

Color image processing in a cellular neural-network
environment
Citation for published version (APA):
Lee, C-C., & Pineda de Gyvez, J. (1996). Color image processing in a cellular neural-network environment. IEEE
Transactions on Neural Networks, 7(5), 1086-1098. https://doi.org/10.1109/72.536306

DOI:
10.1109/72.536306

Document status and date:
Published: 01/01/1996

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.1109/72.536306
https://doi.org/10.1109/72.536306
https://research.tue.nl/en/publications/e581dc56-27f2-4980-a7d7-922271efcf40

1086 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 7, NO. 5, SEPTEMBER 1996

Color Image Processing in a Cellular
Neural-Network Environment

Chi-Chien Lee and Jose Pineda de Gyvez, Member, IEEE

Abstract- When low-level hardware simulations of cellular
neural networks (CNN’s) are very costly for exploring new appli-
cations, the use of a behavioral simulator becomes indispensable.
This paper presents a software prototype capable of performing
image processing applications using CNN’s. The software is based
on a CNN multilayer structure in which each primary color is
assigned to a unique layer. This allows an added flexibility as
different processing applications can be performed in parallel.
To be able to handle a full range of color tones, two novel
color mapping schemes were derived. In the proposed schemes
the color information is obtained from the cell’s state rather
than from its output. This modification is necessary because for
many templates CNN has only binary stable outputs from which
only either a fully saturated or a black color can be obtained.
Additionally, a postprocessor capable of performing pixelwise
logical operations among color layers was developed to enhance
the results obtained from CNN. Examples in the areas of medical
image processing, image restoration, and weather forecasting are
provided to demonstrate the robustness of the software and the
vast potential of CNN.

.

I. INTRODUCTION
HE cellular neural network (CNN) paradigm has rapidly T evolved to cover a wide range of applications which

are typically characterized by their spatial dynamics [l]. One
particular area of big interest is filtering for image processing.
Enormous advances have been made by many researchers in
this field [2]. Among the relevant work is the creation of
templates capable of several image processing applications
and the development of special purpose algorithms such as
halftoning and character recognition, to mention some [3]-[6].
However, except for the fundamental work on color processing
developed by Roska et al. 171, all of the work presented so far
deals only with black and white images. This probably stems
from the fact that the simpler CNN system results in binary
states, giving up, somehow, the wide range that the activation
energy is capable of. Yet, to handle realistic situations it is
necessary to advance the state of the art into color image
processing.

Another interestmg and propitious area of research concerns
multilayer CNN [8]. Simulation strategies based on CNN
multilayer architectures are an ideal vehicle for color image
processing. This is because each pixel’s color can be handled
as a triplet (red green blue) (RGB) whose combinations yield a
secondary color. It follows then that it is possible to allocate a

Manuscript received July 8, 1994; revised February 15, 1995 and May 25,
1995. This work was supported by the Office of Naval Research under Grant

The authors are with the Department of Electrical Engineering, Texas A&M

Publisher Item Identifier S 1045-9227(96)02883-4.

NO00 14-9 1 - 1-05 16.

University, College Station, TX 77843 USA.

layer of CNN cells to each primary color component, carry out
the processing independently, and then form the triplet to see
the results. We call this approach a sequential color processing
mode. The counterpart is a concurrent color processing mode.
This mode results from applications in which it is not desired
to split a pixel’s color into its three basic components. In this
case, it would be necessary to have an output function that
would be based on the Euclidean distance, or any other norm,
of the three RGB values.

Worth emphasizing is that while software prototypes prove
the potential of CNN, a great deal of research has been
advocated to hardware implementations which can be used
for on-line applications in real time [9]. It is a fact that
the local interconnectivity properties of CNN make it very
attractive for very large scale integration (VLSI) implementa-
tions. Unfortunately, low-level hardware simulations are very
costly and a behavioral simulator, such as the one hereby
presented, becomes necessary to explore new applications.
Unlike advanced image processing software which is op-
timized for application specific cases, e.g., edge detection,
this software emulates behaviorally the hardware properties
of multilayer CNN architectures. The particular architecture
described here with outputs at the cell’s state is especially
suitable for applications in color image processing. The basic
structure of the simulator is based on a high-performance
software capable of efficiently dealing with large images in
the order of lo5 pixels [lo], [ll]. The simulator operates in a
sequential mode. This provides an added flexibility to create
individual templates that can be applied on single colors to
obtain a full mix of applications/colors. The simulator runs
in an X-Windows environment and uses standard graphics
formats as input. It allows to edit images and several CNN
control parameters among other features.

A preliminary background on CNN is introduced in Section
11. Sections I11 and IV address the behavioral simulation
approach and color processing capabilities of our software. *
Section V presents the software environment and postprocess-
ing capabilities for image processing. Section VI acquaints us
with some image processing applications of CNN in practical
situations and also presents comparisons between different
color-mapping strategies implemented in the simulator.

