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Color Image Processing in a Cellular 
Neural-Network Environment 

Chi-Chien Lee and Jose Pineda de Gyvez, Member, IEEE 

Abstract- When low-level hardware simulations of cellular 
neural networks (CNN’s) are very costly for exploring new appli- 
cations, the use of a behavioral simulator becomes indispensable. 
This paper presents a software prototype capable of performing 
image processing applications using CNN’s. The software is based 
on a CNN multilayer structure in which each primary color is 
assigned to a unique layer. This allows an added flexibility as 
different processing applications can be performed in parallel. 
To be able to handle a full range of color tones, two novel 
color mapping schemes were derived. In the proposed schemes 
the color information is obtained from the cell’s state rather 
than from its output. This modification is necessary because for 
many templates CNN has only binary stable outputs from which 
only either a fully saturated or a black color can be obtained. 
Additionally, a postprocessor capable of performing pixelwise 
logical operations among color layers was developed to enhance 
the results obtained from CNN. Examples in the areas of medical 
image processing, image restoration, and weather forecasting are 
provided to demonstrate the robustness of the software and the 
vast potential of CNN. 

. 

I. INTRODUCTION 
HE cellular neural network (CNN) paradigm has rapidly T evolved to cover a wide range of applications which 

are typically characterized by their spatial dynamics [l]. One 
particular area of big interest is filtering for image processing. 
Enormous advances have been made by many researchers in 
this field [2]. Among the relevant work is the creation of 
templates capable of several image processing applications 
and the development of special purpose algorithms such as 
halftoning and character recognition, to mention some [3]-[6]. 
However, except for the fundamental work on color processing 
developed by Roska et al. 171, all of the work presented so far 
deals only with black and white images. This probably stems 
from the fact that the simpler CNN system results in binary 
states, giving up, somehow, the wide range that the activation 
energy is capable of. Yet, to handle realistic situations it is 
necessary to advance the state of the art into color image 
processing. 

Another interestmg and propitious area of research concerns 
multilayer CNN [8]. Simulation strategies based on CNN 
multilayer architectures are an ideal vehicle for color image 
processing. This is because each pixel’s color can be handled 
as a triplet (red green blue) (RGB) whose combinations yield a 
secondary color. It follows then that it is possible to allocate a 
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layer of CNN cells to each primary color component, carry out 
the processing independently, and then form the triplet to see 
the results. We call this approach a sequential color processing 
mode. The counterpart is a concurrent color processing mode. 
This mode results from applications in which it is not desired 
to split a pixel’s color into its three basic components. In this 
case, it would be necessary to have an output function that 
would be based on the Euclidean distance, or any other norm, 
of the three RGB values. 

Worth emphasizing is that while software prototypes prove 
the potential of CNN, a great deal of research has been 
advocated to hardware implementations which can be used 
for on-line applications in real time [9]. It is a fact that 
the local interconnectivity properties of CNN make it very 
attractive for very large scale integration (VLSI) implementa- 
tions. Unfortunately, low-level hardware simulations are very 
costly and a behavioral simulator, such as the one hereby 
presented, becomes necessary to explore new applications. 
Unlike advanced image processing software which is op- 
timized for application specific cases, e.g., edge detection, 
this software emulates behaviorally the hardware properties 
of multilayer CNN architectures. The particular architecture 
described here with outputs at the cell’s state is especially 
suitable for applications in color image processing. The basic 
structure of the simulator is based on a high-performance 
software capable of efficiently dealing with large images in 
the order of lo5 pixels [lo], [ll]. The simulator operates in a 
sequential mode. This provides an added flexibility to create 
individual templates that can be applied on single colors to 
obtain a full mix of applications/colors. The simulator runs 
in an X-Windows environment and uses standard graphics 
formats as input. It allows to edit images and several CNN 
control parameters among other features. 

