(r) = sinθ

(
1 + 2r + r2 +

1
2

(
∂r
∂θ

)2

+
1
2

csc2
θ

(
∂r
∂φ

)2

+O(r3)

)
,

X(r) :=
√

g(r)G(r)−1

= sinθG−1
0

(
I − ∂r

∂ω
⊗ ∂r

∂ω
G−1

0 +
1
2

(
∂r
∂θ

)2

I +
1
2

csc2
θ

(
∂r
∂φ

)2

I +O(r3)

)
,

Z(r) :=
1√
g(r)

= cscθ

(
1− 2r + 3r2 − 1

2

(
∂r
∂θ

)2

− 1
2

csc2
θ

(
∂r
∂φ

)2

+O(r3)

)
.

From these expansions it follows that for any h ∈ Hs(S2)

G ′(0)[h] = 2hG0,

G ′′(0)[h, h] = 2h2G0 + 2
∂h
∂ω
⊗ ∂h

∂ω
,

X′(0)[h] = 0.
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Since zonal harmonics do not depend on the azimuthal coordinateφ we have

X′′(0)[Yk, Yk] =
(

∂Yk

∂θ

)2 ( − sinθ 0
0 cscθ

)
, (4.40)

Z′′(0)[Yk, Yk] = cscθ

(
6(Yk)

2 −
(

∂Yk

∂θ

)2
)

, (4.41)

B′(0)[Yk] = −2Yk∆0, (4.42)

B′′(0)[Yk, Yk] =

(
6(Yk)

2 −
(

∂Yk

∂θ

)2
)

∆0 + cscθ
∂

∂θ

[
− sinθ

(
∂Yk

∂θ

)2
∂

∂θ

]
(4.43)

+ csc2
θ

(
∂Yk

∂θ

)2
∂

2

∂φ
2 .

From (3.21) it follows that

κ
′′(0)[Yk, Yk] = A + B + C + D + E + F,

with

A = (B′′(0)[Yk, Yk]z̃(0)) · n(0),

B = (∆0 z̃′′(0)[Yk, Yk]) · n(0),

C = (∆0 z̃(0)) · n′′(0)[Yk, Yk],

D = 2(B′(0)[Yk]z̃
′(0)[Yk]) · n(0),

E = 2(B′(0)[Yk]z̃(0)) · n′(0)[Yk],

F = 2(∆0 z̃′(0)[Yk]) · n′(0)[Yk].

Since z̃(0) = n(0) = id and ∂id
∂θ
⊥ id, ∂id

∂φ
⊥ id we obtain from (4.43)

A =

(
6(Yk)

2 −
(

∂Yk

∂θ

)2
)

(∆0id) · id−
(

∂Yk

∂θ

)2
∂

2id
∂θ

2 · id + csc2
θ

(
∂Yk

∂θ

)2
∂

2id
∂φ

2 · id

=

(
6(Yk)

2 −
(

∂Yk

∂θ

)2
)

(∆0id) · id = −12(Yk)
2 + 2

(
∂Yk

∂θ

)2

.

The last step follows from (4.39) and the identity N id = id. We have B ≡ 0, because
z′′(0) ≡ 0. Taking the second Fréchet derivative at zero of the expression

n(r) · n(r) = 1
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we obtain from (4.38)

n′′(0)[Yk, Yk] · id = −n′(0)[Yk] · n′(0)[Yk] = −
(

∂Yk

∂θ

)2

.

Therefore it follows from (4.39) that

C = 2
(

∂Yk

∂θ

)2

.

In the following identities, that follow from [38, eqns. (B-6 a), (B-6 c), (B-7)], ∆0 has to
be applied component-wise:

∆0
~Vk = −(k + 1)(k + 2)~Vk, ∆0

~Wk = −k(k− 1)~Wk. (4.44)

From (4.31), (4.42), and (4.44) we get

D = 2B′(0)[Yk](Ykid) · id = −4Yk∆0(Ykid) · id

= −4Yk∆0

[
−
√

k + 1
2k + 1

~Vk +
√

k
2k + 1

~Wk

]
· id

= 4

[
(k + 1)2(k + 2)

2k + 1
+

k2(k− 1)
2k + 1

]
(Yk)

2

= 4(k2 + k + 2)(Yk)
2.

Further, (4.39) and (4.36) yield

E = −4Yk(∆0id) · n′(0)[Yk] = 8Ykid · n′(0)[Yk] = 0.

Finally (4.38) implies

F = 2(∆0(Ykid)) · −∂Yk

∂θ
eθ

= 2∆0

[
−
√

k + 1
2k + 1

~Vk +
√

k
2k + 1

~Wk

]
· −∂Yk

∂θ
eθ

=

[
2(k + 1)(k + 2)

√
k + 1

2k + 1
~Vk − 2k(k− 1)

√
k

2k + 1
~Wk

]
· −∂Yk

∂θ
eθ

=
[
−2

(k + 1)(k + 2)
2k + 1

+ 2
k(k− 1)
2k + 1

] (
∂Yk

∂θ

)2

= −4
(

∂Yk

∂θ

)2

.

The lemma follows by adding the results.
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Lemma 4.10. We have

(E ′(0)[Yk]ϕ
′(0)[Yk], Yk)0 =

1
4π

(kIk + Jk),

(Nϕ′′(0)[Yk, Yk], Yk)0 =
k

2π
Ik.

Proof. The first statement follows from (4.27) and (4.35). The second statement follows
from the definition ofϕ.

Lemma 4.11. We have

(F ′′×,µk
(0)[Yk, Yk], Yk)0

=
2k(k3 + 7k2 + 6k− 6)

k + 3
Ik +

6(k2 + k− 2)
k + 3

Jk.

Proof. It is obvious that

F ′′×,µk
(0) = γ

(
F ′′1 (0)−ζkF ′′2 (0)

)
.

Observe thatϕ(0) = 0 and as E(r) vanishes on constants, E ′′(0)[h, h]κ(0) = 0. Therefore

F ′′1 (0)[h, h] = 2E ′(0)[h]κ′(0)[h] + E(0)κ′′(0)[h, h],

F ′′2 (0)[h, h] = 2E ′(0)[h]ϕ′(0)[h] + E(0)ϕ′′(0)[h, h] + l′′(0)[h, h].

From the definition of l it follows that l′′(0)[h, h] = 3
2π h2. Combining the previous

lemmas and (4.25) we obtain

(F ′′×,µk
(0)[Yk, Yk], Yk)0

= γ
(
2(E ′(0)[Yk]κ

′(0)[Yk], Yk)0 − 2ζk(E ′(0)[Yk]ϕ
′(0)[Yk], Yk)0

)
+γ
(
(Nκ′′(0)[Yk, Yk], Yk)0 −ζk(Nϕ′′(0)[Yk, Yk], Yk)0 −ζk(l′′(0)[Yk, Yk], Yk)0

)
= γ

(
2
(

k2 + k− 2−ζk
1

4π

)
(kIk + Jk) + 4k(k2 + k− 1)Ik −ζk

k
2π

Ik −ζk
3

2π
Ik

)

= γ

(
6(k2 + k− 2)

k + 3
(kIk + Jk) + 4k(k2 + k− 1)Ik − 2k(k2 + k− 2)Ik

)

= γ

(
6(k2 + k− 2)

k + 3
(kIk + Jk) + 2k2(k + 1)Ik

)
.

Lemma 4.3 follows from (4.23), (4.24), Lemma 4.6, and Lemma 4.11.
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Chapter 5

Hele-Shaw flow with surface
tension in RN

5.1 Introduction

Until now we only discussed the three-dimensional version of the Hele-Shaw moving
boundary problem with surface tension and one source/sink (3.1)-(3.4). Since the lin-
earisations of both F1 and F2 are negative operators (see Lemma 3.7), the spherical
solution is asymptotically stable in the case of injection. For the suction problem it is
important that F1 is a third order operator whereas F2 is of order one. Surface tension
dominates the strength of the sink and the spherical solution is stable with respect to
certain perturbations.

This Chapter is aimed at extending the theory for N = 3 to other space dimen-
sions. More precisely, we will prove the results that are shown in Table 5.1. For di-
mensions unequal to 3, the local-in-time version of the suction problem is again well-
posed because the qualitative properties of F1(r) and F2(r) are the same in all dimen-
sions. However, (3.22) is essentially time dependent because of the scaling properties
of curvature and Φ that we discussed earlier. For large time one of the two terms in
γα(t)−3F1(r) + µα(t)−NF2(r) grows faster than the other one. Hence, large-time be-
haviour depends on the dimension.

An application of the two-dimensional version of the Hele-Shaw model is liquid
flow in a Hele-Shaw cell. Our results for N ≥ 4 turn out to be useful in Chapter 6 where
we study the Stokes moving boundary problem.

For the injection problems we find existence for all t > 0. In the two-dimensional
suction problem the geometric centre of the initial domain and the suction point must
coincide in order to remove all liquid. The domain vanishes ”as an asymptotically cir-
cular point”. In contrast to the three-dimensional case, there is no restriction on the
suction rate in the two-dimensional case. For N ≥ 4 with suction, the spherical solution
is linearly unstable. However, it is possible to derive a result like Theorem 3.18 for any
µ < 0 both for N = 2 and for N ≥ 4. An arbitrarily large portion of liquid smaller than
the entire domain can be removed if the initial domain is close enough to a ball. We call
this ”almost global existence”.
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dimension µ > 0 µ < 0
2 • global existence and decay

global existence for correct geometric centre
and decay (see Theorem 5.8)
(see Theorem 5.6) • almost global existence

(see Theorem 5.13)
3 • global existence and decay

global existence for correct geometric centre when
and decay |µ|

γ
< 32π

5
(see Theorem 3.13) (see Theorem 3.15)

• almost global existence
(see Theorem 3.18)

≥ 4 global existence almost global existence
and decay (see Theorem 5.13)
(see Theorem 5.10)

Table 5.1: Large-time behaviour of Hele-Shaw flow with surface tension and injection or suction
in one point

Instead of using the principle of linearised stability we apply Theorem A.1 in Ap-
pendix A to deal with the non-autonomous character of the problems. From the lin-
earisations, that we calculated before, and perturbation results we derive estimates for
(r,F (r, t))s where F is the time-dependent evolution operator. Since Hölder spaces
have no Hilbert space structure we define our evolution problem in Sobolev spaces. As
a consequence, we need to demand higher regularity to make sure that our Sobolev
spaces are embedded in a Hölder space of sufficiently high order.

As mentioned before, finding non-trivial stationary solutions to (3.22) by the method
presented in Chapter 4 is not possible for N 6= 3 since the kernels of the evolution
operators are time dependent.

5.2 The evolution equation and its linearisation

In this section the evolution problem in RN that we discussed in Chapter 3 is formulated
in Sobolev spaces. Let (·, ·)0 be the usual L2(SN−1)-inner product and define for each
r ∈ L2(SN−1) the numbers rk j by

rk j := (r, sk j)0,

where sk j denote the spherical harmonics as defined in Section 1.5. For all s > 0, equip
the Sobolev space Hs(SN−1) with the inner product

(r, r̃)s = ∑
k, j

(k2 + 1)srk j r̃k j.
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In the sequel we will use the Sobolev Embedding Theorem: If k ∈ N0, β ∈ (0, 1), and
s > N−1

2 + k +β, then
Hs(SN−1) ↪→ Ck,β(SN−1)

and
Hs+ 1

2 (BN) ↪→ Ck,β(BN).

We will also use the fact that for s > N−1
2 , Hs+ 1

2 (BN) and Hs(SN−1) are Banach algebras.
Reintroduce the functions R(·, t) : SN−1 → (−1, ∞) and r(·, t) : SN−1 → (−1, ∞)

that parameterise the moving domain and its rescaled version as explained in Section
1.5. We will often write r(t) instead of r(·, t) and if we consider a fixed domain, then the
argument t will be suppressed.

From now on we assume that r ∈ Hs(SN−1) where

s >
N + 7

2
. (5.1)

On a neighbourhood U of zero in Hs(SN−1) the operators n : U →
(
Hs−1(SN−1)

)N
and

κ : U → Hs−2(SN−1) as defined in Chapters 2 and 3 are analytic (see [60, Ch. 3 Lemma
16]). This is proved in the same way as we did for Hölder spaces in Chapter 2.

By [63, Thm. 6.108], there exists an extension operator E ∈ L(Hs(SN−1), Hs+ 1
2 (BN)),

such that
Er|SN−1 = r. (5.2)

Define z : Hs(SN−1)→
(
Hs+ 1

2 (BN)
)N

by

z(r, x) := (1 + E(r, x)) x.

Here and hereafter we identify z(r, ·) with z(r), E(r, ·) with E(r), etc. Let jk,i(r) be the
coefficients of the inverse of the matrix

J (r) =
∂z(r)

∂x
∈
(
Hs− 1

2 (BN)
)N×N

.

Lemma 5.1. Let s > N+7
2 . There exists a δ > 0 such that if ‖r‖s < δ, then z(r) : BN → Ωr is

bijective and z(r)−1 ∈
(
C2(Ωr)

)N
.

Proof. From Hs(SN−1) ↪→ C4(SN−1) it follows that r is small in C4(SN−1). The result
follows from Lemmas 2.3 and 2.4.

On a neighbourhood U of zero in Hs(SN−1) we define the following operators:

• A : U → L(Hs− 3
2 (BN), Hs− 7

2 (BN)) and Q : U → L
(

Hs− 3
2 (BN),

(
Hs− 5

2 (BN)
)N
)

by (2.25) and (2.26). Note that J is continuous near zero,
(
Hs− 1

2 (BN)
)N×N

is a
Banach algebra, and J (0) = I. As a result, J (r) is invertible (in the sense of
matrices) for ‖r‖s small and the elements jk,i(r) are in Hs− 1

2 (BN). Because of (5.1)
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the space Hs− 7
2 (BN) is a Banach algebra. Therefore the operators A and Q are

well-defined.

• S : U → L(Hs− 3
2 (BN), Hs− 7

2 (BN)×Hs−2(SN−1)) as in (2.27).

• ϕ : U → Hs(SN−1) as in (2.28).

Lemma 5.2. For ‖r‖s small, S(r) is an isomorphism between Hs− 3
2 (BN) and Hs− 7

2 (BN) ×
Hs−2(SN−1).

Proof. It is known that S(0) = (∆, Tr)T is an isomorphism between Hs− 3
2 (BN) and

Hs− 7
2 (BN)×Hs−2(SN−1). Isomorphisms form an open set in the space of linear bounded

operators. Because S is smooth (by the methods in Lemma 2.7), S(r) is an isomorphism
for small r.

Suppose that (5.1) holds. Introduce on a suitable neighbourhood U of zero in Hs(SN−1)
the operators E : U → L(Hs−2(SN−1), Hs−3(SN−1)) and l : U → Hs(SN−1) by

E(r)ψ :=
Tr
(
Q(r)

[
S(r)−1

[
0
ψ

]])
· n(r)

n(r) · id (5.3)

and
l(r) :=

1

σN(1 + r)N−1 −
1 + r
σN

. (5.4)

Since S also maps U to L(Hs+ 1
2 (BN), Hs− 3

2 (BN)×Hs(SN−1)), E also defines a mapping
from U to L(Hs(SN−1), Hs−1(SN−1)). As in Chapter 3 we have for r in a neighbourhood
U of zero in Hs(SN−1)

∂r
∂t

=
1

α(t)3F (r, t), (5.5)

where
F (r, t) = γF1(r) +µα(t)3−NF2(r), (5.6)

for a third order operator F1 : U → Hs−3(SN−1) and a first order operator F2 : U →
Hs−1(SN−1) given by

F1(r) = E(r)κ(r),

F2(r) = E(r)ϕ(r) + l(r),

In fact, F2 also maps a neighbourhood of zero in Hs−2(SN−1) to Hs−3(SN−1).

Lemma 5.3. (Analyticity of the evolution operator)
Suppose that s > N+7

2 .

• The mapping F1 is analytic from a neighbourhood U of zero in Hs(SN−1) to
Hs−3(SN−1).

• The mappingF2 is analytic from a neighbourhood U of zero in Hs−2(SN−1) to Hs−3(SN−1).
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Proof. These statements can be proved in the same way as in Lemma 3.5 (see also [60,
Ch. 3 Lemma 20]).

Introduce a new time variable τ = τ(t) such that (3.25) holds and τ(0) = 0. For
N 6= 3 this gives

τ(t) =
σN

µ (N − 3)

((
µNt
σN

+ 1
)1− 3

N

− 1

)
. (5.7)

Define
T :=

σN

|µ|N .

In the case of suction we have α(T) = 0. If the initial volume is equal to the volume of
BN , then at t = T all liquid is sucked out provided that the domain evolution continues
up to complete extinction.

The original time interval on which the moving boundary problem is defined is in-
finite for the injection problems and finite for the suction problems. Considering (5.7),
this does not change for the new time variable τ in the case N ≥ 4. For N = 2 however,
the new injection problem is defined on a finite time interval (0, τmax) while the suction
problem is defined on (0, ∞). This is illustrated in Figure 5.1. We have

lim
t→∞τ(t) =

2π
µ

, for N = 2, µ > 0,

lim
t→T

τ(t) = ∞, for N = 2, µ < 0,

lim
t→∞τ(t) = ∞, for N ≥ 4, µ > 0,

lim
t→T

τ(t) =
σN

|µ|(N − 3)
, for N ≥ 4, µ < 0.

We denote these limit values for τ by τmax. From (3.25), (5.5), and (5.6) it follows that

∂r
∂τ

= F (r, t(τ)) = γF1(r) +µα(t(τ))3−NF2(r).

Here t(τ) is the value of t that corresponds to τ . To simplify notation, we will write
from now onα(τ) instead ofα(t(τ)) and F (r, τ) instead of F (r, t(τ)), thus

∂r
∂τ

= F (r, τ) := γF1(r) +µα(τ)3−NF2(r). (5.8)

By Lemma 3.7 we have for all dimensions N the following expressions for F ′1(0) and
F ′2(0) in terms of the Dirichlet-to-Neumann mapping N :

F ′1(0)[r] = −p1(N )r (5.9)

and
F ′2(0)[r] = −p2(N )r (5.10)
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Figure 5.1: The relation between t and τ ; red: N = 2 with µ > 0, blue: N = 2 with µ < 0,
green: N = 4 with µ > 0, purple: N = 4 with µ < 0. The red line has a horizontal asymptote
and the blue graph a vertical asymptote. In the case of injection we plotted the case in which
µ = σN

N , for suction µ = −σN
N

where p1 and p2 are the polynomials

p1(k) := k3 + (N − 2)k2 − (N − 1)k,

p2(k) :=
1
σN

k +
N
σN

.

5.3 Energy estimates and global existence results

In this section we find estimates for (r,F (r, τ))s to prove a stability result for the sta-
tionary solution r ≡ 0. We make use of Theorem A.1 in Appendix A. Three cases will
be considered, namely the injection problems for both N = 2 and N ≥ 4 and the suc-
tion problem for N = 2. Estimates for (r,F ′1(0)[r])s and (r,F ′2(0)[r])s are easily obtained
from (5.9) and (5.10). To show that the remaining ”nonlinear parts” (r,F1(r)−F ′1(0)[r])s
and (r,F2(r)− F ′2(0)[r])s are controlled by the ”linear parts” we make use of Lemma
5.3.

For the injection problems we prove that for small r(0) there exists a global solution
r(t) to (5.5) that converges to zero as t tends to infinity. For the two-dimensional suction
problem we need to restrict ourselves to domains with certain geometric properties, in
order to get a global existence result.

In Example 1.2 in Chapter 1 we made use of formula (1.19) to close a regularity gap
for a first order evolution operator. Since F1 is of order three, the regularity gap is larger
here. Therefore we derive a second order chain rule in Lemma 5.4.

Letω be a bijection between {(l, m) ∈ N2 : 1 ≤ l < m ≤ N} and
{

1, 2, . . . ,
(

N
2

)}
. We

define the following differential operators on functions on SN−1:

Dω(l,m) := xl
∂

∂xm
− xm

∂

∂xl
. (5.11)
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For each i ∈ {1, 2, . . . ,
(

N
2

)
}, Di is the infinitesimal generator of a semigroup of operators

h 7→ Rh:
Rh f = ehDi f = f ◦ gh, f ∈ L2(SN−1),

where gh : SN−1 → SN−1 are rotations of the unit sphere.

Lemma 5.4. Let s > N+7
2 . For r ∈ Hs+1(SN−1) with ‖r‖s small, we have the generalised chain

rule of differentiation:
DiFk(r) = F ′k(r)[Dir], k = 1, 2. (5.12)

If in addition r ∈ Hs+2(SN−1), then the second order generalised chain rule of differentiation
holds,

DiD jFk(r) = F ′k(r)[DiD jr] +F ′′k (r)[Dir, D jr], k = 1, 2. (5.13)

Proof. Because Fk (k = 1, 2) commutes with rotations, i.e.

Fk(r) ◦ gh = Fk(r ◦ gh),

we get

DiFk(r) = lim
h→0

1
h
(Rh − I)Fk(r) = lim

h→0

1
h

(Fk(r) ◦ gh −Fk(r))

= lim
h→0

1
h

(Fk(r ◦ gh)−Fk(r)) = lim
h→0

1
h
F ′k(r)[r ◦ gh − r]

= F ′k(r)
[

lim
h→0

r ◦ gh − r
h

]
= F ′k(r)[Dir],

where I is the identity. Further, if

Rl f = ehD j f = f ◦ gl , f ∈ L2(SN−1),

for some rotation gl , then

DiD jFk(r) = lim
h→0

lim
l→0

1
hl

(Rh − I)(Rl − I)Fk(r)

= lim
h→0

lim
l→0

1
hl

(
Fk(r ◦ gl ◦ gh)−Fk(r ◦ gl)−

(
Fk(r ◦ gh)−Fk(r)

))

= lim
l→0

1
l
(
F ′k(r ◦ gl)[Di(r ◦ gl)]−F ′k(r)[Dir]

)
= lim

l→0

1
l
{
F ′k(r ◦ gl)−F ′k(r)

}
[Di(r ◦ gl)]

+ lim
l→0

1
l
F ′k(r)[Di(r ◦ gl − r)]

= F ′′k (r)[Dir, D jr] +F ′k(r)[DiD jr].

This proves the lemma.



88 Hele-Shaw flow with surface tension in RN

Let for σ > 0, ‖ · ‖σ−2,2 be the norm on Hσ (SN−1) induced by the inner product

(r, r̃)σ−2,2 := (r, r̃)σ−2 + ∑
i, j

(DiD jr, DiD j r̃)σ−2. (5.14)

This norm is equivalent to the norm ‖ · ‖σ that we introduced earlier (see [33, Sec. 4]).

Lemma 5.5. If r ∈ SN
k , then Dir ∈ SN

k .

Proof. The spaces SN
k are invariant under rotations. The lemma follows from this and

the fact that Di generates a semigroup of rotations.

In the following theorems Cw indicates weak continuity.

Theorem 5.6. Let N = 2, µ > 0, and λ0 ∈
(
0, µ

2π

)
. Suppose that s > 5. There exists a δ > 0

and an M > 0 such that if r0 ∈ Hs(S1) with ‖r0‖s < δ, then the problem

∂r
∂τ

= F (r, τ), r(0) = r0, (5.15)

has a solution r ∈ Cw([0, τmax), Hs(S1)) ∩ C1
w([0, τmax), Hs−3(S1)). Furthermore,

((ξ , τ) 7→ r(τ)(ξ)) ∈ C∞(S1 × (0, τmax)). If we regard r as a function of the original time
variable t (where the relation between t and τ is given by (5.7)), then

‖r(t)‖s ≤ M
(
µt
π

+ 1
)− πλ0

µ

‖r0‖s, t ∈ [0, ∞). (5.16)

Proof. The theorem follows from the inequality

(r,F (r, τ))s−2,2 ≤ −λ0α(τ)‖r‖2
s−2,2, (5.17)

for all r ∈ Hs+3(S1) with ‖r‖s small. First we find a similar estimate for the Fréchet
derivatives F ′1(0) and F ′2(0). Perturbation arguments and the chain rule (5.13) lead to
(5.17). Combining (3.25) and (5.17) we get algebraic decay of r as a function of t, given
by (5.16).

Throughout the proof we will assume that r ∈ Hs+3(S1) with ‖r‖s < δ, where δ is
sufficiently small. The symbol C always denotes a constant that may vary throughout
the proof. This constant is independent of r.

1. Take η > 0 such that λ0 < (1−η)µ
2π . Define

c1 := inf
k∈N0 ,τ≥0

γp1(k) + ηµα(τ)p2(k)

(k2 + 1)
3
2

= inf
k∈N0

γp1(k) + ηµp2(k)

(k2 + 1)
3
2

> 0,

and define ε := min{c1, (1−η)µ
2π − λ0}.

2. Let F ′ be the Fréchet derivative of F with respect to the first argument. From (5.9)



5.3 Energy estimates and global existence results 89

and (5.10) we have the following estimate for the linear part of F (r, τ):

(r,F ′(0, τ)[r])s−2

= γ(r,F ′1(0)[r])s−2 +µα(τ)(r,F ′2(0)[r])s−2

= γ(r,F ′1(0)[r])s−2 + ηµα(τ)(r,F ′2(0)[r])s−2 + (1− η)µα(τ)(r,F ′2(0)[r])s−2

= ∑
k, j

(k2 + 1)s−2+ 3
2
−γp1(k)− ηµα(τ)p2(k)

(k2 + 1)
3
2

r2
k j

+(1− η)α(τ) ∑
k, j

(k2 + 1)s−2+ 1
2
−µp2(k)

(k2 + 1)
1
2

r2
k j

≤ −c1‖r‖2
s− 1

2
− (1− η)µ

2π
α(τ)‖r‖2

s− 3
2
. (5.18)

In the last step we used

− p2(k)√
k2 + 1

≤ − 1
2π

. (5.19)

3. Now we find an estimate for the remaining nonlinear part. From the analyticity of
F1 and F2 near zero and the fact that F1(0) = F2(0) = 0, we have for r near zero
in Hs− 1

2 (S1)
‖F1(r)−F ′1(0)[r]‖s− 7

2
≤ C‖r‖2

s− 1
2
,

‖F2(r)−F ′2(0)[r]‖s− 5
2
≤ C‖r‖2

s− 3
2
.

Here the demand s > 5 is crucial. Now we get

γ(r,F1(r)−F ′1(0)[r])s−2 +µα(τ)(r,F2(r)−F ′2(0)[r])s−2

≤ C
(
‖r‖3

s− 1
2
+α(τ)‖r‖3

s− 3
2

)
. (5.20)

4. From the chain rule (5.13) it follows that

(r,F (r, τ))s−2,2

= γ(r,F1(r))s−2 +µα(τ)(r,F2(r))s−2

+γ∑
i, j

(DiD jr,F ′1(r)[DiD jr])s−2 +µα(τ) ∑
i, j

(DiD jr,F ′2(r)[DiD jr])s−2

+γ∑
i, j

(DiD jr,F ′′1 (r)[Dir, D jr])s−2 +µα(τ) ∑
i, j

(DiD jr,F ′′2 (r)[Dir, D jr])s−2.

(5.21)

We divide the right-hand side into three parts and we estimate these parts sepa-
rately.
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5. Adding (5.18) and (5.20) we get for the first part of (5.21)

γ(r,F1(r))s−2 +µα(τ)(r,F2(r))s−2

≤ −c1‖r‖2
s− 1

2
− (1− η)µ

2π
α(τ)‖r‖2

s− 3
2
+ C

(
‖r‖3

s− 1
2
+α(τ)‖r‖3

s− 3
2

)
≤ −c1‖r‖2

s− 1
2
− (1− η)µ

2π
α(τ)‖r‖2

s− 3
2
+ Cδ

(
‖r‖2

s− 1
2
+α(τ)‖r‖2

s− 3
2

)
.(5.22)

6. For the second part of (5.21) we get from similar arguments

γ(DiD jr,F ′1(r)[DiD jr])s−2 +µα(τ)(DiD jr,F ′2(r)[DiD jr])s−2

= γ(DiD jr,F ′1(0)[DiD jr])s−2 +µα(τ)(DiD jr,F ′2(0)[DiD jr])s−2

+γ(DiD jr,
{
F ′1(r)−F ′1(0)

}
[DiD jr])s−2

+µα(τ)(DiD jr,
{
F ′2(r)−F ′2(0)

}
[DiD jr])s−2

≤ −c1‖DiD jr‖2
s− 1

2
− (1− η)µ

2π
α(τ)‖DiD jr‖2

s− 3
2

+Cδ
(
‖DiD jr‖2

s− 1
2
+α(τ)‖DiD jr‖2

s− 3
2

)
. (5.23)

In the last step we used analyticity of F1 near zero in Hs− 1
2 (SN−1) and analyticity

of F2 near zero in Hs− 3
2 (SN−1).

