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CRYSTAL PRECIPITATION AND DISSOLUTION IN A POROUS
MEDIUM: EFFECTIVE EQUATIONS AND NUMERICAL

EXPERIMENTS∗

T.L. VAN NOORDEN†

Abstract. We investigate a two-dimensional micro-scale model for crystal dissolution and precipita-
tion in a porous medium. The model contains a free boundary and allows for changes in the pore volume.
Using a level-set formulation of the free boundary, we apply a formal homogenization procedure to obtain
upscaled equations. For general micro-scale geometries, the homogenized model that we obtain falls in the
class of distributed microstructure models. For circular initial inclusions the distributed microstructure
model reduces to system of partial differential equations coupled with an ordinary differential equation.
In order to investigate how well the upscaled equations describe the behavior of the micro-scale model,
we perform numerical computations for a test problem. The numerical simulations show that for the test
problem the solution of the homogenized equations agrees very well with the averaged solution of the
micro-scale model.

1. Introduction. In this paper we use a formal limiting procedure with asymp-
totic expansions to derive a macroscopic law for crystal dissolution and precipitation in a
porous medium. The microscopic model that serves as the staring point for the limiting
process, incorporates the change in volume of the pore space as a result of the precipi-
tation/dissolution process. In [17], the same microscopic model is considered in a thin
strip. In the present paper we investigate the model on a perforated domain.

Macroscopic laws for reactive transport in porous media, which include the present
case of crystal dissolution and precipitation, are of practical importance in many physical,
biological and chemical applications. Macroscopic laws for reactive transport in porous
media are derived rigorously in, e.g., [6]. For the more specific case of crystal dissolution
and precipitation, macroscopic models are given in [3, 4, 7, 8]. In these papers the pre-
sented macroscopic models are analysed, but are not supported by a rigorous derivation.
In most of these papers also the numerical solution of the proposed model equations is
studied. Related work, in which the transport of dissolved material is analysed, can be
found in [14, 16].

The main difficulty in performing the formal homogenization for the crystal dissolution
and precipitation reaction is that the equations that describe the micro-scale processes
contain a free boundary. This free boundary describes the interface between the layer of
crystalline solid attached to the grains and the fluid occupying the pores. The location
of this free boundary is an unknown in the model and moves with speed proportional to
the local dissolution/precipitation rate. The micro-scale model with the free boundary
has been studied in [18] in a one dimensional setting and without flow. Other works that
study crystal dissolution and precipitation on the micro-scale are [12] and [13].

The crystal dissolution and precipitation problem has been studied also in [7] and
[15, 19]. The main difference between the cited papers and the present paper is that in
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Fig. 2.1. Schematic representation of porous medium with layers of crystalline solid attached to the
grains.

the cited papers it is assumed that the thickness of the layer of crystalline solid attached
to the grains domain is negligible so that the pore geometry can assumed to be fixed. In
this case the formal homogenization is a rather standard procedure and the macroscopic
equations can be derived straightforwardly.

In this paper we do take into account the change in the pore volume due to the pre-
cipitation/dissolution reaction. For the micro-scale model this results in a free-boundary
problem, and for the macroscopic model this results in a permeability and porosity that
depend on the local pore geometry. The behaviour of solutions of the micro-scale model
are numerically studied using the Arbitrary Lagrangian Eulerian method. The structure
of this paper is as follows. In Section 2 we will discuss the model equations that describe
the processes at the micro-scale. In Section 3, we will derive using a formal limiting ar-
gument the effective equations for the limit of ε to zero, and in Section 4 we show that
the effective model can be simplified for certain initial configurations. In Section 5 the
numerical results for both the micro-scale model and the effective equations are presented
and compared.

2. Model equations. We consider the same model for crystal dissolution and precip-
itation as is described in [17]. In this paper, however, we consider a different micro-scale
geometry of the porous medium. The porous medium is in the present paper represented
by a two dimensional preforated domain. We denote the two dimensional bounded do-
main by Ω, with boundary Γ, and we suppose that the grains of the porous medium
are circles. Let the centers of the cicles Bij, all with radius Rg < ε/2, be located in a
equidistant grid with nodes at (εi, εj), where ε is a small dimensionless length scale. The
pore space in completely occupied by a fluid which contains dissolved solutes (ions) which
can precipitate on the grain boundary and form a crystalline solid, the precipitate. The
reverse reaction of dissolution is also possible. We only consider one solute (the cation),
even though dissolution and precipitation involves another species, the anion. This is a
simplified setting that is considered also in [17, 18], which can be achieved by consider-
ing another quantity, the total electric charge (see [7, 15]). Under appropriate boundary
and initial conditions, the total charge remains constant in time and space, and the two
species have equal concentrations. The boundary that is the interface between the crys-
talline solid that surrounds the circle Bij and the pore space is denoted by Γij(t), with
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normal νε, pointing into the crystalline phase, and its normal velocity is denoted by vε
n

(see Fig. 2.1). The dimensionless equation for the normal velocity is given by (see [17])

vε
n = −εk(r(uε)− wε), on Γij(t), (2.1)

where k is the Damköhler number, r is a rate function for the precipitation rate, and
where wε ∈ H(dist(x, Bε)), with Bε := ∪Bij, is a multivalued dissolution rate, with dist
the Euclidian distance function, and with H the set-valued Heaviside graph,

H(u) =

{ {0}, if u < 0,
[0, 1], if u = 0,
{1}, if u > 0.