11. CELLULAR NEURAL NETWORKS
Cellular automata is distinguished mainly because its graph

follows a regular lattice 2. Its neighborhood structure and
the transition function among vertices are translation invariant,
i.e., they are the same for all vertices; additionally, the state

1045-9227/96$05.00 0 1996 IEEE

LEE AND PINEDA DE GYVEZ: COLOR IMAGE PROCESSING 1087

.
(inputs)

Fig. 1. Cellular neural networks: (a) array structure and (b) block diagram
of one cell.

updating rule is synchronous. Let I = Zd, where d is the
dimension of the lattice. If a set of connections V c Z d x Zd is
translation invariant, meaning (j , i) E V iff (j + k , i+k) E V,
the graph G = (Zd, V) is called a cellular space. Cellular
automata are automata defined on the cellular space whose
transition function is also translation invariant: f , = f for any
i E Zd with f : QIv1 + Q, and Q the set of states.

Consider an M x N CNN having M x N cells arranged in M
rows and N columns, see Fig. l(a). The basic unit of a CNN is
called a cell [13], [14]. Any cell on the ith row and j th column,
C(i, j) , is connected only to its neighbor cells, i.e., adjacent
cells interact directly with each other. This neighborhood is
denoted as N (i , j) . Cells not in the immediate neighborhood
have indirect effect because of the propagation effects of the
dynamics of the network. Each cell has a state 5, a constant
external input U, and output y. The equivalent block diagram
of a continuous-time cell is shown in Fig. l(b). The first-
order nonlinear differential equation defining the dynamics of
a cellular neural network cell can be written as follows:

+ B(i, j ; I C , I) U k l + I (1)

(2)
C (k , l) € N r (z , ~)

!/&) = i (I X i J (t) + 11 - IX&) - 11)

where xzJ is the state of cell C(i , j) , xZ3(O) is the initial
condition of the cell, C and R conform the integration time
constant of the system, and I is an independent bias constant.
In an actual circuit implementation, the integration process is

I 1 1

c
Fig. 2. CNN’s output function.

not instantaneous and will depend on a time constant r = RC.
A(i , j ; k , 1) and B(i, j ; k , I) are space-invariant program-
ming templates for all cells C(k , I) in the neighborhood
N (i , j) of cell C(i , j) ; u k l represents the external input and
yZ3 represents the output equation, i.e., the activation function
for the cell. This function is shown in Fig. 2. The state of
each cell is bounded for all time t > 0 and, after the transient
has settled down, a class of cellular neural networks always
approaches one of its stable equilibrium points [13]. This last
fact is relevant because it implies that the system will not
oscillate. Furthermore, if the system satisfies that the center
element of template A is greater than one, i.e., A;, > 1, then
the settled state values will converge to absolute values greater
than one, i.e., Ixijl 2 1 [13].

Notice from the summation operators that each cell is
affected by its neighbor cells. A(.) acts on the output of
neighboring cells and is referred to as the feedback operator.
B(.) in turn affects the input control and is referred to as
the control operator. Specific entry values of matrices A (.)
and B(.) are application dependent and space invariant. The
matrices are also known as cloning templates [ll, [U], [161.
A constant bias I and the cloning templates determine the
transient behavior of the cellular nonlinear network.

In image processing applications the concept of locality is
important. Usually, a pixel’s value is calculated based only
on its neighbor pixels. Neural networks like Hopfield lack
this property of locality making them unsuitable for image
processing applications.

111. IMAGE-BASED BEHAVIORAL SIMULATION
To see why cellular neural networks can be used for image

processing let us first approximate the differential equation (la)
by a difference equation. Let t = m, where 7 is a constant
time step, and let us approximate the derivative of xiJ by its
corresponding difference equation. After rearranging terms, the
corresponding difference equation of (1) is

1088 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL 7 , NO 5, SEPTEMBER 1996

Algorithm: (Multi-hyer Raster CNN simulation)
Obtain the input image, initial conditions and templates from user;
/* M,N E # of rows/columns of the image */
while (converged-cells < total # of cells) {

for (laye-0; layer < 3; layer++) {
for (i=l; i<=M; i++)

for (j=l; j<=N; j++) {
if (convergence-flag [layer] [i] U])

continue; /* current cell already converged */
/* calculation of the next state*/

Xhyer,$tn+ 1) = xij(tn> + \t;lf(x(tn)) dt

/* convergence criteria */

dXbyer , t j (tn)
= 0 and ybyer ,k l = f 1, v C h J k 0 E NdLj) t dt

convergence-flag flayer] [i] U] = 1 :
converged-cells++ ;
1

} I* end for $1
/* update the state values of the whole image*/
for (i=l; i<=M; i++)

for (j=l; j<=N; j++) {
if (convergence-flag [layer] [i] U]) continue;
Xhyer,tj(tn) = Xhyer,&tn + 1) ;

1
#-ofiteration++;

