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A New Approach to Dealing With Missing Values
in Data-driven Fuzzy Modeling

Rui J. Almeida, Graduate Student Member, IEEE, Uzay Kaymak, Member, IEEE
and João M.C. Sousa, Member, IEEE

Abstract— Real word data sets often contain many missing
elements. Most algorithms that automatically develop a rule-
based model are not well suited to deal with incomplete data.
The usual technique is to disregard the missing values or
substitute them by a best guess estimate, which can bias the
results. In this paper we propose a new method for estimating
the parameters of a Takagi-Sugeno fuzzy model in the presence
of incomplete data. We also propose an inference mechanism
that can deal with the incomplete data. The presented method
has the added advantage that it does not require imputation or
iterative guess-estimate of the missing values. This methodology
is applied to fuzzy modeling of a classification and regression
problem. The performance of the obtained models are com-
parable with the results obtained when using a complete data
set.

I. INTRODUCTION

When applying data analysis methods to real problems,
the data sets may contain missing elements. A data set has
partial missing data if some attribute values of a feature are
not observed. Incomplete datasets present a big obstacle for
many learning algorithms, that usually require a complete
data set to build the model.

There are two forms of missing data [1]: missing com-
pletely at random (MCAR) and missing at random (MAR).
Most approaches for dealing with partially missing datasets
assume that missing values are missing completely at random
(MCAR). Such missing values behave like a random sample
and their probability does not depend on the observed data
or the unobserved data [2], [3]. Thus, MCAR are interpreted
as a random reduction of the dataset, which provide no
further information for assigning incomplete feature vectors
to clusters.

Depending on how the data were collected, the occurrence
of a missing value can provide information about which class
the incomplete feature vector might belong to, i.e. the prob-
ability for the occurrence of missing values is class-specific.
In this case the values are said to be missing at random. MAR
exists when missing values are not randomly distributed
across all observations but are randomly distributed within
one or more subsamples. Missing values of this kind provide
additional information for the classification of the partially
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missing dataset and should be distinguished and also treated
differently from feature values that are missing completely
at random.

An example of values missing at random is intentionally
unanswered questions in a survey conducted. A missing value
in a questionnaire (e.g. for income) may indicate if the
person was more or less willing to answer depending on
their standing (class) within society. Similarly, on medical
reports some attributes can be left blank, because they are
inappropriate for some class of illnesses. Here the person
providing the information feels that it is not appropriate
to record the values of some attributes. The same kind of
missing values can be found as unmarked sections on data
sheets, when the options to choose do not apply to the
example at hand (or more particular to its class).

If the proportion of incomplete data is small, it is possible
to deal with missing values by deleting all incomplete data,
and then execute the data analysis method on the remaining
data. This is called the whole data strategy (WDS). The data
analysis method is then executed on the remaining data only
[4], [5], [2], [3].

However, if missing values are frequent, the data set size
may be considerably reduced, yielding unreliable or distorted
results. A way to minimize this extreme data reduction
problem is presented in [6]. All features with a percentage
of missing values higher than a threshold are removed and
thereafter records containing missing values in this reduced
feature space are removed. The result is a reduced but
complete data set. This data set retains as many features as
possible, to better capture all relevant relations in the data set,
and also as many records as possible, to maintain a sufficient
number of examples.

When data values are missing completely at random, they
can be replaced or the data can be used with the missing
values. Replacing missing values can potentially present
disadvantages [7], [8], and is used if the missing values
occur rarely or if they can be imputed with a high reliability.
Widely used replacement methods use the variables mean,
median or the most probable value as a replacement [1],
[5]. Another possible approach to handle missing values is
to extend the data analysis method so that the method can
deal directly with incomplete data. In [9], a method for
managing the incomplete input data in a Mamdani fuzzy
system is proposed. This method does not use any sort
imputation. Evolving models which iteratively use a best
guest of the missing data were proposed for classification
[10] and for identification of an ARX model [11]. In [4],
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four strategies for using the Fuzzy c-Means algorithm (FCM)
in incomplete data sets are proposed. In this work, two of
the approaches iteratively find the best guess estimate of the
missing data, and another approach uses the partial distance
strategy (PDS). This fuzzy cluster analysis using the partial
distance strategy is also discussed in [12].

