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Distributed, Price-based Control Approach to Market-based Operation
of Future Power Systems

A. Jokic, P.P.J. van den Bosch, R.M. Hermans

Abstract— In this paper we present, discuss and illustrate
on examples the price-based control paradigm as a suitable
approach to solve some of the challenging problems facing
future, market-based power systems. It is illustrated how global
objectives and constraints are optimally translated into time-
varying prices. The real-time varying price signals are guaran-
teed to adequately reflect the state of the physical system and
present the signals that optimally shape, coordinate and syn-
chronize local, profit driven behaviors of producers/consumers
to mutually reinforce and guarantee global objectives and
constraints. As an illustrative example, the real-time price-
based power balance control with congestion management is
presented.

Index Terms— Power System Markets; Distributed control;
Network congestion management; Optimization

I. INTRODUCTION

Electrical power systems are going through some major
restructuring processes and it has been widely recognized
that the feasibility, reliability and efficiency of the future
European power grid cannot be achieved by a simple extrapo-
lation of the current state. Regarding market, operational and
control structures, national power grids in Europe currently
exhibit rather significant diversity of employed solutions,
many of which are posed on ad-hoc basis, are characterized
by insufficient coordination among involved parties, have
inconsistencies, non-optimality and lack of stability and
robustness proofs. In spite of vast research efforts, see e.g.
[1], [2], [3], [4], [5], and commonly shared vision for the
future, we can say that there is yet no unifying and funda-
mental scientific theory to shape the optimal management
and control structure of the future EU power grid.

In this paper, our main goal is to present distributed control
systems theory as a scientific framework which is suitable
to adequately formulate and cope with some of the major
challenges facing future power systems. The leitmotiv and
the core idea of the presented approaches is in utilization
of real or near real-time varying price signals to shape the
behaviors of local subsystems so that the desired overall
system objectives and constraints are met. Depending on the
considered time-scale and global objectives of interest, the
term local subsystem can mean either producer or consumer
as an active player (market agent) in economical layers, or,
in other cases, generator or some other physical device as
local dynamical system in the physical layer. It is a nice
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observation that different problems and on different time-
scales can be treated with the same mathematical tools,
where prices, which in some cases have purely mathematical
interpretations, act as crucial control signals.

Indeed, the idea of price-based control is long present
in power system community, dating back to work of Fred
Schweppe and his co-workers, see e.g. [1], [6], [7], [8].
In this paper we further explore this idea by taking a
control systems view on the problems and suitable emerging
solutions. Although analogy between market operation and
dual formulation of optimization problems has been often
noted in the past, a novel approach and one of the main
contributions of this paper is to present how specific structure
of power flow equations can be preserved in devising efficient
and flexible distributed control solutions, as alternative to
centralized solutions. In addition to addressing some gen-
eral theoretical notions and results, we will present several
concrete examples to illustrate their potential for real-life
applications.

II. OPTIMIZATION DECOMPOSITION: A MATHEMATICAL
THEORY OF FUTURE POWER SYSTEM CONTROL

Modern control control systems theory is grounded on
the following remarkable fact: virtually all control problems
can be casted as optimization problems. It is insightful to
realize that the same, far reaching statement, holds as well
for the power systems: virtually all global operational goals
of a power system can be formulated as constrained, time-
varying optimization problems. Similarly as modern control
theory accounts for efficiently solving these optimization
problems (which is in most cases a far from trivial task),
the same mathematical framework provides a systematic
and rigorous scientific approach to shape operational and
control architectures of power systems1. For illustration, in
mathematical terms, a shift from monopolistic, one utility
controlled system, to the market-based system is seen as a
shift from explicitly solving primal problem (e.g. economic
dispatch at the control center) to solving its dual problem
(e.g. operating real-time energy market). The former case
can be called the cost-based operation, while the latter can
be called the price-based operation. Before continuing with
consideration of some specific problems in power systems,
and their price-based solutions, we will first recall some basic
notions from optimization theory. For closely related subjects
and the state-of-the-art results on the distributed optimization

1The interested reader is refereed to the excellent paper [9] where the
role of alternative ways for solving optimization problems is reflected in
devising alternative operational structures for communication networks.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on December 4, 2009 at 05:52 from IEEE Xplore.  Restrictions apply. 



and control, the interested reader is refereed to [10], [11], [9],
[12], [13] and the references therein.