7. Because of Lemma 5.3, there exists a C > 0 such that for r near zero in Hs− 1
2 (S1)

we have ‖F ′′1 (r)‖X1
≤ C, for X1 = L2(Hs− 1

2 (S1)×Hs− 1
2 (S1), Hs− 7

2 (S1)) and

‖F ′′2 (r)‖X2
≤ C, for X2 = L2(Hs− 3

2 (S1)×Hs− 3
2 (S1), Hs− 5

2 (S1)). Therefore, the
third part of (5.21) can be estimated as follows:

γ(DiD jr,F ′′1 (r)[Dir, D jr])s−2 +µα(τ)(DiD jr,F ′′2 (r)[Dir, D jr])s−2

≤ C
(
‖r‖s+ 3

2
‖r‖2

s+ 1
2
+α(τ)‖r‖s+ 1

2
‖r‖2

s− 1
2

)
≤ C

(
‖r‖s− 1

2
‖r‖2

s+ 3
2
+α(τ)‖r‖s− 3

2
‖r‖2

s+ 1
2

)
≤ Cδ

(
‖r‖2

s+ 3
2
+α(τ)‖r‖2

s+ 1
2

)
. (5.24)

Here we used the following interpolation inequalities:

‖r‖2
s+ 1

2
≤ C‖r‖s− 1

2
‖r‖s+ 3

2
,

‖r‖2
s− 1

2
≤ C‖r‖s− 3

2
‖r‖s+ 1

2
.

8. Adding (5.22), (5.23), and (5.24) and using equivalence of the norms ‖ · ‖σ and
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‖ · ‖σ−2,2 we get

(r,F (r, τ))s−2,2 ≤ −c1‖r‖2
s− 1

2 ,2 −
(1− η)µ

2π
α(τ)‖r‖2

s− 3
2 ,2

+Cδ
(
‖r‖2

s− 1
2 ,2 +α(τ)‖r‖2

s− 3
2 ,2

)
. (5.25)

If we choose δ < ε
C , then we get

(r,F (r, τ))s−2,2 ≤ −(c1 −ε)‖r‖2
s− 1

2 ,2 −
(

(1− η)µ
2π

−ε
)
α(τ)‖r‖2

s− 3
2 ,2

≤ −λ0α(τ)‖r‖2
s− 3

2 ,2 ≤ −λ0α(τ)‖r‖2
s−2,2. (5.26)

9. Applying Theorem A.1 to (5.26) we obtain a solution r to (5.15) on the entire in-
terval [0, τmax). The fact that ((ξ , τ) 7→ r(τ)(ξ)) ∈ C∞(S1 × (0, τmax)) follows
from [60, Ch. 6 Prop. 9, 10], where local existence and uniqueness results for
Stokes flow with injection or suction are proved. Hele-Shaw flow can be treated in
a similar way. Furthermore, we have ‖r(τ)‖2

s−2,2 ≤ y(τ) where y : [0, τmax) → R
satisfies

dy
dτ

= −2λ0α(τ)y,

with y(0) = ‖r0‖2
s−2,2. Solving this ODE we get for τ > 0

y(τ) = e−2λ0
∫ τ

0 α(τ̃)dτ̃‖r0‖2
s−2,2.

After reintroducing the original time variable by (3.25) we get

y = e
−2λ0

∫ t
0

1
(α(t̃))2 dt̃‖r0‖2

s−2,2

=
(
µt
π

+ 1
)− 2πλ0

µ

‖r0‖2
s−2,2.

This proves the theorem.

Define MN
1 as in (2.40) and introduce the Hilbert spaces Hσ

1 (SN−1) by

Hσ
1 (SN−1) := {r ∈ Hσ (SN−1) : (r, s)0 = 0, ∀s ∈ SN

0 ⊕SN
1 }. (5.27)

Define on a neighbourhood U of zero in Hs(SN−1) the operator f1 : U → R×RN by

f1(r) :=
( ∫

Ωr
dx− σN

N∫
Ωr

xdx

)
. (5.28)

LetP1 : Hs(SN−1)→ Hs
1(S

N−1) be the orthogonal projection onto Hs
1(S

N−1) with respect
to the L2(SN−1)-inner product and define the local analytic bijectionφ1 : U → R×RN ×
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Hs
1(S

N−1) by

φ1(r) :=
(

f1(r)
P1r

)
.

On a suitable neighbourhood U of zero in Hs
1(S

N−1) we define ψ1 : U →MN
1 by

ψ1(r̃) := φ
−1
1 (0, r̃). (5.29)

Lemma 5.7. Let s > N+7
2 . For r̃ ∈ Hs+1

1 (SN−1) with ‖r̃‖s small, we have

Diψ1(r̃) = ψ
′
1(r̃)[Di r̃].

For r̃ ∈ Hs+2
1 (SN−1) with ‖r̃‖s small, we have

DiD jψ1(r̃) = ψ
′
1(r̃)[DiD j r̃] +ψ

′′
1 (r̃)[Di r̃, D j r̃]. (5.30)

Proof. In view of the proof of Lemma 5.4 it is sufficient to show that ψ1 commutes with
rotations. If r̃ ∈ Hs+2

1 (SN−1), then we have r̃ ◦ g ∈ Hs+2
1 (SN−1) for any rotation g :

SN−1 → SN−1. Since ψ1(r̃) ∈ MN
1 we also have ψ1(r̃) ◦ g ∈ MN

1 . Because rotations and
P1 commute we have P1(ψ1(r̃) ◦ g) = (P1ψ1(r̃)) ◦ g = r̃ ◦ g. Therefore

ψ1(r̃) ◦ g = φ
−1
1 (0,P1(ψ1(r̃) ◦ g)) = φ

−1
1 (0, r̃ ◦ g) = ψ1(r̃ ◦ g).

This proves the lemma.

Now we derive a global existence result for the suction case for N = 2. Like in the
proof of Theorem 5.6, we get this result from energy estimates. The suction case is more
complicated then the injection case, first of all because we need to restrict ourselves
to evolutions in M2

1 and consider an equivalent problem on Hs
1(S

1) given by equation
(5.34).

The second complication here is that we need to split up the time interval [0, ∞) in
two parts, [0, T̂] and [T̂, ∞). On the first interval, the norm of the solutions that we find
might grow up to a value δ′. On the second interval we need an energy estimate, that is
sharper than the one that we found on the first interval, in order to obtain exponential
decay for solutions to (5.34). For any ratio of |µ| to γ, a suitable T̂ exists, because for
large time surface tension dominates suction. For the three-dimensional problem (see
Chapter 3) this is not the case, because eigenvalues of the linearisations of the evolution
operators do not change in time.

Theorem 5.8. Let N = 2, µ < 0, and take λ0 ∈
(

0,
6γ

5
√

5

)
. Suppose that s > 5. There exists

a δ > 0 and an M > 0 such that if r0 ∈ Hs(S1) ∩M2
1 with ‖r0‖s < δ, then the problem

∂r
∂τ

= F (r, τ), r(0) = r0, (5.31)

has a solution r ∈ Cw([0, ∞), Hs(S1)) ∩ C1
w([0, ∞), Hs−3(S1)) that is in M2

1 for all t and
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((ξ , τ) 7→ r(τ)(ξ)) ∈ C∞(S1 × (0, ∞)). Furthermore,

‖r(τ)‖s−2,2 ≤ Me−λ0τ‖r0‖s−2,2. (5.32)

Proof. Again, the symbol C is used for a constant that may vary throughout the proof.

1. Note that − p1(k)

(k2+1)
3
2

decreases in k. As a consequence, for k ≥ 2

− γp1(k)

(k2 + 1)
3
2
≤ − 6γ

5
√

5
< −λ0. (5.33)

Furthermore p2(k)

(k2+1)
3
2

is bounded and limτ→∞α(τ) = 0. Therefore there exists a T̂

such that for τ ≥ T̂ and k ≥ 2

−γp1(k) + |µ|α(τ)p2(k)

(k2 + 1)
3
2

< −λ0.

Choose K ∈ N such that for k > K we have −γp1(k) + |µ|p2(k) < 0 and let
PK : L2(S1) → L2(S1) be the orthogonal projection with respect to the L2(S1)-
inner product onto the orthoplement of

⊕K
k=0 S2

k . Define c1 > 0 and c2 > 0 by

c1 := inf
k≥2,τ≥T̂

γp1(k)− |µ|α(τ)p2(k)(
k2 + 1

) 3
2

= inf
k≥2

γp1(k)− |µ|α(T̂)p2(k)(
k2 + 1

) 3
2

> λ0

and

c2 := inf
k>K,τ≥0

γp1(k)− |µ|α(τ)p2(k)(
k2 + 1

) 3
2

= inf
k>K

γp1(k)− |µ|p2(k)(
k2 + 1

) 3
2

.

The positivity of c2 follows from the fact that γp1(k)−|µ|p2(k)

(k2+1)
3
2

converges to γ if k goes

to infinity. Define ε := min{c1 − λ0, c2}.

2. Assume for the moment that r satisfies (5.31). Then r̃ := P1r satisfies

∂r̃
∂τ

= P1F (ψ1(r̃), τ). (5.34)

First we will prove solvability of this equation, finding estimates for
(r̃,P1F (ψ1(r̃), τ))s−2,2 for r̃ ∈ Hs+3

1 (S1) and ‖r̃‖s < δ
′ with δ′ small enough.

3. Introduce on a suitable neighbourhood U of zero in Hs
1(S

1) the operators F̃1 :
U → Hs−3

1 (S1) and F̃2 : U → Hs−1
1 (S1) by F̃1 := P1 ◦ F1 ◦ψ1 and F̃2 := P1 ◦ F2 ◦

ψ1. Since these operators are compositions of analytic operators, they are analytic
themselves. Because ψ′1(0) is the identity on Hs

1(S
1) (see Corollary 2.20) we have

for all r̃ ∈ Hs
1(S

1)
F̃ ′k(0)[r̃] = F ′k(0)[r̃],
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for k = 1, 2. As a result,

γ(r̃, F̃ ′1(0)[r̃])s−2 +µα(τ)(r̃, F̃ ′2(0)[r̃])s−2

= ∑
k≤K

(k2 + 1)s−2+ 3
2
−γp1(k) + |µ|α(τ)p2(k)

(k2 + 1)
3
2

r̃2
k j

+ ∑
k>K

(k2 + 1)s−2+ 3
2
−γp1(k) + |µ|α(τ)p2(k)

(k2 + 1)
3
2

r̃2
k j

≤ C‖r̃‖2
0 − c2‖PK r̃‖2

s− 1
2

= C‖r̃‖2
0 + c2‖(I − PK)r̃‖2

s− 1
2
− c2‖r̃‖2

s− 1
2

≤ C‖r̃‖2
0 − c2‖r̃‖2

s− 1
2
. (5.35)

Here we used the fact that I − PK : L2(S1)→ Hs− 1
2 (S1) is bounded.

4. For the suction problem we have α(τ) ≤ 1. Hence, the nonlinear parts can be
estimated in the following way:

γ(r̃, F̃1(r̃)− F̃ ′1(0)[r̃])s−2 +µα(τ)(r̃, F̃2(r̃)− F̃ ′2(0)[r̃])s−2 ≤ C‖r̃‖3
s− 1

2
. (5.36)

Here we used the analyticity of F̃1 and F̃2, as we did for F1 and F2 in the proof of
Theorem 5.6.

5. Because of Lemma 5.7 and the fact that P1 commutes with rotations, the chain rule
holds for F̃1 and F̃2 as well:

γ(r̃, F̃1(r̃))s−2,2 +µα(τ)(r̃, F̃2(r̃))s−2,2

= γ(r̃, F̃1(r̃))s−2 +µα(τ)(r̃, F̃2(r̃))s−2

+γ∑
i, j

(DiD j r̃, F̃ ′1(r̃)[DiD j r̃])s−2 +µα(τ) ∑
i, j

(DiD j r̃, F̃ ′2(r̃)[DiD j r̃])s−2

+γ∑
i, j

(DiD j r̃, F̃ ′′1 (r̃)[Di r̃, D j r̃])s−2 +µα(τ) ∑
i, j

(DiD j r̃, F̃ ′′2 (r̃)[Di r̃, D j r̃])s−2.

(5.37)

The right-hand side consists of three parts that will be estimated separately on
both intervals [0, T̂] and [T̂, ∞). We start with [0, T̂].

6. From (5.35) and (5.36), we have for the first part

γ(r̃, F̃1(r̃))s−2 +µα(τ)(r̃, F̃2(r̃))s−2

≤ C‖r̃‖2
0 − c2‖r̃‖2

s− 1
2
+ Cδ′‖r̃‖2

s− 1
2
. (5.38)

7. The second part can be treated in the same way as in the proof of Theorem 5.6. We
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use (5.35), the boundedness ofα(τ), and the analyticity of F̃1 and F̃2 to obtain

γ(DiD j r̃, F̃ ′1(r̃)[DiD j r̃])s−2 +µα(τ)(DiD j r̃, F̃ ′2(r̃)[DiD j r̃])s−2

= γ(DiD j r̃, F̃ ′1(0)[DiD j r̃])s−2 +µα(τ)(DiD j r̃, F̃ ′2(0)[DiD j r̃])s−2

+γ(DiD j r̃,
{
F̃ ′1(r̃)− F̃ ′1(0)

}
[DiD j r̃])s−2

+µα(τ)(DiD j r̃,
{
F̃ ′2(r̃)− F̃ ′2(0)

}
[DiD j r̃])s−2

≤ C‖DiD j r̃‖2
0 − c2‖DiD j r̃‖2

s− 1
2
+ Cδ′‖DiD j r̃‖2

s− 1
2
. (5.39)

Here, we also used the fact that DiD j r̃ ∈ Hs
1(S

1) if r̃ ∈ Hs+3
1 (S1). This follows from

Lemma 5.5.

8. The third part is treated in the same way as in the proof of Theorem 5.6 as well.
Using boundedness ofα(τ) and analyticity of F̃1 and F̃2 we find

γ(DiD j r̃, F̃ ′′1 (r̃)[Di r̃, D j r̃])s−2 +µα(τ)(DiD j r̃, F̃ ′′2 (r̃)[Di r̃, D j r̃])s−2 ≤ Cδ′‖r̃‖2
s+ 3

2
.

(5.40)

9. Combining (5.38), (5.39), and (5.40) and using equivalence of the norms ‖ · ‖s+ 3
2

and ‖ · ‖s− 1
2 ,2 we get on the interval [0, T̂]

γ(r̃, F̃1(r̃))s−2,2 +µα(τ)(r̃, F̃2(r̃))s−2,2

≤ C‖r̃‖2
0,2 − c2‖r̃‖2

s− 1
2 ,2 + Cδ′‖r̃‖2

s− 1
2 ,2.

If we take δ′ < ε
C , then we get

γ(r̃, F̃1(r̃))s−2,2 +µα(τ)(r̃, F̃2(r̃))s−2,2

≤ C‖r̃‖2
0,2 ≤ C‖r̃‖2

s−2,2. (5.41)

Define r̃0 := P1r0, take δ < e−CT̂
δ
′ and assume that ‖r̃0‖s−2,2 ≤ δ. By Theorem A.1

there exists a solution to (5.34) on the interval [0, T̂] that satisfies

‖r̃(τ)‖s−2,2 ≤ eCτ‖r̃0‖s−2,2,

such that
‖r̃(T̂)‖s−2,2 ≤ eCT̂

δ < δ
′.

Smoothness on (0, T̂] follows again from [60, Prop. 9, 10].

10. Now we treat the interval [T̂, ∞). Again we consider the chain rule and distin-
guish between three parts in (5.37). Because of the boundedness of α we have for
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the first part

γ(r̃, F̃1(r̃))s−2 +µα(τ)(r̃, F̃2(r̃))s−2

≤ γ(r̃, F̃ ′1(0)[r̃])s−2 +µα(τ)(r̃, F̃ ′2(0)[r̃])s−2 + C‖r̃‖3
s− 1

2

= ∑
k≥2

(k2 + 1)s−2+ 3
2
−γp1(k) + |µ|α(τ)p2(k)

(k2 + 1)
3
2

r̃2
k j + C‖r̃‖3

s− 1
2

≤ −c1‖r̃‖2
s− 1

2
+ Cδ′‖r̃‖2

s− 1
2
. (5.42)

Note that in the summation we start counting from k = 2 because r̃ ∈ Hs
1(S

1).

11. For the second part we use the same strategy as for the first time interval to obtain

γ(DiD j r̃, F̃ ′1(r̃)[DiD j r̃])s−2 +µα(τ)(DiD j r̃, F̃ ′2(r̃)[DiD j r̃])s−2

≤ −c1‖DiD j r̃‖2
s− 1

2
+ Cδ′‖DiD j r̃‖2

s− 1
2
. (5.43)

12. For the third part, we get exactly the same result as for the first time interval, cf.
(5.40).

13. Adding (5.42), (5.43), and (5.40) and using equivalence of the norms ‖ · ‖s+ 3
2

and
‖ · ‖s− 1

2 ,2 we get

γ(r̃, F̃1(r̃))s−2,2 +µα(τ)(r̃, F̃2(r̃))s−2,2 ≤ −c1‖r̃‖2
s− 1

2 ,2 + Cδ′‖r̃‖2
s− 1

2 ,2.

Taking δ′ < ε
C we find

γ(r̃, F̃1(r̃))s−2,2 +µα(τ)(r̃, F̃2(r̃))s−2,2 ≤ −λ0‖r̃‖2
s− 1

2 ,2 ≤ −λ0‖r̃‖2
s−2,2.

Applying Theorem A.1 again, we extend the solution r̃ that we found on [0, T̂] to
[T̂, ∞), such that for τ ∈ [T̂, ∞)

‖r̃(τ)‖s−2,2 ≤ e−λ0(τ−T̂)‖r̃(T̂)‖s−2,2.

Combining the results on both intervals, we get existence of an M′ > 0 indepen-
dent of r̃(0) such that for any τ ∈ [0, ∞)

‖r̃(τ)‖s−2,2 ≤ M′e−λ0τ‖r̃(0)‖s−2,2.

Define
r = ψ1(r̃).

From the smoothness of ψ1 and the fact that ψ1(0) = 0 we see that there exists an
M > 0 such that if r0 is small enough, then r is a solution to (5.31) that satisfies
(5.32).
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Theorem 5.9.

• If λ0 ∈
(
0, µ

π

)
in Theorem 5.6, then the results still hold.

• If λ0 ∈ (0, 6γ) in Theorem 5.8, then the results still hold.

Proof. Let us introduce the inner product

(r, r̃)∗s := ∑
k, j

(θk2 + 1)srk j r̃k j (5.44)

in the proof of Theorem 5.6, where θ > 0 is small. This inner product is equivalent to
(·, ·)s for all θ > 0. Instead of (5.19) we have

− p2(k)√
θk2 + 1

≤ − 1
π

,

for θ small enough. Therefore, if we replace (·, ·)σ by (·, ·)∗σ , ‖ · ‖σ by ‖ · ‖∗σ , and µ
2π by µ

π

in (5.18), (5.22), (5.23), (5.25), and (5.26), then the proof is still correct.
In the proof of Theorem 5.8 we use the inner product

(r, r̃)∗s := ∑
k, j
ζ

s
krk j r̃k j,

with ζ0 = ζ1 = ζ2 = 1 and ζk = θk2 + 1 for k ≥ 3 where θ > 0 is small. This allows us
to replace (5.33) by the inequality

−γp1(k)

ζ
3
2

k

≤ −6γ, k ≥ 2,

if θ > 0 is small enough.

Now we derive a theorem for global existence for the higher-dimensional case. For
injection, we have to deal with the problem that eigenvalues of the linearisation corre-
sponding to spherical harmonics of degree zero and one go to zero for large time. In
order to deal with this, we use the bijection φ1 near the origin between Hs(SN−1) and
R×RN ×Hs

1(S
N−1) (see Figure 5.2) and consider the evolution of P1r on Hs

1(S
N−1) and

the evolution of f1(r), the zeroth and first Richardson moments, separately. We write
down an equation for P1r and find an energy estimate for its evolution operator. This
equation differs from the one that we found in the proof of Theorem 5.8 because we also
allow evolutions that are not in MN

1 . We use the fact that the zeroth and first Richard-
son moments as function of time are known beforehand. For the suction problem for
N ≥ 4 we do not get any global existence result because when t approaches T (or when
τ approaches τmax), more and more eigenvalues of the linearised evolution equation
become positive. In other words: For large t, F2 dominates F1. Suction can no longer
be controlled by surface tension.

Theorem 5.10. Let N ≥ 4 and µ > 0. Suppose that s > N+8
2 . There exists a δ > 0 and an
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Figure 5.2: A sketch of Hs(HN−1) and the local bijectionφ1 near zero. Each element on MN
1 is

mapped to zero by f1. The red lines are manifolds on which f1 takes some other values. The blue
lines, that are orthogonal to Hs

1(S
N−1), denote subsets on which P1r is constant.

M > 0 such that if r0 ∈ Hs(SN−1) with ‖r0‖s < δ, then the problem

∂r
∂τ

= F (r, τ), r(0) = r0, (5.45)

has a solution r ∈ Cw([0, ∞), Hs(SN−1)) ∩ C1
w([0, ∞), Hs−3(SN−1)). Furthermore,

((ξ , τ) 7→ r(τ)(ξ)) ∈ C∞(SN−1× (0, ∞)). If we regard r as a function of t (where the relation
between t and τ is given by (5.7)), then

‖r(t)‖s ≤ M
(
µNt
σN

+ 1
)−1

‖r0‖s.

Proof. 1. Introduce the number c1 > 0 by

c1 := inf
k≥2

γp1(k)

(k2 + 1)
3
2

.

Choose λ0 ∈ (0, c1
2 ) and define ε := c1

2 − λ0.

2. From the calculations in the proof of Lemma 3.14 we know that if t 7→ ΩR(t) solves
(3.1)-(3.4) then the geometric centre of ΩR(t) is constant and its volume increases
linearly with rate µ. From this and (5.28) it follows that solutions r to (5.45) satisfy

f1(r(τ)) =

(
V0

α(τ)N ,
1

α(τ)N+1 m0

)T

=: (Vτ , mτ )
T , (5.46)

where
(V0, m0)

T := f1(r0).

For notational convenience we introduce qτ := (Vτ , mτ )
T . Assume for the moment
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that r satisfies (5.45). Then r̃ := P1r satisfies

∂r̃
∂τ

= P1F
(
φ
−1
1 (qτ , r̃) , τ

)
. (5.47)

First we prove solvability of this equation, finding estimates for(
r̃,P1F

(
φ
−1
1 (qτ , r̃) , τ

))
s−2,2

, assuming that |q0| is small, r̃ ∈ Hs+3
1 (SN−1) and

‖r̃‖s < δ, with δ small enough.

3. Since r̃ ∈ Hs
1(S

N−1) we have

γ(r̃,F ′1(0)[r̃])s−2 +µα(τ)3−N(r̃,F ′2(0)[r̃])s−2 ≤ γ(r̃,F ′1(0)[r̃])s−2

≤ −c1‖r̃‖2
s− 1

2
. (5.48)

4. Because of (5.29) and local Lipschitz continuity of Fk ◦φ−1
1 , for k = 1, 2, we have

‖P1Fk

(
φ
−1
1 (qτ , r̃)

)
−P1Fk(ψ1(r̃))‖s− 7

2

= ‖P1Fk

(
φ
−1
1 (qτ , r̃)

)
−P1Fk(φ

−1
1 (0, r̃))‖s− 7

2

≤ C|qτ |. (5.49)

Since ψ′1(0) is the identity on Hs− 1
2

1 (SN−1), the restriction of F ′k(0) to Hs− 1
2

1 (SN−1)
is the Fréchet derivative around zero of the analytic mapping P1 ◦ Fk ◦ ψ1 on

Hs− 1
2

1 (SN−1). As a consequence,

‖P1Fk(ψ1(r̃))−F ′k(0)[r̃]‖s− 7
2
≤ C‖r̃‖2

s− 1
2
. (5.50)

Combining (5.49) and (5.50) we get the following estimate:

γ
{(

r̃,P1F1

(
φ
−1
1 (qτ , r̃)

))
s−2
− (r̃,F ′1(0)[r̃])s−2

}
+µα(τ)3−N

{(
r̃,P1F2

(
φ
−1
1 (qτ , r̃)

))
s−2
− (r̃,F ′2(0)[r̃])s−2

}
≤ C

(
|qτ |‖r̃‖s− 1

2
+α(τ)3−N |qτ |‖r̃‖s− 1

2
+ ‖r̃‖3

s− 1
2
+α(τ)3−N‖r̃‖3

s− 1
2

)
≤ C

(
|qτ |‖r̃‖s− 1

2
+ ‖r̃‖3

s− 1
2

)
. (5.51)

Here we used the fact thatα(τ)3−N ≤ 1.
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5. From the chain rule (5.13) we get(
r̃,P1F

(
φ
−1
1 (qτ , r̃) , τ

))
s−2,2

= γ (F1 + G1 + H1) +µα(τ)3−N (F2 + G2 + H2) , (5.52)

where for k = 1, 2

Fk =
(

r̃,P1Fk

(
φ
−1
1 (qτ , r̃)

))
s−2

,

Gk = ∑
i, j

(
DiD j r̃,P1F ′k

(
φ
−1
1 (qτ , r̃)

) [
DiD jφ

−1
1 (qτ , r̃)

])
s−2

,

Hk = ∑
i, j

(
DiD j r̃,P1F ′′k

(
φ
−1
1 (qτ , r̃)

) [
Diφ

−1
1 (qτ , r̃), D jφ

−1
1 (qτ , r̃)

])
s−2

.

We will estimate the terms containing Fk, Gk, and Hk separately.

6. It follows from (5.48) and (5.51) that

γF1 +µα(τ)3−N F2 ≤ −c1‖r̃‖2
s− 1

2
+ C|qτ |‖r̃‖s− 1

2
+ C‖r̃‖3

s− 1
2

≤ −c1‖r̃‖2
s− 1

2
+ C|qτ |‖r̃‖s− 1

2
+ Cδ‖r̃‖2

s− 1
2
. (5.53)

7. Now we find an estimate for the terms of G1. Because of (5.29) we have

G1 = ∑
i, j

(DiD j r̃, Ii j + Ji j + Ki j)s−2, (5.54)

where

Ii j = P1F ′1
(
φ
−1
1 (qτ , r̃)

) [
DiD jφ

−1
1 (qτ , r̃)

]
−P1F ′1

(
φ
−1
1 (0, r̃)

) [
DiD jφ

−1
1 (0, r̃)

]
,

Ji j = P1F ′1 (ψ1(r̃))
[
ψ
′
1(r̃)[DiD j r̃]

]
,

Ki j = P1F ′1 (ψ1(r̃))
[
ψ
′′
1 (r̃)[Di r̃, D j r̃]

]
.

Here we used Lemma 5.7. Because ‖r̃‖s is small it follows from interpolation in-
equalities that

‖DiD jψ1(r̃)‖s− 1
2
≤ ‖ψ′1(r̃)[DiD j r̃]‖s− 1

2
+ ‖ψ′′1 (r̃)[Di r̃, D j r̃]‖s− 1

2

≤ C
(
‖r̃‖s+ 3

2
+ ‖r̃‖2

s+ 1
2

)
≤ C

(
‖r̃‖s+ 3

2
+ ‖r̃‖s− 1

2
‖r̃‖s+ 3

2

)
≤ C‖r̃‖s+ 3

2
, (5.55)

Note that φ−1
1 (qτ , r̃)−φ−1

1 (0, r̃) ∈ SN
0 ⊕SN

1 . Since φ1 is a local analytic bijection
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between Hs(SN−1) and RN+1 ×Hs
1(S

N−1) we have

‖φ−1
1 (qτ , r̃)−φ−1

1 (0, r̃)‖s+ 3
2
≤ C‖φ−1

1 (qτ , r̃)−φ−1
1 (0, r̃)‖s ≤ C|qτ |. (5.56)

Making use of Lipschitz continuity of F ′k ◦ φ−1
1 , (5.55), (5.56), and the fact that

(qτ , r̃)T is small in RN+1 ×Hs
1(S

N−1) we get

‖Ii j‖s− 7
2
≤

∥∥∥{P1F ′1
(
φ
−1
1 (qτ , r̃)

)
−P1F ′1

(
φ
−1
1 (0, r̃)

)} [
DiD jψ1(r̃)

]∥∥∥
s− 7

2

+
∥∥∥P1F ′1

(
φ
−1
1 (qτ , r̃)

) [
DiD j

(
φ
−1
1 (qτ , r̃)−φ−1

1 (0, r̃)
)]∥∥∥

s− 7
2

≤ C|qτ |‖DiD jψ1(r̃)‖s− 1
2
+ C|qτ |

≤ C|qτ |‖r̃‖s+ 3
2
+ C|qτ |.