An effective approach to the identification of complex
nonlinear systems is to partition the data using product space
fuzzy clustering into subsets and approximate each subset by
a simple linear model [13], [14]. Fuzzy clustering divides the
available data intro groups in which local linear relations
exists between the inputs and the output. A rule-based
model can be obtained from the available fuzzy partition
matrix and from the cluster prototypes. This process, as well
as the parametrization of the rules, membership functions,
consequents and other parameters of the fuzzy model can be
extracted in an automated way. This type of approach does
not tolerate data with missing values.

In this work we present a novel method to estimate a
Takagi-Sugeno model from data containing missing val-
ues, without using any kind of imputation or best guest
estimation. For this purpose, we use the extension of the
Fuzzy c-Means algorithm with the partial distance strategy,
as studied in [4], [12] to cluster the incomplete data. From
the fuzzy partition matrix U we discuss two methods to
identify the fuzzy sets in the antecedent of the rules and also,
how to estimate the consequent parameters. Furthermore
we study the performance of these models in a regression
and classification setting and consider their added value in
fuzzy modeling. The proposed method allows to identify
Takagi-Sugeno fuzzy models from incomplete data by means
of product-space clustering. This method does not require
imputation or iterative guess-estimate of the missing values
and the model performance is comparable to the results
obtained when using a complete data set.

This paper is organized as follows. Section II brielfy
presents the Takagi-Sugeno models and how they can be
identified using product space clustering of an incomplete
data set. The experimental setup and results are presented,
respectively, in Section III and Section IV. Finally the
conclusions and future work are given in Section V.

II. FUZZY MODELING WITH MISSING VALUES

This section presents the basic outline of the proposed
method for constructing fuzzy rule-based models by product-
space clustering of data containing missing values. After
some general considerations, we present the Takagi-Sugeno
fuzzy models, and then proceed to explain how they can be
derived from a data set X containing missing values.

A. General Considerations

A data set has partial missing data if some attribute
values of a datum xk are not observed. For example xk =
(xk,1, ?, xk,3, xk,4, ?) has missing values in the second and
fifth feature. Only the first, second and third feature are
observed.

Given a numerical data set X = [x1k, . . . , xnk]T , xk ∈
R

N the following subsets are defined:

XW = {xk ∈ X|xk is a complete datum}
XP = {xkj for 1 ≤ j ≤ n, 1 ≤ k ≤ N |

the value for xkj is present inX}
XM = {xkj =? for 1 ≤ j ≤ n, 1 ≤ k ≤ N |

the value for xkj is missing fromX}
XW contains the data subset with the features that contain
no missing values. XP is the subset of the data points which
are present in the dataset and XM contains the data points
missing in the dataset. For example, for a dataset X with
n = 3 features and N = 4 objects [4],

X =

⎡
⎣ 2 3 2 1

? 2 1 1
? 4 ? 2

⎤
⎦ ,

we obtain the subset XM = {x12, x13, x33}, XP = {x11 =
2, x21 = 3, x22 = 2, x23 = 4, x31 = 2, x32 = 1, x41 =
1, x42 = 1, x43 = 2} and

XW =

⎡
⎣ 3 1

2 1
4 2

⎤
⎦ .

The missing values xkj ∈ XM considered in this work are
subject to the following constraints:

1) The values are missing completely at random.
2) Each original feature vector xk retains at least one

component.
3) Each feature has at least one value present.

The first constraint allows us to assume that the missing
values do not provide any kind of information for assigning
incomplete feature vectors to clusters. The second and third
constraints simply state that the objects and the features
without absolutely any information are disregarded, i.e., no
object can have all relevant feature observations missing and
that no feature can have all observations missing.

B. Takagi-Sugeno Fuzzy Models

Takagi and Sugeno (TS) [15] introduced a fuzzy rule-based
model where the rule consequents are crisp functions of the
model input according to

Rk : If x is Ak then yk = fk(x), k = 1, 2, . . . ,K, (1)

where Rk denotes the k-th rule, K is the number of rules, x is
the antecedent variable, y is the one dimensional consequent
variable and Ak is the (multidimensional) antecedent fuzzy
set of the k-th rule. Each rule k has a different function fk

yielding a different value yk for the output.
The most simple consequent functions fk in (1) is the

affine linear form, in which the rules look like:

Rk : If x is Ak then yk = (ak)T x + bk, (2)

where ak is a parameter vector and bk is a scalar offset. This
model is called an affine TS model. The consequents of the



affine TS model are hyperplanes in the product space of the
inputs and the output.