1
} I* end while */

Fig. 3 . Behavioral level algorithm for raster image processing using CNN

Equation (3) can be interpreted as a two-dimensional filter
for transforming an image's pixel represented by x Z 3 (m) ,
into another one represented by xz3(rn + I) [14]. In other
words, (3) represents an image at time TIT which depends on
the initial image xz3(O) and the dynamic rules of the cellular
neural network. The filter is nonlinear because of the nonlinear
output function of CNN. For the one-step filter in (3) , the pixel
values, xz3 (m + l), of an image are determined directly from
the pixel values, xz3 (m), in the corresponding neighborhood
N (i , j). Therefore, a one-step filter can only make use of
local properties of images. When global properties of an
image are important, the above one-step filter can be iterated
n times to extract additional information from the image.
Observe in general that this interpretation implies that each
pixel is mapped onto a CNN cell. That is, we have an image
processing function in the spatial domain that can be expressed
as g(x, y) = T [f (x , y)] where f(.) is the input image, g(.) the
processed image, and T is an operator on f (.) defined over the

neighborhood of (3, y). For CNN this means that an output
image pixel is only influenced by input image pixels within
some extent area r in the neighborhood of the corresponding
output image pixel. In common image processing applications
T (.) is usually carried out as a convolution process between
a response function array and the input image.

Now recall that (1) is space invariant, which means that
A(i, j ; k , I) = A (i - k , j-2) andB(i , j ; k , I) = B (i - k , j -
I) for all i , j , k , 1. Therefore, the image transformation process
can be seen as a scanning procedure in which the pixels are
mapped one-to-one to the CNN cells. The basic approach is
to imagine a square subimage area centered at (x, y), with
the subimage being the same size of the templates involved
in the simulation. The center of this subimage is then moved
from pixel to pixel starting, say, at the top left corner and
applying the A and B templates at each location (x, y) to
solve the difference equation. This procedure is repeated for
each time step, for all the pixels. We denote an instance of this

LEE AND PINEDA DE GYVEZ: COLOR IMAGE PROCESSING 1089

iterations ## of
100

80

60
40
20
0

X Euler’s

I I
r’J

Pred.-Corr. I .
\ ’RungeKutta m

0 1 2 3
Step Size (At)

Simulation time
(sec)

- 25 30’r------l

0 1 2 3
Step Size (At)

Fig. 4. Performance of the CNN software for number of iterations versus
integration time steps and simulation times (SPARC-2) for distinct time steps.

image scanning-processing as an “iteration.” The processing
stops when it is found that the states of all CNN cells have
converged to steady-state values, and when the outputs of its
neighbor cells are saturated, e.g., they have a f l value. This
whole simulating approach is referred to as raster simulation.
Notice that when the templates are located on the border of
the input image, the scanning process does not involve all
of its elements. To deal with this border effect a center zero
padded superposition model is used. That is to say, a virtual
set of border cells, initialized to zero state values, is created.
The multilayer CNN raster simulation algorithm is presented
in Fig. 3.

For the purpose of solving the initial-value problem, well
established single-step methods of numerical integration tech-
niques are used [19]. Three of the most widely used single-
step algorithms are applied in the CNN behavioral simu-
lator described here. They are the Euler’s algorithm, the
improved Euler predictor-corrector algorithm, and the fourth-
order (quartic) Runge-Kutta algorithm. Euler’ s method is the
simplest of all algorithms for solving ODE’S. It is an explicit
formula which uses the Taylor-series expansion to calculate
the approximation. The improved Euler predictor-corrector
method uses both explicit (predictor) and implicit (corrector)
formulas. The integral is calculated by multiplying a step
size 7 with the averaged sum of both the derivative of the
discretized state, x (~ T) , and the derivative of the predicted
state, xp[(n + 1)7], at the next time step. The fourth-order
Runge-Kutta method is the most costly among the three

Simulation time
(log sec)

0 50 100 150 200 250
Number of Pixels (1 03)

Fig. 5.
pixels.

CPU performance (SPARC-2) for distinct image sizes in number of

methods in terms of computation time, as it requires four
derivative evaluations per time step. However, its high cost
is compensated by its accuracy in transient behavior analysis.

Since speed is one of the main concerns in the simulation,
finding the maximum step size that still yields convergence
for a template can be helpful in speeding up the system. The
speed-up can be achieved by selecting an appropriate step size
T for that particular template, See Fig. 4(a). The importance of
selecting an appropriate T can be easily visualized in Fig. 4(b).
If the step size chosen is too small, the simulation might take
many iterations, hence longer time to achieve convergence. On
the other hand, if the step size taken is too large, the simulation
might not converge at all or it would converge to erroneous
steady-state values; the latter remark can be observed for the
Euler integration method in the plots of Fig. 4(b). The past
results were obtained by simulating a small image of size
16x 16 (256 pixels) using an edge detection template on a
diamond figure on only one layer. In Fig. 5, simulation time
computations using an averaging template for images of sizes
to about 250000 pixels are shown; the hardware platform is
a SPARC-2 workstation.