As a result
(DiD j r̃, Ii j)s−2 ≤ C|qτ |‖r̃‖2

s+ 3
2
+ C|qτ |‖r̃‖s+ 3

2
. (5.57)

Because F ′1(0) is the Fréchet derivative at zero of the local analytic operator P1 ◦
F1 ◦ψ1,

(DiD j r̃, Ji j)s−2

≤ γ(DiD j r̃,F ′1(0)[DiD j r̃])s−2

+γ(DiD j r̃,P1F ′1(ψ1(r̃))[ψ′1(r̃)[DiD j r̃]]−F ′1(0)[DiD j r̃])s−2

≤ −c1‖DiD j r̃‖2
s− 1

2
+ C‖r̃‖s− 1

2
‖r̃‖2

s+ 3
2

≤ −c1‖DiD j r̃‖2
s− 1

2
+ Cδ‖r̃‖2

s+ 3
2
. (5.58)

There exists a C > 0, such that for r̃ near the origin in Hs− 1
2

1 (SN−1) we have ‖P1 ◦
F ′1 (ψ1(r̃)) ◦ψ′′1 (r̃)‖X ≤ C for X = L2(Hs− 1

2
1 (SN−1) ×Hs− 1

2
1 (SN−1), Hs− 7

2
1 (SN−1)).

Therefore we have
‖Ki j‖s− 7

2
≤ C‖r̃‖2

s+ 1
2
.

By an interpolation inequality we have

(DiD j r̃, Ki j)s−2 ≤ C‖r̃‖s+ 3
2
‖r̃‖2

s+ 1
2
≤ C‖r̃‖s− 1

2
‖r̃‖2

s+ 3
2
≤ Cδ‖r̃‖2

s+ 3
2
. (5.59)

Adding (5.57), (5.58), and (5.59) we get

(DiD j r̃, Ii j + Ji j + Ki j)s−2

≤ −c1‖DiD j r̃‖2
s− 1

2
+ C

(
δ‖r̃‖2

s+ 3
2
+ |qτ |‖r̃‖s+ 3

2
+ |qτ |‖r̃‖2

s+ 3
2

)
.
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For the terms of G2 we get from similar arguments(
DiD j r̃,P1F ′2

(
φ
−1
1 (qτ , r̃)

) [
DiD jφ

−1
1 (qτ , r̃)

])
s−2

≤ C
(
δ‖r̃‖2

s+ 1
2
+ |qτ |‖r̃‖s+ 1

2
+ |qτ |‖r̃‖2

s+ 1
2

)
.

Here, we used the estimate (DiD j r̃,P1F ′2(0)[DiD j r̃])s−2 ≤ 0 that follows from
(5.10). Becauseα(τ)3−N ≤ 1, we have

γG1 +µα(τ)3−NG2

≤ ∑
i, j
−c1‖DiD j r̃‖2

s− 1
2
+ C

(
δ‖r̃‖2

s+ 3
2
+ |qτ |‖r̃‖s+ 3

2
+ |qτ |‖r̃‖2

s+ 3
2

)
. (5.60)

8. Note that

‖Diφ
−1
1 (0, r̃)‖s− 1

2
= ‖Diψ1(r̃)‖s− 1

2
= ‖ψ′1(r̃)[Di r̃]‖s− 1

2
≤ C‖r̃‖s+ 1

2
.

Combining this and (5.56) it follows that

‖Diφ
−1
1 (qτ , r̃)‖s− 1

2
≤ C

(
‖r̃‖s+ 1

2
+ |qτ |

)
.

Consequently,

γH1 +µα(τ)3−N H2

≤ ∑
i, j

C‖r̃‖s+ 3
2
‖Diφ

−1
1 (qτ , r̃)‖s− 1

2
‖D jφ

−1
1 (qτ , r̃)‖s− 1

2

≤ C‖r̃‖s+ 3
2

(
‖r̃‖2

s+ 1
2
+ |qτ |2

)
≤ Cδ‖r‖2

s+ 3
2
+ C|qτ |2‖r̃‖s+ 3

2
. (5.61)

Again we used an interpolation inequality.

9. Adding (5.53), (5.60), and (5.61) we get for (5.52), taking |qτ | ≤ |q0| < δ,(
r̃,P1F

(
φ
−1
1 (qτ , r̃) , τ

))
s−2,2

≤ −c1‖r̃‖2
s− 1

2 ,2 + C
(
|qτ |‖r̃‖s− 1

2 ,2 + δ‖r̃‖2
s− 1

2 ,2 + |qτ |‖r̃‖2
s− 1

2 ,2 + |qτ |2‖r̃‖s− 1
2 ,2

)
≤ −c1‖r̃‖2

s− 1
2 ,2 + C

(
|qτ |‖r̃‖s− 1

2 ,2 + δ‖r̃‖2
s− 1

2 ,2

)
≤ (−c1 + Cδ)‖r̃‖2

s− 1
2 ,2 + C|qτ |2 +

c1

2
‖r̃‖2

s− 1
2 ,2

≤
(
− c1

2
+ Cδ

)
‖r̃‖2

s− 1
2 ,2 + C|qτ |2.
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Here we used Cauchy’s inequality and the fact that |qτ |2 ≤ |qτ | for small |q0|. If
we choose δ < ε

C , then by (5.46)(
r̃,P1F

(
φ
−1
1 (qτ , r̃) , τ

))
s−2,2

≤ −λ0‖r̃‖2
s− 1

2 ,2 + C|qτ |2

≤ −λ0‖r̃‖2
s− 1

2 ,2 + C
|q0|2

α(τ)2N .

10. Arguing as in the proof of Theorems 5.6 and 5.8 we get global existence of a so-
lution r̃ to (5.47) for fixed q0 and for r̃(0) = P1r0 small enough. Furthermore, we
have ‖r̃(τ)‖2

s ≤ y(τ) where y : [0, ∞)→ R satisfies

dy
dτ

= −2λ0 y + C
|q0|2

α(τ)2N ,

with y(0) = ‖P1r0‖2
s . This ODE can be solved using the variation of constants

formula:

y(τ) = e−2λ0τ y(0) + C|q0|2
∫ τ

0

e2λ0(τ̃−τ)

α(τ̃)2N dτ̃ .

We have ∫ τ

0

e2λ0(τ̃−τ)

α(τ̃)2N dτ̃ ≤
∫ τ

2

0
e2λ0(τ̃−τ)dτ̃ +

1
α( τ2 )2N

∫ τ

τ
2

e2λ0(τ̃−τ)dτ̃

≤ 1
2λ0

(
e−λ0τ − e−2λ0τ +

1
α( τ2 )2N

)

≤ C
α( τ2 )2N ≤

C
α(τ)2N .

We omitted the exponential terms because they are smaller than a multiple of the
algebraic terms. The result is

‖r̃(τ)‖s ≤ Ce−λ0τ‖P1r0‖s +
C

α(τ)N |q0|.

11. Now we construct a solution r to the original problem by setting

r(τ) := φ
−1
1 (qτ , r̃(τ)).

From Lipschitz continuity ofφ−1
1 near the origin we get

‖r(τ)‖s ≤ Ce−λ0τ‖P1r0‖s +
C

α(τ)N |q0| (5.62)



104 Hele-Shaw flow with surface tension in RN

or

‖r(t)‖s ≤ Ce−λ0τ(t)‖P1r0‖s +
C

α(t)N |q0|

≤ C
α(t)N

(
|q0|+ ‖P1r0‖s

)
≤ C

α(t)N ‖r0‖s.

Remark 5.11. Note that because of (5.62), if we restrict ourselves to the case r0 ∈MN−1
1 , which

means q0 = 0, then we have faster convergence.

Remark 5.12. Theorems 3.13, 5.9, and 5.10 show that for the injection problems ‖r(t)‖s decays
faster than C/tζ for ζ < 1 in all dimensions.

5.4 Almost global existence results for the suction prob-
lems

In this section we find almost global existence results for the suction problems. Both
cases N = 2 and N ≥ 4 will be treated. For almost global existence we do not need to
restrict ourselves to evolutions in MN

1 . Remember that

τmax :=
{ ∞ for N = 2,

σN
|µ|(N−3) for N ≥ 4.

Theorem 5.13. Let N = 2 or N ≥ 4 and µ < 0. Let T+ ∈ (0, τmax) and s > N+8
2 .

There exists a δ > 0 such that if r0 ∈ Hs(SN−1) with ‖r0‖s < δ, then there exists a solution
r ∈ Cw([0, T+), Hs(SN−1)) ∩ C1

w([0, T+), Hs−3(SN−1)) to

∂r
∂τ

= F (r, τ), r(0) = r0. (5.63)

Furthermore, ((ξ , τ) 7→ r(τ)(ξ)) ∈ C∞(SN−1 × (0, T+)).

Proof. For the case N = 2, we argue as in the proof of Theorem 5.8. There, we split up
the time interval in two parts. A different approach for the second time interval was
necessary there, because we wanted to show global existence and exponential decay in
τ assuming that r ∈M2

1. Here we only consider the first time interval [0, T̂] and choose
T̂ ≥ T+. In the estimates in steps 3-8 of the proof of Theorem 5.8 we replace r̃ by r and
F̃k by Fk. All estimates that are found for the evolution operators F̃k (k = 1, 2) on the
first interval hold for the operators Fk as well, because up to equation (5.41) we did not
use the fact that r ∈ M2

1. In this way we derive that if ‖r‖s < δ
′, for δ′ small, then we

have
(r,F (r, τ))s−2,2 ≤ C‖r‖2

s−2,2.
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We choose δ < δ
′e−CT+ and use local existence results as before to prove the theorem for

N = 2.
For N ≥ 4, α(τ)3−N goes to infinity if τ approaches τmax. However, on the time

interval [0, T+], α(τ)3−N is bounded. Therefore we can use the same strategy as in the
proof of Theorem 5.8 on the first of the two intervals to prove the theorem.
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Chapter 6

Stokes flow

6.1 Introduction

In this Chapter the Stokes moving boundary problem with surface tension and with
injection or suction is analysed by the methods that we used for the Hele-Shaw problem
in Chapter 5. This Stokes problem is formulated as follows: find a family of domains
t → Ω(t) in RN and two functions p(·, t) : Ω(t) → R and v(·, t) : Ω(t) → RN that
satisfy for each time

−∆v +∇p = 0 in Ω(t), (6.1)
div v = µδ in Ω(t), (6.2)(

∇v +∇vT − pI
)

n = γκn on Γ(t) := ∂Ω(t). (6.3)

The family t 7→ Ω(t) models a liquid that moves under influence of injection or suction
and surface tension. The functions v and p denote dimensionless velocity and pressure,
respectively, µ is the injection rate (µ > 0) or suction rate (µ < 0), γ > 0 the surface
tension coefficient,κ is the mean curvature (taken negative for convex domains), n is the
outer normal on the boundary, I the identity matrix and δ denotes the delta distribution.
The evolution of the boundary t 7→ Γ(t) is specified by the requirement that its normal
velocity vn satisfies

vn = v · n. (6.4)

The velocity component in the fixed time problem (6.1)-(6.3) is determined only up to
rigid body motions. The problem becomes uniquely solvable after adding two extra
conditions, namely ∫

Ω(t)
v dx = 0, (6.5)

which implies that the geometric centre of Ω(t) is constant in time (see Lemma 6.14)
and ∫

Ω(t)
rot v dx = 0. (6.6)
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Here, the operator rot in N dimensions should be interpreted in the following way. Let
ω be any bijection between {(i, j) ∈ N2 : 1 ≤ i < j ≤ N} and

{
1, 2, . . . ,

(
N
2

)}
. We define

rot u := ∑
1≤i< j≤N

(
∂u j

∂xi
− ∂ui

∂x j

)
eω(i, j), (6.7)

where ek is the k-th unit vector in R
(

N
2

)
.

Equations (6.1) and (6.2) can be derived from the Navier-Stokes equations if one
assumes a fluid with low Reynolds number. A closely related model is used to study the
growth of certain tumours, for which the tissue can be modeled as a fluid (see [25], [26],
and [27]). The process of viscous sintering in glass technology is modeled by Stokes
flow as well (see [51]). More industrial applications are given in [68].

Short-time existence of solutions for the problem without injection or suction is
proved in [33]. In the same work, global existence results have been found for the case
that the initial domain is close to a ball. Joint spatial and temporal analyticity of the
moving boundary for the problem without injection or suction has been proved in [19].

For the problem with injection or suction, short-time existence results and smooth-
ness of the boundary have been proved in [60]. Exact solutions for the suction case are
found in [11] from complex variable theory.

We start by identifying the trivial solution, where Ω(0) = BN := {x ∈ RN : |x| < 1}.
The trivial domain evolution is given by Ω(t) = α(t)BN , with α defined by (1.12). For
this special solution, the functions v and p will be denoted by v0 and p0. From radial
symmetry we obtain

v0 =
µ

σN |x|N
x. (6.8)

The mean curvature of SN−1 is 1− N. Therefore the mean curvature of Γ(t) is equal to
1−N
α(t) . It follows from (6.1) and (6.3) that

p0 = µδ+γ
N − 1
α(t)

− 2µ
N − 1
σNα(t)N .

Note that outside the origin p0 only depends on t (not on x).
To investigate the stability of the trivial solution we rescale again by α(t)−1 and

describe perturbations by means of a function r(·, t) : SN−1 → R.
In Section 6.3 a nonlinear non-local evolution equation for r is derived and linearised

around r = 0.
In Section 6.4 the spectrum of the linearisation is determined. This linearisation

is again characterised in terms of the Dirichlet-to-Neumann operator given by (2.33).
This is done by solving a boundary value problem on BN in terms of (scalar) spherical
harmonics and vector-valued spherical harmonics (see [29], [30], and [38]). For N ≥ 4
calculating the spectrum is more complicated and the problem is less interesting for
applications. Therefore we restrict ourselves to the cases N = 2, 3.

In Section 6.5 global existence in time of solutions r is derived for the case of injection.
We also show that the corresponding moving domain converges to a ball as time goes
to infinity. This is done by finding energy estimates in Sobolev spaces. The first order
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chain rule, that we found in Lemma 5.4, is used to close a regularity gap.
In Section 6.6 we consider the case of suction. Because the eigenvalues of the lineari-

sation go to infinity as t tends to T, we cannot derive global existence results. However,
it is still possible to derive an almost global existence result as in Theorem 5.13.

6.2 Comparison between Stokes flow and Hele-Shaw flow

In this section we compare the Stokes moving boundary problem (6.1)-(6.6) to the corre-
sponding problem for the Hele-Shaw problem that we discussed in the previous chap-
ters.

In both cases we have an elliptic system at each time and the evolution of a moving
boundary that follows from (6.4). The fixed time problem for Hele-Shaw flow is reduced
to one scalar equation and a boundary condition for pressure only in (3.5) and (3.6). The
system (6.1)-(6.3) cannot straightforwardly be decoupled. As a result, the components
F1 and F2 of the evolution equation (6.29) are more complicated than those in equation
(5.8) for Hele-Shaw flow.

The linearisations around the trivial solution to both problems are related to solution
operators for boundary value problems on BN (see (6.38)-(6.42)) and the (scalar) spheri-
cal harmonics (see Section 6.4) are eigenfunctions. This is not surprising since both evo-
lution operators are equivariant with respect to rotations and therefore the eigenspaces
have a corresponding invariance property. In contrast to Hele-Shaw flow, in order to
solve the coupled Stokes system (6.38)-(6.42) we need to introduce vector-valued spher-
ical harmonics as well.

For Stokes flow only the evolution problem for the uninteresting case N = 1 can be
regarded as autonomous. Hence the methods of Chapters 2 and 3 cannot be used for
the more relevant space dimensions 2 and 3. Neither can we apply the methods that
we used in Chapter 4 to find non-trivial self-similar solutions. The existence results for
N = 2, 3 (see Theorems 6.15 and 6.18) turn out to be similar to those for Hele-Shaw flow
with N ≥ 4.

The evolution operator in (6.29) is of first order whereas the operator for Hele-Shaw
flow is of order three. Therefore one can apply a first order chain rule of differentiation
(5.12) to obtain useful energy estimates in the existence proofs. For Hele-Shaw flow it
was necessary to work with a second order chain rule.

6.3 The evolution equation and its linearisation

Let Hs(SN−1) be the Sobolev space of real order s as defined in Chapter 5 and let the
functions R and r be as defined in Section 1.5. Define for continuous f : SN−1 →
(−1, ∞) the domain Ω f as in (1.14). In contrast to Chapter 5, for Stokes flow we de-
mand that r is a small element of Hs(SN−1) with

s >
N + 5

2
. (6.9)
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Let Φ : RN → R be the function defined by (2.10) that satisfies ∆Φ = −δ and vanishes
on SN−1. Define the functions V and P by

V := v +µ∇Φ = v− v0 (6.10)

and
P := p−µδ.

Since v and p satisfy (6.1)-(6.2) we have

−∆V +∇P = 0 on ΩR, (6.11)
div V = 0 on ΩR. (6.12)

The boundary condition (6.3) is equivalent to

(∇V +∇VT − PI)n = γκn + 2µHn on ΓR. (6.13)

Here H : RN → RN×N is the Hessian of Φ given by

H(x) =
1

σN |x|N

(
−I +

N
|x|2

x⊗ x

)
,

where x ⊗ x denotes the matrix with coefficients xix j. The extra conditions (6.5) and
(6.6) are equivalent to∫

ΩR

V dx =
∫

ΩR

µ∇Φ dx,
∫

ΩR

rot V dx = 0. (6.14)

Define

• (V1, f , P1, f )
T : Ω f → RN ×R as the solution to (6.11) and (6.12) on the domain Ω f

with boundary condition

(∇V1, f +∇VT
1, f − P1, f I)n = κn on Γ f

and extra conditions ∫
Ω f

V1, f dx = 0,
∫

Ω f

rot V1, f dx = 0,

• (V2, f , P2, f )
T : Ω f → RN ×R as the solution to (6.11) and (6.12) on the domain Ω f

with boundary condition

(∇V2, f +∇VT
2, f − P2, f I)n = 2Hn on Γ f

and extra conditions∫
Ω f

V2, f dx =
∫

Ω f

∇Φ dx,
∫

Ω f

rot V2, f dx = 0.
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It is known (see e.g. [60, Ch. 3]), that the solutions (V1, f , P1, f )
T and (V2, f , P2, f )

T are
uniquely defined for appropriate domains Ω f . The solution (V, P)T to (6.11)-(6.14) can
be written as follows:

(V, P)T = γ(V1,R, P1,R)T +µ(V2,R, P2,R)T . (6.15)

Lemma 6.1. If the relation between R and r is given by (1.15), then

V1,r(x) = V1,R(α(t)x), (6.16)

P1,r(x) = α(t)P1,R(α(t)x), (6.17)

V2,r(x) = α(t)N−1V2,R(α(t)x), (6.18)

P2,r(x) = α(t)N P2,R(α(t)x). (6.19)

Proof. Let V̂1,r(x), P̂1,r(x), V̂2,r(x), and P̂2,r(x) be the right-hand sides in (6.16)-(6.19). We
will show that V̂1,r = V1,r, V̂2,r = V2,r, P̂1,r = P1,r, and P̂2,r = P2,r. Suppressing the time
argument inα(t), we have for x ∈ Ωr

−∆V̂1,r(x) +∇P̂1,r(x) = α
2 (−∆V1,R(αx) +∇P1,R(αx)

)
= 0.

For V̂2,r and P̂2,r this can be done in a similar way. Let x ∈ Γr, such that αx ∈ ΓR and
define κr : Γr → R and κR : ΓR → R as the mean curvature of these boundaries. We have(

∇V̂1,r(x) +∇V̂T
1,r(x)− P̂1,r(x)

)
n = α

(
∇V1,R(αx) +∇VT

1,R(αx)− P1,R(αx)
)
n

= αγκR(αx)n = γκr(x)n.

The corresponding boundary condition for V̂2,r and P̂2,r is checked in a similar way,
using the fact that H(x) = α

N H(αx). From scaling properties of ∇Φ we get for the
extra conditions∫

Ωr

V̂2,r(x) dx =
∫

Ωr

α
N−1V2,R(αx) dx =

∫
ΩR

α
−1V2,R(x) dx

=
∫

ΩR

α
−1∇Φ(x) dx =

∫
Ωr

α
N−1∇Φ(αx) dx =

∫
Ωr

∇Φ(x) dx.

Verifying the other conditions is straightforward.

Let the operators z̃, n,κ, and z be defined as in Section 5.2. Again we identify z̃(r) and
z̃(r, ·), n(r) and n(r, ·), etc.

Combining Lemma 2.1, (6.8), (6.10), and (6.15) we get

∂R
∂t

= γ
(V1,R ◦ z̃(R)) · n(R)

n(R) · id +µ

(
(V2,R ◦ z̃(R)) · n(R)

n(R) · id +
1

σN(1 + R)N−1

)
.
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By (3.14), Lemma 6.1, and n(R) = n(r) we obtain

∂r
∂t

=
γ

α(t)
(V1,r ◦ z̃(r)) · n(r)

n(r) · id +
µ

α(t)N

(
(V2,r ◦ z̃(r)) · n(r)

n(r) · id +
1

σN(1 + r)N−1 −
1 + r
σN

)
.

(6.20)
From the structure of the evolution equation we expect that the results for Stokes

flow in space dimension two or higher are similar to those for Hele-Shaw flow in di-
mension four or higher.

Now we transform our moving boundary problem to the fixed reference domain BN .

Lemma 6.2. Let s > N+5
2 . There exists a δ > 0 such that if ‖r‖s < δ, then z(r) : BN → Ωr is

bijective and z(r)−1 ∈
(
C2(Ωr)

)N
.

Proof. From Hs(SN−1) ↪→ C3(SN−1) it follows that r is small in C3(SN−1). The result
follows from Lemmas 2.3 and 2.4.

Introduce the bilinear mapping ? : R
(

N
2

)
×RN → RN by

u ? v =
N

∑
i=1

(
i−1

∑
j=1

uω( j,i)v j −
N

∑
j=i+1

uω(i, j)v j

)
ei . (6.21)

Hereω is the bijection that we introduced to define the operator rot in (6.7).
On a neighbourhood U of zero in Hs(SN−1) with s > N+5

2 we define the following
mappings:

• A : U → L
((

Hs− 1
2 (BN)

)N
,
(
Hs− 5

2 (BN)
)N
)

componentwise by (2.25) and

Q : U → L
(

Hs− 3
2 (BN),

(
Hs− 5

2 (BN)
)N
)

by (2.26). Because of (6.9) the space

Hs− 5
2 (BN) is a Banach algebra. Hence, A(r) and Q(r) are well-defined.

• Q+ : U → L
((

Hs− 1
2 (BN)

)N
,
(
Hs− 3

2 (BN)
)N×N

)
,

b : U → L
((

Hs− 1
2 (BN)

)N
, Hs− 3

2 (BN)
)

,

andR : U → L
((

Hs− 1
2 (BN)

)N
,
(
Hs− 3

2 (BN)
)(N

2

))
by

Q+(r)u :=
(
∇
(

u ◦ z(r)−1
))
◦ z(r) = ∑

i,k,l
jk,i(r)

∂ul

∂xk
el ⊗ ei ,

b(r)u :=
(

div
(

u ◦ z(r)−1
))
◦ z(r) = ∑

i,k
jk,i(r)

∂ui

∂xk
,

R(r)u :=
(

rot
(

u ◦ z(r)−1
))
◦ z(r) = ∑

1≤i<k≤N
∑

l

(
jl,i(r)

∂uk

∂xl
− jl,k(r)

∂ui

∂xl

)
eω(i,k),
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with jk,i(r) as in Section 5.2.

• S : U → L (Xs,Ys), where

Xs :=
(
Hs− 1

2 (BN)
)N
×Hs− 3

2 (BN)×RN ×R
(

N
2

)
,

Ys :=
(
Hs− 5

2 (BN)
)N
×Hs− 3

2 (BN)×
(
Hs−2(SN−1)

)N
×RN ×R

(
N
2

)
,

by

S(r)(ṽ, p̃, η̃1, η̃2) =



−A(r)ṽ +Q(r) p̃ + η̃1

b(r)ṽ

Tr(Q+(r)ṽ +Q+(r)ṽT − p̃I)n(r) + η̃2 ? n(r)∫
BN ṽ detJ (r)dx∫

BN (R(r)ṽ) detJ (r)dx


. (6.22)

• h : U →
(
Hs(SN−1)

)N×N
by

h(r,ξ) = H(z̃(r,ξ)) =
1

σN(1 + r(ξ))N (−I + Nξ ⊗ξ) . (6.23)

• m : U → RN by

m(r) =
∫

Ωr

∇Φ dx = − 1
σN

∫
SN−1

r(ξ)ξ dσ . (6.24)

Lemma 6.3. The mapping S(0) is an isomorphism between Xs and Ys. The same holds for
S(r) if r is small in Hs(SN−1). Furthermore, S is analytic near zero.

Proof. For the first statement we refer to [60, Ch. 3 Lemma 11]. Since S is continuous
near zero, the second statement follows from the fact that isomorphisms form an open
subset in L (Xs,Ys). For the last statement we refer to [60, Ch. 3 Lemma 17].

Remark 6.4. In the definition of Xs, Ys, and S , we included the components η̃1 and η̃2 because
the equation S(r) f = g does not have a solution f ∈ Xs of the type (ṽ, p̃, 0, 0) for all g ∈ Ys.

In the sequel we use the notation Πi f for the i-th component of any f . On a suitable
neighbourhood U of zero in Hs(SN−1) we define

E : U → L
((

Hs−2(SN−1)
)N
×RN , Hs−1(SN−1)

)
by

(
E(r)

(
ψ1
ψ2

))
:=

(
TrΠ1S(r)−1 (0, 0,ψ1,ψ2, 0)T

)
· n(r)

n(r) · id . (6.25)
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The evolution equation (6.20) can be written in the following way:

∂r
∂t

=
γ

α(t)
F1(r) +

µ

α(t)NF2(r), (6.26)

where F1 : U → Hs−1(SN−1) and F2 : U → Hs−1(SN−1) are given by

F1(r) = E(r)
(
κ(r)n(r)

0

)
and

F2(r) = E(r)
(

2h(r)n(r)
m(r)

)
+

1

σN(1 + r)N−1 −
1 + r
σN

.

Lemma 6.5. Suppose that s > N+5
2 . The mappings F1 and F2 are both analytic from a neigh-

bourhood U of zero in Hs(SN−1) to Hs−1(SN−1).

Proof. In [60, Ch. 3 Lemma 19] this is proved for F1. Analyticity of F2 can be obtained
in a similar way. The proof is based on local analyticity of S , bijectivity of S(0) (see
Lemma 6.3), and the Implicit Function theorem.

Lemma 6.6. If ψ1 = κ(r)n(r) or ψ1 = 2h(r)n(r) and ψ2 is any element of RN , then
S(r)(ṽ, p̃, η̃1, η̃2)

T = (0, 0,ψ1,ψ2, 0)T implies

η̃1 := Π3S(r)−1 (0, 0,ψ1,ψ2, 0)T = 0, η̃2 := Π4S(r)−1 (0, 0,ψ1,ψ2, 0)T = 0.

Proof. We will consider the corresponding boundary value problem on Ωr, defining
v = ṽ ◦ z(r)−1 and p = p̃ ◦ z(r)−1. Let κr and nr be the mean curvature and the normal
on Γr. A variational formulation of

−∆v +∇p + η̃1 = 0, on Ωr

div v = 0, on Ωr

(∇v +∇vT − pI)nr + η̃2 ? nr = ψ1 ◦ z(r)−1, on Γr∫
BN

v dx = ψ2,∫
BN

rot v dx = 0,

is given in [60, eqn. (3.24)]. From this variational formulation it follows that for all
velocity fields w corresponding to rigid body motions in RN

∫
Ωr

(η̃1 · w + η̃2 · rot w) dx =
∫

Γr

(ψ1 ◦ z̃(r)−1) · w dσ .

Therefore, to prove this lemma it is sufficient to show that for all rigid body motions w
we have ∫

Γr

κrnr · w dσ =
∫

Γr

Hnr · w dσ = 0.

Let ∆r be the Laplace-Beltrami operator on Γr as defined in (3.17) and let ∇r be defined
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by
∇r f = ∇ f − (∇ f · nr)nr,

for any differentiable f : Ωr → R. From (3.19) and Green’s formula for closed surfaces
we derive∫

Γr

κrnr · w dσ =
∫

Γr

∆rid · w dσ = −
∫

Γr
∑

i
∇rxi · ∇rwi dσ = −

∫
Γr

∑
i
∇xi · ∇rwi dσ

= −
∫

Γr

(
div w−∑

i, j

∂wi

∂x j
(nr · ei)(nr · e j)

)
dσ = 0.