A preliminary background on CNN is introduced in Section 
11. Sections I11 and IV address the behavioral simulation 
approach and color processing capabilities of our software. * 
Section V presents the software environment and postprocess- 
ing capabilities for image processing. Section VI acquaints us 
with some image processing applications of CNN in practical 
situations and also presents comparisons between different 
color-mapping strategies implemented in the simulator. 

11. CELLULAR NEURAL NETWORKS 
Cellular automata is distinguished mainly because its graph 

follows a regular lattice 2. Its neighborhood structure and 
the transition function among vertices are translation invariant, 
i.e., they are the same for all vertices; additionally, the state 
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Fig. 1. Cellular neural networks: (a) array structure and (b) block diagram 
of one cell. 

updating rule is synchronous. Let I = Zd, where d is the 
dimension of the lattice. If a set of connections V c Z d  x Zd is 
translation invariant, meaning ( j ,  i )  E V iff ( j + k ,  i+k)  E V, 
the graph G = (Zd, V) is called a cellular space. Cellular 
automata are automata defined on the cellular space whose 
transition function is also translation invariant: f ,  = f for any 
i E Zd with f :  QIv1 + Q, and Q the set of states. 

Consider an M x N CNN having M x N cells arranged in M 
rows and N columns, see Fig. l(a). The basic unit of a CNN is 
called a cell [13], [14]. Any cell on the ith row and j th  column, 
C(i, j ) ,  is connected only to its neighbor cells, i.e., adjacent 
cells interact directly with each other. This neighborhood is 
denoted as N ( i ,  j ) .  Cells not in the immediate neighborhood 
have indirect effect because of the propagation effects of the 
dynamics of the network. Each cell has a state 5,  a constant 
external input U, and output y. The equivalent block diagram 
of a continuous-time cell is shown in Fig. l(b). The first- 
order nonlinear differential equation defining the dynamics of 
a cellular neural network cell can be written as follows: 

+ B(i,  j ;  I C ,  I ) U k l  + I  (1) 

(2) 
C ( k ,  l ) € N r ( z , ~ )  

!/&) = i ( I X i J ( t )  + 11 - IX&) - 11) 

where xzJ is the state of cell C(i ,  j ) ,  xZ3(O) is the initial 
condition of the cell, C and R conform the integration time 
constant of the system, and I is an independent bias constant. 
In an actual circuit implementation, the integration process is 

I 1  1 

c 
Fig. 2. CNN’s output function. 

not instantaneous and will depend on a time constant r = RC. 
A( i ,  j ;  k ,  1) and B(i,  j ;  k ,  I) are space-invariant program- 
ming templates for all cells C(k ,  I )  in the neighborhood 
N ( i ,  j )  of cell C(i ,  j ) ;  u k l  represents the external input and 
yZ3 represents the output equation, i.e., the activation function 
for the cell. This function is shown in Fig. 2. The state of 
each cell is bounded for all time t > 0 and, after the transient 
has settled down, a class of cellular neural networks always 
approaches one of its stable equilibrium points [13]. This last 
fact is relevant because it implies that the system will not 
oscillate. Furthermore, if the system satisfies that the center 
element of template A is greater than one, i.e., A;, > 1, then 
the settled state values will converge to absolute values greater 
than one, i.e., Ixijl 2 1 [13]. 

Notice from the summation operators that each cell is 
affected by its neighbor cells. A(.) acts on the output of 
neighboring cells and is referred to as the feedback operator. 
B(.)  in turn affects the input control and is referred to as 
the control operator. Specific entry values of matrices A ( . )  
and B(.)  are application dependent and space invariant. The 
matrices are also known as cloning templates [ll,  [U], [161. 
A constant bias I and the cloning templates determine the 
transient behavior of the cellular nonlinear network. 

In image processing applications the concept of locality is 
important. Usually, a pixel’s value is calculated based only 
on its neighbor pixels. Neural networks like Hopfield lack 
this property of locality making them unsuitable for image 
processing applications. 