Iv . COLOR PROCESSING

To perform any kind of color image processing, a color
model must be selected. With CNN, there is no exception.
The purpose of a color model is to facilitate the specification
of colors in some standard manner. Basically, a color model is
a specification of a three-dimensional coordinate system and
a subspace within that system where each color is represented
by a point [17], [18].

Virtually, all computer display hardware employs the RGB
model. In this scheme a color is represented by the relative
amounts of color (intensities) of three primary colors that are
required to produce the given color. The RGB model is an
additive primary system that describes a color in terms of
the percentage of red, green, and blue in the color. These
three colors are called additive primaries. Mixing them is like
combining colored lights: combining 100% red, 100% green,
and 100% blue creates white, i.e., (255, 255, 255) in RGB
values. Conversely, combining 0% red, 0% green, and 0%
blue creates black, (0, 0, 0) in RGB values.

1090 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. I , NO. 5, SEPTEMBER 1996

Fig. 6. Organization of templates in the multilayer structure.

Using the RGB model has the advantage that each primary
color can be represented by a CNN layer, e.g., red, green, and
blue layers LR, LG, and LB. Thus, a simulation approach is to
have the triplet (RGB) processed by a three-layer CNN, with
each layer processing a primary color. Following this idea, it
is then possible to apply distinct templates to each color layer
and even to apply templates in between color layers. Therefore,
with the ability to process RGB separately, plus the interlayer
template effects, more complex image processing applications
can be done. It is thus possible to do, say, edge detection in
LR, and averaging in LG, simultaneously.

To be able to work with multiple layers, the basic CNN
equation (1) can rapidly be expanded to a matrix equation of
the following form:

+ ~ (i , j ; k , l) w + I (4 4
C (k , l) € N ? (i , ?)

Y&) = + (l " Z j (t) + 11 - I%ij(t) - 11) (4b)

where for simplicity the time integration constant has been
assumed to be unity. In this last equation, instead of only one
state variable per cell there are three state variables to be able
to process color. A and are block triangular matrices and
I , x, y are vectors as follows:

- A =

- B =

RGB values
250
200
150

100

50
0
-10-7.5-5.0-2.5 0.0 2.5 5.0 7.5 10.0

state values
Fig. 7. Color mapping schemes showing RGB values versus state values.

I = [::I
where subindexes r , 9 , b have been used to refer to color
layers LR, LG, and LB, respectively. Notice that although the
state variables are independent of each other, layer interaction
is permitted through the A and B templates, see Fig. 6. For
instance, template A,, has effect on both red and green layers,
simultaneously.

The characteristics generally used to distinguish one color
from another are brightness, hue, and saturation. Brightness
embodies the chromatic notion of intensity. Hue is an attribute
associated with the dominant wavelength in a mixture of light
waves. Thus, hue represents a dominant color as perceived by
the observer; when an object is called red, orange, or yellow
one is specifying its hue. Saturation refers to the relative
purity or the amount of white light mixed with a hue. The
pure spectrum of colors is fully saturated. Colors such as
pink (red and white) are less saturated, with the degree of
saturation being inversely proportional to the amount of white
light added.

Recall now from (2) that the CNN's stable output value is
binary if the center element of template A is greater than one,
i.e., A,, > 1. In other words, if the color is taken directly from
the output function the color would be either fully saturated or
black. Moreover, combining the three saturated colors (RGB)
would yield only a small gamut of distinct colors. To be able to
make use of a full range of hues, we take the color information
from the cell's state rather than from the output itself, or, we
use templates with A;; < 1. Notice however that the cell's
state, z, is not bounded to $1, and while with fully saturated
colors there is a straight mapping from CNN output values
to color intensities, e.g., C: (-1, l} + (0, 255}, the problem
here is more complex as the state z can take any value from a
larger range. In other words, we need to find a function capable
of mapping all real numbers to the closed interval [0 . . 2551,
e.g., C: R 4 (0, 1, 2, .. . , 255). We investigated two color
mapping schemes: a continuous mode and a quantized mode.
The latter one is based on a linear mapping using the maximum
and minimum layer colors as bounds to generate a discrete
(quantized) range of colors. Recall from (2) that valid settled
state values in our model exclude the open interval range

LEE AND PINEDA DE GYVEZ: COLOR IMAGE PROCESSING 1091

Fig. 8.
techniques. All colors are fully saturated.

BenchmarK used to measure the effectiveness of the color mapping

(-1, 1) for A;; > 1. The following quantized mapping was
applied for distinct stable states:

J J
2 22

z = - + 7 log,

z = o otherwise (6)

where J is the absolute maximum color value, i.e., J = 255,
and i is the number of bits to represent a pixel value. Notice
that this value is split at half the color range. This is an
arbitrary cutoff which has given us good visual perceptive
results.