In the last step we used anti-symmetry of ∇w and div w = 0. Because H is symmetric
and ∆Φ = −δ we get∫

Γr

Hnr · w dσ =
∫

Γr

Hw · nr dσ

=
∫

Ωr

div(Hw) dx =
∫

Ωr

(∆∇Φ) · w + tr(H∇w) dx

=
∫

Ωr

−∇δ · w + tr(H∇w) dx = 0.

In the last step we used div w = 0 and the fact that the trace of the product of a sym-
metric matrix and an anti-symmetric matrix is zero.

We introduce a new time variable τ = τ(t) such that τ(0) = 0 and

dτ
dt

=
1
α(t)

. (6.27)

From this we get for N ≥ 2

τ(t) =
σN

µ(N − 1)

((
µNt
σN

+ 1
)1− 1

N

− 1

)
. (6.28)

The injection problems are defined on an infinite time interval and the suction problems
on a finite interval. In terms of the new time variable τ this is still the case, because

lim
t→∞τ(t) = ∞, for µ > 0,

lim
t→T

τ(t) =
σN

|µ|(N − 1)
, for µ < 0.

Regarding r as a function of τ we get

∂r
∂τ

= F (r, τ) := γF1(r) +µα(τ)1−NF2(r). (6.29)

For convenience we write here and in the sequelα(τ) instead ofα(t(τ)).
Now we determine the linearisation of the operators F1 and F2 around r = 0.
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Lemma 6.7. Define ∇0 by (4.30). We have

F ′1(0)[r] = E(0)
(
κ
′(0)[r]n(0)

0

)
,

F ′2(0)[r] = E(0)

(
2N(1−N)

σN
rn(0) + 2N

σN
∇0r

m(r)

)
− N
σN

r.

Proof. First we show that
n′(0)[r] = −∇0r. (6.30)

Fréchet differentiation of the expression n(r) · n(r) = 1 at r = 0 leads to

n′(0)[r] · n(0) = 0. (6.31)

Let Ξ = Ξ(ω) be a regular parametrisation of a part of SN−1. Note that for i = 1, 2, . . . , N−
1 we have

0 = n(r) · ∂z̃(r)
∂ωi

= n(r) ·
(

(1 + r)
∂id
∂ωi

+
∂r

∂ωi
id
)

.

Fréchet differentiation of this expression at r = 0 yields

0 = n′(0)[r] · ∂id
∂ωi

+ n(0) ·
(

r
∂id
∂ωi

+
∂r

∂ωi
id
)

= n′(0)[r] · ∂id
∂ωi

+
∂r

∂ωi
. (6.32)

Here we used the fact that ∂id
∂ωi

is orthogonal to n(0) = id. Taking the vector fields ∂id
∂ωi

,
i = 1, 2, . . . N − 1, pointwise orthogonal we obtain

n′(0)[r] =
N−1

∑
i=1

(
n′(0)[r] · ∂id

∂ωi

) ∣∣∣∣ ∂id
∂ωi

∣∣∣∣−2
∂id
∂ωi

= −
N−1

∑
i=1

∂r
∂ωi

∣∣∣∣ ∂id
∂ωi

∣∣∣∣−2
∂id
∂ωi

= −∇0r.

This follows from (6.31), (6.32), and the fact that ∂id
∂ωi
⊥n(0).

To shorten notation we introduce

G1(r)ψ1 := S(r)−1 (0, 0,ψ1, 0, 0)T , G2(r)ψ2 := S(r)−1 (0, 0, 0,ψ2, 0)T . (6.33)

Define v1 : U →
(
Hs− 1

2 (BN)
)N

and p1 : U → Hs− 3
2 (BN) by

(v1(r), p1(r), 0, 0)T := G1(r) (κ(r)n(r))

Since v1(0) ≡ 0 and p1(0) ≡ −κ(0) it follows that

v′1(0)[r] = Π1G ′1(0)[r]
(
κ(0)n(0)

)
+ Π1G1(0)

(
κ
′(0)[r]n(0) +κ(0)n′(0)[r]

)
= −Π1S(0)−1S ′(0)[r]G1(0)

(
κ(0)n(0)

)
+ Π1G1(0)

(
κ
′(0)[r]n(0) +κ(0)n′(0)[r]

)
= −Π1S(0)−1S ′(0)[r](0,−κ(0), 0, 0)T + Π1G1(0)

(
κ
′(0)[r]n(0) +κ(0)n′(0)[r]

)
.

(6.34)
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Because Q′(0)[h] vanishes on constants we have by (6.22)

S ′(0)[r](0,−κ(0), 0, 0)T = (0, 0,κ(0)n′(0)[r], 0, 0)T .

Thus by (6.34)

v′1(0)[r] = −Π1G1(0)
(
κ(0)n′(0)[r]

)
+ Π1G1(0)

(
κ
′(0)[r]n(0) +κ(0)n′(0)[r]

)
= Π1G1(0)

(
κ
′(0)[r]n(0)

)
. (6.35)

Since v1(0) = 0, n(0) = id, and F1(r) = Trv1(r)·n(r)
n(r)·id we get

F ′1(0)[r] = Trv′1(0)[r] · n(0). (6.36)

The first part of the lemma follows from (6.25), (6.33), (6.35), and (6.36).

Now we calculate F ′2(0)[r] in a similar way. Define v2 : U →
(
Hs− 1

2 (BN)
)N

and

p2 : U → Hs− 3
2 (BN) by

(v2(r), p2(r), 0, 0)T := G1(r)
(
2h(r)n(r)

)
+ G2(r)m(r).

From a simple calculation we obtain v2(0) ≡ 0 and p2(0) ≡ 2 1−N
σN

. Because m is linear
we have m(0) = 0 and m′(0)[r] = m(r). Combining this with (6.22), (6.23), and (6.31)
we obtain

v′2(0)[r] = −Π1S(0)−1S ′(0)[r]G1(0)
(
2h(0)n(0)

)
+Π1G1(0)

(
2h′(0)[r]n(0) + 2h(0)n′(0)[r]

)
+ Π1G2(0)m(r)

= −Π1S(0)−1S ′(0)[r]
(

0, 2
1− N
σN

, 0, 0
)T

+Π1G1(0)
(

2N(1− N)
σN

rn(0)− 2
σN

n′(0)[r]
)

+ Π1G2(0)m(r)

= −Π1G1(0)
(

2
N − 1
σN

n′(0)[r]
)

+Π1G1(0)
(

2N(1− N)
σN

rn(0)− 2
σN

n′(0)[r]
)

+ Π1G2(0)m(r)

= Π1G1(0)
(

2N(1− N)
σN

rn(0)− 2N
σN

n′(0)[r]
)

+ Π1G2(0)m(r).

The lemma follows if we combine this, (6.30), and the Taylor expansion 1
σN(1+r)N−1 −

1+r
σN

= − N
σN

r +O(r2) around r = 0.
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Define the spherical harmonics of degree one by

s1 j :=

√
N
σN

x j, (6.37)

such that (s1 j)
N
j=1 form an L2-orthonormal basis of SN

1 .

Lemma 6.8. We have

E(0)
(

0
m(r)

)
= − 1

σN

N

∑
j=1

r1 js1 j,

where rk j = (r, sk j)0.

Proof. Let ṽ and p̃ be defined by

(ṽ, p̃, 0, 0)T := G2(0)m(r),

with G2 as in (6.33). It is easy to check that p̃ is zero and ṽ is constant. Therefore ṽ ·n(0) =
ṽ · id can be written as a linear combination of (s1 j)

N
j=1. Furthermore, by (6.37)

∫
SN−1

(ṽ · n(0))s1 j dσ =

√
N
σN

∫
BN

div(x jṽ) dx =

√
N
σN

∫
BN

ṽ j dx

=

√
N
σN

m(r) j = − 1
σN

r1 j.

In the last step we used (6.24). It follows that

E(0)
(

0
m(r)

)
=

Trṽ · n(0)
n(0) · id = ṽ · n(0) = − 1

σN

N

∑
j=1

r1 js1 j.

Combining Lemmas 6.7 and 6.8 we obtain the following result.

Corollary 6.9. We have

F ′1(0)[r] = E(0)
(
κ
′(0)[r]n(0)

0

)
,

F ′2(0)[r] = E(0)

(
2N(1−N)

σN
rn(0) + 2N

σN
∇0r

0

)
− N
σN

r− 1
σN

N

∑
j=1

r1 js1 j.

6.4 Explicit solution for the linearised problem

In this section we characterise F ′1(0) and F ′2(0) in terms of the Dirichlet-to-Neumann
operatorN for the Laplacian on BN . The spectrum and the eigenfunctions of F ′1(0) and
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F ′2(0) are easily derived from the spectral properties of N . We restrict ourselves to the
cases N = 2 and N = 3.

It follows from Corollary 6.9 that we need to solve the following boundary value
problem on BN to find this characterisation. Find for f : SN−1 → RN functions v and p
such that

−∆v +∇p = 0, on BN (6.38)

div v = 0, on BN (6.39)
(∇v +∇vT − pI)n = f , on SN−1 (6.40)∫

BN
v dx = 0, (6.41)∫

BN
rot v dx = 0. (6.42)

6.4.1 The two-dimensional boundary value problem

For the two-dimensional problem we introduce polar coordinates ρ and θ and unit vec-
tors eρ and eθ. Define for all k ∈ Z the functions sk : S1 → C by

sk :=
1√
2π

eikθ .

Complexifying the spaces S2
k in Chapter 1, one can identify these functions with the

spherical harmonics sk j in the following way:

sk1 := sk, sk2 := s−k,

for k > 0 and s01 = s0. We write

f = f ρeρ + fθeθ , f ρ(θ) =
∞
∑

k=−∞ f ρk sk(θ), fθ(θ) =
∞
∑

k=−∞ fθk sk(θ),

v = vρeρ + vθeθ , vρ(ρ,θ) =
∞
∑

k=−∞ vρk(ρ)sk(θ), vθ(ρ,θ) =
∞
∑

k=−∞ vθk(ρ)sk(θ),

for f ρ, fθ : S1 → R, vρ, vθ : B2 → R, f ρk , fθk ∈ C, and vρk , vθk : [0, 1] → C. Because p is
harmonic we have

p =
∞
∑

k=−∞ pkρ
|k|sk(θ), (6.43)

for certain pk ∈ C.

Lemma 6.10. For N = 2, the system (6.38)-(6.42) is solvable if and only if fθ0 = 0, f ρ1 = i fθ1 ,
and f ρ−1 = −i fθ−1. For the components of the normal velocity on S1 we have for k /∈ {−1, 0, 1}

vρk(1) =
|k|

2(k2 − 1)
f ρk −

i sgn k
2(k2 − 1)

fθk . (6.44)
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For k ∈ {−1, 0, 1} we have vρk = 0.

Proof. Parallel to [30], we write (6.38) in polar coordinates,

vρk
′′ +

1
ρ

vρk
′ − k2 + 1

ρ
2 vρk −

2ik
ρ

2 vθk = |k|pkρ
|k|−1,

vθk
′′
+

1
ρ

vθk
′ − k2 + 1

ρ
2 vθk +

2ik
ρ

2 vρk = ikpkρ
|k|−1.

For k 6= 0, the general regular solution to these equations is given by

vρk =
1
2

pkρ
|k|+1 + Akρ

|k|+1 + Bkρ
|k|−1, (6.45)

vθk = i sgn k
(
− Akρ

|k|+1 + Bkρ
|k|−1), (6.46)

for some constants Ak and Bk. For k = 0 we get

vρ0 =
1
2

p0ρ+ A0ρ, (6.47)

vθ0 = B0ρ. (6.48)

For each k ∈ Z we have to determine three constants: pk, Ak, and Bk. These follow from
boundary condition (6.40), incompressibility condition (6.39) and extra conditions (6.41)
and (6.42). In polar coordinates conditions (6.40) and (6.39) are given by

2
∂vρ

∂ρ
− p = f ρ, (6.49)

∂vθ

∂ρ
+

∂vρ

∂θ
− vθ = fθ (6.50)

and
∂vρ

∂ρ
+

1
ρ

vρ +
1
ρ

∂vθ

∂θ
= 0. (6.51)

We distinguish between three cases: k = 0, k = ±1, and k /∈ {−1, 0, 1}.

1. For k = 0, (6.43), (6.47), (6.48), and (6.49)-(6.51) give the underdetermined system 0 2 0
0 0 0
1 2 0

 p0
A0
B0

 =

 f ρ0
fθ0
0

 .

From this system, B0 cannot be determined. However, condition (6.42) implies∫
S1

vθ dσ = ±
∫

B2
rot v dx = 0.
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From (6.48) we get B0 = 0. We conclude

p0 = − f ρ0 , A0 =
1
2

f ρ0 , B0 = 0.

Combining this and (6.47) we get vρ0 = 0. There is also a condition on f , namely

fθ0 = 0. (6.52)

2. For k = ±1, we derive from (6.43), (6.45), (6.46), and (6.49)-(6.51) 1 4 0
±1 0 0
3 8 0

 p±1
A±1
B±1

 =

 f ρ±1
−2i fθ±1

0

 . (6.53)

From the first and second equation in the system (6.53) it follows that

p±1 = ∓2i fθ±1, A±1 =
1
4

f ρ±1 ±
1
2

i fθ±1.

We cannot determine B±1 from (6.53). However, (6.39) and (6.41) imply for j = 1, 2∫
S1

x jv · n dσ =
∫

B2
div(x jv) dx =

∫
B2

x j div v dx +
∫

B2
∇x j · v dx

=
∫

B2
v j dx = 0. (6.54)

This yields

vρ±1(1) =
1√
2π

∫
S1

(x1 ± ix2)v · n dσ = 0. (6.55)

Combining this and (6.45) it follows that

B±1 = −1
4

f ρ±1 ±
1
2

i fθ±1.

From the third equation in (6.53) we derive two more conditions on f :

f ρ±1 = ±i fθ±1. (6.56)

3. For k /∈ {−1, 0, 1} we get from (6.43), (6.45), (6.46), and (6.49)-(6.51) the following
system of equations: |k| 2(|k|+ 1) 2(|k| − 1)

k 0 4(k− sgn k)
|k|+ 2 4(|k|+ 1) 0

 pk
Ak
Bk

 =

 f ρk
−2i fθk

0

 . (6.57)

The matrix on the left-hand side is invertible for k /∈ {−1, 0, 1} and the solution to
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(6.57) is given by

pk = − f ρk − i sgn k fθk ,

Ak =
(|k|+ 2)( f ρk + i sgn k fθk )

4(|k|+ 1)
,

Bk =
k f ρk + i(|k| − 2) fθk

4(k− sgn k)
.

We are interested in the normal component of the velocity vρ on S1. For k /∈
{−1, 0, 1} we get from (6.45)

vρk(1) =
1
2

pk + Ak + Bk

and (6.44) follows.

Since sk, s−k ∈ S2
k we have

N sk = |k|sk, (6.58)

with N as defined in (2.33). Now we write for N = 2 the expressions for F ′1(0) and
F ′2(0) that we found in Corollary 6.9 in terms of N .

• Consider (6.38)-(6.42) with f = κ
′(0)[r]n(0). By Lemma 3.6

f ρk = (−k2 + 1)rk,

fθk = 0,

with rk = (r, sk)0. Note that the conditions in Lemma 6.10 are satisfied. As a
consequence, for k /∈ {−1, 0, 1}

vρk(1) = −1
2
|k|rk

and vρ0(1) = vρ±1(1) = 0. Corollary 6.9 and (6.58) imply

F ′1(0)[r] = −1
2
NP1r, (6.59)

where P1 : L2(S1) → L2(S1) is the orthogonal projection along 〈s−1, s0, s1〉 =
S2

0 ⊕S2
1.

• Consider (6.38)-(6.42) with f = 2N(1−N)
σN

rn(0) + 2N
σN
∇0r = − 2

π
rn(0) + 2

π
∇0r. From

∇0sk = ∂sk
∂θ

eθ = ikskeθ it follows that

f ρk = − 2
π

rk
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and
fθk =

2ik
π

rk.

We see that the conditions in Lemma 6.10 are satisfied. We get for all k ∈ Z

vρk(1) = 0.

Corollary 6.9 yields

F ′2(0)[r] = − 1
π

r− 1
2π

(r1s1 + r−1s−1). (6.60)

6.4.2 The three-dimensional boundary value problem

For the three-dimensional problem we introduce the spherical harmonics Ykm : S2 →
C for each k ∈ N0 and m ∈ {−k,−k + 1, . . . , 0, . . . , k − 1, k} by means of spherical
coordinates in the following way:

Ykm = (−1)m

√
(2k + 1)(k−m)!

4π(k + m)!
Pm

k (cosθ)eimφ,

where θ is the polar coordinate, φ the azimuthal coordinate and Pm
k the Legendre poly-

nomial given by

Pm
k (x) =

√
(1− x2)m

2kk!

dk+m

dxk+m

[
(x2 − 1)k

]
.

Complexifying the spaces S3
k in Chapter 1, one can identify Ykm with the spherical har-

monics sk j with j = m + k + 1.
We introduce the vector spherical harmonics ~Vkm, ~Xkm, ~Wkm : S2 → C3 conform [29]

and [38] in the following way:

~Vkm : = −
√

k + 1
2k + 1

Ykmeρ +
1√

(k + 1)(2k + 1)
∂Ykm

∂θ
eθ

+
im√

(k + 1)(2k + 1) sinθ
Ykmeφ,

~Xkm : = − m√
k(k + 1) sinθ

Ykmeθ −
i√

k(k + 1)
∂Ykm

∂θ
eφ,

~Wkm : =
√

k
2k + 1

Ykmeρ +
1√

k(2k + 1)
∂Ykm

∂θ
eθ +

im√
k(2k + 1) sinθ

Ykmeφ,

for k ∈ N0 and m ∈ {−k,−k + 1, . . . , 0, . . . , k − 1, k}. The functions Ykm form a com-
plete orthonormal set in L2(S2) and ~Vkm, ~Xkm, ~Wkm, excluding ~X00 ≡ ~W00 ≡ 0, form a

complete orthonormal set in
(
L2(S2)

)3
. From [38, eqn. (B-13)] it is easily checked that

the functions ~W1−1, ~W10, and ~W11 are three independent constant vector fields. There-
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fore, if we also take L2(S2)-inner products of the constant vector fields e1 = (1, 0, 0)T ,
e2 = (0, 1, 0)T , and e3 = (0, 0, 1)T with other vector spherical harmonics we find∫

S2
~Wkm dσ = 0, k ∈ N0 \ {1},

∫
S2

~W1m dσ 6= 0 (6.61)

∫
S2

~Vkm dσ =
∫

S2
~Xkm dσ = 0, k ∈ N0, (6.62)

for all m ∈ {−k,−k + 1, . . . , 0, . . . , k− 1, k}.
We will use the following identities:

Ykmeρ = −
√

k + 1
2k + 1

~Vkm +
√

k
2k + 1

~Wkm, (6.63)

∇0Ykm = k

√
k + 1

2k + 1
~Vkm + (k + 1)

√
k

2k + 1
~Wkm, (6.64)

rot (g(ρ)Vkm(θ,φ)) = i

√
k

2k + 1

(
dg
dρ

+
k + 2
ρ

g
)

~Xkm, (6.65)

rot (g(ρ)Xkm(θ,φ)) = i

√
k

2k + 1

(
dg
dρ
− k
ρ

g
)

~Vkm + i

√
k + 1

2k + 1

(
dg
dρ

+
k + 1
ρ

g
)

~Wkm,

(6.66)

rot (g(ρ)Wkm(θ,φ)) = i

√
k + 1

2k + 1

(
dg
dρ
− k− 1

ρ
g
)

~Xkm, (6.67)

for any g depending on ρ only (see [29] or [38]). Introduce functions αkm,βkm,γkm :
[0, 1]→ C such that

v(ρ,θ,φ) = ∑
k,m
αkm(ρ)~Vkm(θ,φ) +βkm(ρ)~Xkm(θ,φ) + γkm(ρ)~Wkm(θ,φ) (6.68)

and introduce f V
km, f X

km, f W
km ∈ C such that

f (θ,φ) = ∑
k,m

f V
km

~Vkm(θ,φ) + f X
km

~Xkm(θ,φ) + f W
km

~Wkm(θ,φ).

Here and in the sequel summations are over all k ∈ N0 and
m ∈ {−k,−k + 1, . . . , 0, . . . , k− 1, k}, excluding terms containing ~X00 and ~W00. Because
p is harmonic, there exist pkm ∈ C such that

p(ρ,θ,φ) = ∑
k,m

pkmρ
kYkm(θ,φ). (6.69)

Lemma 6.11. For N = 3, the system (6.38)-(6.42) is solvable if and only if f X
1m = f W

1m = 0 for
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m ∈ {−1, 0, 1}. Furthermore

v · n(0) = ∑
k 6=1,m

[
− k

2k2 + 4k + 3

√
k + 1

2k + 1
f V
km +

1
2(k− 1)

√
k

2k + 1
f W
km

]
Ykm. (6.70)

Proof. From (6.63), (6.64), and (6.69) we get

∇p = ∑
k,m

pkmρ
k−1
√

k(2k + 1)~Wkm.

This can also be derived from [29, eqn. (3.5)]. Combining (6.68) and [29, eqn. (2.16)] we
obtain

∆v = ∑
k,m

(Λk+1αkm)~Vkm + (Λkβkm)~Xkm + (Λk−1γkm)~Wkm,

where

Λk : ψ 7→ ∂
2
ψ

∂ρ
2 +

2
ρ

∂ψ

∂ρ
− k(k + 1)

ρ
2 ψ. (6.71)

From (6.38) we get

Λk+1αkm = 0,

Λkβkm = 0,

Λk−1γkm = pkmρ
k−1
√

k(2k + 1).

The general regular solution to these equations is given by

αkm(ρ) = Akmρ
k+1,

βkm(ρ) = Bkmρ
k,

γkm(ρ) = Ckmρ
k−1 +

1
2

√
k

2k + 1
pkmρ

k+1.

For each pair (k, m) we have to determine four constants: pkm, Akm, Bkm, and Ckm. As in
the two-dimensional case, these constants follow from the boundary conditions (6.40),
the incompressibility condition (6.39), and extra conditions (6.41) and (6.42). In [29,
eqns. (4.3)-(4.6)], conditions (6.40) and (6.39) are written in terms of αkm, βkm, and γkm.
If we substitute the expressions above, then we get for k ∈ N0 and m ∈ {−k,−k +
1, . . . , 0, . . . , k− 1, k}

( k+1
2k+1

) 3
2 2k2+3k+2

2k+1 0 0
0 0 k− 1 0√

k
2k+1

2k2−1
2k+1 −

√
k
√

k+1(2k+3)
2k+1 0 2(k− 1)

k
2k+1 −

√
k+1

2k+1 (2k + 3) 0 0




pkm
Akm
Bkm
Ckm

 =


f V
km

f X
km

f W
km
0

 . (6.72)
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Only for k = 1 the matrix on the left-hand side is not invertible. In this case we get
( 2

3 )
3
2 7

3 0 0
0 0 0 0
1

3
√

3
− 5

3

√
2 0 0

1
3 −5

√
2
3 0 0




p1m
A1m
B1m
C1m

 =


f V
1m

f X
1m

f W
1m
0

 . (6.73)

The rank of the matrix in (6.73) is two. Therefore there are six restrictions on f and six
degrees of freedom. From the last three equations in the system (6.73), we obtain the
following conditions:

f X
1m = f W

1m = 0, (6.74)

for m = −1, 0, 1. From the first and the fourth equation in (6.73) we derive

A1m =
1
9

f V
1m (6.75)

and

p1m =
5
3

√
2
3

f V
1m. (6.76)

In order to calculate B1m and C1m, for m = −1, 0, 1, we consider (6.41) and (6.42). Writing
condition (6.41) in spherical coordinates and substituting (6.68) we get

0 =
∫

B3
v dx

= ∑
k,m

∫
S2

∫ 1

0
ρ

2
αkm(ρ)~Vkm + ρ2

βkm(ρ)~Xkm + ρ2
γkm(ρ)~Wkm dρdσ

= ∑
k,m

∫
S2

∫ 1

0
Akmρ

k+3~Vkm + Bkmρ
k+2~Xkm

+

(
Ckmρ

k+1 +
1
2

√
k

2k + 1
pkmρ

k+3

)
~Wkm dρdσ

= ∑
k,m

∫
S2

Akm

k + 4
~Vkm +

Bkm

k + 3
~Xkm +

(
Ckm

k + 2
+

1
2

√
k

2k + 1
pkm

k + 4

)
~Wkm dσ .

It follows from (6.61) and (6.62) that

1
3

C1m +
1

10
√

3
p1m = 0,

for m = −1, 0, 1. Combining this and (6.76) we get

C1m = −
√

2
6

f V
1m, (6.77)
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for m = −1, 0, 1.
Note that rot (αkm(ρ)~Vkm) and rot (γkm(ρ)~Wkm) have no ~Wkm-components (see (6.65)

and (6.67)). It follows from (6.62) that∫
S2

rot (αkm(ρ)~Vkm)dσ =
∫

S2
rot (γkm(ρ)~Wkm)dσ = 0. (6.78)

Combining (6.42), (6.68), (6.78), and (6.66) we get

0 = ∑
k,m

∫
S2

∫ 1

0
ρ

2rot (βkm(ρ)~Xkm) dρdσ

= ∑
k,m

∫
S2

∫ 1

0
ρ

2i

√
k

2k + 1

(
∂βkm

∂ρ
− k
ρ
βkm

)
~Vkm

+ρ2i

√
k + 1

2k + 1

(
∂βkm

∂ρ
+

k + 1
ρ
βkm

)
~Wkm dρdσ . (6.79)

As a result of (6.61), (6.62), and (6.79) we get for all m ∈ {−, 1, 0, 1}

B1m = 0. (6.80)

For k 6= 1 the solution to (6.72) is given by

pkm =
(2k + 3)

√
(2k + 1)(k + 1)

2k2 + 4k + 3
f V
km,

Akm =
k

2k2 + 4k + 3
f V
km,

Bkm =
1

k− 1
f X
km,

Ckm =
1

2(k− 1)

[
−
√

k
√

k + 1(2k + 3)(k− 1)
2k2 + 4k + 3

f V
km + f W

km

]
.

For the normal component of v on the unit sphere we get

v · n(0) = ∑
k,m
αkm(1)~Vkm · eρ +βkm(1)~Xkm · eρ +γkm(1)~Wkm · eρ

= ∑
k,m

[
−αkm(1)

√
k + 1

2k + 1
+γkm(1)

√
k

2k + 1

]
Ykm

= ∑
k,m

[
−
√

k + 1
2k + 1

Akm +
√

k
2k + 1

Ckm +
1
2

k
2k + 1

pkm

]
Ykm

= ∑
k 6=1,m

[
− k

2k2 + 4k + 3

√
k + 1

2k + 1
f V
km +

1
2(k− 1)

√
k

2k + 1
f W
km

]
Ykm.

In the last step we omitted the terms for k = 1. This is possible because from (6.75),
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(6.76), and (6.77) it follows that

−
√

2
3

A1m +
√

1
3

C1m +
1
6

p1m = 0,

for m = −1, 0, 1. Note that the fact that the terms for k = 1 in (6.70) vanish also follows
if we argue as in (6.54).

The solution of the boundary value problem (6.38)-(6.42) is given in Appendix B.
Now we write F ′1(0) and F ′2(0) in terms of N for space dimension 3, making use of

the formula
NYkm = kYkm. (6.81)

As for the two-dimensional case, we do this by considering two special cases for f in
the system (6.38)-(6.42).

• Let us consider the case f = κ
′(0)[r]n(0). By Lemma 3.6

κ
′(0)[r]n(0) =

(
−N 2r−N r + 2r

)
n(0) = ∑

k,m
(−k2 − k + 2)rkmYkmeρ,

with rkm = (r, Ykm)0. It follows from (6.63) that

κ
′(0)[r]n(0) = ∑

k,m
(−k2 − k + 2)

(
−
√

k + 1
2k + 1

~Vkm +
√

k
2k + 1

~Wkm

)
rkm.

Consequently,

f V
km = −

√
k + 1

2k + 1
(−k2 − k + 2)rkm,

f X
km = 0,

f W
km =

√
k

2k + 1
(−k2 − k + 2)rkm.

Note that the condition in Lemma 6.11 is satisfied. From (6.70) we get

v · n(0) = ∑
k 6=1,m

−
k(k + 2)(k + 1

2 )

2k2 + 4k + 3
rkmYkm.