Consider the following structured, time varying2, opti-
mization problem

min
x1,...,xN

N∑
i=1

Ji(xi), (1a)

subject to xi ∈ Xi, i = 1, . . . , N, (1b)
G(x1, . . . , xN ) ≤ 0, (1c)
H(x1, . . . , xN ) = 0, (1d)

where xi ∈ Rni , i = 1, . . . , N are the local decision
variables, the functions Ji : Rni → R, i = 1, . . . , N , denote
the local objective functions, while each set Xi ⊆ Rni defines
local constraints on the corresponding local variable xi. The
functions G and H , which respectively take values in Rk

and Rl, define global inequality and equality constraints.
The vector valued inequality (1c) should be interpreted
elementwise.

Note that the optimization problem (1) is defined on the
overall, global system level, where global objective function
is sum of local objectives as indicated in (1a). Furthermore,
note that if the global constraints (1c) and (1d) are omitted,
the optimization problem (1) becomes separable in a sense
that it is composed of N independent local problems which
can be solved separately. For such a completely separable
case, we say that the optimization problem can be solved in
a decentralized way. For the future reference, we will call
the problem (1) the primal problem.

Next, from (1) we formulate the dual problem as follows

max
λ,µ

l(λ, µ) (2a)

subject to µ ≥ 0, (2b)

where

l(λ, µ) := min
x1∈X1,...,xN∈XN

( N∑
i=1

Ji(xi)

−λ>H(x1, . . . , xN ) + µ>G(x1, . . . , xN )
)

. (3)

In (2) and (3) λ ∈ Rk and µ ∈ Rl are the dual variables
(Lagrange multipliers) and have an interpretation of prices
for satisfying the global constraints (1c) and (1d). If (1) is
a convex optimization problem, it can be shown that the
solutions of the primal and the dual problem coincide3.

Remark II.1 Suppose that the functions H and G have an
additive structure in local decision variables xi, meaning
that H(x1, . . . , xN ) =

∑N
i=1 h̃i(xi) and G(x1, . . . , xN ) =∑N

i=1 g̃i(xi) with some given functions h̃i, g̃i, i = 1, . . . , N .

2For notational convenience, we have omitted the explicit reference to
the time dependence.

3In fact, an additional mild condition, the so-called Slater’s constraints
qualification, is required for the solutions to coincide, see e.g. [14] for more
details.

Then for a fixed λ and µ the optimization problem in (3) is
separable and can be solved in a decentralized way. 2

Remark II.2 Updating the the dual variables (prices) λ, µ
to solve the maximization problem in (2) can be achieved in
a centralized way on a global level, e.g. at the central market
operator which calculates the market clearing price. In some
important cases, as it will be presented in Section III, the
optimal prices (λ, µ) can also be efficiently calculated in a
distributed way. This means that they can be calculated even
if there is no one central unit that gathers information and
communicates with all the subsystems in the network, but
the optimal price calculations are based only on the locally
available information and require only limited communica-
tion among neighboring systems. 2

A. Example 1.

Loosely speaking, and as already mentioned in the in-
troduction, the market-based power system can be seen as
solving the dual optimization problem (2). When the power
limits in transmission network are not considered, this can
be more precisely described as follows.

Suppose that for each i, local decision variables xi is
a scalar and represents the power production (xi > 0)
of a power plant i, or a power consumption (xi < 0)
if the subsystem i is a consumer. Furthermore, let Ji(xi)
denote power production costs when the i-th subsystem is
a producer, and its negated benefit function when the i-th
subsystem is a consumer. Since we do not consider the
transmission network limits, the only global constraint is the
power balance constraint

∑N
i=1 xi = 0, i.e. in (1) and (2) we

have that H(x1, . . . , xN ) :=
∑N

i=1 xi.
Obviously, the primal problem (1) now corresponds to

minimization of total production costs and maximization of
total consumers benefit, while the power balance constraint
is explicitly taken into account via (1d).

Let us now consider the price-based solution through the
corresponding dual problem. First note that minimization
problem in (3) is in this case given by

l(λ) := min
x1,...,xN

n∑
i=1

(
Ji(xi)− λxi

)
. (4)

In the above equation each term in the summation, i.e.
Ji(xi)− λxi, denotes the benefit of a subsystem i where λ
denotes the price for electricity. Obviously, the dual problem
(2) then accounts to maximizing the total benefit of the
system. Note that in solving the dual problem, the power
balance constant is not explicitly taken into account. How-
ever, mathematics tells us that the corresponding maximum
in (2) is attained precisely when the price λ is such that for
the solution to the corresponding minimization problem in
(4) it holds that

∑N
i=1 xi = 0. In other words, the price λ

which maximizes the total benefit of the system is precisely
the price for which the system is in balance.