For the continuous mode mapping, a linear transformation
was employed. This transformation can be characterized by
the function C: R -+ {-l7 1). In other words, the set of real
numbers is mapped to numbers bounded between -1, 1. A
second mapping can then be applied to the bounded numbers
so that their values can be scaled to the appropriate color range
values between 0-255. The transformation looks as follows: .=--{-[--I} J J 2 - 1 for 2 > 1

2 2 xu .=--{-[--I} J J ! c + l for % < - I
2 2 2 L

z = o otherwise (7)

where xu and XL are taken as the maximum and minimum
state values, respectively, of the entire CNN array at one
iteration.

Fig. 7 displays the graphs corresponding to both color
mapping techniques. The plots show RGB values versus
state values. It can be seen that the continuous mapping
approach presents a fairly good distribution of RGB values.
The quantized mapping scheme is characterized by the abrupt
step between state values of (-1, 1). Notice that for this
approach most of the ROB values are concentrated in the
upper and lower range. This results in the desired limited set
of colors that can be displayed.

Fig. 8 shows the benchmark used to test the mapping
techniques. The template used for this example corresponds to
a nonfiltering application characterized by minimum feedback

and high gain feedforward as follows:

A = ! i i]
I = -1.

This template is applied to all three layers LR, LG, and LB.
A high entry value in the B template ensures that the strength
of the input pixel value remains unchanged. This is further
balanced with I bias whose negative value brightens every
single pixel in the whole image. We found no color difference
between the benchmark and processed result for the quantized
mode. The continuous color mapping was also tested on the
benchmark of Fig. 8. This technique presented a small error
of 2.3% on each primary color. This difference is actually not
perceived by simple visual inspection.

We can conclude that both color mapping techniques are
good. From our own experience we have noticed that for
applications in which sharp color changes need to be high-
lighted the quantized mode projects good visualization results.
In applications for which the color change is smooth the
continuous mode is very suitable. Examples of applications
with sharp color changes are edge detection and thresholding,
and applications with smooth color changes are averaging and
noise removal, to just mention a few.

V. A CNN POST PROCESSOR

The CNN simulator was built using many features of the
public domain software XPaint [20]. The environment is menu
driven and allows the user to create color palletes and new
canvas, in addition to the standard graphics features such as
brushes, lines, circles, etc.

Doing image processing with CNN may not always yield
the desired visual results and postprocessing becomes then
necessary to enhance the visualization of the image. Therefore
we developed a CNN postprocessor that consists of a compiler
capable of handling logical pixelwise operations among dis-
tinct color layers. This compiler follows the trends of having
CNN as an analogic microprocessor [12], [21]. The added
capability allows us to create new processed images with,
for example, one layer processed by CNN and the remaining
layers logically manipulated between CNN results and the
original image. Detailed examples of this extended processing
capability are given in the next section. Fig. 9 shows the syntax
of the postprocessing language using a Backus-Naur form
notation; keywords and variables are identified as boldface
and italic words, respectively.

The following describes the syntax of the postprocessor. All
the files to be processed must be specified at the beginning
of the program as indicated in statement 1. When a file is
read, the program splits the pixel information into its basic
RGB components. This strategy is used to create three unique

1092 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 7, NO. 5, SEPTEMBER 1996

. .- 1: main-file . .-
2: files . .-
3 : process : : =
4 : process-descr : :=

. .-

I
I, - ,, N , r,

5: var : :=

” (” W N (files)+ (process)+ (output)+ ’ I) ” .
N A M E .
‘I (“ (process-descr) ”) ‘‘ .
(var) r ~ - s s > n (layer) “, ’‘ (var) r r - r ’ ‘ ’ > r (layer)

(var) ” - ” ” >” (layer) ”, (var) ’ ‘ - r ‘ n > n (layer) .
(var) J l - J c r >” (layer) ” , ” (var) r r - s x > a (layer)

(var) 11-1111 >” (layer) “, ” NUMBER (operand) (var)
I, - ,I I > , I

(var) ~f-,~,, >” (layer) ‘ I , “ (negation) (var)

N A M E .

(operand) (var) ’“--”“~” layer .

(operand) iWMBER.

(layer) .
(layer) .

6: operand : := (AND ”&&“ .
(OR I “ 1 I “) .

“ * “) .

‘ ’ > > ‘ I) .
7: negation : : = NOT .
8: layer : := RED .

GREEN . I BLUE .
9: output . ..- .- ” (“ OUTPUT “ (’ I (files) “ , ” (var) ’ ‘)“ “) I ‘ .

Fig. 9. Syntax of the CNN postprocessor

Fig. 10. (a) Image “Iceworld,” (b) contrasting effect, and (c) edge detection.

layers that contain the color-coded information of the image.
Statement 3 shows the logical pixelwise operations among
layers. These operations include the conventional NOT, OR,
AND, XOR, shift-left, and shift-right functions indicated in
statement 6. Operations can be performed on the layers of
a file or a variable but must always be stored in a variable.
The only three valid layers are assigned to the triplet (RGB)
and are specified by means of keywords, see statement 8.
Every variable’s layer i s initialized to “black” when first used.
Finally, the new processed image is spooled out in statement

9 in which it is required to specify the name of the output file
and the variable containing the image to be printed.