Takagi-Sugeno fuzzy models are suitable for identification
of nonlinear systems and regression models. A TS model
with affine linear consequents can be interpreted in terms
of changes of the model parameters with respect to the
antecedent variables as well as in terms of local linear models
of the system [16], [13].

Several techniques can be used in fuzzy identification.
One possibility is to use identification by product-space
clustering [17]. This principle is to approximate a nonlinear
problem by decomposing it into several subproblems. The
information regarding the distribution of data can be captured
by the fuzzy clusters, which can be used to identify relations
between various variables regarding the modeled system.
In general, the identification of fuzzy models is solved in
two steps: structure identification and parameter estimation.
Structure identification can be obtained by fuzzy clustering.
Parameter identification consists of determining the param-
eters for the antecedent functions and the parameters of the
rule consequents. These steps are briefly reviewed in the next
sections.

C. Product Space Clustering

In clustering, the aim is to partition the data set X into
c clusters. A fuzzy partition U of X can be defined as a
family of subsets {Ai|1 ≤ i ≤ c} ⊂ P (X). The membership
function μik of data point i = 1, . . . , N to the cluster c,
where N is the number of data samples, are allowed to attain
real values in [0, 1].

There are several situations where performing the analysis
in a complete, but reduced subset XW is not the desirable
solution. Furthermore, when the number of missing values is
large, WDS cannot be justified. In these cases, it is possible
to calculate partial distances using all non-missing feature
values, and scaling afterwards this quantity by the reciprocal
of the proportion of components used [18]. An example of
the D2

ik calculation of the Euclidean distance is [4]:

D2
ik = ‖zk − vi‖2

2

= ‖(? 2 ? ? 5)T − (6 7 8 9 10)T ‖2
2

=
5

5 − 3
((2 − 7)2 − (5 − 10)2) (3)

The general formula for the partial distance calculation of
D2

ik is given by

D2
ik =

n

Ik

n∑
j=1

(xkj − vij)2Ikj (4)

where

Ikj =
{

0, if xkj ∈ XM

1, if xkj ∈ XP
for 1 ≤ j ≤ n and 1 ≤ k ≤ N

(5)
and Ik =

∑n
j=1 Ikj . A possible partial distance strategy

(PDS) version of the FCM algorithm (FCM-PDS) is given
by the following algorithm:

Partial Distance Strategy Fuzzy c-Means Algorithm:
Step 0: Given the data set X , choose the number of
clusters 1 < c < N , the weighting exponent m > 1, the
termination tolerance ε > 0. Initialize the partition matrix
randomly U (0).
repeat

for l = 1, 2, . . .

Step 1: Compute cluster prototypes (means):

v
(l)
ij =

∑ N
k=1

(
µ

(l)
ik

)m
Ikjxkj∑ N

k=1

(
µ

(l)
ik

)m
Ikj

, 1 ≤ i ≤ c

Step 2: Compute the squared inner-product distance
norm:
D2

ik = n
Ik

∑n
j=1(xkj−vij)2Ikj , 1 ≤ i ≤ c, 1 ≤ k ≤ N

Step 3: Update the partition matrix:
if D2

ik for 1 ≤ i ≤ c, 1 ≤ k ≤ N then
μ

(l)
ik = 1∑ c

j=1

(
D2

ik
D2

jk

)2/(m−1)

else
μ

(l)
ik = 0 if D2

ik > 0, and μ
(l)
ik ∈

[0, 1]with
∑c

i=1 μ
(l)
ik = 1

end if
until ‖U (l) − U (l−1)‖ < ε

This algorithm is the regular FCM algorithm where the
calculation of the distance D2

ik is substituted by (4) and also
the cluster prototype centers v

(l)
ij , are calculated according

to:

v
(l)
ij =

∑N
k=1

(
μ

(l)
ik

)m

Ikjxkj

∑N
k=1

(
μ

(l)
ik

)m

Ikj

(6)

This algorithm possesses all the standard convergence prop-
erties of FCM and the global convergence theory is appli-
cable, as is the local alternating optimization convergence
theory [4].