In principle the equation (2.1) determines the evolution and thus the position of the
free interfaces Γij(t). To apply formal homogenization, we can of coarse expand the
unknowns in (2.1) in a power series in ε, but it would be convenient not only to be able
to expand the velocity of the interface, but also to be able to expand the position of the
interface in a power series in ε. The idea that we pursue in the present paper, is to describe
the free boundaries Γij(t) with a level set function. A level set function is a convenient
tool to deal with moving interfaces, and has also inspired new ways to solve numerically
moving boundary problems [9, 10, 11]. We identify the interface with the zero-level set of
the level set function, say Sε. The level set equation

Sε
t + vε

n|∇Sε| = 0

describes the evolution of the interface. We can now also expand the function S in a series
and use the machinery of formal homogenization.

It is important to note that we assume that the layers of crystalline solid surrounding
the different grains do not touch each other, so that Γij(t) ∩ Γkl(t) = ∅ if i 6= k or j 6= l,
and we also assume that the grains do not intersect the outer boundary of the domain Ω,
so that Γ∩Γij(t) = ∅ for all i, j. We denote the solute concentration by uε, the velocity of
the fluid phase by qε, the pressure by pε. All these unknowns are dimensionless. Note that
for the formulation of the equations we need a continuous extension of uε to the whole of
Ω, which is in equations below denoted by ūε. The model is given by

uε
t = ∇ · (D∇uε − qεuε),

ε2µ∆qε = ∇pε,

∇ · qε = 0,

in Ωε(t), (2.2)

{
Sε

t = εk(r(ūε)− wε)|∇Sε|,
wε ∈ H(dist(x, Bε)),

in Ω, (2.3){
νε · (D∇uε − qεuε) = −εk(r(uε)− wε)(ρ− uε),

qε = −εKk(r(uε)− wε)νε,
on Γε(t) (2.4){

uε(x, t) = ub(x, t),

qε(x, t) = qb(x, t),
on Γ. (2.5){

uε(x, 0) = uI(x),

Sε(x, 0) = SI(x),
(2.6)
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where

Ωε(t) := {x ∈ Ω |Sε(x, t) < 0}, (2.7)

Γε(t) := {x ∈ Ω |Sε(x, t) = 0}, (2.8)

and where

νε =
∇Sε

|∇Sε|
(2.9)

denotes the normal on the boundary Γε(t).

The model equations contain the positive parameters D, which is the dimensionless
diffusion coefficient, µ, which is the dimensionless viscosity, k, which is the Damköhler
number, and ρ, which is the dimensionless density of the crystalline phase. The auxiliary
function wε acts as the scaled dissolution rate and, when dist(x, Bε) > 0, wε attains the
value 1, and when dist(x, Bε) = 0, we have wε = r(uε). With respect to the reaction rate
function r(u), we assume

1. r : R → [0,∞) is locally Lipschitz;

2. a unique u− ∈ [0, ρ) exists such that r(u) = 0 for all u ≤ u− and r(u) is strictly
increasing if u > u−.

3. a unique us ∈ (u−, ρ) exists such that r(us) = 1.

The parameter K, which expresses volume changes due to precipitation or dissolution
[17], may also be negative, and is between the bounds

us − ρ

us

< K < 1. (2.10)

Furthermore, we assume the following inequalities

0 ≤ uI < ρ.

3. Formal homogenization. For the formal homogenization we assume the follow-
ing formal asymptotic expansions for uε, Sε, qε and pε:

uε(x, t) = u0(x, x/ε, t) + εu1(x, x/ε, t) + ε2u2(x, x/ε, t) + ...