Corollary 6.9 and (6.81) yield

F ′1(0)[r] = −N (N + 2I)
(
N +

1
2
I
) (

2N 2 + 4N + 3I
)−1
P1r. (6.82)

• Now we consider the case f = 2N(1−N)
σN

rn(0) + 2N
σN
∇0r = − 3

π
rn(0) + 3

2π∇0r. From
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formulas (6.63) and (6.64) we get

f = ∑
k,m
− 3
π

rkm

[
−
√

k + 1
2k + 1

~Vkm +
√

k
2k + 1

~Wkm

]

+
3

2π
rkm

[
k

√
k + 1

2k + 1
~Vkm + (k + 1)

√
k

2k + 1
~Wkm

]

= ∑
k,m

3
2π

(k + 2)
√

k + 1
2k + 1

rkm
~Vkm +

3
2π

(k− 1)
√

k
2k + 1

rkm
~Wkm.

In this case we have

f V
km =

3
2π

(k + 2)
√

k + 1
2k + 1

rkm,

f X
km = 0,

f W
km =

3
2π

(k− 1)
√

k
2k + 1

rkm.

From (6.70) we get

v · n = ∑
k 6=1,m

− 3
4π

k
2k2 + 4k + 3

rkmYkm.

Corollary 6.9 implies

F ′2(0)[r] = − 3
4π
N
(

2N 2 + 4N + 3I
)−1
P1r− 3

4π
r

− 1
4π

(r1−1Y1−1 + r10Y10 + r11Y11) . (6.83)

We summarise the results for the linearisations for N = 2, 3.

Corollary 6.12. For N = 2 we have

F ′1(0)[r] = −1
2
NP1r,

F ′2(0)[r] = − 1
π

r− 1
2π

(r1s1 + r−1s−1) .

For N = 3 we have

F ′1(0)[r] = −N (N + 2I)
(
N +

1
2
I
) (

2N 2 + 4N + 3I
)−1
P1r,

F ′2(0)[r] = − 3
4π
N
(

2N 2 + 4N + 3I
)−1
P1r

− 3
4π

r− 1
4π

(r1−1Y1−1 + r10Y10 + r11Y11) .
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For N = 2 we have
(sk,F ′j(0)[sk])0 = −p j(|k|) (6.84)

for j = 1, 2, k ∈ Z and

p1(k) =


k
2

k 6= 1

0 k = 1

p2(k) =


1
π

k 6= 1

3
2π

k = 1.

For N = 3, we have
(Ykm,F ′j(0)[Ykm])0 = −p j(k), (6.85)

for j = 1, 2, k ∈ Z, m ∈ {−k,−k + 1, . . . , 0, . . . , k− 1, k} and

p1(k) =


k(k + 2)(k + 1

2 )

2k2 + 4k + 3
k 6= 1

0 k = 1

p2(k) =


3

4π
k

2k2 + 4k + 3
+

3
4π

k 6= 1

1
π

k = 1.

Lemma 6.13. Let N = 2 or N = 3. There exists a c1 > 0 such that for all r ∈ Hs(SN−1)

(r̃,F ′1(0)[r̃])s−1 ≤ −c1‖r̃‖2
s− 1

2

and
(r̃,F ′2(0)[r̃])s−1 ≤ 0,

where r̃ := P1r.

Proof. Define

c1 := inf
k∈N\{1}

γp1(k)

(k2 + 1)
1
2

.

All values for p1(k) with integer k ≥ 2 are positive and limk→∞ p1(k)

(k2+1)
1
2

is positive. There-

fore c1 > 0. Furthermore, p2(k) ≥ 0. This proves the lemma.

6.5 Energy estimates and global existence results for the
injection problems

In this section we find a global existence result and decay properties for solutions to
(6.29) with µ > 0. As in the previous chapter this is done by combining the estimates in
Lemma 6.13 for the linearisation and perturbation arguments to obtain a useful estimate
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for the nonlinear evolution operator in (6.29). In contrast to the Hele-Shaw problem, it
is sufficient to use the first order chain rule in Lemma 5.4 to close the regularity gap,
because F1 and F2 are first order operators.

Let for σ > 1 the norm ‖ · ‖σ−1,1 on Hσ (SN−1) be induced by the inner product

(r, r̃)σ−1,1 := (r, r̃)σ−1 + ∑
i
(Dir, Di r̃)σ−1, (6.86)

where the operators Di for i ∈
{

1, 2, . . . ,
(

N
2

)}
are defined as in (5.11). This norm is

equivalent to the norm ‖ · ‖σ that we introduced earlier (see [33, Sec. 4]).

Lemma 6.14. If ΩR(t) satisfies (6.1)-(6.6), then

M(t) =
∫

ΩR(t)

x dx

is constant in t.

Proof. Let Mi be the ith component of M. Combining the divergence theorem, (6.2),
(6.4), and (6.5) we get

dMi(t)
dt

=
∫

ΓR(t)

(v · nR)xi dσ =
∫

ΩR(t)

vi dx +
∫

ΩR(t)

xi div v dx = 0,

where nR is the normal on ΓR(t).

Let MN
1 be as defined in (2.40) and let Hσ

1 (SN−1), f1, P1, φ1 and ψ1 be as defined in
(5.27)-(5.29). From Lemma 6.14 we see that if r is a solution to (6.29) with r0 ∈MN

1 , then
r(t) ∈MN

1 for all t.
As we have seen before, φ1 is an analytic bijection between a neighbourhood of

zero in Hs(SN−1) and a neighbourhood of zero in R×RN ×Hs
1(S

N−1) (see Figure 5.2).
We use this bijection to obtain a stability result for Stokes flow with injection in space
dimensions 2 and 3 as we did for Hele-Shaw flow for N ≥ 4. It follows from Lemma
6.14 that a solution r to (6.29) satisfies

f1(r(τ)) =

(
V0

α(τ)N ,
1

α(τ)N+1 m0

)T

=: (Vτ , mτ )
T ,

where
(V0, m0)

T := f1(r(0)).

For notational convenience we introduce qτ := (Vτ , mτ )
T .

Theorem 6.15. Let N = 2 or N = 3 and µ > 0. Suppose that s > N+6
2 . There exist a δ > 0

and an M > 0 such that if r0 ∈ Hs(SN−1) with ‖r0‖s < δ, then the problem

∂r
∂τ

= F (r, τ), r(0) = r0, (6.87)

has a solution r ∈ Cw([0, ∞), Hs(SN−1)) ∩ C1
w([0, ∞), Hs−1(SN−1)). Furthermore,
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r ∈ C∞(SN−1 × (0, ∞)). If we regard r as a function of the original time-variable t, then

‖r(t)‖s ≤ M
(
µNt
σN

+ 1
)−1

‖r0‖s. (6.88)

Proof. Choose λ0 ∈ (0, c1
2 ) and define ε := c1

2 − λ0, with c1 as defined in Lemma 6.13.

1. If r satisfies (6.29), then r̃ := P1r satisfies

∂r̃
∂τ

= P1F
(
φ
−1
1 (qτ , r̃) , τ

)
. (6.89)

First we prove solvability of this equation. Assume that |q0| is small, r̃ ∈ Hs+1(SN−1),
and ‖r̃‖s < δ

′, with δ′ small enough. The symbol C is used for a constant that may
vary throughout the proof.

2. As in the proof of Theorem 5.10 we have by Lemma 6.13

γ(r̃,F ′1(0)[r̃])s−1 +µα(τ)1−N(r̃,F ′2(0)[r̃])s−1 ≤ −c1‖r̃‖2
s− 1

2
. (6.90)

3. Usingα(τ)1−N ≤ 1 and the fact that F1 and F2 are first order operators we derive
parallel to (5.49)-(5.51) for ‖r̃‖s small

γ
{(

r̃,P1F1

(
φ
−1
1 (qτ , r̃)

))
s−1
− (r̃,F ′1(0)[r̃])s−1

}
+µα(τ)1−N

{(
r̃,P1F2

(
φ
−1
1 (qτ , r̃)

))
s−1
− (r̃,F ′2(0)[r̃])s−1

}
≤ C

(
|qτ |‖r̃‖s− 1

2
+ ‖r̃‖3

s− 1
2

)
. (6.91)

Note that s > N+6
2 is necessary for analyticity (see Lemma 6.5).

4. From (5.12) we get(
r̃,P1F

(
φ
−1
1 (qτ , r̃) , τ

))
s−1,1

= γ(F1 + G1) +µα(τ)1−N(F2 + G2), (6.92)

where for k = 1, 2

Fk :=
(

r̃,P1Fk

(
φ
−1
1 (qτ , r̃)

))
s−1

,

Gk := ∑
i

(
Di r̃,P1F ′k

(
φ
−1
1 (qτ , r̃)

)
[Diφ

−1
1 (qτ , r̃)]

)
s−1

.

We will estimate the terms Fk and Gk, for k = 1, 2, separately.
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5. From (6.90) and (6.91) it follows that for ‖r̃‖s small

γF1 +µα(τ)1−N F2 ≤ −c1‖r̃‖2
s− 1

2
+ C

(
|qτ |‖r̃‖s− 1

2
+ ‖r̃‖3

s− 1
2

)
≤ (−c1 + Cδ′)‖r̃‖2

s− 1
2
+ C|qτ |‖r̃‖s− 1

2
. (6.93)

6. Now we find an estimate for G1. From ψ1(r) = φ
−1
1 (0, r̃) and Lemma 5.7 we

obtain
G1 = ∑

i
(Di r̃, Ii + Ji)s−1, (6.94)

where

Ii := P1F ′1
(
φ
−1
1 (qτ , r̃)

) [
Diφ

−1
1 (qτ , r̃)

]
−P1F ′1

(
φ
−1
1 (0, r̃)

) [
Diφ

−1
1 (0, r̃)

]
Ji := P1F ′1 (ψ1(r̃)) [ψ′1(r̃)[Di r̃]].

Making use of the triangular inequality,ψ1(r) = φ
−1
1 (0, r̃), Lemma 5.7, (5.56), and

Lipschitz continuity of F ′1 ◦φ−1
1 we derive for ‖r̃‖s small

‖Ii‖s− 3
2
≤

∥∥∥{P1F ′1
(
φ
−1
1 (qτ , r̃)

)
−P1F ′1

(
φ
−1
1 (0, r̃)

)} [
ψ
′
1(r̃)[Di r̃]

]∥∥∥
s− 3

2

+
∥∥∥P1F ′1

(
φ
−1
1 (qτ , r̃)

) [
Di

(
φ
−1
1 (qτ , r̃)−φ−1

1 (0, r̃)
)]∥∥∥

s− 3
2

≤ C|qτ |‖r̃‖s+ 1
2
+ C|qτ |.

As a consequence,

(Di r̃, Ii)s−1 ≤ C|qτ |‖r̃‖2
s+ 1

2
+ C|qτ |‖r̃‖s+ 1

2
. (6.95)

Because ψ1(0) = 0 and ψ′1(0) is the identity (see Corollary 2.20), F ′1(0) is the
Fréchet derivative at zero of the local analytic operator P1 ◦ F1 ◦ψ1 on a neigh-

bourhood of zero in Hs− 1
2

1 (SN−1). As a result

γ(Di r̃, Ji)s−1 ≤ γ(Di r̃,F ′1(0)[Di r̃])s−1

+γ
(

Di r̃,
{
P1F ′1(ψ1(r̃))[ψ′1(r̃)[D1 r̃]]−F ′1(0)

}
[Di r̃]

)
s−1

≤ −c1‖Di r̃‖2
s− 1

2
+ C‖r̃‖s− 1

2
‖Di r̃‖2

s− 1
2

≤ −c1‖Di r̃‖2
s− 1

2
+ Cδ′‖r̃‖2

s+ 1
2
. (6.96)

Combining (6.95) and (6.96) we get from (6.94)

γG1 ≤∑
i
−c1‖Di r̃‖2

s− 1
2
+ C

(
δ
′‖r̃‖2

s+ 1
2
+ |qτ |‖r̃‖2

s+ 1
2
+ |qτ |‖r̃‖s+ 1

2

)
.
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We estimate G2 in the same way, replacing c1 by zero (see Lemma 6.13). Because
α(τ)1−N ≤ 1 we get

γG1 +µα(τ)1−NG2

≤ ∑
i
−c1‖Di r̃‖2

s− 1
2
+ C

(
δ
′‖r̃‖2

s+ 1
2
+ |qτ |‖r̃‖2

s+ 1
2
+ |qτ |‖r̃‖s+ 1

2

)
. (6.97)

7. Adding (6.93) and (6.97) and assuming that |qτ | ≤ |q0| < δ
′, it follows from (6.92)

that (
r̃,P1F

(
φ
−1
1 (qτ , r̃) , τ

))
s−1,1

≤ (−c1 + Cδ′ + C|qτ |)‖r̃‖2
s− 1

2 ,1 + C|qτ |‖r̃‖s− 1
2 ,1

≤ (−c1 + Cδ′)‖r̃‖2
s− 1

2 ,1 + C|qτ |‖r̃‖s− 1
2 ,1

≤ (−c1 + Cδ′)‖r̃‖2
s− 1

2 ,1 +
c1

2
‖r̃‖2

s− 1
2 ,1 + C|qτ |2

≤ − c1

2
‖r̃‖2

s− 1
2 ,1 + C

(
δ
′‖r̃‖2

s− 1
2 ,1 + |qτ |2

)
.

Here we used Cauchy’s inequality. Choosing δ′ < ε
C we get(

r̃,P1F
(
φ
−1
1 (qτ , r̃) , τ

))
s−1,1

≤ −λ0‖r̃‖2
s−1,1 + C|qτ |2

≤ −λ0‖r̃‖2
s−1,1 + C

|q0|2

α(τ)2N . (6.98)

8. Let r̃0 := P1r0 be small in Hs
1(S

N−1). Arguing as in the proof of Theorem 5.10 we
obtain from (6.98) a solution r̃ to (6.89) with r̃(0) = r̃0. This solution is smooth for
positive time by [60, Ch. 6 Prop. 9, 10] and

‖r̃(τ)‖s−1,1 ≤ Ce−λ0τ‖r̃0‖s−1,1 +
C

α(τ)N |q0|. (6.99)

As in the proof of Theorem 5.10 we construct a solution to the original problem
from

r(τ) := φ
−1
1 (qτ , r̃(τ)),

with the desired decay properties.

Remark 6.16. In view of (6.99), if we start with a domain Ωr0
for which the zeroth and first

Richardson moments vanish, i.e. q0 = (0, 0)T , then convergence will be faster.

Remark 6.17. In contrast to the problem of Hele-Shaw flow with injection (see [76]), we cannot
treat the case of zero surface tension for Stokes flow by the methods of the proof of Theorem 6.15.
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The order of F ′2(0) is lower than the order of F2. Therefore, energy estimates of the linearisation,
(r,F ′2(0)[r])s ≤ −C‖r‖2

s , for some C > 0, cannot control energy estimates for the nonlinear
part, (r,F2(r)−F ′2(0)[r])s ≤ ε‖r‖2

s+ 1
2
, for some ε > 0.

6.6 Almost global existence results for the suction prob-
lems

In this section we use energy estimates to get an existence result for the suction problems
in 2D and 3D. Starting close enough to the unit ball, an arbitrarily large portion of liquid
can be removed.

Theorem 6.18. Let N = 2 or N = 3, µ < 0, T+ ∈ [0, σN
|µ|(N−1) ), and s > N+6

2 . There

exists a δ > 0 such that if r0 ∈ Hs(SN−1) with ‖r0‖s < δ, then there exists a solution r ∈
Cw([0, T+), Hs(SN−1)) ∩ C1

w([0, T+), Hs−1(SN−1)) to

∂r
∂τ

= F (r, τ), r(0) = r0. (6.100)

Furthermore ((ξ , τ) 7→ r(τ)(ξ)) ∈ C∞(SN−1 × (0, T+)).

Proof. We assume that r ∈ Hs+1(SN−1) with ‖r‖s < δ
′ for δ′ small enough.

1. If µ < 0, then α(τ)1−N goes to infinity as τ approaches σN
|µ|(N−1) . Nevertheless, on

the time interval [0, T+], α(τ)1−N < A for some A > 0. Choose K ∈ N such that
for k ≥ K

−γp1(k) + |µ|Ap2(k) < 0.

Define c2 > 0 by

c2 := inf
k≥K

γp1(k)− |µ|Ap2(k)

(k2 + 1)
1
2

.

The positivity of c2 follows from the fact that γp1(k)−|µ|Ap2(k)

(k2+1)
1
2

converges to γ
2 as k

tends to infinity.

2. Let PK : L2(SN−1) → L2(SN−1) be the orthogonal projection on the orthoplement
of
⊕K

k=0 SN
k with respect to the L2(SN−1)-inner product and define rk j := (r, sk j)0.

Analogously to (5.35) we derive

γ(r,F ′1(0)[r])s−1 +µα(τ)1−N(r,F ′2(0)[r])s−1

= ∑
k≤K

(k2 + 1)s−1+ 1
2
−γp1(k) + |µ|α(τ)1−N p2(k)

(k2 + 1)
1
2

r2
k j

+ ∑
k>K

(k2 + 1)s−1+ 1
2
−γp1(k) + |µ|α(τ)1−N p2(k)

(k2 + 1)
1
2

r2
k j

≤ C‖r‖2
0 − c2‖r‖2

s− 1
2
. (6.101)
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3. By analyticity of F1 and F2 and boundedness ofα(τ)1−N on [0, T+] we have

γ(r,F1(r)−F ′1(0)[r])s−1 +µα(τ)1−N(r,F2(r)−F ′2(0)[r])s−1 ≤ C‖r‖3
s− 1

2
. (6.102)

4. By (6.101) and (6.102) we have

γ(r,F1(r))s−1 +µα(τ)1−N(r,F2(r))s−1 ≤ (−c2 + Cδ′)‖r‖2
s− 1

2
+ C‖r‖2

0.

5. Further,

γ(Dir,F ′1(r)[Dir])s−1 +µα(τ)1−N(Dir,F ′2(r)[Dir])s−1

= γ(Dir,F ′1(0)[Dir])s−1 +µα(τ)1−N(Dir,F ′2(0)[Dir])s−1

+γ(Dir,
{
F ′1(r)−F ′1(0)

}
[Dir])s−1

+µα(τ)1−N(Dir,
{
F ′2(r)−F ′2(0)

}
[Dir])s−1

≤ (−c2 + Cδ′)‖Dir‖2
s− 1

2
+ C‖Dir‖2

0.

6. Combining these two results, using (5.12), and taking δ′ < c2
C we get

γ(r,F1(r))s−1,1 +µα(τ)1−N(r,F2(r))s−1,1 ≤ (−c2 + Cδ′)‖r‖2
s− 1

2 ,1 + C‖r‖2
0,1

≤ C‖r‖2
0,1 ≤ C‖r‖2

s−1,1. (6.103)

Choose δ < δ
′e−CT+ and suppose that ‖r0‖ < δ. By Theorem A.1 there exists a

solution r to (6.100) on [0, T+] that satisfies

‖r(τ)‖s−1,1 ≤ eCτ‖r0‖s−1,1.

This solution is smooth on (0, T+) by [60, Ch. 6 Prop. 9, 10].



Chapter 7

Hele-Shaw flow with kinetic
undercooling

7.1 Introduction

In Chapter 2 we proved that the spherical solution to the classical Hele-Shaw problem
with injection is stable. On the other hand, the suction problem turns out to be ill-
posed. However, we showed in Chapters 3 and 5 that if one assumes surface tension
on the boundary, then the suction problem is regularised and the spherical solution is
stable under certain conditions.

In this chapter we consider another type of regularisation besides surface tension,
replacing boundary condition (3.3) by

p +β
∂p
∂n

= −γκ. (7.1)

The parameter β > 0 is the so-called kinetic undercooling constant.
The Hele-Shaw problem is the formal limit of the Stefan problem, that describes

e.g. melting of ice. The name kinetic undercooling originates from this problem, since
condition (7.1) with γ = 0 and β > 0 is used there to model certain thermodynamic
effects on the interface between ice and water.

A justification for using (7.1) in a Hele-Shaw setting was given by Romero [65]. He
relates the term β

∂p
∂n to the second principal curvature in the Hele-Shaw cell. This is the

curvature of the very thin meniscus of the liquid in the narrow gap between the two
plates.

In this chapter we study the injection problem for N = 2, 3 and the suction problem
for N = 2. For 2D suction with β = 0 (surface tension only) it was possible to exclude
positive eigenvalues assuming that the first Richardson moment vanishes for the initial
domain. For β > 0 we have to deal with the problem that Richardson moments are
no longer preserved. Nevertheless, it is still possible to restrict ourselves to domains
that are symmetric with respect to both axes. In this way, the geometric centre stays at
the origin for all time for the evolution leaves our symmetry intact. Suction in higher
dimensions N ≥ 3 is always linearly unstable for large time just as the problem for
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N ≥ 4 with β = 0.
Another problem that we encounter is the time dependence. Instead of a simple

structure as in (5.8), we find an evolution equation in which we distinguish between
three terms that are essentially time-dependent (see (7.16)).

In Section 7.2 we derive this evolution equation and linearise it in terms of the
Dirichlet-to-Neumann operator as we did before. We investigate how the domain of
definition of the evolution operator changes as a function of time and we derive Lemma
7.7, that tells us how to deal with the time dependence when we derive energy estimates
for the nonlinear problem to obtain existence results in Sections 7.3 and 7.4.

7.2 The evolution equation and its linearisation

We reintroduce the Sobolev spaces Hs(SN−1) as in Chapter 5 and we define the functions
r and R, the domains Ωr and ΩR, and their boundaries Γr and ΓR as in Chapter 1.

We assume that r ∈ Hs(SN−1) with

s >
N + 5

2
. (7.2)

Define the harmonic function
U := p−µΦ, (7.3)

with Φ as in (2.10). It follows that

U +β
∂U
∂n

= −γκ −µΦ−βµ ∂Φ

∂n
, on ΓR := ∂ΩR.

Define KβR, LβR, ZβR : ΩR → R as the harmonic functions that satisfy

KβR +β
∂KβR
∂n

= −κ on ΓR,

LβR +β
∂LβR
∂n

= −Φ on ΓR,

ZβR +β
∂ZβR
∂n

= −∂Φ

∂n
on ΓR.

It is known that these functions are uniquely defined for appropriate domains. Note
that

U = γKβR +µLβR +βµZβR. (7.4)

In the next lemma we investigate the scaling properties of KβR, LβR, and ZβR.
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Lemma 7.1. Let η > 0 and let r := η(1 + R)− 1 such that Ωr = ηΩR. We have for x ∈ ΩR

KβR(x) = ηKηβr (ηx),

LβR(x) = η
N−2Lηβr (ηx) + c(η),

ZβR(x) = η
N−1Zηβr (ηx),

where c(η) only depends on η. We also have

∇KβR(x) = η
2∇Kηβr (ηx),

∇LβR(x) = η
N−1∇Lηβr (ηx),

∇ZβR(x) = η
N∇Zηβr (ηx).

Proof. It is sufficient to prove the first part of the lemma, since the second part follows
directly from the first part. It is clear that ηKηβr (ηx) is an harmonic expression in x. Let
n f be the normal vector field on Γ f , where f is either R or r, and let κ f be the mean
curvature of Γ f . Let x ∈ ΓR. Note that by the scaling of the curvature,

κR(x) = ηκr(ηx). (7.5)

Introduceξ = ηx ∈ Γr and denote the derivatives with respect to x andξ by∇x and∇ξ .
It follows from (7.5) that

ηKηβr (ηx) +βnR(x) · ∇x(ηKηβr (ηx)) = η
(

Kηβr + ηβnr · ∇ξKηβr

)
(ξ)

= ηκr(ξ) = κR(x).

Here we used nr(ξ) = nR(x). The identities for LβR and ZβR are obtained in a similar way,
making use of the scaling behaviour of Φ and

∂Φ

∂nR
(x) = η

N−1 ∂Φ

∂nr
(ηx).

It is easily checked that for LβR one has to include an extra term c(η) as in Lemma 2.2.

Let the operators z̃, n,κ, and z be defined as in Section 5.2.
By (7.3), (7.4), (2.2), and Lemma 2.1

∂R
∂t

(ξ) = −γ∇KβR(z̃(R,ξ)) · n(R,ξ)
n(R,ξ) ·ξ

+µ

(
−∇LβR(z̃(R,ξ)) · n(R,ξ)

n(R,ξ) ·ξ +
1

σN(1 + R(ξ))N−1

)

−βµ∇ZβR(z̃(R,ξ)) · n(R,ξ)
n(R,ξ) ·ξ .
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It follows from (3.14) and Lemma 7.1 with η = α(t)−1 that

∂r
∂t

= − γ

α(t)3
(∇Kβ̂(t)

r ◦ z̃(r)) · n(r)
n(r) · id

+
µ

α(t)N

(
− (∇Lβ̂(t)

r ◦ z̃(r)) · n(r)
n(r) · id +

1
σN(1 + r)N−1 −

1 + r
σN

)

− βµ

α(t)N+1
(∇Zβ̂(t)

r ◦ z̃(r)) · n(r)
n(r) · id , (7.6)

where β̂(t) := β
α(t) .

On a neighbourhood U of zero in Hs(SN−1) we define the following mappings:

• A : U → L(Hs− 1
2 (BN), Hs− 5

2 (BN)) and Q : U → L
(

Hs− 1
2 (BN),

(
Hs− 3

2 (BN)
)N
)

by (2.25) and (2.26).

• for each β̂ > 0, Sβ̂ : U → L(Hs− 1
2 (BN), Hs− 5

2 (BN)×Hs−2(SN−1)) by

Sβ̂(r)u :=
(

A(r)u
Tru + β̂n(r) · Q(r)u

)
. (7.7)

• ϕ : U → Hs(SN−1) by (2.28) and l : U → Hs(SN−1) by (5.4).

• ω : U → Hs−1(SN−1) by

ω(r) := n(r) · Q(r) (Φ ◦ z(r)) = n(r) ·
{
− 1
σN(1 + r)N−1 id

}
. (7.8)

Note that A and Q are well-defined because of (7.2). The operator ω is well-defined

because Qmaps U to L
(

Hs+ 1
2 (BN),

(
Hs− 1

2 (BN)
)N
)

as well.

Lemma 7.2. The operator Sβ̂(0) defines an isomorphism between Hs− 1
2 (BN) and Hs− 5

2 (BN)×
Hs−2(SN−1) and also between Hs+ 1

2 (BN) and Hs− 3
2 (BN)×Hs−1(SN−1). For each β̂ > 0 there

exists a neighbourhood Uβ̂ > 0 of zero in Hs(SN−1) such that for r ∈ Uβ̂ the mapping Sβ̂(r) is
an isomorphism as well.

Proof. To prove the first part, let ( f , g) ∈ Hs− 5
2 (BN)×Hs−2(SN−1). By the Lax-Milgram

Theorem there is a unique a weak solution u to Sβ̂(0)u = ( f , g). By [79, Thm. 20.4]
we have u ∈ H2(BN). Hence by [72, Sec. 5.4.1] and continuous interpolation we have
u ∈ Hs− 1

2 (BN).
The second statement follows from continuity of Sβ̂ near zero and the fact that iso-

morphisms form an open subset in the set of bounded linear mappings.
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From this lemma it follows that for each β̂ > 0 there exists a neighbourhood Uβ̂ of
zero in Hs(SN−1) on which the operator Eβ̂ : Uβ̂ → L(Hs−2(SN−1), Hs−2(SN−1)) given
by

Eβ̂(r)ψ :=
Tr
(
Q(r)Sβ̂(r)−1

[
0
ψ

])
· n(r)

n(r) · id
is well defined. By Lemma 7.2 Eβ̂ also defines a mapping between Uβ̂ and
L(Hs−1(SN−1), Hs−1(SN−1)). The dependence of Uβ̂ on β̂ is investigated in Corollary
7.4.

Let N be the Dirichlet-to-Neumann operator defined by (2.33). It is clear that for
each β̂ the operator I + β̂N is bounded and invertible from Hσ+1(SN−1) to Hσ (SN−1)
for any σ > 0. Furthermore,

Tr ◦ Sβ̂(0)−1
(

0
·

)
=
(
I + β̂N

)−1
.

Since for all k ∈ N0 √
1 + k2

1 + β̂k
≤ C max{1, β̂−1},

we have by (2.37)∥∥∥(I + β̂N
)−1
∥∥∥
L(Hσ (SN−1),Hσ+1(SN−1))

≤ C max{1, β̂−1}. (7.9)

Lemma 7.3. There exists a C > 0 independent of β̂ such that for all β̂ > 0

‖Sβ̂(0)−1‖L(Y,X) ≤ C max
{
β̂, β̂−1

}
,

where X := Hs− 1
2 (BN), Y := Hs− 5

2 (BN)×Hs−2(SN−1).