D. Antecedent Membership Functions

Generally, the antecedent membership functions can be
obtained by projecting the fuzzy partition onto the antecedent
variables, or by computing the membership degrees directly
in the product space of the antecedent variables.

a) Antecedent Membership Functions by Projection:
The principle of generating antecedent membership functions
by projection is to project the multidimensional fuzzy sets
defined point wise in the rows of the partition matrix U
onto the individual antecedent variables of the rules. This
method projects the fuzzy partition matrix onto the axes of
the antecedent variables xj , 1 ≤ j ≤ p.

In order to obtain membership functions for the antecedent
fuzzy sets Aij , the multidimensional fuzzy set defined point-
wise in the ith row of the partition matrix U are projected
onto the axes of the antecedent variables xj , 1 ≤ j ≤ p, by

μAij(xjk) = projj(μik). (7)



In order to obtain a model, the point-wise defined fuzzy
sets Aij can be approximated by appropriate parametric
functions.

Using FCM-PDS, the partition matrix U is complete. If
we assume that the antecedent variables xj are partially
complete, the method of obtaining the antecedent fuzzy sets
by projection can be used.

In general, it is considered that an advantage of this
method over the multidimensional membership functions
is that the projected membership functions can always be
approximated in such a form that convex fuzzy sets are
obtained.

When computing the degree of fulfillment βi(x) of the
ith rule, the original cluster in the antecedent product space
is reconstructed by applying the intersection operator in the
cartesian product space of the antecedent variables:

βi(x) = μAi1(x1) ∧ μAi2(x2) ∧ . . . ∧ μAip(xp), (8)

Where ∧ denotes a t-norm. Suitable t-norms are the product
or the minimum operator.

b) Multidimensional Antecedent Membership Func-
tions: By computing the membership degrees directly in the
space of the antecedent variables, each cluster represents one
fuzzy rule, as in (2). The multidimensional membership func-
tions Ak are given analytically by computing the distance
from the projection of the cluster center vi onto X , and then
computing the membership degree in an inverse proportion
to the distance, with the form:

βi(x) =

⎡
⎣ c∑

j=1

(
D2

ik(x, vx
i )/D2

jk(x, vx
j )

)2/(m−1)

⎤
⎦
−1

. (9)

where D2
ik is given by (4). The membership degree is

computed directly for the entire input vector, without de-
composition. The antecedents of the TS rules are simple
propositions with multidimensional fuzzy sets given by (1),
and βi(x) = μAi(x).

E. Consequent Parameters

The consequent parameters for each rule can be estimated
by the least-squares method. A set of optimal parameters
with respect to the model output can be estimated from
the identification data set by ordinary least-squares methods.
This approach is formulated as a minimization of the total
prediction error of the model, or as a minimization of the
prediction errors of the individual local models, solved as a
weighted least-squares problems. In this work the global least
squared method was used, as it aims at the minimization of
the global prediction error and yields an optimal predictor, by
taking into account the aggregation of the rules. The output
of the system using the fuzzy-mean formula is:

y =
∑K

i=1 βi(x)[aT
i x + bi]Iij∑K

i=1 βi(x)
, (10)

where Ikj is defined by (5). The degree of fulfilment βi(x)
of the i-th rule can be computed using (8). The membership

value μAi(x) can be obtained from the parametrized mem-
bership functions obtained using the projection operator (7)
or from the multidimensional membership function defined
in (9).

In the case that the antecedent variable has at least one
missing component at xkj , the degree of fulfilment βi(x) will
be complete for the case of the multidimensional antecedent
membership functions and will have missing values for the
case of projected antecedent membership functions. For the
latter, we assume that the membership value μAikj(xkj) will
have membership value μAikj(xkj) = 1. Since the value xkj

is missing, no information is available, so it is possible to
assume that any value of the domain is a suitable candidate.
In fuzzy clustering any point belongs to a certain degree
to every prototype cluster center. We represent the state as
belonging to all member sets with certainty.

Now, the consequent parameter estimates can be obtained
by solving a linear least-squares problem. Consider (θk)T =
[(ak)T bk], let Φe denote the matrix [X, 1], and let Γk denote
a diagonal matrix in R

Nd×Nd having the membership degree
γik = βik/

∑c
j=1 βik as its k-th diagonal element. Denote

Φ′ the matrix in R
Nd×K(n+1) composed from matrices Γk

and Φe as follows

Φ′ = [(Γ1Φe), (Γ2Φe), . . . , (ΓKΦe)]. (11)

Denote θ′ the vector in R
K(n+1) given by

θ′ = [(θ1)T , (θ2)T , . . . , (θN )T ]T . (12)

The resulting least-squares problem, Υ = Φ′θ′ + ε, has the
solution

θ′ = [(Φ)T Φ′]−1(Φ)T Υ. (13)

The optimal parameters ak and bk are given by

ak = [θ′s+1, θ
′
s+2, . . . , θ

′
s+n]T ,

bk = [θ′s+n+1], where s = (k − 1)(n + 1). (14)

With the determination of the parameters ak and bk, the fuzzy
model identification procedure is completed.