To summarize, while in primal solution the global con-
straints were explicitly taken into account, in the dual solu-
tion they are enforced implicitly through the price λ.
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Remark II.3 The observation from the above presented
example can be generalized to the core idea of the price
price-based control paradigm:
In the price-based control, a price (Lagrange multiplier) is
assigned to each crucial global constraint (i.e. each row in
(1c) and (1d), see (3)) and is used to implicitly enforce this
constraint.

With this interpretation in mind, the main objective of the
market operator in a power system is to adequately translate
global constraints into price signals so that the reaction of
local subsystems to this price (via minimization problem in
(3)) will result in a situation when these global constraints
are necessarily satisfied.

It is also insightful to interpret the price-based solutions
as incentives-based solutions, as prices λ are used to give
incentives to the local subsystems so that their local objec-
tives will make them behave in a way which serves global
needs. 2

Remark II.4 When the transmission network constraints are
completely neglected, as it was done in the above example,
the global equality constant

H(x1, . . . , xN ) :=
N∑

i=1

xi = 0 (5)

has an additive structure as described in Remark II.1. There-
fore, for a fixed λ the solution to the corresponding optimiza-
tion problem in (3) is separable and it can be decomposed
into a set of N optimization independent problems. The
prices can then be interpreted as the variables that are used
to coordinate these independent problems with the goal that
their solution coincide with the solution of the “original”
primal problem. In such a cases, we say that the optimization
problem is solved through the dual decomposition. 2

The simplicity of the problem in the above presented
example was instrumental to illustrate the main “philosophy”
of using prices as the curtail signals in control of power
systems. The examples presented in the following section are
based on the same general idea as outlined in Remark II.3,
however, there the underlying problems and solutions are
much more complex and involved. Therefore, we will restrict
our presentation to only some of their basic and the most
illustrative features, while for detailed treatment and all the
proofs the interested reader is referred to [15], [16].

III. PRESERVING THE STRUCTURE: DISTRIBUTED
CONTROL FOR TRANSMISSION SYSTEM MANAGEMENT

When the optimal power balance problem from the pre-
vious section (Example 1) is complemented to include the
security limits on the power flows in tie-lines of the transmis-
sion network, the solution becomes much more complex, see
e.g. [17], [4], [15]. In fact, devising efficient operational and
control schemes to optimally cope with the transmission net-
work limits in competitive environment of restructured power
systems is considered to be one of the toughest problems
in market structure design [3]. In this section we illustrate,

by using appropriate examples, how this problem can be
solved in a distributed way. The crucial points on the path
towards the solution are, firstly, adequate formulation of the
problem as structured optimization problem, and secondly,
preserving the structure of the problem in the solution. The
latter is crucial as it allows for a far more flexible, scalable
and robust distributed solutions, as opposed to centralized
solutions which depend on extensive communications among
distant subsystems in the network, are less robust and become
increasingly complex as the size of the system increases.

Let us complement the optimal power balance problem
discussed in Example 1 by adding the global inequality
constraints (1c) which represents the security limits imposed
on the power flows in tie-lines of the transmission network.
In this case, the local variables xi from Example 1 have
to be extended to include at least the voltage phase angles
at each bus in the system, see e.g. [17]. The voltage phase
angles are necessary variables to describe the power flows in
the transmission network. For simplicity, suppose that i is an
index of a bus in the transmission network, and that at each
bus there is connected either one producer or consumer with
the local objective function Ji. As the transmission system
is taken in the account, it is now not sufficient any more to
represent the global power balance as a single scalar equality
constraint, as it was done before in equation (5). The power
balance constraint is now a vector valued equality constraint

H(x1, . . . , xN ) = 0, (6)

where H(x1, . . . , xN ) ∈ RN and the i-th row in (6)
represents the power balance of the i-th bus in the network.
Furthermore, suppose that the network has a set of M lines
for which, and due to security and reliability issues, there are
determined the upper limits on the allowable power flows.
In other words, we have to add M inequality constraints of
the form

G(x1, . . . , xN ) ≤ 0, (7)

where G(x1, . . . , xN ) ∈ RM and the j-th row in (6) states
that the power flow limit violation in the j-th line has to be
less than zero, i.e. that the line must not be congested.