Proof. In this proof C is a varying constant that is independent of f , g, and β̂. Let ( f , g) ∈
Y. By Lemma 7.2, the problem

Sβ̂(0)ψ =
(

f
g

)
is uniquely solvable for ψ ∈ Hs− 1

2 (BN). Introduce the functions ψH and ψ0 such that
ψ = ψH +ψ0 with

∆ψH = 0, ∆ψ0 = f

and
TrψH = Trψ, Trψ0 = 0.

Note that

TrψH + β̂
∂ψH

∂n
= g− β̂∂ψ0

∂n
(7.10)
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and since ψH is harmonic we have

TrψH =
(
I + β̂N

)−1
(

TrψH + β̂
∂ψH

∂n

)
. (7.11)

From [23, Sec. 6.3 Thm. 5] it follows that for u ∈ Hs− 1
2 (BN)

‖u‖
Hs− 1

2 (BN)
≤ C

(
‖Tru‖s−1 + ‖∆u‖

Hs− 5
2 (BN)

)
. (7.12)

Hence
‖ψ0‖Hs− 1

2 (BN)
≤ C‖ f ‖

Hs− 5
2 (BN)

(7.13)

and therefore ∥∥∥∥∂ψ0

∂n

∥∥∥∥
s−2
≤ C‖ψ0‖Hs− 1

2 (BN)
≤ C‖ f ‖

Hs− 5
2 (BN)

. (7.14)

It follows from (7.12), (7.11), (7.9), (7.10), and (7.14) that

‖ψH‖Hs− 1
2 (BN)

≤ C‖TrψH‖s−1

= C
∥∥∥∥(I + β̂N

)−1
(

TrψH + β̂
∂ψH

∂n

)∥∥∥∥
s−1

≤ C max{1, β̂−1}
(∥∥∥∥β̂∂ψ0

∂n

∥∥∥∥
s−2

+ ‖g‖s−2

)
≤ C max{1, β̂−1}

(
β̂ ‖ f ‖

Hs− 5
2 (BN)

+ ‖g‖s−2

)
= C max{1, β̂}

(
‖ f ‖

Hs− 5
2 (BN)

+ β̂−1‖g‖s−2

)
.

Combining this with (7.13) one gets

‖ψ‖
Hs− 1

2 (BN)
≤ C max{1, β̂}

(
‖ f ‖

Hs− 5
2 (BN)

+ β̂−1‖g‖s−2

)
.

This proves the lemma.

It is known (see e.g. [13, Sec. 2.3 Cor. 1]) that Sβ̂(r) is invertible if

‖Sβ̂(r)− Sβ̂(0)‖L(X,Y) ≤ ‖Sβ̂(0)−1‖−1
L(Y,X).

Furthermore,∥∥∥Sβ̂(r)− Sβ̂(0)
∥∥∥
L(X,Y)

≤ C ‖A(r)− ∆‖
L(Hs− 1

2 (BN),Hs− 5
2 (BN))

+ β̂
∥∥∥∥n(r) · Q(r)− ∂

∂n

∥∥∥∥
L(Hs− 1

2 (BN),Hs−2(SN−1))

≤ C(1 + β̂)‖r‖s ≤ C max{1, β̂}‖r‖s.
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Combining this with Lemma 7.3 and (7.15) we see that Sβ̂(r) is invertible if

‖r‖s ≤ C min{β̂, β̂−2},

for some C > 0 independent of β̂.

Corollary 7.4. There exists an open neighbourhood U of zero in Hs(SN−1) such that for each
β̂ > 0, Sβ̂(r) is invertible for all r ∈ Uβ̂ with

Uβ̂ := min{β̂, β̂−2}U .

We rewrite (7.6) for r ∈ U β
α(t)

in the following way:

∂r
∂t

=
γ

α(t)3F1(r, t) +
µ

α(t)NF2(r, t) +
βµ

α(t)N+1F3(r, t), (7.15)

where

F1(·, τ) : U β
α(τ)
→ Hs−2(SN−1),

F2(·, τ) : U β
α(τ)
→ Hs−1(SN−1),

F3(·, τ) : U β
α(τ)
→ Hs−1(SN−1),

are defined by

F1(r, t) := E β
α(t)

(r)κ(r),

F2(r, t) := E β
α(t)

(r)ϕ(r) + l(r),

F3(r, t) := E β
α(t)

(r)ω(r).

In view of Corollary 7.4, to make sure that r stays in the domain of definition of Fk(·, t)
for k = 1, 2, 3, we need to show in the proof of the existence theorems for injection
that ‖r(t)‖s decays at least as fast as α(t)−1 as t tends to infinity and for suction ‖r(t)‖s

decays at least as fast asα(t)2 as t tends to σN
|µ|N (see also Figure 7.1).

Introduce the time variable τ = τ(t) such that (3.25) holds and τ(0) = 0. As in
Chapter 5, for N = 2 the injection problem is now defined on a finite time interval
whereas the suction problem is defined on an infinite time interval. For N = 3 both
problems are defined on an infinite time interval as in Chapter 3. We get

∂r
∂τ

= F (r, τ) := γF1(r, τ) +µα(τ)3−NF2(r, τ) +βµα(τ)2−NF3(r, τ). (7.16)

For convenience we write here and hereafter Fk(r, τ) instead of Fk(r, t(τ)) (k = 1, 2, 3)
and α(τ) instead of α(t(τ)). Note that for N = 3, the term with F1 scales in the same
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Figure 7.1: Sketch of Uβ̂. In our case we have β̂ = β
α(t) such that for injection r(t) should

decay asα(t)−1 and for suction r(t) should decay asα(t)2 to make sure that r does not leave the
domain of definition of the evolution operators.

way as the term with F2, while the term with F3 is multiplied by α(τ)−1. For the 2D
case, the terms with F1 and F3 scale in the same way, whereas the term with F2 is
multiplied byα(τ). Because of this difference in scaling behaviour, the cases N = 2 and
N = 3 must be treated in a different way.

It follows from (1.12), (3.26), and (5.7) that for N = 2

α(τ) =
(

1− µτ
2π

)−1

and for N = 3
α(τ) = e

µ
4π τ . (7.17)

Lemma 7.5. There exists a neighbourhood U of zero in Hs(SN−1) such that for each β > 0 and
τ > 0, the operators

E β
α(τ)

: U β
α(τ)
→ L(Hs−2(SN−1), Hs−2(SN−1)),

E β
α(τ)

: U β
α(τ)
→ L(Hs−1(SN−1), Hs−1(SN−1)),

F1(·, τ) : U β
α(τ)
→ Hs−2(SN−1),

F2(·, τ) : U β
α(τ)
→ Hs−1(SN−1),

F3(·, τ) : U β
α(τ)
→ Hs−1(SN−1),

are analytic where

U β
α(τ)

:= min

{
β

α(τ)
,
α(τ)2

β
2

}
U .

Proof. It is clear that S β
α(τ)

is analytic from a fixed neighbourhood U of zero in Hs(SN−1)
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to both L(Hs− 1
2 (BN), Hs− 5

2 (BN)×Hs−2(SN−1)) and
L(Hs+ 1

2 (BN), Hs− 3
2 (BN) × Hs−1(SN−1)). Because of Corollary 7.4 the mapping r 7→

S β
α(τ)

(r)−1 is analytic on U β
α(τ)

. Since Q and n are analytic, E β
α(τ)

is analytic from U β
α(τ)

(diminishing U if necessary) to both L(Hs−2(SN−1), Hs−2(SN−1)) and
L(Hs−1(SN−1), Hs−1(SN−1)). The lemma follows from this and analyticity of κ,ϕ,ω,
and l.

Lemma 7.6. Let ′ be Fréchet differentiation with respect to the first argument. We have

F ′1(0, τ)[h] = N
(
I +

β

α(τ)
N
)−1

κ
′(0)[h]

= −
(
N 3 + (N − 2)N 2 − (N − 1)N

)(
I +

β

α(τ)
N
)−1

h,

F ′2(0, τ)[h] = N
(
I +

β

α(τ)
N
)−1

ϕ
′(0)[h] + l′(0)[h]

= − 1
σN
N
(
I +

β

α(τ)
N
)−1

h− N
σN

h,

F ′3(0, τ)[h] = N
(
I +

β

α(τ)
N
)−1

ω
′(0)[h]

=
N − 1
σN

N
(
I +

β

α(τ)
N
)−1

h.

Proof. Defining

u(r) := S β
α(τ)

(r)−1
(

0
κ(r)

)
we get

A(r)u(r) = 0 (7.18)

and (
Tr +

β

α(τ)
n(r) · Q(r)

)
u(r) = κ(r). (7.19)

Since u(0) is constant we have A′(0)[h]u(0) = 0 and Q′(0)[h]u(0) = 0. Therefore, after
differentiation of (7.18) and (7.19) we obtain

∆u′(0)[h] = 0,(
Tr +

β

α(τ)
∂

∂n

)
u′(0)[h] = κ

′(0)[h].

This implies

Tru′(0)[h] =
(
I +

β

α(τ)
N
)−1

κ
′(0)[h]
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and since Q(0)u(0) = 0 we have

F ′1(0, τ)[h] = N
(
I +

β

α(τ)
N
)−1

κ
′(0)[h].

The first part of the lemma follows from this and Lemma 3.6. The expressions for
F ′2(0, τ)[h] and F ′3(0, τ)[h] are obtained in the same way, using (2.31) and the identi-
ties

l′(0)[h] = − N
σN

h, ω
′(0)[h] =

N − 1
σN

h,

that follow from (5.4), (7.8), and (6.31).

Define the polynomial

p1(X) = X3 + (N − 2)X2 − (N − 1)X.

For the case N = 2 we rewrite the linearisation of the evolution operator in the following
way:

F ′(0, τ) = N
(
I +

β

α(τ)
N
)−1 (

γκ
′(0) +βµω′(0)

)
+µα(τ)

{
N
(
I +

β

α(τ)
N
)−1

ϕ
′(0) + l′(0)

}

=
(
I +

β

α(τ)
N
)−1 (

−γp1(N ) +
βµ

2π
N
)

+µα(τ)

{(
I +

β

α(τ)
N
)−1 (

− 1
2π
N
)
− 1
π
I
}

=
(
I +

β

α(τ)
N
)−1 (

−γp1(N ) +
βµ

2π
N − µα(τ)

2π
N − µα(τ)

π
I − βµ

π
N
)

=
(
I +

β

α(τ)
N
)−1 (

−γp1(N )− βµ
2π
N − µα(τ)

2π
(N + 2I)

)
. (7.20)

For the case N = 3 we rewrite the linearisation of the evolution operator in this way:

F ′(0, τ) = N
(
I +

β

α(τ)
N
)−1 (

γκ
′(0) +µϕ′(0)

)
+µl′(0)

+
βµ

α(τ)
N
(
I +

β

α(τ)
N
)−1

ω
′(0)

=
(
I +

β

α(τ)
N
)−1 (

−γp1(N )− µ

4π
(N + 3I)− βµ

4πα(τ)
N
)

.(7.21)
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The following lemma is crucial in the energy estimates from which we derive existence
results later on.

Lemma 7.7. Let s > N+5
2 . There exists a C > 0 independent of r and β̂, a neighbourhood U of

zero in Hs(SN−1), and Uβ̂ constructed as in Corollary 7.4, such that for all β̂ > 0 and r ∈ Uβ̂
we have

‖Eβ̂(r)− Eβ̂(0)‖L(Hs−1(SN−1),Hs−1(SN−1)) ≤
C
β̂
‖r‖s

and
‖E ′β̂(r)[h]− E ′β̂(0)[h]‖L(Hs−1(SN−1),Hs−1(SN−1)) ≤

C
β̂
‖r‖s‖h‖s.

Proof. See Section 7.5.

7.3 Energy estimates and global existence results for the
injection problems

In this section we prove a global existence result for the 2D and the 3D injection case. In
order to apply Lemma 7.7 assume that r is a small element of Hs(SN−1) with

s >
N + 7

2
.

As in Chapter 6, we use the first order chain rule of differentiation (5.12) and the inner
product (·, ·)s−1,1 on Hs(SN−1) as defined in (6.86).

Let us first discuss the 3D case. To obtain global existence of a solution r to (7.16)
that decays as τ goes to infinity, assume that the parameters γ > 0, µ > 0, and β > 0
satisfy the condition

µ

4π
≤ C1, (7.22)

where

C1 := inf
k∈N0

γp1(k) + µ
4π (k + 3)

(1 +βk) (1 + k2)
.

This condition is satisfied if

∀k ∈ N0 :
4πγ
µ

(k3 + k2 − 2k) ≥ β(k3 + k) + k2 − k− 2. (7.23)

Let us first show that there are γ > 0, µ > 0, and β > 0 that satisfy (7.23). Substituting
k = 1 we see that βmust be smaller than 1. If one takes β ∈ (0, 1) and γ and µ such that

∀k ≥ 2 :
4πγ
µ

(k3 + k2 − 2k) > k3 + k2 − 2,

which is equivalent to
µ

γ
<

16π
5

,

then (7.22) is satisfied.
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Theorem 7.8. Let N = 3 and let µ > 0, γ > 0, and β > 0 satisfy (7.22). Suppose that s > 5.
There exists a δ > 0 and an M > 0 such that if r0 ∈ Hs(S2) with ‖r0‖s < δ, then the problem

∂r
∂τ

= F (r, τ), r(0) = r0, (7.24)

has a solution r ∈ Cw([0, ∞), Hs(S2)) ∩ C1
w([0, ∞), Hs−2(S2)) that satisfies

‖r(τ)‖s ≤ Me−C1τ‖r0‖s. (7.25)

Proof. Let r ∈ Hs+2(S2) with ‖r‖s < δ for δ small. In this proof C denotes a positive
constant that does not depend on r and τ . We will prove the theorem making use of the
same methods as in Chapters 5 and 6 and Lemma 7.7.

Note that we have to check whether r(τ) stays in U β
α(τ)

as τ goes to infinity. According

to Lemma 7.4 this is the case if ‖r(τ)‖s decays faster thanα(τ)−1.

1. Because of (7.21) and (2.37) we have the following estimate for the linearisation:

(r,F ′(0, τ)[r])s−1 = ∑
k, j

−γp1(k)− µ
4π (k + 3)− βµ

4πα(τ) k(
1 + β

α(τ) k
)

(1 + k2)
(1 + k2)sr2

k j

≤ ∑
k, j

−γp1(k)− µ
4π (k + 3)

(1 +βk) (1 + k2)
(1 + k2)sr2

k j

≤ −C1‖r‖2
s . (7.26)

2. Now we find an estimate for the nonlinear terms. We assume that ‖r‖s ≤ 2δ/α(τ)
for small δ > 0, to make sure that r is in the domain of definition of F (·, τ). Note
that

‖E β
α(τ)

(0)‖X =

∥∥∥∥∥N
(
I +

β

α(τ)
N
)−1

∥∥∥∥∥
X

≤ α(τ)
β

, (7.27)

with X = L(Hs−2(SN−1), Hs−2(SN−1)). Sinceκ(0) is constant we have E β
α(τ)

(r)κ(0) =
0. Combining this, (7.27), Lemma 7.7 (with s replaced by s− 1), and analyticity of
κ we get

‖F1(r, τ)−F ′1(0, τ)[r]‖s−2 =
∥∥∥E β

α(τ)
(r)κ(r)− E β

α(τ)
(0)κ′(0)[r]

∥∥∥
s−2

≤
∥∥∥(E β

α(τ)
(r)− E β

α(τ)
(0)
)

(κ(r)−κ(0))
∥∥∥

s−2

+
∥∥∥E β

α(τ)
(0)
(
κ(r)−κ(0)−κ′(0)[r]

)∥∥∥
s−2

≤ Cα(τ)‖r‖2
s . (7.28)

Note that here the demand s > 5 is crucial. Let us now estimate the nonlinear
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terms of F2(r, τ) = E β
α(τ)

(r)ϕ(r) + l(r). We have

‖l(r)− l′(0)[r]‖s−1 ≤ C‖r‖2
s−1. (7.29)

The other nonlinear terms of F2 can be estimated in the same way as the terms of
F1 (as in (7.28)) because they are of lower order. Making use of analyticity of ω
we find

‖F3(r, τ)−F ′3(0, τ)[r]‖s− 3
2
≤

∥∥∥(E β
α(τ)

(r)− E β
α(τ)

(0)
)

(ω(r)−ω(0))
∥∥∥

s− 3
2

+
∥∥∥E β

α(τ)
(0)
(
ω(r)−ω(0)−ω′(0)[r]

)∥∥∥
s− 3

2

≤ Cα(τ)‖r‖2
s− 1

2
. (7.30)

Adding the results and usingα(τ) ≥ 1 we get from (7.16)

(r,F (r, τ)−F ′(0, τ)[r])s−1

≤ Cα(τ)‖r‖3
s + C‖r‖3

s−1 + Cα(τ)α(τ)−1‖r‖3
s− 1

2
≤ Cα(τ)‖r‖3

s . (7.31)

3. We conclude from (7.26) and (7.31) that

(r,F (r, τ))s−1 ≤ −C1‖r‖2
s + Cα(τ)‖r‖3

s . (7.32)

4. Define the operators Di by (5.11). It follows from (7.26) that

(Dir,F ′(0, τ)[Dir])s−1 ≤ −C1‖Dir‖2
s . (7.33)

5. Define u β
α(τ)

and w β
α(τ)

as in (7.67) and (7.68) such that

E β
α(τ)

(r) =
1

n(r) · id w β
α(τ)

(r).

Because of (6.31) and (7.90)

E ′ β
α(τ)

(0)[h] = w′ β
α(τ)

(0)[h] = −α(τ)
β

Tru′ β
α(τ)

(0)[h]

and therefore by (7.93)∥∥∥E ′ β
α(τ)

(0)[h]
∥∥∥
L(Hσ (SN−1),Hσ (SN−1))

≤ Cα(τ)‖h‖σ+1, (7.34)

for σ > N+3
2 . From (7.27), (7.34), Lemma 7.7, analyticity of κ, and the fact that
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E ′ β
α(τ)

(r)[h]κ(0) = 0 we get for ‖r‖s < 2δ/α(τ) for δ > 0 small

‖F ′1(r, τ)[h]−F ′1(0, τ)[h]‖s−2

=
∥∥∥E ′ β

α(τ)
(r)[h]κ(r) + E β

α(τ)
(r)κ′(r)[h]− E β

α(τ)
(0)κ′(0)[h]

∥∥∥
s−2

≤
∥∥∥(E ′ β

α(τ)
(r)[h]− E ′ β

α(τ)
(0)[h]

)
(κ(r)−κ(0))

∥∥∥
s−2

+
∥∥∥E ′ β

α(τ)
(0)[h](κ(r)−κ(0))

∥∥∥
s−2

+
∥∥∥(E β

α(τ)
(r)− E β

α(τ)
(0)
)
κ
′(r)[h]

∥∥∥
s−2

+
∥∥∥E β

α(τ)
(0)
(
κ
′(r)[h]−κ′(0)[h]

)∥∥∥
s−2

≤ Cα(τ)‖r‖s−1‖h‖s−1‖r‖s + Cα(τ)‖h‖s−1‖r‖s

+Cα(τ)‖r‖s−1‖h‖s + Cα(τ)‖r‖s‖h‖s

≤ Cα(τ)‖r‖s‖h‖s (7.35)

and
‖l′(r)[h]− l′(0)[h]‖s−1 ≤ C‖r‖s−1‖h‖s−1.

It also follows that

‖F ′3(r, τ)[h]−F ′3(0, τ)[h]‖s− 3
2

≤
∥∥∥(E ′ β

α(τ)
(r)[h]− E ′ β

α(τ)
(0)[h]

)
(ω(r)−ω(0))

∥∥∥
s− 3

2

+
∥∥∥E ′ β

α(τ)
(0)[h](ω(r)−ω(0))

∥∥∥
s− 3

2

+
∥∥∥(E β

α(τ)
(r)− E β

α(τ)
(0)
)
ω
′(r)[h]

∥∥∥
s− 3

2

+
∥∥∥E β

α(τ)
(0)
(
ω
′(r)[h]−ω′(0)[h]

)∥∥∥
s− 3

2

≤ Cα(τ)‖r‖s− 1
2
‖h‖s− 1

2
. (7.36)

Here we used the estimate ‖ω′(r)[h]‖s− 3
2
≤ C‖h‖s− 1

2
that holds for small ‖r‖s.

Sinceα(τ) ≥ 1 we see from (7.16) that(
Dir,

{
F ′(r, τ)−F ′(0, τ)

}
[Dir]

)
s−1

≤ Cα(τ)‖r‖s‖Dir‖2
s + C‖r‖s− 1

2
‖Dir‖2

s− 1
2

≤ Cα(τ)‖r‖s‖Dir‖2
s .

Combining this with (7.33) we obtain

(Dir,F ′(r, τ)[Dir])s−1 ≤ −C1‖Dir‖2
s + Cα(τ)‖r‖s‖Dir‖2

s . (7.37)

6. It follows from (7.32) and (7.37) that for τ > 0 and ‖r‖s−1,1 < 2δ/α(τ) (taking δ
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small enough)

(r,F (r, τ))s−1,1 ≤ −C1‖r‖2
s,1 + Cα(τ)‖r‖s‖r‖2

s,1

≤ −C1‖r‖2
s,1 + Cα(τ)‖r‖s−1,1‖r‖2

s,1.

On some finite time interval [0, T] we have −C1 + 2Cα(τ)δ < 0. Take δ small
enough such that T can be chosen to satisfy

e(
µ

4π −C1)T <
1
3

. (7.38)

For τ ∈ [0, T] and ‖r‖s−1,1 < 2δ/α(τ) we have

(r,F (r, τ))s−1,1 ≤ (−C1 + Cα(τ)‖r‖s−1,1)‖r‖2
s,1

≤ (−C1 + Cα(τ)‖r‖s−1,1)‖r‖2
s−1,1

≤ −C1‖r‖2
s−1,1 + Cα(τ)‖r‖3

s−1,1. (7.39)

Theorem A.1 implies existence of a solution r to (7.24) on [0, T] that satisfies
‖r(τ)‖2

s−1,1 ≤ y(τ), y(0) = y0 := ‖r0‖2
s−1,1, where y : [0, ∞) → R satisfies the

ODE
dy
dτ

= −2C1 y + 2Ce
µ

4π τ y
3
2 . (7.40)

Here we used (7.17). We solve (7.40) to show that solutions y converge to zero as
τ tends to infinity. Introducing Y = e2C1τ y we get

dY
dτ

= 2Ce(
µ

4π −C1)τY
3
2

from which it follows that

Y(τ) =

(
1√

Y(0)
− C

C1 − µ
4π

(
1− e(

µ
4π −C1)τ

))−2

.

Since condition (7.22) is satisfied and y0 is small it follows that for τ ∈ [0, ∞)

y(τ) =

(
eC1τ

√
y0
− C

C1 − µ
4π

(
eC1τ − e

µ
4π τ
))−2

=
(

eC1τ −
C
√

y0

C1 − µ
4π

(
eC1τ − e

µ
4π τ
))−2

y0

≤
(

eC1τ −
C
√

y0

C1 − µ
4π

eC1τ

)−2

y0

≤ M2e−2C1τ y0,
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for some M < 2 that is independent of r. Consequently, for τ ∈ [0, T]

‖r(τ)‖s−1,1 ≤ Me−C1τ‖r0‖s−1,1. (7.41)

We see that ‖r(τ)‖s−1,1 ≤ Me−
µ

4π τ‖r0‖s−1,1 ≤ 2δ/α(τ) for all τ ∈ [0, T]. Further-
more,

−C1 + Cα(τ)‖r(τ)‖s−1,1 ≤ −C1 + CMe(
µ

4π −C1)τ‖r0‖s−1,1

≤ −C1 + CM‖r0‖s−1,1 ≤ 0 (7.42)

on the interval [0, T]. Note that ‖r(τ)‖s−1,1 decays fast enough to make sure that
(7.39) also holds for τ > T (with r replaced by r(τ)). In fact, all calculations on
[0, T] can be extended to [0, ∞). To prove this formally by contradiction, let T∗ > 0
be the supremum of all T̃ such that there exists a solution r to (7.24) on [0, T̃] and
−C1 + Cα(τ)‖r(τ)‖s−1,1 < 0 for all τ ∈ [0, T̃]. Suppose that T∗ < ∞. In view of
(7.42) we have T∗ ≥ T such that by (7.38)

e(
µ

4π −C1)T∗ <
1
3

. (7.43)

By the definition of T∗, (7.39) holds for τ ∈ [0, T∗) (with r replaced by r(τ)) and

so does (7.41). For small η > 0 it follows from (7.43) that e(
µ

4π −C1)(T∗−η) < 1
2 .

Consequently,

−C1 + Cα(T∗ − η)‖r(T∗ − η)‖s−1,1 ≤ −C1 + CMe(
µ

4π −C1)(T∗−η)‖r0‖s−1,1

≤ −C1 +
1
2

CM‖r0‖s−1,1

≤ −C1 +
1
2

CMδ =: Λ < 0.

Since Λ < 0 is independent of η and α is continuous, there exists an η̃ > 0 such
that for τ ∈ [T∗ − η, T∗ + η̃] we have −C1 + Cα(τ)‖r(T∗ − η)‖s−1,1 < 0. Appar-
ently we can extend our solution to an interval that is larger than [0, T∗]. This
contradicts the definition of T∗.

We get global existence of a solution r on [0, ∞) that satisfies (7.25). The condition
in Corollary 7.4 is satisfied because of (7.25) and µ

4π ≤ C1.

Sinceα(τ) = e
µ

4π τ (7.25) is equivalent to

‖r(τ)‖s ≤ Mα(τ)−
4πC1
µ ‖r0‖s.

Regarding r as a function of the original time variable t,

‖r(t)‖s ≤ M
(

3µt
4π

+ 1
)− 4πC1

3µ

‖r0‖s. (7.44)
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Theorem 7.9. Let γ > 0, µ > 0, and β ∈ (0, 1). Define

C̃1 := inf
k∈N0

γp1(k) + µ
4π (k + 3)

1 +βk
. (7.45)

The following two statements are true:

• C̃1 and µ satisfy (7.22), with C1 replaced by C̃1.

• The result of Theorem 7.8 and (7.44) still hold, with C1 replaced by C̃1.

Proof. The first statement is obvious. To prove the second statement, we argue as in the
proof of Theorem 5.9. Note that it is possible to show (7.26) for this C1 in terms of the
equivalent norm induced by the inner product

(r, r̃)∗s = ∑
k, j
ζ

s
krk j r̃k j,

with ζk = 1 for k small and ζk = θk2 + 1 for k large. Here θ > 0 needs to be a small
number. The nonlinear terms can be estimated in exactly the same way as in the proof
of Theorem 7.8.

Now we discuss the two-dimensional problem. This case is more complicated than
the 3D case, since lower order terms are multiplied by a factorα(τ).

Theorem 7.10. Let N = 2, µ > 0, γ > 0, β ∈ (0, 1
2 ), and λ0 ∈ (0, 2). Suppose that s > 9

2 .
There exists a δ > 0 and an M > 0 such that if r0 ∈ Hs(S1) with ‖r0‖s < δ, then the problem

∂r
∂τ

= F (r, τ), r(0) = r0, (7.46)

has a solution r ∈ Cw([0, 2π
µ

), Hs(S1)) ∩ C1
w([0, 2π

µ
), Hs−2(S1)) that satisfies

‖r(t)‖s ≤ M
(
µt
π

+ 1
)− λ0

2

‖r0‖s,

where we regard r as a function of the original time variable t.

Proof. As is the proof of Theorem 7.8 we take r ∈ Hs+2(SN−1) with ‖r‖s < 2δ/α(τ) for
δ small.

1. Let η be a small positive number that satisfies λ0 < 2(1− η) and define the posi-
tive constant

C2 := inf
k∈N0

γp1(k) + βµ
2π k + ηµ

2π (k + 2)

(1 +βk)(1 + k2)
.
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2. For the linearisation it follows that

(r,F ′(0, τ)[r])s−1

= ∑
k, j

−γp1(k)− βµ
2π k− µα(τ)

2π (k + 2)
1 + β

α(τ) k
(1 + k2)s−1r2

k j

= ∑
k, j

−γp1(k)− βµ
2π k− ηµα(τ)

2π (k + 2)
1 + β

α(τ) k
(1 + k2)s−1r2

k j

−(1− η)µα(τ)
2π ∑

k, j

k + 2
1 + β

α(τ) k
(1 + k2)s−1r2

k j

≤ ∑
k, j

−γp1(k)− βµ
2π k− η µ

2π (k + 2)
1 +βk

(1 + k2)s−1r2
k j

−(1− η)µα(τ)
2π ∑

k, j

k + 2
1 +βk

(1 + k2)s−1r2
k j

≤ −C2‖r‖2
s − (1− η)µα(τ)

π
‖r‖2

s−1. (7.47)

Note that in the last step we used β < 1
2 .