Sε(x, t) = S0(x, x/ε, t) + εS1(x, x/ε, t) + ε2S2(x, x/ε, t) + ...

qε(x, t) = q0(x, x/ε, t) + εq1(x, x/ε, t) + ε2q2(x, x/ε, t) + ...

pε(x, t) = p0(x, x/ε, t) + εp1(x, x/ε, t) + ε2p2(x, x/ε, t) + ...

where uk(·, y, ·), Sk(·, y, ·), qk(·, y, ·) and pk(·, y, ·) are 1-periodic in y.
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3.1. Preliminaries. In order to use the machinery of formal homogenization, we
need to expand first of all νε in a power series in ε. This can be done in terms of Si’s
using (2.9). First we expand |∇Sε|: using the well-known differentiation law [5]

∇ = ∇x +
1

ε
∇y,

the expansion for Sε and the Taylor series for the square root, we obtain

|∇Sε| = 1

ε
|∇yS0|+ (...). (3.1)

In the same fashion, we obtain

νε = ν0 + εν1 + ε2(...),

where

ν0 =
∇yS0

|∇yS0|

and

ν1 =
∇xS0 +∇yS1

|∇yS0|
− (∇xS0 · ∇yS0 +∇yS0 · ∇yS1)

|∇yS0|2
∇yS0

|∇yS0|
.

If we introduce τ0 = ν⊥0 , we can write

ν1 = τ0
τ0 · (∇xS0 +∇yS1)

|∇yS0|
. (3.2)

Now we focus on the boundary conditions at the moving boundary Γε(x, t). In order to
obtain boundary conditions, we need to substitute the expansions for uε, qε and νε in
the boundary conditions (2.4). This is not so straight forward as it may seem, since the
boundary conditions (2.4) are enforced at Γε(t), i.e. at every x where Sε(x, t) = 0. For the
formulation of the upscaled model it would be convenient to have a boundary condition
enforced at Γ0(x, t) := {y |S0(x, y, t) = 0}. To obtain such an equation, we suppose that
we can parametrize the part of the boundary Γε

ij(t) that surrounds the sphere Bij with
kε(s, t), so that holds

Sε(kε(s, t), t) = 0, for all t ≥ 0,

and we assume that we can expand kε(s, t) using the formal asymptotic expansion

kε(s, t) = x + εk0(s, t) + ε2k1(s, t) + ε3(...), (3.3)

with x = (εi, εj). Using the expansion for Sε, the periodicity of Si in y, and the Taylor
series for S0 and S1 around (x, k0), we obtain

S0(x, k0, t) + ε(S1(x, k0, t) + k0 · ∇xS0(x, k0, t) + k1 · ∇yS0(x, k0, t)) + ε2(...) = 0.
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Collecting terms with the same order of ε, we see that k0(s, t) parametrizes locally the
zero level set of S0:

S0(x, k0, t) = 0.

For k1, we have the equation

S1(x, k0, t) + k0 · ∇xS0(x, k0, t) + k1 · ∇yS0(x, k0, t) = 0. (3.4)

It suffices to seek for k1 that is aligned with ν0, so that we write

k1(s, t) = λ(s, t))ν0(s, t) = λ
∇yS0

|∇yS0|
, (3.5)

where, using (3.4), λ is given by

λ = − S1

|∇yS0|
− k0 · ∇xS0

|∇yS0|
. (3.6)

Let us consider an abstract boundary condition that can be written in the form

K(x, x/ε, t) = 0, for x ∈ Γε(t).

Using the expansion (3.3) and the Taylor series for K around (x, k0), we obtain

K(x, k0, t) + ε(k0 · ∇xK(x, k0, t) + k1 · ∇yK(x, k0, t))

+
ε2

2
(k0, k1) · (D2K(x, k0, t))(k0, k1) + ε3(...) = 0, (3.7)

where D2K denotes the Hessian of K. Substituting the expression (3.5), we can restate
(3.7) in the following way:

K(x, y, t) + ε(y · ∇xK(x, y, t) + λν0 · ∇yK(x, y, t))

+
ε2

2
(y, λν0) · (D2K(x, y, t))(y, λν0) + ε3(...) = 0, for y ∈ Γ0(x, t). (3.8)

Furthermore we will need the following technical lemmas in the subsequent sections.
Lemma 3.1. Let g(x, y, t) be a scalar function such that g(x, y, t) = 0 for y ∈ Γ0(x, t),

x ∈ Ω and t ≥ 0, then it holds that

∇xg =
ν0 · ∇yg

|∇yS0|
∇xS0, for x ∈ Ω, t ≥ 0, y ∈ Γ0(x, t).

Proof. Let k0(s, x) for 0 ≤ s ≤ 1 parametrize Γ0(x, t). This means that S0(x, k0(s, x)) =
0, and since g = 0 on Γ0(x, t), we also have g(x, k(s, x)) = 0. By differentiation with re-
spect to xi, for i = 1, 2, we obtain

∂xi
S0 = −∇yS0 · ∂xi

k0 = −|∇yS0|ν0 · ∂xi
k0,

∂xi
g = −∇yg · ∂xi

k0 = −|∇yS0|ν0 · ∂xi
k0.
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Since g is zero on Γ0, its gradient is parallel to ν0 and thus ∇yg = (ν0 · ∇yg)ν0, so that
we obtain

∂xi
g = −∇yg · ∂xi

k0 = −(ν0 · ∇yg)(ν0 · ∂xi
k0) =

ν0 · ∇yg

|∇yS0|
∂xi

S0

This proofs the lemma.
Lemma 3.2. Let F (x, y, t) be a vector valued function such that ∇y · F (x, y, t) = 0

on Y0(x, t) := {y |S0(x, y, t) < 0} and ν0 · F (x, y, t) = 0 on Γ0(x, t) for x ∈ Ω and t ≥ 0.
Then it holds that∫

Γ0(x,t)

τ0 · ∇yS1

|∇yS0|
τ0 · F − S1

|∇yS0|
ν0 · ∇y(ν

0 · F ) dσ = 0, for x ∈ Ω, t ≥ 0.