III. EXPERIMENTAL SETUP

Two data sets were used to test the proposed modeling
approach in this paper. The classification problem uses the
Altman data set for bankruptcy, which consists of five
financial ratios as features and the feature class is bankruptcy
or not bankruptcy [19]. Automobile miles per gallon (MPG)
prediction is a nonlinear regression problem, in which several
attributes of an automobile are used to predict the city-cycle
fuel consumption in miles per gallon. This data set can be
found in the UCI Repository Of Machine Learning Databases
and Domain Theories [20]. It contains data collected from
automobiles of various makes and models [21].

These examples were chosen because of their simplicity,
which provides a suitable framework to study the effects of
missing values in modeling. In both datasets X = XP =
XW . Missing values are artificially included in both datasets,
by randomly assigning a present value xkj ∈ XP to the
subset of missing values XM . This random assignment



follows the constraints explained in Section II-A. Note that
the output y is kept complete without assigning missing
values to it.

In all experiments the following parameters were fixed
to the following values: fuzzy partition exponent m = 2,
minimum amount of improvement ε = 1 × 10−5 and maxi-
mum number of iterations ρ = 100, which were sufficient to
achieve convergence for all trials.

For comparison purposes, we also build a fuzzy rule-based
model that uses the complete set. Modeling the systems using
the proposed approach entails the following experimental
setup

1) Randomly assign missing values to the complete
dataset X set to obtain X

⋂
XM �= ∅.

2) Divide the data in training set XT and validation set
XV .

3) Cluster the training dataset XT using FCM-PDS, as
explainded in Section II-C if the data contains missing
values or FCM if the data is complete.

4) Obtain antecedent membership functions Ak by pro-
jection onto the space of the input variables xj or
by computing the membership degrees directly in the
product space of the antecedents variables, as explained
in Section II-D.

5) Compute the consequent parameters using global least
squares estimation, as explained in Section II-E.

6) Validate the model using the validation set XV .

For the validation step, we consider data with missing
values as well as a complete dataset. This comparison allows
us to check if the model is biased towards data with missing
values. In all tests we used a simple holdout method for val-
idation. This is the simplest kind of validation. The data set
is separated into two sets, called the training set XT and the
validation set XV . A model is identified using the training
set only. Then the model is asked to predict the output values
for the out-of-sample data in the validation set, which it has
not seen before. Only the results obtained with the validation
set are reported. Since there is significant variation in the
clustering results [4] we generated 50 trials and we compare
the results across different methods, maintaining the data set
constant for each trial.

The following nomenclature will be used to differentiate
between models.

• The clustering method indicates if the model was built
with data with missing values (FCM-PDS) or if the data
was complete (FCM).

• The model built with incomplete data, was validated
both data contaning missing values (XV

⋂
XV

M �= ∅)
and without missing values (XV

⋂
XV

M = ∅).
• The models derived with the antecedent membership

functions obtained by projection onto the space of the
input variables, are indicated by Ak

proj .
• The models derived with the antecedent membership

functions obtained by computing the membership de-
grees directly in the product space of the antecedents
variables are indicated by Ak

multi.

The simplest performance criterion for a regression prob-
lem is the root mean square error (RMSE) of the output error
with respect to an independent set of out-of-sample data, with
size NV ,

RMSE =

√√√√ 1
NV

NV∑
k=1

(yk − ŷk)2, (15)

where ŷk is the output predicted by the model for the true
output value yk.

A possible way to solve a classification problem is to
consider a regression system that consists of fuzzy if-then
rules combined with a fuzzy inference mechanism. Assuming
that the classes can be ordered, a post-processing step is
applied to the output of the fuzzy inference system in order
to determine the crisp class to which the feature vector x
belongs.