With the above definitions and interpretations of the global
constraints, the optimal power balance problem with conges-
tion management can be formulated as a primal problem (1),
or the corresponding dual problem (2). Note that in the dual
problem λ is now a vector, i.e. λ ∈ RN , where i-th entry in
λ corresponds to the price of power balance constraint at the
i-th bus. Similarly, the j-th entry in µ (note that µ ∈ RM )
is interpreted as a price for not overloading the j-th line.

According to the price-based control paradigm, see Re-
mark II.3, the goal of the system operator is to calculate
the prices λ and µ, which will result in satisfaction of the
constraints (6) and (7). The challenge of solving this problem
originates from the complicating fact that the functions H
and G have no longer an additive structure, as it was the
case in Example 1. However, and as it is illustrated in
the following example, the functions H and G are highly
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structured and this structure can be further exploited in the
solution.

A. Example 2.

Consider a simple network depicted in Figure 1 and
suppose that the line connecting bus 1 and bus 2 has an upper
power flow limit set to p12, i.e. with p12 denting the power
flow in the corresponding line we have that p12 − p12 ≤ 0.
With µ12 denoting the corresponding the price (Lagrange
multiplier) for this inequality constraint, and with λi denting
the price (Lagrange multiplier) for the power balance at bus
i (i ∈ {1, 2, 3, 4}), it can be shown that when the optimum
of the corresponding dual problem (2), the prices necessarily
satisfy the following equation:
0
B@

b12,13 −b12 −b13 0
−b12 b12,23 −b23 0
−b13 −b23 b13,23,34 −b34

0 0 −b34 b34

�������

b12

−b12

0
0

1
CA

0
BBB@

λ1

λ2

λ3

λ4

µ12

1
CCCA = 0,

(8)
where b12,13 = b12 + b13 (and so on) and where bpq is
a susceptance of the line connecting busses p and q. The
above relations among the prices are derived from the so-
called Karush-Khun-Tucker (KKT) optimality conditions for
the corresponding optimization problems (1) and (2), see e.g.
[14] for the KKT conditions in general, and [15] for detailed
derivation for this particular problem. What is important is
that the optimality condition (8) preserves the structure of the
power flow equations present in H and G. This is structure
is more precisely described as follows.

Each row in (8) represents an equality related to the
corresponding bus in the network, i.e. the first row is related
to the first bus etc. Note that the i-th row directly relates the
price λi only with the prices of its neighboring busses, i.e.
in the i-th row of (8) there explicitly appears λj if and only
if there is a line connecting bus i with the bus j. Similarly,
only the prices λi and λj in the busses corresponding to the
congested line i− j are directly related to the corresponding
Lagrange multiplier µij .

Note that in practice transmission network graph is usually
sparse in a sense that the number of neighboring busses for
most of the busses is small, e.g. two to four.

Remark III.1 The highly structured relations among nodal
prices, as illustrated above in the equation (8), are a conse-
quence of an appropriate problem formulation, i.e. special
care was taken already at the inial fase of formulating the
global power system objectives as an optimization problems
(1) and (2). More precisely, and for all the details we refer
the interested reader to [15], to obtain the highly structured
relations (8) it was necessary to induce the voltage pase
angles explicitly in (1) in (2) as decision variables. Another
possibility, common in the literature, is to introduce a “slack
bus” with zero voltage phase angle and to solve the equations
for the line flows, completely eliminating voltage pase angles
from the problem formulation [17], [1]. However, in that case
a specific structure, i.e. sparsity, of the power flow equations
is lost. 2

Fig. 1. An example of a simple congested network.

These highly structured relations from the optimality con-
ditions can be used in devising distributed real-time price-
based power balance control and congestion management
solution as shortly described in the following subsection and
further illustrated in the example in Subsection III-C.

Fig. 2. Distributed control scheme for power balance and congestion
control.

B. Distributed price-based control

When the violations of global system contracts (6) and (7)
can be measured in real-time, in [16], [15] it was shown that
a suitable dynamic extension of the optimality condition (8)
can be used as a control law for real-time price update of the
nodal prices λi. This dynamical extension of the optimality
conditions was appropriately named the KKT controller [18],
[15]. When the prices are updated according to the KKT
control law, and when each producer or consumer is adjusting
its power production/consumption according to its benefit
maximization strategy, i.e.

pi = arg min
p̃i

(Ji(p̃i)− λip̃i)

with pi denoting the power production/consumption of a
subsystem at bus i, it was proven that the system will
settle in the operating point where the total benefit of is
maximized, i.e. that the operating point will coincide with
the corresponding solution of (2).