111. IMAGE-BASED BEHAVIORAL SIMULATION 
To see why cellular neural networks can be used for image 

processing let us first approximate the differential equation (la) 
by a difference equation. Let t = m, where 7 is a constant 
time step, and let us approximate the derivative of xiJ by its 
corresponding difference equation. After rearranging terms, the 
corresponding difference equation of (1) is 
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Algorithm: (Multi-hyer Raster CNN simulation) 
Obtain the input image, initial conditions and templates from user; 
/* M,N E # of rows/columns of the image */ 
while (converged-cells < total # of cells) { 

for (laye-0; layer < 3; layer++) { 
for (i=l; i<=M; i++) 

for (j=l; j<=N; j++) { 
if (convergence-flag [layer] [i] U]) 

continue; /* current cell already converged */ 
/* calculation of the next state*/ 

Xhyer,$tn+ 1) = xij(tn> + \t;lf(x(tn)) dt 

/* convergence criteria */ 

dXbyer , t j ( tn)  
= 0 and ybyer ,k l  = f 1, v C h J k  0 E NdLj) t dt 

convergence-flag flayer] [i] U] = 1 : 
converged-cells++ ; 
1 

} I* end for $1 
/* update the state values of the whole image*/ 
for (i=l; i<=M; i++) 

for (j=l; j<=N; j++) { 
if (convergence-flag [layer] [i] U]) continue; 
Xhyer,tj(tn) = Xhyer,&tn + 1) ; 

1 
#-ofiteration++; 

1 
} I* end while */ 

Fig. 3 .  Behavioral level algorithm for raster image processing using CNN 

Equation (3) can be interpreted as a two-dimensional filter 
for transforming an image's pixel represented by x Z 3 ( m ) ,  
into another one represented by xz3(rn  + I) [14]. In other 
words, (3) represents an image at time TIT which depends on 
the initial image xz3(O) and the dynamic rules of the cellular 
neural network. The filter is nonlinear because of the nonlinear 
output function of CNN. For the one-step filter in (3) ,  the pixel 
values, xz3 (m + l), of an image are determined directly from 
the pixel values, xz3 (m), in the corresponding neighborhood 
N ( i ,  j). Therefore, a one-step filter can only make use of 
local properties of images. When global properties of an 
image are important, the above one-step filter can be iterated 
n times to extract additional information from the image. 
Observe in general that this interpretation implies that each 
pixel is mapped onto a CNN cell. That is, we have an image 
processing function in the spatial domain that can be expressed 
as g(x,  y) = T [ f ( x ,  y)] where f(.) is the input image, g(.) the 
processed image, and T is an operator on f (.) defined over the 

neighborhood of (3,  y). For CNN this means that an output 
image pixel is only influenced by input image pixels within 
some extent area r in the neighborhood of the corresponding 
output image pixel. In common image processing applications 
T ( . )  is usually carried out as a convolution process between 
a response function array and the input image. 

Now recall that (1) is space invariant, which means that 
A(i,  j ;  k ,  I )  = A ( i - k ,  j-2) andB(i  , j ;  k ,  I )  = B ( i - k ,  j -  
I )  for all i ,  j ,  k ,  1. Therefore, the image transformation process 
can be seen as a scanning procedure in which the pixels are 
mapped one-to-one to the CNN cells. The basic approach is 
to imagine a square subimage area centered at (x, y), with 
the subimage being the same size of the templates involved 
in the simulation. The center of this subimage is then moved 
from pixel to pixel starting, say, at the top left corner and 
applying the A and B templates at each location (x, y) to 
solve the difference equation. This procedure is repeated for 
each time step, for all the pixels. We denote an instance of this 
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Fig. 4. Performance of the CNN software for number of iterations versus 
integration time steps and simulation times (SPARC-2) for distinct time steps. 

image scanning-processing as an “iteration.” The processing 
stops when it is found that the states of all CNN cells have 
converged to steady-state values, and when the outputs of its 
neighbor cells are saturated, e.g., they have a f l  value. This 
whole simulating approach is referred to as raster simulation. 
Notice that when the templates are located on the border of 
the input image, the scanning process does not involve all 
of its elements. To deal with this border effect a center zero 
padded superposition model is used. That is to say, a virtual 
set of border cells, initialized to zero state values, is created. 
The multilayer CNN raster simulation algorithm is presented 
in Fig. 3. 