Proof. We study variations of the integral

Iδ =

∫
Y δ(x,t)

∇y · F (x, y, t) dy, (3.9)

with respect to variation of the domain of integration. Here Y δ(x, t) is the region where
S0(x, y, t) + δS1(x, y, t) < 0. In order to make sure that Y δ is included in Y0 on which F
is defined, we split S1 into its positive and negative part, S1 = [S1]+ − [S1]−, and define
Y δ

+ := {y |S0 + δ[S1]+ < 0} and Y δ
− := {y |S0 + δ[S1]− < 0} which are both, for positive

δ, contained in Y0. The right derivative with respect to δ of the integrals∫
Y δ
+

∇y · F (x, y, t) dy and

∫
Y δ
−

∇y · F (x, y, t) dy

equals zero due to the fact that ∇y · F = 0 on Y0(x, t). Suppose now that k+(s, δ)
parametrizes Γδ

+ := ∂Y δ
+ so that S0(x, k+(s, δ), t) + δ[S1]+(x, k+(s, δ), t) = 0. By differen-

tiation with respect to δ we obtain

∇yS0∂δk+ + [S1]+ + δ∇y[S1]+∂δk+ = 0, for y ∈ Γδ
+. (3.10)

Thus for δ = 0, we have ∇yS0∂δk+ = −[S1]+. Now we compute, where all derivatives
with respect to δ are right derivatives:

0 = ∂δ

∫
Y δ
+

∇y · F dy|δ=0 = ∂δ

∫
Γδ

+

νδ · F dσ|δ=0

= ∂δ

∫ 1

0

νδ · F (x, k+(s, δ), t)|∂sk+(s, δ)| ds|δ=0

=

∫ 1

0

(
∂δν

δ|δ=0 · F +∇y(ν
0 · F ) · ∂δk+|δ=0

)
|∂sk+(s, 0)| ds +∫ 1

0

ν0 · F∂δ(|∂sk+(s, δ)|)|δ=0 ds

=

∫
Γ0

τ0 · ∇y[S1]+
|∇yS0|

τ0 · F − [S1]+
|∇yS0|

ν0 · ∇y(ν
0 · F ) dσ.

For the last equality, we use again that ν0 ·F = 0 on Γ0 so that ∇y(ν
0 ·F ) = (ν0 · ∇y(ν0 ·

F ))ν0. We also use a formula similar to (3.2) for the derivative of νδ with respect to δ.
For the remaining of the proof, we perform the above computation also for the negative
part [S1]−, and then subtract the results to complete the proof.
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3.2. Level set equation. Before we procede with the substitution of the formal
expansions into the model equations, we will first regularize the set-valued Heaviside
graph. This means that we replace H in (2.32) with Hδ which is defined, for small δ > 0,
by

Hδ(d) :=


0 if d < 0,

d/δ if d ∈ [0, δ],

1, if d > δ.

Furthermore, we introduce the notation

fδ(u
ε, y) := k

(
r(uε)−Hδ(dist(εy, Bε))

)
,

where fδ(·, y) is 1-periodic in y. We replace the equations (2.3) and (2.4) with

Sε
t = εfδ(u

ε, x/ε)|∇Sε|, in Ω, (3.11){
νε · (D∇uε − qεuε) = −εfδ(u

ε, x/ε)(ρ− uε),

qε = −εKfδ(u
ε, x/ε)νε,

on Γε(t) (3.12)

Since r and Hδ are both Lipschitz, we now write,

fδ(u
ε, y) = fδ(u0, y) + ε(...).

Substituting (3.1) in (2.31) and using the above expression, we obtain the equation

∂tS0 − fδ(u0, y)|∇yS0|+ ε(...) = 0

Only keeping terms independent of ε, and letting δ → 0, we obtain (see e.g., [15], Theorem
2.21)

∂tS0 = f(u0, y)|∇yS0|, (3.13)

where f(u0, y) = k(r(u0)− w), with w ∈ H(dist(εy, Bε)). (Note that this last expression
does not depend on ε.)