Furthermore, in [15] it was shown that the KKT controller
further preserves the highly structured relations present in the
optimality conditions. The implication of this fact is that the
price-based KKT control laws can be implemented through
a set of nodal controllers, where a nodal controller (NC)
is assigned to each node (bus) in the network, and each
NC communicates only with the NC’s of the neighboring
nodes. The distributed implementation of the propose price-
based control structure is graphically illustrated in Figure 2.
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Fig. 3. IEEE 39-bus New England test system.

Fig. 4. Power flow in the line connecting buses 25 and 26.

Note that the communication network graph among NC’s is
the same as the graph of the underlying physical network.
Any change in the network topology requires only simple
adjustments in NC’s at the location of the change. A dis-
tributed control structure is specially advantageous taking
into account the large-scale of electrical power systems.

Finally, it is worth to mention that the only system param-
eters that are explicitly included in the price update rules
are the transmission network parameters, i.e. the network
topology and line impedances. To provide the correct prices,
the controller requires no knowledge of cost/benefit functions
Ji(·) of producers/consumers in the system (neither is it
based on their estimates).

C. Example 3.

To illustrate the potential of the price-based methodology
for practical application we consider the widely used IEEE
39-bus New England test network. The network topology,
generators and loads are depicted in Figure 3. The complete
network data, including reactance of each line and load
values can be found in [19]. All generators in the system are
modeled using a third order model consisting of governor,
turbine and rotor dynamics. This is a standard model used in
“automatic generation control” studies [20]. The parameter
values, in per units, are taken to be in the ±20% interval
from the values given in [21], pp. 545. Each generator is
taken to be equipped with a proportional feedback controller

Fig. 5. Trajectories of nodal prices for generator buses 30-39.

Fig. 6. Nodal prices in the case of congestion.

for frequency control with the gain in the interval [18, 24].
We have used quadratic functions to represent the variable
production costs, i.e.

Ji(pi) =
1
2
cg,ip

2
i + bg,ipi,

with the values of parameters cg,i, bg,i, for i = 1, ..., 10 as
listed in Table 5 in [22]. The lower saturation limit and the
upper saturation limit for each generator was set to 0 and 10,
respectively. All loads are taken to be price-inelastic, with the
values from [19].

The distributed price-based controller was implemented in
the simulation and for simplicity of exposition, the line power
flow limit was assigned only for the line connecting nodes
25 and 26. The simulation results are presented in Figure 4
and Figure 5. In the beginning of the simulation, the line
flow limit p25,26 was set to infinity, and the corresponding
steady-state operating point is characterized by the unique
price of 39.28 for all nodes. At time instant 5s, the line
limit constraint p25,26 = 1.5 was imposed. The solid line
in Figure 4 represents the simulated trajectory of the line
power flow p25,26. In the same figure, the dashed line
indicates the limits on the power flow p25,26. The solid
lines in Figure 5 are simulated trajectories of nodal prices
for the generator buses, i.e. for buses 30 to 39, which is
where the generators are connected. In the same figure,
dashed lines indicate the off-line calculated values of the
corresponding steady-state optimal nodal prices. For clarity,
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the trajectories of the remaining 29 nodal prices were not
plotted. In the simulation, all these trajectories converge to
the corresponding optimal values of nodal prices as well. The
optimal nodal prices for all buses are presented in Figure 6.
In this figure, the nodal prices corresponding to generator
buses 30-39 are emphasized with the gray shaded bars. The
obtained simulation results clearly illustrate the efficiency of
the proposed distributed control scheme.

IV. CONCLUSION AND FUTURE WORK

In this paper we have presented and illustrated on exam-
ples the price-based control paradigm as a suitable approach
to solve some of the challenging problems facing future,
market-based power systems. It was illustrated how global
objectives and constraints, updated from the on-line measure-
ments of the physical power system state, can be optimally
translated into time-varying prices. The real-time varying
price signals are guaranteed to adequately reflect the state of
the physical system, present the signals that optimally shape,
coordinate and in real or near real-time synchronize local,
profit driven behaviors of producers/consumers to mutually
reinforce and guarantee global objectives and constraints.

Current research is devoted to modification of the devised
price-based control scheme so that the prices are updated on
the time scale of 5-15 minutes, rather than on unrealistically
fast scale of seconds. In that approach, instead of using
rapidly changing network frequency deviations as indication
of power imbalance in the system, we use are using deviation
of power production reference values to the generators which
originate from (slightly modified) secondary control loops
(automatic generation control) over the sampling period (i.e.
over 5 - 15 minutes). These deviations are used as a measure
of imbalance in the system.
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