VI. COLOR IMAGE PROCESSING USING CNN

This section of the paper will try to demonstrate the capa-
bilities of our software and the enormous potential that CNN
has on a wide variety of fields. For this purpose, we will
present three examples with applications in medical image
processing, weather forecast, and simple color manipulation.
Where possible an explanation on the design of the templates

LEE AND PINEDA DE GYVEZ COLOR IMAGE PROCESSING 1093

Fig. 10. Continued. (d) result from Laplacian template, and (e) result from Sobel template.

used in the example-applications will be provided. However,
the reader is encouraged to read the corresponding references
for full details.

The first example deals with color contrasting. Let us bring
your attention to the top region of Fig. 10(a) (160590 pixels)
at the height of the astronaut’s helmet. Here, it is very difficult
to perceive a set of clouds hidden in the blue background. This
image was processed with the following templates [22] :

0.01 -0.075 0.01]
-0.075 1.28 -0.075

0.01 -0.075 0.01
-0.04 -0.13 -0.04

-0.04 -0.13 -0.04
-0.12 0.71 -0.13

(9)
The purpose of this template combination is to do a soft

1
I = -0.365.

the continuous transition of states. Naturally, these data can be
meaningful or meaningless depending upon the application.

Fig. 10(d) and (e) shows the outcome of applying the Sobel
and Laplace edge detection operators using the “image works”
tool of a Silicon Graphics workstation. These operators are
well established in conventional linear one-step filtering [171,
[18]. The application of the operator is equivalent to making
every element of the A template be equal to zero and letting the
CNN run using only the B template. By doing so, essentially
all the state dynamics are cut out of the operation since local
feedback interactions are suppressed. Under these conditions,
(1) is reduced now to

edge detection on all three color layers. The simulator was
set to operate in a quantized color mode and was stopped
after three iterations. The resulting processed image with the

which for steady-state conditions resembles the convolutional
operation of one-step image filters [18], see (lob)

clouds uncovered is shown in Fig. 10(b). Fig. 1O(c) shows the
same image after the edge detection process was completed in
2 1 iterations. Edging and contrasting operations performed by
CNN are quite obvious. This particular example raises the
following interesting remark. Notice that although CNN is
searching for the steady-state solution of a partial differential
equation, in image processing applications intermediate or
partial solutions may be sufficient to visualize some interesting
results. For instance, in addition to obtaining the edge features
of this picture, it was possible to visualize the “hidden” clouds
before CNN reached its final solution. As noted in Section
111, the image transform by a cellular neural network is a
dynamical transform. Thus, it is important to consider the
transient response. By taking the information from the state
of the cell rather than from its output, a wealth of data can
be obtained before the system reaches equilibrium because of

Thus, conventional one-step filters are a particular case of
CNN. The second example deals with the X-rays image of
a chest cage (148370 pixels) displayed in Fig. ll(a). The
objective is to color-code the black and white image and
to highlight hidden features in the esternun. The image was
treated two times with distinct templates. First, a “pixel peeler”
template was used to widen visual and hidden contours in
the image. This template was chosen instead of a common
edge detector because the latter leaves only the contours and
darkens the body of the image. This would actually alter the
information contained in the image as our goal was to only
highlight the edges. The template “peels” the rightmost pixel
from any two or more adjacent pixels; this action is executed

1094 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. I , NO. 5 , SEPTEMBER 1996

Fig. 11. (a) Chest cage X-rays image, (b) after a filler operation, and (c) after using the CNN postprocessor

through the B template. Both templates are as follows [23]: two remaining layers were processed with the unity template
described by (7). These templates are as follows [24]:

A = [i 1 A = [!
B = [% B = f !]
I = -1. (114

I = -1. (1 1b) The resulting image was further processed by a “filler tem-
plate.” The template was applied only to the red layer setting
the simulator to work in a quantized color mode; the other

Basically, the function of the A template is to feed the pixel
values of the neighboring pixels into the current pixel. A

LEE AND PINEDA DE GYVEZ COLOR IMAGE PROCESSING 1095

Fig. 12. (a) Satellite weather map and (b) after thresholding operations with CNN

1096 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 7 , NO. 5, SEPTEMBER 1996

(C)

Fig. 12. Continued. (c) Satellite weather map after using the CNN postprocessor.

negative bias is used to avoid having an excessively dark
image. The result of both operation is shown in Fig. ll(b).
Observe the red dots along the enhanced contour of the ribs.
The CNN processor undoubtedly did its work. Unfortunately,
the visualization of the results is not optimal as the image has
still many gray tones. Hence, the image was postprocessed
to achieve an optimal color manipulation. The postprocessing
program is listed below.