3.3. Convection-diffusion equation. When we substitute the asymptotic expan-
sion for uε in (2.21), we obtain

∂tu0 =
1

ε2
D∆yu0 +

1

ε
(∇y · F +∇x · (D∇yu0))

+∇y · (D(∇yu2 +∇xu1)− q1u0 − q0u1) +∇x · F (3.14)

+ε(...),

where F = D(∇xu0 +∇yu1)− q0u0. Now we will first expand (2.41), using the expansions
for uε, νε and the Taylor series of f around u0:

0 = νε · (D∇uε − qεuε)− f(uε, y)(ρ− uε)

=
1

ε
ν0 · (D∇yu0) + ν0 · F + ν1 · (D∇yu0)

+ ε
(
ν0 · (D(∇xu1 +∇yu2)− q1u0 − q0u1) + ν1 · F + ν2 · (D∇yu0)− f(u0, y)(ρ− u0)

)
+ ε2(...), for x ∈ Γε(t), y =

x

ε
,
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and next we substitute this expansion in (3.8), and thus obtain

0 =
1

ε
ν0 · (D∇yu0)

+ ν0 · F + ν1 · (D∇yu0) + y · ∇x(ν0 · (D∇yu0)) + λν0 · ∇y(ν0 · (D∇yu0))

+ ε
(
ν0 · (D(∇xu1 +∇yu2)− q1u0 − q0u1) + ν1 · F + ν2 · (D∇yu0)

−f(u0)(ρ− u0) + y · ∇x(ν0 · F + ν1 · (D∇yu0)) + λν0 · ∇y(ν0 · F + ν1 · (D∇yu0))

+
1

2
(y, λν0) · (D2(ν0 · (D∇yu0)))(y, λν0)

)
+ ε2(...), for y ∈ Γ0(x, t). (3.15)

Now we collect the ε−2-term from (3.14) and the ε−1-term from (3.15) and obtain for u0

the equations 
∆yu0 = 0 in Y0(x, t),

ν0 · ∇yu0 = 0 on Γ0(x, t),

periodicity in y,

(3.16)

where Y0(x, t) = {y |S0(x, y, t) < 0}. This means that u0 is determined up to a constant
and does not depend on y, so that ∇yu0 = 0. Collecting the ε−1 terms from (3.14), the
ε0-terms from (3.15), and using that ∇yu0 = 0, we get for u1 the equations

∇y · (D∇yu1 − q0u0) = 0 in Y0(x, t),

ν0 · (∇xu0 +∇yu1 − q0u0) = 0 on Γ0(x, t),

periodicity in y.

(3.17)

Next we collect the ε0-terms from (3.14) and the ε1-terms from (3.15) and obtain
∂tu0 = ∇y · (D(∇yu2 +∇xu1)− q1u0 − q0u1) +∇x · F in Y0(x, t),

ν0 · (D(∇xu1 +∇yu2)− q1u0 − q0u1) = −ν1 · F
+f(u0)(ρ− u0)− y · ∇x(ν0 · F )− λν0 · ∇y(ν0 · F ) on Γ0(x, t)

periodicity in y.

(3.18)

Integrating (3.181) over Y0(x, t) and using the boundary condition (3.182) gives

|Y0(x, t)|∂tu0 =

∫
Y0(x,t)

∇y · (D(∇xu1 +∇yu2)− q1u0 − q0u1) dy +

∫
Y0(x,t)

∇x · F dy

=

∫
Γ0(x,t)

−ν1 · F + f(u0)(ρ− u0)− y · ∇x(ν0 · F )− λν0 · ∇y(ν0 · F ) dσ

+∇x ·
∫

Y0(x,t)

F dy +

∫
Γ0(x,t)

∇xS0

|∇yS0|
· F dσ.

This can be rewritten, using (3.2) and the boundary condition from (3.17), as

∂t(|Y0(x, t)|u0) = ∇x ·
∫

Y0(x,t)

(D(∇yu1 +∇xu0)− q0u0) dy + |Γ0(x, t)|f(u0)ρ− I1 − I2,
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where

I1 =

∫
Γ0(x,t)

y · ∇xg −
y · ∇xS0

|∇yS0|
ν0 · ∇yg dσ,

I2 =

∫
Γ0(x,t)

τ0 · ∇yS1

|∇yS0|
τ0 · F − S1

|∇yS0|
ν0 · ∇y(ν

0 · F ) dσ,

with g = ν0 · F , and where we have used (3.6). The boundary condition (3.172) gives us
g(x, y, t) = 0 for y ∈ Γ0(x, t), and now we invoke Lemma 3.1 to obtain ∇xg = ν0·∇yg

|∇yS0|∇xS0,

so that I1 = 0. For the integral I2 we invoke Lemma 3.2 to obtain I2 = 0.