3. The qualitative properties of the nonlinear parts of Fk, for k = 1, 2, 3, are the same
in all space dimensions. Therefore, to estimate the nonlinear part we use (7.28),
(7.30), and

‖F2(r, τ)−F ′2(0, τ)[r]‖s− 3
2
≤ Cα(τ)‖r‖2

s− 1
2
, (7.48)

which can be derived in the same way as (7.30), replacing ω by ϕ. Note that by
(7.29), the term ‖l(r)− l′(0)[r]‖s−1 plays no role because α(τ) ≥ 1. Multiplying
(7.48) byα(τ) and adding the results it follows from (7.16) that

(r,F (r, τ)−F ′(0, τ)[r])s−1 ≤ Cα(τ)‖r‖3
s + Cα(τ)2‖r‖3

s− 1
2
. (7.49)

4. From (7.47) and (7.49) we get

(r,F (r, τ))s−1 ≤ −C2‖r‖2
s − (1− η)µα(τ)

π
‖r‖2

s−1

+Cα(τ)‖r‖3
s + Cα(τ)2‖r‖3

s− 1
2
. (7.50)

5. In the same way it follows from (7.35), (7.36), and a similar estimate for the F2-
terms that

(Dir,F ′(r, τ)[Dir]−F ′(0, τ)[Dir])s−1

≤ Cα(τ)‖r‖s‖Dir‖2
s + Cα(τ)2‖r‖s− 1

2
‖Dir‖2

s− 1
2
. (7.51)
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6. Note that (7.47) yields

(Dir,F ′(0, τ)[Dir])s−1 ≤ −C2‖Dir‖2
s − (1− η)µα(τ)

π
‖Dir‖2

s−1.

Combining this with (7.51) we obtain

(Dir,F ′(r, τ)[Dir])s−1

≤ −C2‖Dir‖2
s − (1− η)µα(τ)

π
‖Dir‖2

s−1

+Cα(τ)‖r‖s‖Dir‖2
s + Cα(τ)2‖r‖s− 1

2
‖Dir‖2

s− 1
2
. (7.52)

7. It follows from (7.50) and (7.52) that

(r,F (r, τ))s−1,1 ≤ −C2‖r‖2
s,1 − (1− η)µα(τ)

π
‖r‖2

s−1,1

+Cα(τ)‖r‖s‖r‖2
s,1 + Cα(τ)2‖r‖s− 1

2
‖r‖2

s− 1
2 ,1.

From an interpolation inequality and Cauchy’s inequality it follows that

Cα(τ)2‖r‖s− 1
2
‖r‖2

s− 1
2 ,1 ≤ Cα(τ)2‖r‖s− 1

2
‖r‖s−1,1‖r‖s,1

≤ Cα(τ)4‖r‖2
s− 1

2
‖r‖2

s−1,1 +
C2

2
‖r‖2

s,1

≤ Cα(τ)4‖r‖4
s−1,1 +

C2

2
‖r‖2

s,1,

such that

(r,F (r, τ))s−1,1

≤
(
−C2

2
+ Cα(τ)‖r‖s

)
‖r‖2

s,1 − (1− η)µα(τ)
π
‖r‖2

s−1,1 + Cα(τ)4‖r‖4
s−1,1.

On some interval [0, T] ⊂ [0, 2π
µ

) we have −C2
2 + 2Cα(τ)δ < 0. As in the proof

of Theorem 7.8 we show that there exists a solution r that decays fast enough to
make sure that −C2

2 + Cα(τ)‖r(τ)‖s < 0 for all τ ∈ [0, 2π
µ

). For τ ∈ [0, T] we have

(r,F (r, τ))s−1,1 ≤ −(1− η)µα(τ)
π
‖r‖2

s−1,1 + Cα(τ)4‖r‖4
s−1,1.

By Theorem A.1 there exists a solution r to (7.46) on [0, T] with ‖r(τ)‖2
s ≤ y(τ) ,

where y : [0, 2π
µ

)→ R satisfies

dy
dτ

= −2(1− η)µ
π

α(τ)y + 2Cα(τ)4 y2,
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with y(0) = y0 := ‖r0‖2
s . To solve this ODE we introduce

σ := −4(1− η) ln
(
1− µτ

2π

)
= −4(1− η) lnα(τ)−1 such that

dy
dσ

= −y +
πC

(1− η)µ e
3

4(1−η)σ y2.

Substituting y = e−σY we get

dY
dσ

=
πC

(1− η)µ e(
3

4(1−η)−1)σY2

from which it follows that

Y(σ) =

(
1

Y(0)
− πC

( 1
4 − η)µ

(
1− e(

3
4(1−η)−1)σ

))−1

,

which is equivalent to

y(σ) =

(
eσ − πCy0

( 1
4 − η)µ

(
eσ − e

3
4(1−η)σ

))−1

y0.

Since η and y0 are small there exists an M > 0 such that

y(τ) ≤ M2e−σ y0 = M2
α(τ)−4(1−η)y0.

As a consequence, for τ ∈ [0, T]

‖r(τ)‖s ≤ Mα(τ)−2(1−η)‖r0‖s ≤ Mα(τ)−λ0‖r0‖s.

Because r decays fast enough to make sure that −C2
2 + Cα(τ)‖r(τ)‖s < 0 for all

time, all calculations on [0, T] can be extended to [0, 2π
µ

), as in the proof of Theorem
7.8. This completes the proof.

Remark 7.11. Since β/α(τ) goes to zero as τ tends to τmax, the restrictions on β in Theorems
7.8− 7.10 can be omitted. This can be proved by arguing as in the proof of Theorem 5.8 where
the time interval is split up in two parts. For any β > 0 there is a T′ > 0 such that (7.26) and
(7.47) hold on [T′, ∞).

Moreover, this allows us to substitute a small positive number forβ in (7.45) to get C̃1 = 3µ
4π ,

such that for N = 3 ‖r(t)‖s decays as C/tζ‖r0‖s where ζ < 1.

7.4 Energy estimates and global existence results for a suc-
tion problem

The linearisation of the evolution operator given by (7.20) has positive eigenvalues for
the suction problem. In Chapters 3 and 5 this problem was solved by restricting our-
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selves to perturbations on an invariant manifold.
For classical Hele-Shaw flow we found in Chapter 2 that Richardson moments are

conserved. For Hele-Shaw flow with surface tension only (no kinetic undercooling) we
proved in Chapter 3 that the geometric centre is conserved if the geometric centre is
located at the suction point. If one includes kinetic undercooling regularisation, then
the geometric centre may change.

In other words, the manifold MN
1 defined by (2.40) is no longer invariant for β > 0.

Nevertheless, there are subsets of MN
1 such that solutions to the evolution problem,

that are initially in this subset, stay in it until vanishing time. Define Hs
∗(S

N−1) as the
set of functions in Hs(SN−1) that are even in all variables. These are the functions r
for which the corresponding domains Ωr are symmetric with respect to all coordinate
planes. Define

MN
∗ :=

{
r ∈ Hs

∗(S
N−1) :

∫
Ωr

dx =
σN

N

}
. (7.53)

It is clear that this subset of MN
1 has the desired invariance property. For the two-

dimensional case Hs
∗(S

1) consists of those functions in Hs(S1) that can be written as

r =
∞
∑
k=0

ak cos 2kθ,

where θ is the polar variable. We have dim(Hs
∗(S

1) ∩Sk) = 0 for k odd and
dim(Hs

∗(S
1) ∩Sk) = 1 for k even. Introduce

Hs
∗,1(S

N−1) :=
{

r ∈ Hs
∗(S

N−1) :
∫

SN−1
rdx = 0

}
.

The subspace Hs
∗,1(S

N−1) is the tangent space at zero of the manifold MN
∗ in Hs

∗(S
N−1).

Introduce on a neighbourhood U∗ of zero in Hs
∗(S

N−1) the operator φ∗ : U∗ → R ×
Hs
∗,1(S

N−1) by
φ∗(r) := ( f∗(r),P1r)T ,

where P1 is L2(SN−1)-orthogonal projection on Hs
∗,1(S

N−1) and

f∗(r) :=
∫

Ωr

dx− σN

N
. (7.54)

Arguing as in previous chapters we see that φ∗ defines an analytic bijection between
a neighbourhood of zero in Hs

∗(S
N−1) and a neighbourhood of zero in R×Hs

∗,1(S
N−1).

Now we introduce on a neighbourhood U∗ of zero in Hs
∗,1(S

N−1) the analytic bijection
ψ∗ : U∗ →MN

∗ by
ψ∗(r) = φ

−1
∗ (0, r). (7.55)

Define for r̃ near zero in Hs
∗,1(S

N−1)

F̃ (r̃, τ) := P1F (ψ∗(r̃), τ)
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and introduce F̃ j(r̃, τ) := P1F j(ψ∗(r̃), τ) for j = 1, 2, 3. By methods that we have seen
before, we have

F̃ ′j(0, τ) = P1F ′j(0, τ) |Hs
∗,1(S

N−1)= F
′
j(0, τ) |Hs

∗,1(S
N−1) . (7.56)

In the following theorem we assume that

|µ|
π

< C3, (7.57)

where

C3 := inf
k≥2

γp1(k)− β|µ|
2π k− |µ|2π (k + 2)

(1 +βk)(k2 + 1)
.

This condition is satisfied if

∀k ≥ 2 :
πγ

|µ| (k3 − k) ≥ β
(

k3 +
3
2

k
)

+ k2 +
1
2

k + 2.

Take for instance β < 1 and let γ > 0 and µ < 0 satisfy

∀k ≥ 2 :
πγ

|µ| ≥
k3 + k2 + 2k + 2

k3 − k
. (7.58)

Note that (7.58) holds when |µ|
γ

< π
3 .

Theorem 7.12. Suppose that N = 2, µ < 0, s > 9
2 , and suppose that (7.57) holds. Let

λ0 ∈ ( |µ|
π

, C3). There exists a δ > 0 and an M > 0 such that if r0 ∈M2
∗ with ‖r0‖s < δ, then

the problem
∂r
∂τ

= F (r, τ), r(0) = r0,

has a solution r ∈ Cw([0, ∞), Hs(S1)) ∩ C1
w([0, ∞), Hs−2(S1)) that satisfies

‖r(t)‖s ≤ M
(
−|µ|t
π

+ 1
) πλ0
|µ|

‖r0‖,

where we regard r as a function of the original time-variable t.

Proof. Note that we have to show that r(τ) stays in U β
α(τ)

as τ goes to infinity. According

to Corollary 7.4 this is the case if ‖r(τ)‖s decays faster thanα(τ)2.

1. Let r̃ := P1r and r̃0 = r̃(0). The following evolution equation holds for r̃:

∂r̃
∂τ

= F̃ (r̃, τ). (7.59)

First we prove solvability of this equation for r̃ ∈ Hs
∗,1(S

1) with ‖r̃0‖s small enough.
Let r̃ ∈ Hs+2

∗,1 (S1) with ‖r̃‖s < δ
′
α(τ)2 for small δ′ > 0.
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2. Sinceα(τ) ≤ 1 it follows from (7.57) that

(r̃, F̃ ′(0, τ)[r̃])s−1 = ∑
k≥2

−γp1(k) + β|µ|
2π k + |µ|α(τ)

2π (k + 2)

(1 + β
α(τ) k)(k2 + 1)

(k2 + 1)s r̃k j

≤ ∑
k≥2

−γp1(k) + β|µ|
2π k + |µ|

2π (k + 2)

(1 + β
α(τ) k)(k2 + 1)

(k2 + 1)s r̃k j

≤ α(τ) ∑
k≥2

−γp1(k) + β|µ|
2π k + |µ|

2π (k + 2)

(1 +βk)(k2 + 1)
(k2 + 1)s r̃k j

≤ −C3α(τ)‖r̃‖2
s . (7.60)

Note that C3 is positive because of (7.57).

3. By Lemma 7.7, (7.27), and (7.56)

‖F̃1(r̃, τ)− F̃ ′1(0, τ)[r̃]‖s−2

= ‖P1F1(ψ∗(r̃), τ)−F ′1(0, τ)[r̃]‖s−2

≤
∥∥∥{P1E β

α(τ)
(ψ∗(r̃))−P1E β

α(τ)
(0)
}

(κ(ψ∗(r̃))−κ(0))
∥∥∥

s−2

+
∥∥∥P1E β

α(τ)
(0)
{
κ(ψ∗(r̃))−κ(0)−κ′(0)[r̃]

}∥∥∥
s−2

≤ Cα(τ)‖r̃‖2
s .

Here and in the sequel we make use of local analyticity of ψ∗ and ψ∗(0) = 0. For
F̃2 and F̃3 we get similar estimates in lower norms. Adding the results and using
α(τ) ≤ 1 in (7.16) (while replacing F by F̃ and F j by F̃ j, for j = 1, 2, 3) we get

‖F̃ (r̃, τ)− F̃ ′(0, τ)[r̃]‖s−2 ≤ Cα(τ)‖r̃‖2
s .

Combining this and (7.60) we get

(r̃, F̃ (r̃, τ))s−1 ≤ (−C3 + C‖r̃‖s)α(τ)‖r̃‖2
s . (7.61)

4. It follows from

sup
k≥2

∣∣∣∣∣∣γp1(k)− β|µ|
2π k− |µ|α(τ)

2π (k + 2)(
1 + β

α(τ) k
)

(1 + k2)

∣∣∣∣∣∣
≤ α(τ) sup

k≥2

∣∣∣∣∣γp1(k)− β|µ|
2π k− |µ|α(τ)

2π (k + 2)

βk(1 + k2)

∣∣∣∣∣
≤ Cα(τ)
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that
‖P1F ′(0, τ)‖L(Hs

∗,1(S
1),Hs−2

∗,1 (S1)) < Cα(τ). (7.62)

For the 2D suction problem (7.35) holds as well. Estimating the lower order terms
F2 and F3 in the same way and usingα(τ) ≤ 1, we obtain from (7.62)

‖F̃ ′(r̃, τ)[Di r̃]− F̃ ′(0, τ)[Di r̃]‖s−2

≤ ‖
{
P1F ′(ψ∗(r̃), τ)−P1F ′(0, τ)

}
[ψ′∗(r̃)[Di r̃]]‖s−2

+‖P1F ′(0, τ)[ψ′∗(r̃)[Di r̃]−ψ′∗(0)[Di r̃]]‖s−2

≤ Cα(τ)‖r̃‖s‖Di r̃‖s. (7.63)

In the last step we used ‖ψ∗(r̃)[Di r̃]‖s ≤ C‖Di r̃‖s which holds for small ‖r̃‖s. By
(7.60) we have

(Di r̃, F̃ ′(0, τ)[Di r̃])s−1 ≤ −C3α(τ)‖Di r̃‖2
s .

Combining this and (7.63) one gets

(Di r̃, F̃ ′(r̃, τ)[Di r̃])s−1 ≤ (−C3 + C‖r̃‖s)α(τ)‖Di r̃‖2
s . (7.64)

5. Adding (7.61) and (7.64) we get for ‖r̃‖s small

(r̃, F̃ (r̃, τ))s−1,1 ≤ (−C3 + C‖r̃‖s)α(τ)‖r̃‖2
s,1 ≤ −λ0α(τ)‖r̃‖2

s,1.

By Theorem A.1 there exists a solution r̃ to (7.59) with ‖r̃(τ)‖2
s ≤ y(τ), where

y : [0, ∞)→ R satisfies
dy
dτ

= −2λ0α(τ)y,

with y(0) = ‖r̃(0)‖s = ‖P1r‖s. We have seen in the proof of Theorem 5.6 that this
implies

‖r̃(t)‖s ≤
(
−|µ|t
π

+ 1
) πλ0
|µ|

‖r̃0‖,

where we reintroduced the original time variable t. Now we construct

r := ψ∗(r̃).

There exists a δ > 0 and an M > 0 such that if ‖r0‖s ≤ δ then

‖r(t)‖s ≤ M
(
−|µ|t
π

+ 1
) πλ0
|µ|

‖r0‖

or
‖r(t)‖s ≤ Mα(t)

2πλ0
|µ| ‖r0‖.

The condition in Corollary 7.4 is satisfied since λ0 > µ
π

.
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In contrast to the two-dimensional suction problem in Theorem 5.8 there is a bound
on the suction speed. If the suction speed is too large, then some eigenvalues of F ′(0, τ)
are positive for all values of time.

We do not treat the three-dimensional suction problem because it is linearly unstable
for long time. From the linearisation we see that as t tends to the vanishing time, more
and more eigenvalues become positive like in the suction problem with only surface
tension for N ≥ 4.

7.5 Proof of Lemma 7.7

We assume that r is small in Hs(SN−1) and C is a positive varying constant that does not
depend on r and β̂. Let for σ > 0 the mapping P0 : Hσ (SN−1) → Hσ (SN−1) be defined
as the projection along the spherical harmonic of degree zero,

P0 : r 7→ r− r̂,

where r̂ ∈ R is defined by

r̂ =
1
σN

∫
SN−1

rdx. (7.65)

1. First we show that there exists a C > 0, independent of λ and ψ, such that

‖P0Trψ‖s−1 ≤ C
(∥∥∥∥(λTr +

∂

∂n

)
ψ

∥∥∥∥
s−2

+ ‖∆ψ‖
Hs− 5

2 (BN)

)
, (7.66)

for any λ > 0 and ψ ∈ Hs− 1
2 (BN). To prove (7.66) we write ψ = ψH +ψ0, where

∆ψH = 0, ∆ψ0 = ∆ψ

and
TrψH = Trψ, Trψ0 = 0.

Introduce
ψ̂ :=

1
σN

∫
SN−1

ψdx.

It follows from
TrψH − ψ̂ = ∑

k≥1
(TrψH , sk j)0sk j

that
‖Trψ− ψ̂‖s−1 = ‖TrψH − ψ̂‖s−1 ≤

√
2 ‖(λI +N )TrψH‖s−2 .

Here we used the fact that for k ≥ 1√
1 + k2

λ+ k
≤
√

2.
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We get

‖Trψ− ψ̂‖s−1 ≤
√

2
∥∥∥∥(λTr +

∂

∂n

)
ψH

∥∥∥∥
s−2

≤
√

2
∥∥∥∥(λTr +

∂

∂n

)
ψ

∥∥∥∥
s−2

+
√

2
∥∥∥∥(λTr +

∂

∂n

)
ψ0

∥∥∥∥
s−2

=
√

2
∥∥∥∥(λTr +

∂

∂n

)
ψ

∥∥∥∥
s−2

+
√

2
∥∥∥∥∂ψ0

∂n

∥∥∥∥
s−2

.

Combining this with (7.14) we obtain (7.66).

2. Define uβ̂ : Uβ̂ → L(Hs−1(SN−1), Hs+ 1
2 (BN)) by

uβ̂(r) := Sβ̂(r)−1
(

0
·

)
(7.67)

and introduce wβ̂ : Uβ̂ → L(Hs−1(SN−1), Hs−1(SN−1)) by

wβ̂(r) := n(r) · Q(r)uβ̂(r). (7.68)

Since uβ̂(0) f is harmonic we get from (7.12)

‖uβ̂(0) f ‖
Hs− 1

2 (BN)
≤ C‖Truβ̂(0) f ‖s−1 = C‖(I + β̂N )−1 f ‖s−1 ≤ C‖ f ‖s−1 (7.69)

and
‖wβ̂(0) f ‖s−1 = ‖N (I + β̂N )−1 f ‖s−1 ≤

1
β̂
‖ f ‖s−1. (7.70)

3. Introduce
R(r) := n(r) · Q(r)− n(0) · Q(0). (7.71)

It is clear from the definition of Sβ̂ (see (7.7)) that

Tr(uβ̂(r)− uβ̂(0)) = −β̂(wβ̂(r)− wβ̂(0)). (7.72)

As a result, for any f ∈ Hs−1(SN−1) and r ∈ Uβ̂

Tr(uβ̂(r) f − uβ̂(0) f ) = −β̂
(

n(r) · Q(r)uβ̂(r) f − n(0) · Q(0)uβ̂(0) f
)

= −β̂
(
R(r)uβ̂(r) f + n(0) · Q(0)

(
uβ̂(r) f − uβ̂(0) f

))
.

We rewrite this as follows:(
Tr + β̂n(0) · Q(0)

) (
uβ̂(r) f − uβ̂(0) f

)
= −β̂R(r)uβ̂(r) f

= −β̂R(r)
(

uβ̂(r) f − uβ̂(0) f + uβ̂(0) f
)

. (7.73)
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The mappingR is analytic from a neighbourhood of zero in Hs(SN−1) to
L(Hs− 1

2 (BN), Hs−2(SN−1)). It follows from (7.73) and (7.69) that∥∥∥(Tr + β̂n(0) · Q(0)
) (

uβ̂(r) f − uβ̂(0) f
)∥∥∥

s−2

≤ Cβ̂‖r‖s

(
‖uβ̂(r) f − uβ̂(0) f ‖

Hs− 1
2 (BN)

+ ‖ f ‖s−1

)
. (7.74)

Setting ψ = uβ̂(r) f − uβ̂(0) f and λ = β̂
−1 in (7.66) we get from (7.74) and

n(0) · Q(0) = ∂

∂n the estimate

‖P0Tr(uβ̂(r) f − uβ̂(0) f )‖s−1

≤ C
(
‖r‖s‖uβ̂(r) f − uβ̂(0) f ‖

Hs− 1
2 (BN)

+‖r‖s‖ f ‖s−1 + ‖∆(uβ̂(r) f − uβ̂(0) f )‖
Hs− 5

2 (BN)

)
. (7.75)

Since ∆uβ̂(0) f = 0 and A(r)uβ̂(r) f = 0 we have

∆(uβ̂(r) f − uβ̂(0) f ) = (∆−A(r))uβ̂(r) f

= (∆−A(r))(uβ̂(r) f − uβ̂(0) f ) + (∆−A(r))uβ̂(0) f .

It follows from (7.69) that

‖∆(uβ̂(r) f − uβ̂(0) f )‖
Hs− 5

2 (BN)

≤ ‖∆−A(r)‖
L(Hs− 1

2 (BN),Hs− 5
2 (BN))

(‖uβ̂(r) f − uβ̂(0) f ‖
Hs− 1

2 (BN)
+ C‖ f ‖s−1)

≤ C‖r‖s(‖uβ̂(r) f − uβ̂(0) f ‖
Hs− 1

2 (BN)
+ ‖ f ‖s−1). (7.76)

Here we used Lipschitz continuity of r 7→ A(r) from a neighbourhood of zero in
Hs(SN−1) to L(Hs− 1

2 (BN), Hs− 5
2 (BN)) and the fact thatA(0) = ∆. From (7.75) and

(7.76) we conclude

‖P0Tr(uβ̂(r) f − uβ̂(0) f )‖s−1 ≤ C‖r‖s(‖uβ̂(r) f − uβ̂(0) f ‖
Hs− 1

2 (BN)
+ ‖ f ‖s−1).

(7.77)
It follows from (7.12) and (7.76) that

‖uβ̂(r) f − uβ̂(0) f ‖
Hs− 1

2 (BN)

≤ C‖Tr(uβ̂(r) f − uβ̂(0) f )‖s−1 + C‖∆(uβ̂(r) f − uβ̂(0) f )‖
Hs− 5

2 (BN)

≤ C‖Tr(uβ̂(r) f − uβ̂(0) f )‖s−1 + C‖r‖s

(
‖uβ̂(r) f − uβ̂(0) f ‖

Hs− 1
2 (BN)

+ ‖ f ‖s−1

)
.
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Consequently, for ‖r‖s small

‖uβ̂(r) f − uβ̂(0) f ‖
Hs− 1

2 (BN)
≤ C‖Tr(uβ̂(r) f − uβ̂(0) f )‖s−1 + C‖r‖s‖ f ‖s−1 (7.78)

Combining this with (7.77) we get

‖P0Tr(uβ̂(r) f − uβ̂(0) f )‖s−1 ≤ C‖r‖s

(
‖Tr(uβ̂(r) f − uβ̂(0) f )‖s−1 + ‖ f ‖s−1

)
.

(7.79)
It follows from (7.72) and (7.79) that

‖P0(wβ̂(r) f − wβ̂(0) f )‖s−1 ≤ C‖r‖s‖wβ̂(r) f − wβ̂(0) f ‖s−1 +
C
β̂
‖r‖s‖ f ‖s−1.

(7.80)

4. Define for ‖r‖s small j̃(r) :=
√

g(r)
g(0) ◦ Ξ

−1, with g and Ξ as in Section 3.2, such that

for all ψ : SN−1 → R ∫
SN−1

ψ j̃(r)dx =
∫

Γr

ψ ◦ z(r)−1dx.

Since uβ̂(0) f is harmonic on BN and (uβ̂(r) f ) ◦ z(r)−1 is harmonic on Ωr we have

∫
SN−1

wβ̂(0) f dx =
∫

SN−1

∂uβ̂(0) f
∂n

dx = 0

and ∫
SN−1

(wβ̂(r) f ) j̃(r)dx =
∫

Γr

nr · ∇((uβ̂(r) f ) ◦ z(r)−1)dx = 0,

where nr is the normal vector field on Γr. It follows that∣∣∣∣∫SN−1
wβ̂(r) f − wβ̂(0) f dx

∣∣∣∣
=

∣∣∣∣∫SN−1
(wβ̂(r) f )(1− j̃(r))dx

∣∣∣∣
≤ ‖wβ̂(r) f ‖0‖1− j̃(r)‖0

≤ ‖wβ̂(r) f − wβ̂(0) f ‖0‖1− j̃(r)‖0 + ‖wβ̂(0) f ‖0‖1− j̃(r)‖0

≤ C‖r‖s‖wβ̂(r) f − wβ̂(0) f ‖0 + C‖r‖s‖wβ̂(0) f ‖0

≤ C‖r‖s‖wβ̂(r) f − wβ̂(0) f ‖0 +
C
β̂
‖r‖s‖ f ‖s−1. (7.81)

We used j̃(0) = 1, Lipschitz continuity of j̃ near zero from Hs(SN−1) to L2(SN−1)
and (7.70).
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5. Since

‖wβ̂(r) f − wβ̂(0) f ‖s−1

≤ C
(
‖P0(wβ̂(r) f − wβ̂(0) f )‖s−1 +

∣∣∣∣∫SN−1
wβ̂(r) f − wβ̂(0) f dx

∣∣∣∣)
we get from adding (7.80) and (7.81)

‖wβ̂(r) f − wβ̂(0) f ‖s−1 ≤ C‖r‖s‖wβ̂(r) f − wβ̂(0) f ‖s−1 +
C
β̂
‖r‖s‖ f ‖s−1.

For ‖r‖s small it follows that

‖wβ̂(r) f − wβ̂(0) f ‖s−1 ≤
C
β̂
‖r‖s‖ f ‖s−1 (7.82)

and (7.72) yields

‖Tr(uβ̂(r) f − uβ̂(0) f )‖s−1 ≤ C‖r‖s‖ f ‖s−1. (7.83)

Combining (7.78) and (7.83) we get

‖uβ̂(r) f − uβ̂(0) f ‖
Hs− 1

2 (BN)
≤ C‖r‖s‖ f ‖s−1. (7.84)

From (7.70) and (7.82) it follows that for ‖r‖s small

‖Eβ̂(r) f − Eβ̂(0) f ‖s−1

=

∥∥∥∥∥ wβ̂(r) f
n(r) · id −

wβ̂(0) f
n(0) · id

∥∥∥∥∥
s−1

=

∥∥∥∥∥ wβ̂(r) f
n(r) · id − wβ̂(0) f

∥∥∥∥∥
s−1

≤
∥∥∥wβ̂(r) f − wβ̂(0) f

∥∥∥
s−1

+
∥∥∥∥( 1

n(r) · id − 1
)

wβ̂(r) f
∥∥∥∥

s−1

≤ C
β̂
‖r‖s‖ f ‖s−1 + ‖r‖s‖wβ̂(r) f ‖s−1

≤ C
β̂
‖r‖s‖ f ‖s−1 + ‖r‖s‖wβ̂(r) f − wβ̂(0) f ‖s−1 + ‖r‖s‖wβ̂(0) f ‖s−1

≤ C
β̂
‖r‖s‖ f ‖s−1.