(main original.gif edge.gif edge2.gif
(xxired, edge.gif+red 1 1 edge2 .gifired)
(xx + green, original.gif 4 green I /
edge.gif 4 green)
(xx + blue, original.gif 4 blue)
(output (out,xx))) .
The files original.gif, edge.gif, and edge2 .gif

correspond to the original black and white image, the im-
age processed in the continuous color mode, and the image
processed in the quantized mode, respectively. The program
does the following: 1) The red layer of both edge detection
operations is ORed to obtain soft and hard tone contours; 2)
the green layer of the original image is ORed with the green
layer of the edge detection obtained using the quantized color
mode; and 3) the blue layer is left intact. The result of this
post processing is shown in Fig. 1 l(c). It is quite obvious that
CNN was able to detect the hidden features in the esternun
which otherwise are impossible to perceive from the original
black and white image.

This forthcoming example demonstrates CNN’ s ability to
color-code a black and white image. The image presented
in Fig. 12(a) corresponds to an actual satellite weather map
(200984 pixels) taken on 25 May, 1994 (the reader can see
that we had very cloudy weather). The goal was to obtain a
result as close as possible to the standard color-coded maps
used in weather forecasts. These maps use bright tones of
green to show light clouds up to red tones to show strong
rain intensities. The image was treated with color thresholding
techniques [25] using intensively the bias factor 1. The result
of this operation is displayed in Fig. 12(b). The templates are
as follows:

0 0 0
AgTeen= 0 20.2 0 r 0 0 0

ro o 01

LEE AND PINEDA DE GYVEZ COLOR IMAGE PROCESSING 1097

The A template is used basically to operate on the quality of
the colors. A large value in the center of this template helps
to obtain a brighter color on the result. This explains the very
high value for the green layer. A large value in the center
of the B template is used to reinforce the effect of the input
image on the final result. The thresholding function of I bias
works as follows. Negative values, force the color of the layer
to dominate on the final image. In other words, if we make I
bias very negative, a weaker degree of gray will be enough to
make the corresponding color appear on the resulting image.
This explains the different values adopted for I . The result
was further processed by the following program:

(main map.gif
(w - + r e d , map.gif-+hlue 1 1 map.gif-+red)
(w-+green , map-gif-green ,. map.gif+blue)
(output (out,w))).

This program changes the white color into red, allowing us
to obtain the result that we were looking for [see Fig. 12(c)].

VII. CONCLUSION
When low-level hardware simulations of CNN’s are very

costly for exploring new applications, the use of a behavioral
simulator becomes indispensable. The system hereby presented
allows to explore new color image processing applications in
short turn around times. Processing with CNN’s is attractive
because the continuous transition from state to state shows
the evolution of the image to its final appearance. Although
the systematic development of programming templates is still
an active area of research, the procedure to process an image
using only two templates is appealing for its simplicity. The
work hereby introduced advanced the state of the art into
processing of color images. It was demonstrated that by
collecting results from the cell’s state rather than from its
soft limited output, it is possible to obtain a full gamut of
color tones. Two color mapping schemes were introduced
that effectively assign states to distinct color hues. The error
produced by these schemes is minimum. Therefore, they are
deemed to be suitable for CNN color simulations.

Finally, from the examples presented in the last section,
one can see the unquestionable potential of CNN in image
processing applications.

ACKNOWLEDGMENT
The authors thank M. Basso for developing the templates

to process the weather map image and to Prof. T. Roska for
early discussions on this work.

REFERENCES

[l] L. 0. Chua and T. Roska, “The CNN paradigm,” ZEEE Trans. Circuits
Syst. I , vol. 40, pp. 147-156, Mar. 1993.

[2] T. Matsumoto, T. Yokohama, H. Suzuki, and R. Furukawa, “Several
image processing examples by CNN,” in Proc. IEEE Int. Wkshp.
Cellular Neural Networks Applicat., 1990, pp. 100-1 11.

[3] T. Matsumoto, L. 0. Chua, and H. Suzuki, “CNN cloning template:
Shadow detector,” IEEE Trans. Circuits Syst., vol. 37, pp. 1070-1073,
Aug. 1990.

[4] __, “CNN cloning template: Connected component detector,” IEEE
Trans. Circuits Syst., vol. 37, pp. 633-635, May 1990.

[5] T. Matsumoto, L. 0. Chua, and T. Yokohama, ‘‘Image thinning with
a cellular neural network,” ZEEE Trans. Circuits Syst., vol. 37, pp.
633-635, May 1990.

[6] K. R. Crounse, T. Roska, and L. 0. Chua, “Image halftoniug with
cellular neural networks,” B E E Trans. Circuits Syst., vol. 40, pp.
267-283, Apr. 1993.

[7] T. Roska, A. Zar5ndy, and L. 0. Chua, “Color image processing using
multilayer CNN structure,” in Circuit Theory and Design ’93, H. Didiev,
Ed. New York Elsevier, 1993.

[SI L. 0. Chua and B. E. Shi, “Multiple layer cellular neural networks: A
tutorial,” in Algorithms and Parallel VLSZArchitectures, E. F. Deprettere
and A. van der Veen, Eds., vol. A: Tutorials. New York Elsevier,

[9] J. A. Nossek and T. Roska, Guest Eds., Special issue on cellular neural
networks, in IEEE Trans. Circuits Syst., vol. 40, 1993.