The goal of a classification problem is to predict an un-
known label y based on an observed input x. For the testing
data set, the classification obtained is compared with the
actual label. If the two match, there is no error. If they do not
match, then an error has occurred. The overall performance
is measured by the accuracy. Accuracy is defined by the
following ratio:

Accuracy =
�CC
N

. (16)

where �CC is the number of correct classifications and N is
the total number of examples.

IV. EXAMPLES

This section reports the application results for the proposed
approaches to the databases in study. The regression model
is about the prediction of miles per gallon in automobile and
the classification model is about the prediction of bankruptcy.

A. Regression

Table I exhibits the average RMSE and standard deviation
(in parenthesis), of the fuzzy models for different values of
missing values. In this example we kept the order of the data
at each trial, and randomized the placement of the missing
values. The number of clusters used was c = 3. Using
the fuzzy rule-based model constructed with the complete
dataset, we obtained an average RMSE for the complete
validation set XV

⋂
XV

M = ∅ of 2.868 and 3.151 for the
models with the antecedent membership function Ak

proj and
Ak

mult, respectively.
As can be seen in Table I the obtained mean square-error

of the models built with missing values increases with the
number of missing values. Note that, although the obtained
RMSE are higher than those for the models built with the
complete dataset, the results can still be considered good,
even for 70% of missing values. Furthermore, the results
show that better results were obtained with models where
the antecedent functions Aik are generated by projection.

Comparing the results obtained with the complete data
XV

⋂
XV

M = ∅ and incomplete data XV
⋂

XV
M �= ∅ it

is possible to see that better results are obtained for the



TABLE I

RMSE FOR THE MPG DATABASE - MEAN (STD)

Clust FCM-PDS FCM-PDS
Val.Data XV

⋂
XV

M �= ∅ XV
⋂

XV
M = ∅

MV Ak
proj Ak

mult Ak
proj Ak

mult

5%
4.419 4.811 3.878 3.963

(0.261) (0.860) (0.128) (0.124)

10%
4.475 4.559 4.052 4.135

(0.191) (0.169) (0.115) (0.091)

20%
4.568 4.646 4.186 4.310

(0.562) (0.150) (0.106) (0.098)

30%
4.665 4.705 4.306 4.430

(1.011) (0.160) (0.132) (0.130)

40%
4.736 4.880 4.418 4.511

(0.275) (0.241) (0.212) (0.125)

50%
4.930 5.061 4.599 4.689

(0.302) (0.222) (0.298) (0.266)

60%
5.057 5.180 4.941 4.951

(0.315) (0.270) (0.583) (0.402)

70%
5.405 5.443 6.353 5.770

(0.248) (0.235) (1.492) (0.948)

complete data, if the percentage of missing values is below
60%. This indicates that the proposed methodology to build
models with missing data is robust, and can compensate for
the missing information, without distortion in the results.

An interesting aspect of the methodology proposed in this
paper is the assignment of the membership value μAikj(xkj)
to missing value xkj , for the case of projected antecedent
membership functions. Table II exhibits the average RMSE
and standard deviation (in parenthesis), of the fuzzy models
for different values of μAikj , for the case of 30% of missing
values.

TABLE II

RMSE DIFFERENT VALUES OF µAikj(xkj) - 30% MV - MPG

µAikj(xkj) Ak
proj Ak

mult

0.1
4.553 4.705

(0.207) (0.160)

0.2
4.561 4.693

(0.251) (0.202)

0.3
4.682 4.686

(1.096) (0.184)

0.4
4.594 4.675

(0.479) (0.157)

0.5
4.551 4.700

(0.190) (0.202)

0.6
4.592 4.711

(0.249) (0.196)

0.7
4.582 4.727

(0.221) (0.203)

0.8
4.617 4.760

(0.222) (0.192)

0.9
4.601 4.708

(0.214) (0.164)

1
4.665 4.705

(1.011) (0.160)

Table II shows that different values of μAikj(xkj) do
not influence the results. This stems from the fact that
while estimating the model parameters, for each missing
value xkj the same μAikj(xkj) is assigned. This results
in a model robust to the choice of the assigned value of

μAikj(xkj). Note that the slight difference between results
can be explained by the randomization that occur in each
trial.