This proves the first part of the lemma.
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6. For the second part, we first differentiate the identity∫
SN−1

(wβ̂(r) f ) j̃(r)dx = 0

to obtain ∫
SN−1

(w′β̂(r)[h] f ) j̃(r) + (wβ̂(r) f ) j̃′(r)[h]dx = 0. (7.85)

In particular, since j̃(0) = 1, it follows that∫
SN−1

w′β̂(0)[h] f dx = −
∫

SN−1
(wβ̂(0) f ) j̃′(0)[h]dx

and therefore by (7.70)∣∣∣∣∫SN−1
w′β̂(0)[h] f dx

∣∣∣∣ ≤ ‖wβ̂(0) f ‖0‖ j̃′(0)[h]‖0 ≤
C
β̂
‖h‖s‖ f ‖s−1. (7.86)

Now we differentiate
A(r)uβ̂(r) f = 0

to obtain
A′(r)[h]uβ̂(r) f +A(r)u′β̂(r)[h] f = 0 (7.87)

and in particular
A′(0)[h]uβ̂(0) f + ∆u′β̂(0)[h] f = 0. (7.88)

In the same way it follows from

(Tr + β̂n(r)Q(r))uβ̂(r) f = f

that(
Tr + β̂

∂

∂n

)
u′β̂(0)[h] f = −β̂

{
n′(0)[h] · ∇+ n(0) · Q′(0)[h]

}
uβ̂(0) f . (7.89)

From (7.66), (7.69), (7.88), and (7.89) we get

‖P0Tru′β̂(0)[h] f ‖s−1

≤ C
β̂

∥∥∥∥(Tr + β̂
∂

∂n

)
u′β̂(0)[h] f

∥∥∥∥
s−2

+ C‖∆u′β̂(0)[h] f ‖
Hs− 5

2 (BN)

≤ C‖h‖s‖ f ‖s−1

and since (7.72) implies

Tru′β̂(r)[h] f = −β̂w′β̂(r)[h] f (7.90)

it follows that
‖P0w′β̂(0)[h] f ‖s−1 ≤

C
β̂
‖h‖s‖ f ‖s−1. (7.91)
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Adding (7.86) and (7.91) we get

‖w′β̂(0)[h] f ‖s−1 ≤
C
β̂
‖h‖s‖ f ‖s−1 (7.92)

and therefore by (7.90)

‖Tru′β̂(0)[h] f ‖s−1 ≤ C‖h‖s‖ f ‖s−1. (7.93)

From (7.12), (7.69), (7.88), and (7.93) we derive

‖u′β̂(0)[h] f ‖
Hs− 1

2 (BN)
≤ C

(
‖Tru′β̂(0)[h] f ‖s−1 + ‖∆u′β̂(0)[h] f ‖

Hs− 5
2 (BN)

)
≤ C‖h‖s‖ f ‖s−1. (7.94)

7. From (7.70), (7.82), (7.85), (7.92), the identity j̃(0) = 1, and analyticity of j̃, we
obtain ∣∣∣∣∫SN−1

w′β̂(r)[h] f − w′β̂(0)[h] f dx
∣∣∣∣

=
∣∣∣∣∫SN−1

(w′β̂(r)[h] f )(1− j̃(r))− (wβ̂(r) f ) j̃′(r)[h]− w′β̂(0)[h] f dx
∣∣∣∣

=
∣∣∣∣∫SN−1

(w′β̂(r)[h] f )(1− j̃(r))− (wβ̂(r) f − wβ̂(0) f ) j̃′(r)[h]

−(wβ̂(0) f )( j̃′(r)[h]− j̃′(0)[h])dx
∣∣∣

≤ C‖r‖s

(
‖w′β̂(r)[h] f − w′β̂(0)[h] f ‖0 + ‖w′β̂(0)[h] f ‖0

)
+C‖h‖s‖wβ̂(r) f − wβ̂(0) f ‖0 +

C
β̂
‖r‖s‖ f ‖s−1‖h‖s

≤ C‖r‖s‖w′β̂(r)[h] f − w′β̂(0)[h] f ‖0 +
C
β̂
‖r‖s‖ f ‖s−1‖h‖s. (7.95)

We also used ‖ j̃′(r)[h]‖0 ≤ C‖h‖s which holds since ‖r‖s is small and j̃ is analytic
near zero.

8. Differentiating (7.73) we obtain(
Tr + β̂n(0) · Q(0)

)
u′β̂(r)[h] f = −β̂R′(r)[h]uβ̂(r) f − β̂R(r)u′β̂(r)[h] f .

SinceR(0) = 0 we get(
Tr + β̂n(0) · Q(0)

)
u′β̂(0)[h] f = −β̂R′(0)[h]uβ̂(0) f
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and therefore (
Tr + β̂n(0) · Q(0)

)
(u′β̂(r)[h] f − u′β̂(0)[h] f )

= −β̂
(
R′(r)[h]uβ̂(r) f −R′(0)[h]uβ̂(0) f

)
− β̂R(r)u′β̂(r)[h] f

= −β̂
(
(R′(r)[h]−R′(0)[h])(uβ̂(r) f − uβ̂(0) f + uβ̂(0) f )

+R′(0)[h](uβ̂(r) f − uβ̂(0) f )
)

−β̂R(r)(u′β̂(r)[h] f − u′β̂(0)[h] f + u′β̂(0)[h] f ).

From (7.69), (7.84), (7.94), analyticity ofR from a neighbourhood of zero in
Hs(SN−1) to L(Hs− 1

2 (BN), Hs−2(SN−1)), and the fact thatR(0) = 0, it follows that
for ‖r‖s small∥∥∥(Tr + β̂n(0) · Q(0)

)
(u′β̂(r)[h] f − u′β̂(0)[h] f )

∥∥∥
s−2

≤ Cβ̂‖r‖s‖ f ‖s−1‖h‖s + Cβ̂‖r‖s‖u′β̂(r)[h] f − u′β̂(0)[h] f ‖
Hs− 1

2 (BN)
.

From (7.66) we get

‖P0Tr(u′β̂(r)[h] f − u′β̂(0)[h] f )‖s−1

≤ C‖r‖s‖ f ‖s−1‖h‖s + C‖r‖s‖u′β̂(r)[h] f − u′β̂(0)[h] f ‖
Hs− 1

2 (BN)

+C‖∆(u′β̂(r)[h] f − u′β̂(0)[h] f )‖
Hs− 5

2 (BN)
. (7.96)

Using (7.87) and (7.88) we deduce

∆(u′β̂(r)[h] f − u′β̂(0)[h] f )

= (∆−A(r))u′β̂(r)[h] f +A(r)u′β̂(r)[h] f +A′(0)[h]uβ̂(0) f

= (∆−A(r))u′β̂(r)[h] f −A′(r)[h]uβ̂(r) f +A′(0)[h]uβ̂(0) f

= (∆−A(r))(u′β̂(r)[h] f − u′β̂(0)[h] f + u′β̂(0)[h] f )

−A′(r)[h](uβ̂(r) f − uβ̂(0) f ) + (A′(0)[h]−A′(r)[h])uβ̂(0) f .

From (7.69), (7.84), (7.94) and analyticity of A we derive

‖∆(u′β̂(r)[h] f − u′β̂(0)[h] f )‖
Hs− 5

2 (BN)

≤ C‖r‖s‖u′β̂(r)[h] f − u′β̂(0)[h] f ‖
Hs− 1

2 (BN)
+ C‖r‖s‖ f ‖s−1‖h‖s. (7.97)
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It follows from (7.12) and (7.97) that

‖u′β̂(r)[h] f − u′β̂(0)[h] f ‖
Hs− 1

2 (BN)

≤ C‖Tr(u′β̂(r)[h] f − u′β̂(0)[h] f )‖s−1

+C‖r‖s‖u′β̂(r)[h] f − u′β̂(0)[h] f ‖
Hs− 1

2 (BN)
+ C‖r‖s‖ f ‖s−1‖h‖s

and therefore as ‖r‖s is small

‖u′β̂(r)[h] f − u′β̂(0)[h] f ‖
Hs− 1

2 (BN)

≤ C‖Tr(u′β̂(r)[h] f − u′β̂(0)[h] f )‖s−1 + C‖r‖s‖ f ‖s−1‖h‖s. (7.98)

Combining (7.96), (7.97), and (7.98) we get

‖P0Tr(u′β̂(r)[h] f − u′β̂(0)[h] f )‖s−1

≤ C‖r‖s‖Tr(u′β̂(r)[h] f − u′β̂(0)[h] f )‖s−1 + C‖r‖s‖ f ‖s−1‖h‖s.

Hence (7.72) implies

‖P0(w′β̂(r)[h] f − w′β̂(0)[h] f )‖s−1

≤ C‖r‖s‖(w′β̂(r)[h] f − w′β̂(0)[h] f )‖s−1

+
C
β̂
‖r‖s‖ f ‖s−1‖h‖s.

Combining this estimate and (7.95) we find

‖(w′β̂(r)[h] f − w′β̂(0)[h] f )‖s−1 ≤ C‖r‖s‖(w′β̂(r)[h] f − w′β̂(0)[h] f )‖s−1

+
C
β̂
‖r‖s‖ f ‖s−1‖h‖s

and therefore as ‖r‖s is small

‖(w′β̂(r)[h] f − w′β̂(0)[h] f )‖s−1 ≤
C
β̂
‖r‖s‖ f ‖s−1‖h‖s. (7.99)

9. Using analyticity of n, n(0) = id, (6.31), (7.99), (7.92), (7.82), (7.70), and the identity

Eβ̂(r) f =
wβ̂(r) f
n(r) · id ,
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we derive∥∥∥E ′β̂(r)[h] f − E ′β̂(0)[h] f
∥∥∥

s−1

≤
∥∥∥∥∥w′β̂(r)[h] f

n(r) · id − w′β̂(0)[h] f

∥∥∥∥∥
s−1

+

∥∥∥∥∥n′(r)[h] · id
(n(r) · id)2 wβ̂(r) f

∥∥∥∥∥
s−1

≤
∥∥∥∥ 1

n(r) · id

(
w′β̂(r)[h] f − w′β̂(0)[h] f

)∥∥∥∥
s−1

+
∥∥∥∥( 1

n(r) · id − 1
)

w′β̂(0)[h] f
∥∥∥∥

s−1

+

∥∥∥∥∥n′(r)[h] · id
(n(r) · id)2

(
wβ̂(r) f − wβ̂(0) f

)∥∥∥∥∥
s−1

+

∥∥∥∥∥n′(r)[h] · id
(n(r) · id)2 wβ̂(0) f

∥∥∥∥∥
s−1

≤ C
β̂
‖r‖s‖ f ‖s−1‖h‖s.

This proves the second statement in the lemma.



Appendix A

Existence results from energy
estimates

Theorem A.1. (Kato and Lai) Let V ↪→ H ↪→ X be densely injected Hilbert spaces for which
there exists a continuous bilinear form 〈·, ·〉 : V × X → R that satisfies

〈r1, r2〉 = (r1, r2)H

for r1 ∈ V and r2 ∈ H. Let F be a weakly continuous map on H × [0, T] into X and on
V × [0, T] into H such that for all t ∈ [0, T] and r ∈ V

(r,F (r, t))H ≤ f (‖r‖2
H , t), (A.1)

where the function f is a differentiable function on [0, ∞) × [0, T] . Let r0 ∈ V and let the
function y : [0, T′)→ R be defined as the solution to

dy
dt

= 2 f (y, t), y(0) = ‖r0‖2
H ,

where T′ is the maximal time value for which a solution to this ODE can be defined. If the
solution to the ODE is not unique, then one has to take the maximal solution. Suppose that y is
bounded on [0, T′). Then, there is a solution r ∈ Cw([0, T′), H) ∩ C1

w([0, T′), X) to

∂r
∂t

= F (r, t), r(0) = r0.

Here Cw indicates weak continuity. Moreover, one has for t ∈ [0, T′)

‖r(t)‖2
H ≤ y(t).

Proof. The difference between this theorem and the one in [50, Thm. A] is that f in (A.1)
may depend on t here. However, the arguments in the proof, that is based on Galerkin
approximations, of the original theorem still hold.

In Chapters 5-7 we apply Theorem A.1 to obtain existence results on open time in-
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tervals. This can be achieved by applying the theorem infinite times.
Moreover, to apply this theorem we need to show that the evolution operators F

in Chapters 5-7 that are continuous from let us say V = Hσ (SN−1) to H = Hθ(SN−1)
are also weakly continuous. There exists an ε > 0 such that F is still well-defined and
continuous from Vε = Hσ−ε(SN−1) to Hε = Hθ−ε(SN−1). We have Vε ↪→↪→ V and
Hε ↪→↪→ H. Take a weakly convergent sequence rn ⇀ r in V. Then rn → r in Vε.
Hence F (rn) → F (r) in Hε. On the other hand, since (rn)

∞
n=1 is bounded in V, the

sequence (F (rn))
∞
n=1 is bounded in H. Let

(
F (rnk

)
)∞

k=1
be a subsequence of (F (rn))

∞
n=1

for which there exists an f ∈ H such that F (rnk
) ⇀ f in H. We have F (rnk

) → f in
Hε. As a consequence, f = F (r). We conclude that all weakly convergent subsequences
of (F (rn))

∞
n=1 have the same weak limit in H, namely F (r). From [80, Prop. 10.13] it

follows that F (rn) ⇀ F (r) in H.
Another problem is that the evolution operators F in Chapters 5, 6, and 7 are only

defined on a neighbourhood of zero. Therefore we apply the above theorem to an oper-
ator that is equal to F on some neighbourhood of zero and extend it smoothly outside
this neighbourhood. The energy estimates that we find force r to stay in the region
where F is equal to the operator on which we apply the theorem.



Appendix B

Solution to the Stokes BVP

f v |S2 v

~Vkm, k ≥ 2 k
2k2+4k+3

~Vkm
kρk+1

2k2+4k+3
~Vkm + 1

2

√
k
√

k+1(2k+3)(ρk+1−ρk−1)
2k2+4k+3

~Wkm

~Xkm, k ≥ 2 1
k−1

~Xkm
1

k−1ρ
k~Xkm

~Wkm, k ≥ 2 1
2(k−1)

~Wkm
1

2(k−1)ρ
k−1 ~Wkm

~V00 0 0

~V1m
1
9
~V1m +

√
2

9
~W1m

1
9ρ

2~V1m +
(
−
√

2
6 + 5

√
2

18 ρ
2
)

~W1m

~X1m, ~W1m − −

f p v · n

~Vkm, k ≥ 2 (2k+3)
√

(2k+1)(k+1)
2k2+4k+3

ρ
kYkm − k

2k2+4k+3

√
k+1

2k+1 Ykm

~Xkm, k ≥ 2 0 0

~Wkm, k ≥ 2 0 1
2(k−1)

√
k

2k+1 Ykm

~V00 Y00 0

~V1m
5
3

√
2
3ρY1m 0

~X1m, ~W1m − −

Table B.1: This table shows the explicit solution to the boundary value problem (6.38)-(6.42) in
three dimensions in terms of the eigenfunctions. An expression like ρkYkm should be interpreted
as the function that maps an element of B3 characterised by spherical coordinates to ρkYkm(θ,φ).
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Nomenclature

A(r) u 7→ ∆
(

u ◦ z(r)−1
)
◦ z(r)

B(r) u 7→ ∆r

(
u ◦ z̃(r)−1

)
◦ z̃(r)

Ck,β(K) Hölder spaces on domain K
Ck,β(K)N vectors with components in Hölder spaces
Ck,β(K)N×N matrices with components in Hölder spaces
Cω(X, Y) analytic mappings from X to Y
Cw(X, Y) weakly continuous mappings from X to Y
C1

w(X, Y) weakly continuously differentiable mappings from X to Y
D(F) domain of definition of F
E for Hele-Shaw flow see (5.3), for Stokes flow see (6.25)
F evolution operator (different in each chapter)
F̃ P j ◦ F ◦ψ j or P j ◦ F (·, τ) ◦ψ j often for j = 1
F̂ restriction of F to a subspace of finite codimension orthogonal to

spherical harmonics up to a certain degree (often 1)
F×,µ restriction of F to functions with axial symmetry
F̃×,µ P1 ◦ F×,µ ◦ψ1
F1 term in evolution operator (different in each chapter)
F2 term in evolution operator (different in each chapter)
F3 term in evolution operator in Chapter 7
F ′(ρ) linearisation of F around ρ
G Gramm matrix, see (3.16)
GK restriction of F to the orthoplement of ∪K

k=0S
N
k

H(X, Y) operators A for which −A generate analytic semigroups
on Y with dense domain of definition X

I identity operator
J (r) derivative of z(r)
L(X) bounded linear mappings on X
L(X, Y) bounded linear mappings from X to Y
M f multiplication with f from the left:M f : g 7→ f g
N Dirichlet-to-Neumann operator on unit ball, see Section 1.5 or (2.33)
PK projection on the L2-orthoplement of ∪K

k=0S
N
k

Q(r) u 7→ ∇
(

u ◦ z(r)−1
)
◦ z(r)

R(r) in Chapter 6: u 7→ rot
(

u ◦ z(r)−1
)
◦ z(r)
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R(r) in Chapter 7: n(r) · Q(r)− n(0) · Q(0)
R(λ, F) resolvent operator (λI − F)−1

S(r) for Hele-Shaw flow see (2.27), for Stokes flow see (6.22)
Sβ̂(r) see (7.7)
U neighbourhood of zero in some function space
BN unit ball in RN

C set of complex numbers
F Fourier transform
Hs Sobolev spaces (Spaces with vector/matrix-valued functions are indicated

in the same way as the Hölder spaces.)
Hs

1 orthoplement of S3
0 ⊕S3

1 in Hs

Hs
× subspace of Hs consisting of functions with z-axial symmetry

Hs
×,1 orthoplement of S3

0 ⊕S3
1 in Hs

×
Hs
∗ subspace of Hs consisting of functions that are even in all variables

Hs
∗,1 orthoplement of S3

0 ⊕S3
1 in Hs

∗
I an index set
Lp Lebesgue spaces
N set of natural numbers without 0
N0 set of natural numbers including 0
Q set of rational numbers
R set of real numbers
SN−1 unit sphere in RN

Z set of integers
HN

k space of harmonic homogeneous polynomials of degree k in N variables
MN

K see (2.40)
M3
×,1 see (4.5)

MN
∗ see (7.53)

SN
k set of spherical harmonics of degree k on SN−1

Sk shorter notation for SN
k

V volume of the domain
C varying constant
Di differential operators on the unit sphere, see Section 5.3
E extension operator of functions on the sphere to the ball
H Hessian of Φ

I identity matrix
Kr harmonic function on Ωr meeting −κ on the boundary
Kβr harmonic function on Ωr satisfying Kβr +β ∂Kβr

∂n = −κr on the boundary
Lr harmonic function on Ωr meeting −Φ on the boundary
Lβr harmonic function on Ωr satisfying Lβr +β ∂Lβr

∂n = −Φ on the boundary
N dimension
R function that parameterises the moving boundary
R(F) range of F
Tr trace operator
TxM tangent space of manifoldM at x
~Vkm vector spherical harmonic ~Vkm (see Chapter 6)
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~Vk
~Vk0

~Wkm vector spherical harmonic ~Wkm (see Chapter 6)
~Wk

~Wk0

Xk orthoplement of 〈Yk〉 in Hs
×(S2)

Xk,1 orthoplement of 〈Yk〉 in Hs
×,1(S

2)
~Xkm vector spherical harmonic ~Xkm (see Chapter 6)
Ykm spherical harmonics in 3D
Yk zonal harmonics Yk := Yk0

Zβr harmonic function on Ωr satisfying Zβr +β ∂Zβr
∂n = − ∂Φ

∂n on the boundary
b(r) u 7→ div

(
u ◦ z(r)−1

)
◦ z(r)

ei ith unit vector in cartesian coordinates
eρ, eθ, eφ unit vectors in spherical coordinates
fK(r) Richardson moments of Ωr up to order K, see (2.42)
f×,1(r) see (4.6)
f∗(r) see (7.54)
h(r) H ◦ z(r)
hk,β little Hölder spaces (Spaces with vector/matrix-valued functions are

indicated in the same way as the Hölder spaces.)
hk,β

K orthoplement in hk,β of spherical harmonics sN
k j with k ≤ K

id the identity (idx = x)
ji, j(r) components of J (r)−1

ker F kernel of F
l(r) 1

σN(1+r)N−1 − 1+r
σN

m(r) see (6.24)
mk suction speed for bifurcation solution (taken negative), see Theorem 4.1
n normal vector field on the boundary

(This could be the unit sphere or a perturbation)
nr normal vector field on the boundary Γr
n(r) nr ◦ z(r)
p pressure
r function that parameterises the rescaled moving boundary
rk j (r, sk j)0
s order of the Sobolev space
sN

k j spherical harmonics in N dimensions
sk j shorter notation for sN

k j
sgn sign-function: sgn x = 1 for x > 0, sgn x = −1 for x < 0, and sgn 0 = 0
sp(F) spectrum of F
t time
v velocity
x spacial variable
xi ith component of x
z(r) (1 + r)id
Γ f the moving boundary parameterised by f
Γ(t) the moving boundary
∆ Laplacian



184

∆r Laplace-Beltrami operator on Γr
Λk see (6.71)
Πi f the ith component of f
Φ see (2.10)
Ω f the moving domain parameterised by f
Ω(t) the moving domain

α(t) N

√
µNt
σN

+ 1
α(τ) value ofα at time t corresponding to τ
β kinetic undercooling coefficient in Chapter 7
γ surface tension coefficient
δ small positive number
δ Dirac delta distribution
δk j Kronecker delta, equal to zero if k 6= j and equal to one if k = j
ε small positive number
θ polar coordinate in polar and spherical coordinate system
κ curvature of the boundary
κr curvature of the boundary parameterised by r
κ(r) κr ◦ z(r)
µ injection or suction speed
νk see Theorem 4.1
ν(N, k) dimension of SN

k
ξ spacial variable
π(F) point spectrum of operator F
ρ radial coordinate in polar and spherical coordinate system
ρk curve of bifurcation solutions, see Theorem 4.1
ρ(F) resolvent set of operator F
σN area of SN−1

τ time variable defined in (3.26), (5.7), or (6.28)
φ azimuthal coordinate in polar and spherical coordinate system
φk(r) the pair ( fk(r),Pk(r))T

φ×,1(r) the pair ( f×,1(r),P1r)T

φ∗(r) the pair ( f∗(r),P1r)T

ϕ(r) Φ ◦ z(r)
ψk(r) φ

−1
k (0, r)

ψ×,1(r) see (4.7)
ψ∗(r) see (7.55)
ω(r) see (7.8)
‖ · ‖k,β norm in Ck,β(SN−1)
‖ · ‖Ck,β(BN)

norm in Ck,β(BN)

‖ · ‖k norm in Ck(SN−1) (in Chapter 2 and 3)
‖ · ‖s norm in Hs(SN−1) (in Chapter 4, 5, 6, and 7)
‖ · ‖0 norm in L2(SN−1)
‖ · ‖s−1,1 see (6.86)
‖ · ‖s−2,2 see (5.14)
‖ · ‖Hs(BN) norm in Hs(BN)
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(·, ·)s inner product in Hs(SN−1)
(·, ·)0 inner product in L2(SN−1)
(·, ·)s−1,1 see (6.86)
(·, ·)s−2,2 see (5.14)
(·, ·)Hs(BN) inner product in Hs(BN)
X ↪→ Y X is continuously embedded in Y.
X ↪→↪→ Y X is compactly embedded in Y.
f |X restriction of f to X
u ? v see (6.21)
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Index

almost global existence, 104, 135
analytic operator, 11

Banach algebra, 12
bifurcation solutions, 63

chain rule, 15, 87
cigar-like shapes, 61
classical Hele-Shaw flow, 19

Darcy’s law, 2
Dirichlet-to-Neumann operator, 13, 31
disk-like shapes, 61

energy estimates, 86

global existence, 33, 38, 48, 49, 86, 130, 147, 156

Hele-Shaw cell, 2
Hele-Shaw flow, 2

implicit function theorem, 12

kinematic boundary condition, 3
kinetic undercooling, 5, 137

Laplace-Beltrami operator, 43

Richardson moments, 34

semiflow, 50
spherical harmonics, 13
Stokes flow, 7, 107
surface tension, 5, 39

vector spherical harmonics, 123
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zonal harmonics, 14, 63



Summary

Qualitative aspects of mathematical models for the dynamics of liquids with a moving
boundary are studied. These models describe for instance groundwater flow, extraction
of oil, the growth of tumours and viscous sintering in the production of glass.

Stability of radially symmetric solutions and decay properties of perturbations are
studied for the case that in a single point fluid is injected or extracted. For the motion
of the moving boundary a nonlinear non-local evolution equation is derived. The do-
main is rescaled in such a way that the spherical solution is represented by a stationary
solution. Because of this rescaling, the evolution operator is time dependent. The non-
linear stability results are based on linearisation, energy estimates and the principle of
linearised stability.

The Hele-Shaw model is studied for several boundary conditions, describing various
physical situations. In the case of zero pressure on the boundary, it is proved for the
injection problem that balls around the injection point are asymptotically stable with
respect to small star-shaped perturbations. If surface tension regularisation is included,
then balls are stable even for the case of suction under additional assumptions on the
initial geometry, suction speed and dimension. Moreover, perturbations turn out to
decay algebraically fast.

For two dimensional suction, the influence of surface tension dominates the influ-
ence of the sink for large time. As a consequence, no condition on the suction speed is
necessary. In contrast to the two dimensional problem there is a bound on the suction
speed for the 3D problem. In dimensions higher or equal to four the influence of the
sink dominates the influence of surface tension. This leads to linear instability for the
spherical solution for any suction speed.

Making use of the autonomous character of the evolution equation, existence of non-
trivial self-similarly vanishing solutions to the three dimensional suction problem with
surface tension is proved. These solutions are found as bifurcation solutions from the
trivial spherical solution. The suction speed plays the role of bifurcation parameter.
Moreover, one branch of bifurcation solutions turns out to be stable with respect to a
certain class of perturbations.

For the closely related Stokes flow stability of the spherical solution in the case of
injection has been proved for dimensions two and three. For the suction problem for
these dimensions the spherical solution is linearly unstable.
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Samenvatting

Kwalitatieve aspecten van wiskundige modellen voor de dynamica van vloeistoffen met
een bewegende rand worden bestudeerd. Deze modellen worden gebruikt om bijvoor-
beeld de stroming van grondwater, de extractie van olie, de groei van tumoren en het
sinteren van glas te beschrijven.

Voor het geval dat in één punt vloeistof wordt geı̈njecteerd of geëxtraheerd, wordt
stabiliteit van oplossingen met radiale symmetrie onderzocht en de snelheid waarmee
verstoringen uitdoven wordt bepaald. Voor de evolutie van de bewegende rand wordt
een niet-lineaire niet-lokale evolutievergelijking afgeleid. Het bewegende gebied wordt
herschaald op een dusdanige wijze dat de bolvormige oplossing een stationaire oploss-
ing is. De evolutie-operator is tijdsafhankelijk vanwege deze herschaling. De niet-
lineaire stabiliteitsresultaten zijn gebaseerd op enerzijds linearisering en anderzijds
energie-afschattingen of het principe van gelineariseerde stabiliteit.

Het Hele-Shaw model wordt bestudeerd in combinatie met verschillende randvoor-
waarden, die veschillende natuurkundige en biologische situaties beschrijven. Voor het
geval met injectie waarin de druk op de rand gelijk aan nul wordt verondersteld, wordt
bewezen dat bollen, waarvan het middelpunt overeenkomt met de bron, asymptotisch
stabiel zijn met betrekking tot kleine stervormige verstoringen. Wanneer oppervlak-
tespanning aanwezig is, zijn bollen ook stabiel in het geval van suctie onder bepaalde
voorwaarden aangaande de aanvankelijke geometrie, suctie-snelheid en de dimensie
waarin we het probleem beschouwen. Het blijkt dat verstoringen algebraı̈sch snel uit-
doven.

In het tweedimensionale probleem met suctie domineert de invloed van de opper-
vlaktespanning de invloed van de suctie op den duur. Hierdoor hoeft geen restrictie
opgelegd te worden op de suctie-snelheid. In tegenstelling tot het tweedimensionale
geval is er wel een bovengrens voor deze suctie-snelheid in het driedimensionale geval.
In dimensies vier of hoger is de invloed van de suctie dominant. Dit leidt tot lineaire
instabiliteit voor de bolvormige oplossing voor elke suctie-snelheid.

Door gebruik te maken van het autonome karakter van de evolutievergelijking wordt
existentie van niet-triviale gelijkvormig verdwijnende oplossingen bewezen voor het
driedimensionale probleem met suctie en oppervlaktespanning. Deze oplossingen wor-
den gevonden als bifurcatie-oplossingen van de triviale bolvormige oplossing. De suctie-
snelheid speelt de rol van bifurcatieparameter. Verder blijkt een tak van bifurcatie-
oplossingen stabiel te zijn met betrekking tot een bepaalde klasse van verstoringen.

Voor de sterk gerelateerde Stokes flow wordt stabiliteit van de bolvormige oplossing
bewezen voor het geval van injectie in dimensies twee en drie. Voor het suctieprobleem
is de bolvormige oplossing lineair onstabiel.
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