3.4. Stokes equation. Substituting the asymptotic expansions for qε and pε in
(2.22,3), we obtain

µ∆yq0 =
1

ε
∇yp0 +∇yp1 +∇xp0 + ε(...), (3.19)

1

ε
∇y · q0 +∇x · q0 +∇y · q1 + ε(...) = 0, (3.20)

and substituting the expansion in the boundary condition (2.42), and using (3.8), gives

q0 + ε
(
q1 −Kf(u0)ν0 + (∇xq0)

T y + λ(∇yq0)
T ν0

)
+ ε2(...) = 0, for y ∈ Γ0(x, t). (3.21)

The ε−1-term in (3.19) states ∇yp0 = 0, so that we conclude that p0 is independent of
y. Furthermore, we obtain, after collecting ε0-terms from (3.19) and (3.21) and ε−1-terms
from (3.20), the equations for q0 and p1:

µ∆yq0 = ∇yp1 +∇xp0 in Y0(x, t)

∇y · q0 = 0 in Y0(x, t)

q0 = 0 on Γ0(x, t)

periodicity in y

(3.22)

These equations determine the averaged velocity field given by

q̄(x, t) =

∫
Y0(x,t)

q0(x, y, t) dy.

Now we compute the divergence of q̄ (where we use the ε0-terms from (3.20))

∇x · q̄ = ∇x ·
∫

Y0(x,t)

q0 dy =

∫
Y0(x,t)

∇x · q0 dy −
∫

Γ0(x,t)

∇xS0

|∇yS0|
· q0 dσ

= −
∫

Y (x,t)

∇y · q1 dy = −
∫

Γ0(x,t)

ν0 · q1 dσ

=

∫
Γ0(x,t)

Kf(u0)− ν0 · ((∇xq0)
T y + λ(∇yq0)

T ν0) dσ

= |Γ0(x, t)|Kf(u0)− I1 − I2,
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with

I1 =

∫
Γ0(x,t)

ν0 ·
(
(∇xq0)

T y − y · ∇xS0

|∇yS0|
(∇yq0)

T ν0

)
dσ,

I2 = −
∫

Γ0(x,t)

ν0 ·
( S1

|∇yS0|
(∇yq0)

T ν0

)
dσ.

We apply Lemma 3.1 to g = ν0 · q0, and we obtain

∇x(ν0 · q0) =
ν0 · ∇y(ν0 · q0)

|∇yS0|
∇xS0, on Γ0(x, t).

Since q0 = 0 on Γ0(x, t) it follows that (∇xq0)
T ν0 = ν0·(∇yq0)T ν0

|∇yS0| ∇xS0, so that I1 = 0. Next

we apply Lemma 3.2 to q0, and consequently∫
Γ0

τ0 · ∇yS1

|∇yS0|
τ0 · q0 −

S1

|∇yS0|
ν0 · ∇y(ν

0 · q0) dσ = 0,

and again using q0 = 0 on Γ0(x, t), it follows that I2 = 0.

4. Upscaled equations and simplification. As usual, we write the solutions of
equations (3.17) and (3.22) in terms of the solutions of the following two cell problems [5]

∆yvj = 0 in Y0(x, t)

ν0∇yvj = −ej on Γ0(x, t)

periodicity in y,

(4.1)

and 
∆ywj = ∇yπj + ej in Y0(x, t)

∇y · wj = 0 in Y0(x, t)

wj = 0 on Γ0(x, t)

periodicity in y,

(4.2)

for j = 1, 2. This allows us to write the results of the formal homogenization procedure
in the form of the following distributed microstructure model [5]

∂tS0(x, y, t) + f(u0(x, t), y)|∇yS0(x, y, t)| = 0 for y ∈ [0, 1]2, x ∈ Ω

∂t(|Y0(x, t)|u0) = ∇x · (DA(x, t)∇xu0 − q̄u0) + |Γ0(x, t)|f(u0)ρ for x ∈ Ω

q̄ = − 1
µ
K(x, t)∇xp0 for x ∈ Ω

∇x · q̄ = |Γ0(x, t)|Kf(u0) for x ∈ Ω

(4.3)

{
u0(x, t) = ub(x, t) for x ∈ Γ

q̄(x, t) = qb(x, t) for x ∈ Γ
(4.4){

u0(x, 0) = uI(x)

S0(x, y, 0) = SI(x, y)
(4.5)
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where the tensors A(x, t) = (aij)i,j and K(x, t) = (kij)i,j are given by

aij =

∫
Y0(x,t)

δij + ∂yi
vj dy,

and

kij =

∫
Y0(x,t)

wji dy,

For computational purposes, the distributed microstructure model as introduced above is
still not much more preferable as the original micro-scale model: it involves solving two
cell problems for each x-gridpoint. This can be drastically reduced if we asume special
initial micro-scale geometries. If we start with spherical grain boundaries, i.e., if the
sets Γ0(x, 0) = {y |S0(x, y, 0) = 0} are a circles, then, since f(u0(x, t), y) is spherically
symmetric in y for each x ∈ Ω, solutions of the level set equation (4.31) will be such that
the sets Γ0(x, t) will stay a circle for all x ∈ Ω and t > 0. This means that in this case
the equation (4.31) can be reduced to