For the purpose of solving the initial-value problem, well 
established single-step methods of numerical integration tech- 
niques are used [19]. Three of the most widely used single- 
step algorithms are applied in the CNN behavioral simu- 
lator described here. They are the Euler’s algorithm, the 
improved Euler predictor-corrector algorithm, and the fourth- 
order (quartic) Runge-Kutta algorithm. Euler’ s method is the 
simplest of all algorithms for solving ODE’S. It is an explicit 
formula which uses the Taylor-series expansion to calculate 
the approximation. The improved Euler predictor-corrector 
method uses both explicit (predictor) and implicit (corrector) 
formulas. The integral is calculated by multiplying a step 
size 7 with the averaged sum of both the derivative of the 
discretized state, x ( ~ T ) ,  and the derivative of the predicted 
state, xp[(n  + 1)7], at the next time step. The fourth-order 
Runge-Kutta method is the most costly among the three 

Simulation time 
(log sec) 

0 50 100 150 200 250 
Number of Pixels (1 03) 

Fig. 5.  
pixels. 

CPU performance (SPARC-2) for distinct image sizes in number of 

methods in terms of computation time, as it requires four 
derivative evaluations per time step. However, its high cost 
is compensated by its accuracy in transient behavior analysis. 

Since speed is one of the main concerns in the simulation, 
finding the maximum step size that still yields convergence 
for a template can be helpful in speeding up the system. The 
speed-up can be achieved by selecting an appropriate step size 
T for that particular template, See Fig. 4(a). The importance of 
selecting an appropriate T can be easily visualized in Fig. 4(b). 
If the step size chosen is too small, the simulation might take 
many iterations, hence longer time to achieve convergence. On 
the other hand, if the step size taken is too large, the simulation 
might not converge at all or it would converge to erroneous 
steady-state values; the latter remark can be observed for the 
Euler integration method in the plots of Fig. 4(b). The past 
results were obtained by simulating a small image of size 
16x 16 (256 pixels) using an edge detection template on a 
diamond figure on only one layer. In Fig. 5, simulation time 
computations using an averaging template for images of sizes 
to about 250000 pixels are shown; the hardware platform is 
a SPARC-2 workstation. 

Iv .  COLOR PROCESSING 

To perform any kind of color image processing, a color 
model must be selected. With CNN, there is no exception. 
The purpose of a color model is to facilitate the specification 
of colors in some standard manner. Basically, a color model is 
a specification of a three-dimensional coordinate system and 
a subspace within that system where each color is represented 
by a point [17], [18]. 

Virtually, all computer display hardware employs the RGB 
model. In this scheme a color is represented by the relative 
amounts of color (intensities) of three primary colors that are 
required to produce the given color. The RGB model is an 
additive primary system that describes a color in terms of 
the percentage of red, green, and blue in the color. These 
three colors are called additive primaries. Mixing them is like 
combining colored lights: combining 100% red, 100% green, 
and 100% blue creates white, i.e., (255, 255, 255) in RGB 
values. Conversely, combining 0% red, 0% green, and 0% 
blue creates black, (0, 0, 0) in RGB values. 
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Fig. 6. Organization of templates in the multilayer structure. 

Using the RGB model has the advantage that each primary 
color can be represented by a CNN layer, e.g., red, green, and 
blue layers LR, LG, and LB. Thus, a simulation approach is to 
have the triplet (RGB) processed by a three-layer CNN, with 
each layer processing a primary color. Following this idea, it 
is then possible to apply distinct templates to each color layer 
and even to apply templates in between color layers. Therefore, 
with the ability to process RGB separately, plus the interlayer 
template effects, more complex image processing applications 
can be done. It is thus possible to do, say, edge detection in 
LR, and averaging in LG, simultaneously. 

