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Carrier dynamics of LT InAs/GaAs QDs using Time 
Resolved Differential Reflectivity 

D.Sreenivasan*, J.E.M. Haverkort, H.H. Zhan, T.J. Eijkemans, R. Nötzel

Eindhoven University of Technology, Physics Department, Eindhoven, The Netherlands 

Abstract: We present a Time Resolved Differential Reflectivity (TRDR) study of LT (low 
temperature grown) Stransky - Krastanov InAs/GaAs Quantum Dots (QDs) grown using 
molecular beam epitaxy. The photoluminescence (PL) spectrum shows a QD-peak 
around 1200nm. In the TRDR measurements we observe an initial fast decay (80ps) 
followed by a much slower decay of about 800ps. The strong temperature dependence of 
the PL-signal is not observed in the reflectivity signal. This leads us to conclude that the 
electrons are trapped at a fast rate by As antisite defects while the hole decay dynamics 
take place at a slower rate, which is also monitored in TRDR. 

Introduction 
Stransky–Krastanov Quantum Dots (QDs) have enhanced optical non–linearity due to 
their delta function like density of states which results in a sharp absorption line with a 
high peak absorption. In addition, the presence of a single electron hole pair within a 
QD is able to completely bleach the absorption line, while two electron hole pairs 
generate optical gain, indicating a large optical nonlinearity, which occurs already at 
very low pump power. The time response of the optical nonlinearity is determined by 
the combination of the radiative and nonradiative decay times and the carrier escape out 
of the QD. In low-temperature (LT) grown QDs an ultrafast response is expected due to 
trapping of carriers into Arsenic antisite defects. In this paper we present a study of LT 
InAs/GaAs QDs grown using Molecular Beam Epitaxy (MBE) as an attempt to combine 
large QD-nonlinearity with an ultrafast response time. We have performed both 
photoluminescence (PL) and time resolved differential reflectivity (TRDR) 
measurements on these samples to study the carrier dynamics. 

Sample details 
 We have studied a sample with LT-grown (250°C) InAs QDs on top of a 500 nm 
LT-grown (250°C) GaAs lower barrier1,2. The QDs have been annealed at 480°C 
directly after QD-growth. The QDs are subsequently capped with a high temperature 
grown (480°C) 4 nm GaAs layer before growing the 250 nm LT-GaAs upper barrier. 
Finally, the sample is given a post growth anneal at 580°C. We first performed 
photoluminescence (PL) measurements on the sample. The details of the PL 
measurements are given elsewhere3. The PL spectrum is broad with a QD 
photoluminescence peak around 1200nm on top of a slowly rising background resulting 
from recombination due to EL2 and EL6 centers. The PL spectra also show strong 
quenching of the PL-intensity for increasing temperature between 4K and 40K. The 
strong PL-quenching is also observed for the high temperature QDs grown within an 
LT-GaAs barrier3. So the PL-quenching is attributed to trapping of photo-generated 
carriers in the LT barrier before being captured into the QDs. We also excited the 
sample with different wavelengths, both above and below the LT-GaAs barrier bandgap, 
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which is at 816 nm. We observe that the PL efficiency is much higher for excitation 
directly in the quantum dot structure (>840nm).  

Fig 1: (left) PL spectra of LT-grown QD sample, indicating a QD emission peak around 1200 nm. 
(right)Excitation wavelength dependence of the PL-intensity, showing a strong increase of the PL-
intensity for excitation directly into the QDs.   

Time resolved differential reflectivity experiments 
To explain the carrier dynamics we performed two-color pump-probe time resolved 
differential reflectivity measurements. The sample is excited using a mechanically 
chopped pump beam from a mode locked Ti:Sapphire laser at a wavelength of 785nm 
(above GaAs barrier band gap). The capture and subsequent decay of the carriers in the 
dots are probed using probe pulses from an OPO, which are synchronized with the pump 
pulses. The probe laser is tuned in resonance with the QDs. A time delay is introduced 
between the two beams by introducing a movable optical delay in the path of the pump 
beam. Both the beams are focused on the sample with pump beam diameter of 40µm 
and probe diameter of 30µm.  
The carriers generated by the pump beam in the GaAs barrier diffuse to the QDs and are 
subsequently captured into the QDs thereby bleaching the QD transition and 
maximizing the reflected probe signal. TRDR signal has an exponentially rising part 
representing carrier capture and relaxation time4, followed by a decaying signal 
representing radiative and nonradiative carrier recombination. Since the pump beam is 
mechanically chopped, we measure a modulated reflectivity signal ∆R/R. Total 
reflectivity of the signal is given by the equation5  