B. Classification

Table III exhibits the obtained average accuracy and stan-
dard deviation (in parenthesis), of the fuzzy models for the
different types of models. In this example we randomized the
order of the data in each trial, as well as the locations of the
missing values. The number of clusters used was c = 2. The
average RMSE for the fuzzy rule-based model constructed
with the complete dataset, was 0.900 and 0.950 for the
model with the antecedent membership function Ak

proj and
Ak

mult, respectively. In this case we include a comparison
with a general data imputation based on the expectation-
maximization (EM) algorithm [22] as described in [23]. We
use the EM algorithm to complete the data, obtaining XEM

and then use FCM to derive a classification model. This
strategy is referred as FCM-EM.

TABLE III

ACCURACY FOR THE ALTMAN DATABASE - MEAN (STD)

Clust FCM-PDS FCM-PDS FCM-EM
Val.Data XV

⋂
XV

M �= ∅ XV
⋂

XV
M = ∅ XV

EM
MV Ak

proj Ak
mult Ak

proj Ak
mult Ak

proj Ak
mult

5%
0.901 0.942 0.912 0.956 0.864 0.937

(0.064) (0.042) (0.058) (0.024) (0.058) (0.040)

10%
0.908 0.933 0.912 0.962 0.847 0.928

(0.070) (0.055) (0.061) (0.033) (0.072) (0.050)

20%
0.899 0.908 0.914 0.968 0.831 0.908

(0.062) (0.064) (0.069) (0.040) (0.084) (0.051)

30%
0.890 0.907 0.927 0.957 0.844 0.892

(0.078) (0.057) (0.065) (0.044) (0.082) (0.065)

40%
0.869 0.881 0.923 0.959 0.808 0.903

(0.068) (0.082) (0.053) (0.047) (0.089) (0.073)

50%
0.849 0.853 0.919 0.951 0.790 0.868

(0.079) (0.084) (0.065) (0.061) (0.098) (0.105)

60%
0.805 0.779 0.904 0.934 0.753 0.824

(0.087) (0.109) (0.086) (0.043) (0.096) (0.112)

70%
0.766 0.760 0.859 0.897 0.742 0.718

(0.126) (0.108) (0.138) (0.105) (0.112) (0.192)

In general, the results obtained for the classification
problem, are similar to those obtained in the regression
problem. Table III shows that the obtained accuracy of the
models built with missing values decreases as the number
of missing values increases. Also, the obtained accuracy
of the models built with missing values increases with the
number of missing values. The obtained results using the
proposed methodology (FCM-PDS) are in general better than
the results obtained with the imputation methodology (FCM-
EM), as the imputation of missing values bias the results.
When comparing the accuracy obtained with the complete
data XV

⋂
XV

M = ∅ and incomplete data XV
⋂

XV
M �= ∅

it is possible to see that better results are obtained for
the complete data. Note that if the percentage of missing
values is below 50% the results are better than the average
accuracy for the fuzzy rule-based model constructed with
the complete dataset. During all our trials we noticed this



fact, and we conjecture that its due to the simplicity of
this example combined with the differences both in the
antecedent membership functions and the consequents of
the models, since the difference is very small. Also for
this case, the results obtained with the assignment of the
membership value μAikj(xkj) to missing value xkj , for the
case of projected antecedent membership functions, are very
similar, so we do not report them.
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Fig. 1. Antecedent membership functions - % MV - Altman.

Figure 1 shows the obtained antecedent membership func-
tions Aik of models built with different percentages of
missing values. It is interesting to note, that the reduction
of information caused by the missing values, results in less
separation between clusters in the product space. This is
reflected in an increase of the support of the fuzzy set Aik

with the increase in percentage of missing values. Note that
support of a fuzzy set A is defined as supp(A) = {x ∈
X|μA(x) > 0}.

V. CONCLUSIONS

Takagi-Sugeno fuzzy models are suitable for identification
of nonlinear systems and regression models and can be iden-
tified by product-space clustering, but this methodology is
not directly applicable if missing values are present. This pa-
per proposes a new approach to data-driven fuzzy modeling
of data with missing values. We propose a methodology to
identify Takagi-Sugeno fuzzy models by means of product-
space clustering of incomplete data. This approach does not
require imputation or iterative guess-estimate of the missing
values. The methodology is applied to a classification and
regression problem. The performance of the obtained models
are comparable with the results obtained when using a
complete data set, with the added advantage that our method
does not require a guess estimation of the true value. Future
research will concentrate on applying this methodology to
other problems and on how to use the fuzzy models of
incomplete data to estimate the missing values.
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