∂tR(x, t) = f(u0(x, t), R(x, t)) = k(r(u0(x, t))− w(x, t), (4.6)

with w ∈ H(R(x, t)− Rmin), and where R(x, t) denotes the radius of Γ0(x, t). The other
equations in (4.3) can also be simplified, and we obtain the system

∂tR = k(r(u0)− w)

w ∈ H(R−Rmin)

∂t((1− πR2)u0) = ∇x · (DA(R)∇xu0 − q̄u0) + 2πRk(r(u0)− w)ρ

q̄ = − 1
µ
K(R)∇xp0

∇x · q̄ = 2πRKk(r(u0)− w)

in Ω (4.7)

{
u0(x, t) = ub(x, t)

q̄(x, t) = qb(x, t)
on Γ (4.8){

u0(x, 0) = uI(x)

R(x, 0) = RI(x)
(4.9)

where the tensors A(R(x, t)) and K(R(x, t)) are again determined by the solutions of the
cell problems (4.1) and (4.2) which now only depend on R(x, t), since Y0(x, t) is determined
by R(x, t). Note that the same reduction can also be obtained for different initial grain
geometries: for ellipses the same would hold. The important condition is that solutions
of the level set equation are in a certain sense shape invariant and can be parametrized
with a single parameter.

5. Numerical experiments. In this section we compare numerical solutions of the
original equations on the micro-scale with numerical solutions of the homogenized equa-
tions in order to see how well the homogenized equations approximate the averaged be-
havior of the original model. As a first test we compare the solution of the upscaled
equations (4.7)-(4.9) to solutions of the original micro-scale model (2.2)-(2.6). The initial
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Fig. 5.1. The initial configuration for the micro-scale numerical experiments.

configuration for the micro-scale model is shown in Fig. 5.1: we consider a strip of length
1 and width 0.01 with a periodic array of inclusions. The inclusions are circles with initial
radius 0.4, and with midpoints (x, y) = (0.005 mod0.01, 0.005) and consist of a grain of
radius 0.2 and a layer of crystalline solid with thickness 0.2. Thus initially we have a
square periodic cell with hight and length ε = 0.01. Furthermore we consider periodicity
in the ”vertical” x2-direction. This means that the domain Ω in the upscaled equations
(4.7) reduces to the interval (0, 1).

For the micro-scale equations (2.2)-(2.6) we use the following parameter values

D = 1, µ = 1, k = 1,
ρ = 2, r(u) = u, K = 0,

(5.1)

and we use the following boundary conditions in (2.5):
ub = 0,

qb =

(
1

0

)
,

for x1 = 0, (5.2)

{
ν · ∇u = 0,

pεI + µ
2
(∇qε + (∇qε)T ) = 0,

for x1 = 1, (5.3)

periodicity in x2, (5.4)

and for the initial conditions in (2.6) we use

uI ≡ 1.

For the homogenized equations (4.7)-(4.9) this results in the same parameter values as in
(5.1). The corresponding boundary conditions in (4.8) are{

ub = 0,

qb = 1,
for x = 0, (5.5)

∂xu = 0, for x = 1,

and the corresponding initial conditions in (4.9) are

uI ≡ 1, RI ≡ 0.4.
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Fig. 5.2. The effective diffusion coefficient (left plot) and the effective permeability coefficient (right
plot) as a function of the radius of the grain.

Note that, since K = 0, we do not need to solve for q̄. Due to (4.74) we have that q̄ = qb

for all x ∈ [0, 1]. Also note that for a 1D setting such as the present one, we actually do
not need to compute the effective permeability tensor K if we supply a boundary condition
for q̄. If we supply a pressure drop then we do need to know the tensor K, as we do for
computations in a 2D or higher dimensional setting.

5.1. Micro-scale models: Arbitrary Lagrangian Eulerian method. For the
numerical solution solution of the micro-scale model we do not use the level set formu-
lation, but we use the arbitrary Lagrangian Eulerian (ALE) method [2], where we use
normal velocity as given in (2.1) for the computation of the deformation of the ALE
mesh. The ALE method has been developed to solve partial differential equations on
moving domains. In this method the partial time derivatives are expressed with respect
to a fixed reference configuration. A map, called the ALE map, χt : Ω0 → Ω(t), asso-
ciates, at each time t, a point in the current computational domain Ω(t) to a point in the
reference domain Ω0. In this way, the system of ordinary differential equations resulting
after space discretization describes the evolution of the solutions along trajectories that
are at all times contained in the computational domain. We use the ALE method as
implemented in the COMSOL Multiphysics package [1], with Laplacian smoothing [2].
For more details on the ALE method we refer to [1, 2], and we also refer to [17] for the
application of the ALE method to crystal dissolution. We discretize the equations (2.2)-
(2.6) using 16261 quadratic elements, resulting in 218961 unknowns. Furthermore we
regularize the set-valued Heaviside graph H for the numerical computations: we replace
it by Hδ so that in the equation (2.1) for the normal velocity of the free boundary we
have

wε(x, t) = Hδ(|(x1 (mod 0.01), x2)− (0.005, 0.005)| − 0.002),

with Hδ as defined in (3.11) with δ = 0.01.