 
where Γ is the oscillator strength which is equal to inverse of radiative lifetime, and γ 
represent additional i.e. nonradiative relaxation. Due to inhomogeneous broadening 
resulting from QD-size distribution, the sin(2kzD) term vanishes and the peak QD 
reflectivity can be considered as an absorption bleaching signal. Then absorption - 
bleaching spectrum reflects QD density of state.  
Fig. 2a shows a typical TRDR signal from the LT-QD sample at 5K. The probe 
wavelength is 1167nm. An exponential fit gives a capture time of ~12ps and the decay 
has a bi- exponential nature with an initial faster portion of ~80ps followed by a longer 
decay of 800ps. Fig. 2b shows the dependence of peak reflectivity with pump power. It 
is clear that peak reflectivity approaches a saturation limit around a power of 70mW. So 
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all subsequent measurements are done in the linear region of pump power to ensure that 
only ground states are filled. 
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Reflectivity spectrum is obtained by taking the measured peak reflectivity in each of the 
TRDR versus time curves. This peak reflectivity is subsequently plotted versus probe 
wavelength in Fig. 3, together with PL-spectrum at 5K. For this reflectivity spectrum, 
pump wavelength is kept constant (785nm) in the barrier region. The excitation power is 
21mW, well in the linear region. The incident probe power is also kept steady at 
~580µW. It is observed that the reflectivity spectrum has a first derivative shape. The 
signal changes phase by 180° when the wavelength is tuned below 1122nm. The PL 
spectrum is clearly broadened and red-shifted with respect to the reflectivity spectrum 
by an amount of 79meV. This result clearly indicates that the PL-spectrum also probes 
defect-related transitions below the QD-bandgap.               

 
 
Fig 4 shows TRDR measurements at different temperatures. The inset also shows the 
PL-results at different temperatures. The PL shows a very strong dependence with 
temperature with a strong quenching of the PL-intensity at around 30K. Surprisingly, the 
same behavior is not reflected in TRDR. In TRDR, there is only a very small 
temperature dependence of decay time, with initial fast decay part becoming even faster 
at room temperature.  
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Fig 2a: (left)TRDR signal at probe wavelength of 1167nm at a temperature 5K.  
Fig 2b: (right) Peak  reflectivity versus pump power 

Fig3: Peak reflectivity spectrum at 5K (�) in comparison with PL at 5K 
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Low temperature growth is done in an excess arsenic environment leading to the 
formation of As antisite (AsGa) defects which are mid gap energy levels6. The neutral 
antisite level is ionized by the Ga vacancy acceptor states (VGa). The first ionized state 
of As antisite (AsGa

+) act as a fast electron trap. So when the sample is excited in the 
GaAs barrier, the photo-excited electrons in the GaAs barrier get trapped by the AsGa 
traps while diffusing to the quantum dots, thereby leading to a strongly reduced PL 
efficiency. When the temperature is increased, the confined electrons in the QDs will 
transfer7 faster towards the AsGa traps in which they remain trapped. Sercel has 
calculated a multi-phonon assisted electron tunneling from the QD to a trap at a rate of 
1010/s at 4K and 1012/s at 300K for traps which are separated between 0 and 10 nm from 
the QD. We attribute the strong decrease of the PL efficiency with increasing 
temperature to this tunneling mechanism out of the QD.  
The TRDR does not show the same type of temperature dependence. This leads us to 
believe that the faster part of the decay reflects the electron trapping out of the QDs into 
the anti-site defects, while the slower decay reflects the trapping of holes, which is 
expected to be much slower since the hole trapping probability into EL2 is much slower 
than the electron trapping probability.  
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Fig 4: TRDR and PL at different 
temperature. 
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