[lo] C. C. Lee and J. Pineda de Gyvez, “Single-layer CNN simulator,” in
Proc. IEEE Int. Symp. Circuits Syst., 1994.

[111 __, “Time-multiplexing CNN simulator,” in Proc. IEEE Znt. Symp.
Circuits Syst., 1994.

[12] T. Roska and L. Chua, “The CNN universal machine: An analogic array
computer,” IEEE Trans. Circuits Syst. 11, vol. 40, pp. 163-173, Mar.
1993.

[13] L. 0. Chua and L. Yang, “Cellular neural networks: Theory,” IEEE
Trans. Circuits Syst., vol. CAS-35, pp. 1257-1272, 1988.

[141 -, “Cellular neural networks: Applications,” IEEE Trans. Circuits

[15] K. Slot, “Determination of cellular neural network parameters for
feature detection of two dimensional images,” in Proc. ZEEE Znt. Wkshp.
Cellular Neural Networks Applicat., 1990, pp. 82-91.

[16] L. 0. Chua and P. Thiran, “An analytic method for designing simple
cellular neural networks,” IEEE Trans. Circuits Syst., vol. 38, pp.

[I71 W. K. Pratt, Digital Image Processing, 2nd ed. New York Wiley,

[18] R. C. Gonzales and R. E. Woods, Digital Image Processing. Reading,

[I91 W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,
Cambridge, U.K.:

1991, pp. 137-168.

Syst., vol. CAS-35, pp. 1273-1290, 1988.

1332-1341, 1991.

1991.

MA: Addison-Wesley, 1992.

Numerical Recipes. The Art of Scientijk Computing.
Cambridge Univ. Press, 1986.

[20] D. Koblas, “XPaint,” public domain software.
[21] L. 0. Chua and T. Roska, “The CNN universal machine, Part 1: The

architecture,” in Proc. Int. Wkshp. Cellular Neural Networks Applicat.

[22] F. Zou, S. Schwarz, and J. A. Nossek, “Cellular neural-network design
using a learning algorithm,” in Proc. IEEE Znt. Wkshp. Cellular Neural
Networks Applicat., 1990, pp. 73-81.

[23] P. Szolgay, I. Kispal, and T. Kozek, “An experimental system for optical
detection of layout errors of printed circuit boards using learned CNN
templates,” in Proc. 2nd IEEE Int. Wkshp. Cellular Neural Networks
Applicat., Munich, Germany, Oct. 1992, pp. 203-209.

[24] T. Matsumoto, L. 0. Chua, and R. Furokawa, “CNN cloning template:
Hole filler,” IEEE Trans. Circuits Syst., vol. 37, pp. 635-638, May 1990.

[25] “CNN analogic dual software library,” Comput. Automat. Inst., Hun-
garian Academy Sci., Internal Rep. DNS-1-1993, Jan. 1993.

(CNNA), 1992, pp. 1-10.

Chi-Chien (Brian) Lee received the B.S. degree in
electrical engineering from Texas A&M University,
College Station, in 1991. He is currently working
toward the M.S.E.E. degree there, with a research
concentration on software simulation methods for
cellular neural networks CNN’s and color image
processing with CNN’s.

He was a Teaching Assistant in the Electrical En-
gineering Department of Texas A&M from August
1991 to December 1991. He is also coauthor of two
papers presented in ISCAS’94 on CNN software

simulation. He is currently working at Crystal Semiconductor in Austin, TX,
as a Mixed-Signal Producflest Engineer.

Mr. Lee is a member of Eta Kappa Nu and Tau Beta Pi National Honor
Societies.

1098 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 7, NO. 5, SEPTEMBER 1996

Jose Pineda de Gyvez (S’88-M’90) received the
bachelor’s degree in electronic systems engineering
from the Technological Institute of Monterrey, Mex-
ico, with a major in computer engineering, the M.Sc.
degree from the National Institute of Astrophysics
Optics, and Electronics, Tonanzintla, Mexico, and
the Ph.D. degree from the Eindhoven University
of Technology, the Netherlands, in 1982, 1984, and
1991, respectively.

He was a Junior Scientist with the Foundation for
Fundamental Research on Matter, The Netherlands,

from August 1986 to February 1991, working on CAD for yield, defect, and
fault modeling. He is currently an Assistant Professor in the Department of
Electrical Engineering and also holds a joint Faculty appointment with the
Department of Computer Science, both at Texas A&M University, College
Station. He is the author of Integrated Circuit Defect Sensitivity: Theory and
Computational Models (Boston, MA: Kluwer, 1991). His research interests
include analog signal processing, neural networks, and IC manufacturability.

Dr. Pineda is a member of the ACM. He is currently Associate Editor
for technology of IEEE TRANSACTTONS ON SEMICONDUCTOR MANUFACTURING
and Associate Editor for cellular neural networks of IEEE TRANSACTIONS ON
C I R C U ~ S AND SYSTEMS I.