5.2. Upscaled model: effective diffusion and permeability tensors. In order
to numerically approximate solutions of the upscaled equations (4.7), we need to compute
the effective diffusion and permeability tensors as a function of the radius of the grain in
the local cell problem. It is easily seen that in this case, due to symmetry, the tensors
are in fact coefficients. We solved the cell problems (4.1) and (4.2) using a finite element
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discretization (quadratic elements) for various values of R. The values of R are taken on
a equidistant grid on the interval [0.2, 0.5] with 25 grid points. The number of elements
ranged from 866 for R = 0.2 to 450 for R = 0.4985. Next we fitted these results with
a fourth order polynomial in (0.5 − R)1/2 for the diffusion coefficients and a third order
polynomial in (0.5 − R) for the permeability coefficient, which resulted in the following
functions for A(R) and K(R):

A(R) = 0.639879(0.5−R)1/2 + 0.665634(0.5−R) + 2.128861(0.5−R)3/2

−1.332304(0.5−R)2,

K(R) = 0.000207(0.5−R) + 0.090013(0.5−R)2 + 0.913720(0.5−R)3.

The choice for the form of these polynomials was based on the form of the graphs in Fig.
5.2, where we have in both cases A(0.5) = 0 and K(0.5) = 0. (Note that we fitted these
graphs only on the interval [0.2, 0.5], since the grain radii equal 0.2 in the scaled cell-
problems.) With the fits given above, the maximal error in the computed points was in
the order of 10−3 for the diffusion coefficient and in the order of 10−4 for the permeability
coefficient.

For the numerical solution of the equations (4.7)-(4.9), we use a discretization of the
interval [0, 1] into 240 quadratic elements, which results in a system with 722 unknowns.
Furthermore, also for the homogenized equations we regularize the set-valued Heaviside
graph H so that in (4.72) we obtain

w(R) = Hδ(R− 0.2),

with δ = 0.01.

5.3. Numerical results: micro-scale vs. upscaled equations. Initially, for t =
0, the system is in equilibrium: for the initial condition uI ≡ 1 it holds that r(uI) = uI = 1
so that there is no dissolution or precipitation. For positive t there is, due to the boundary
condition ub = 0 for x1 = 0 in (5.2) and for x = 0 in (5.5), transport of fluid with a low
concentration of solute by diffusion and convection, and dissolution will start, first at the
left end of the domain.

In Fig. 5.3 the ALE mesh is shown. The top plot depicts a part of the mesh at the
left part of the domain in its initial state. The bottom plot depicts the mesh after all the
crystalline solid is dissolved and the boundary of the mesh is located at the boundary of
the grains.

In Fig. 5.4 the profiles of solutions of the micro-scale model and the homogenized
model are compared for two different time instants, t = 0.05 and t = 0.5. In the left plot
the concentrations uε and u0 are given. For the micro-scale model the concentration uε

(represented by the dots) is plotted along the line y = 0. In the right plot the radius R
is plotted for the homogenized equations and an estimate of the radius of the inclusions
for the micro-scale equations (again represented by the dots). We see that for t = 0.05
only a small amount of crystalline solid is disolved, while for t = 0.5 in approximately the
left half of the domain already all the crystalline solid is disolved. We also see that the
results for the micro-scale equations and the homogenized equations match very well.
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Fig. 5.3. The ALE mesh (for a part of the domain) for the initial configuration and for the dissolved
configuration.
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Fig. 5.4. Comparison of profiles for t = 0.05 and t = 0.5. The dots are the micro-scale model and
the line is the homogenized model. In the left plot the concentration u is depicted and in the right plot
the radius R.

6. Conclusions. Using a level-set formulation of the free boundary arising in a model
for crystal dissolution and precipitation, we are able to apply a formal homogenization
procedure to obtain upscaled equations for crystal dissolution and precipitation in a porous
medium. For general micro-scale geometries, the homogenized model is a distributed
microstructure model. For circular initial inclusions the distributed microstructure model
reduces to system of partial differential equations coupled with an ordinary differential
equation. All the unknowns depend only on the slow variable. In order to investigate how
well the upscaled equations describe the behavior of the micro-scale model, we perform
numerical computations for a test problem. The numerical simulations show that for the
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test problem the solution of the homogenized equations agrees very well with the averaged
solution of the micro-scale model.
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