To be able to work with multiple layers, the basic CNN 
equation (1) can rapidly be expanded to a matrix equation of 
the following form: 

+ ~ ( i ,  j ;  k ,  l ) w  + I  ( 4 4  
C ( k ,  l ) € N ? ( i , ? )  

Y&) = + ( l " Z j ( t )  + 11 - I%ij(t) - 11) (4b) 

where for simplicity the time integration constant has been 
assumed to be unity. In this last equation, instead of only one 
state variable per cell there are three state variables to be able 
to process color. A and are block triangular matrices and 
I ,  x, y are vectors as follows: 

- A =  

- B =  

RGB values 
250 
200 
150 

100 

50 
0 
-10-7.5-5.0-2.5 0.0 2.5 5.0 7.5 10.0 

state values 
Fig. 7. Color mapping schemes showing RGB values versus state values. 

I = [::I 
where subindexes r ,  9 ,  b have been used to refer to color 
layers LR, LG, and LB,  respectively. Notice that although the 
state variables are independent of each other, layer interaction 
is permitted through the A and B templates, see Fig. 6. For 
instance, template A,, has effect on both red and green layers, 
simultaneously. 

The characteristics generally used to distinguish one color 
from another are brightness, hue, and saturation. Brightness 
embodies the chromatic notion of intensity. Hue is an attribute 
associated with the dominant wavelength in a mixture of light 
waves. Thus, hue represents a dominant color as perceived by 
the observer; when an object is called red, orange, or yellow 
one is specifying its hue. Saturation refers to the relative 
purity or the amount of white light mixed with a hue. The 
pure spectrum of colors is fully saturated. Colors such as 
pink (red and white) are less saturated, with the degree of 
saturation being inversely proportional to the amount of white 
light added. 

Recall now from (2) that the CNN's stable output value is 
binary if the center element of template A is greater than one, 
i.e., A,, > 1. In other words, if the color is taken directly from 
the output function the color would be either fully saturated or 
black. Moreover, combining the three saturated colors (RGB) 
would yield only a small gamut of distinct colors. To be able to 
make use of a full range of hues, we take the color information 
from the cell's state rather than from the output itself, or, we 
use templates with A;; < 1. Notice however that the cell's 
state, z, is not bounded to $1, and while with fully saturated 
colors there is a straight mapping from CNN output values 
to color intensities, e.g., C: (-1, l} + (0, 255}, the problem 
here is more complex as the state z can take any value from a 
larger range. In other words, we need to find a function capable 
of mapping all real numbers to the closed interval [0 . . 2551, 
e.g., C: R 4 (0, 1, 2, .. . , 255). We investigated two color 
mapping schemes: a continuous mode and a quantized mode. 
The latter one is based on a linear mapping using the maximum 
and minimum layer colors as bounds to generate a discrete 
(quantized) range of colors. Recall from ( 2 )  that valid settled 
state values in our model exclude the open interval range 
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Fig. 8. 
techniques. All colors are fully saturated. 

BenchmarK used to measure the effectiveness of the color mapping 

(-1, 1) for A;; > 1. The following quantized mapping was 
applied for distinct stable states: 

J J  
2 22 

z = - + 7 log, 

z = o  otherwise (6) 

where J is the absolute maximum color value, i.e., J = 255, 
and i is the number of bits to represent a pixel value. Notice 
that this value is split at half the color range. This is an 
arbitrary cutoff which has given us good visual perceptive 
results. 

For the continuous mode mapping, a linear transformation 
was employed. This transformation can be characterized by 
the function C: R -+ {-l7 1). In other words, the set of real 
numbers is mapped to numbers bounded between -1, 1. A 
second mapping can then be applied to the bounded numbers 
so that their values can be scaled to the appropriate color range 
values between 0-255. The transformation looks as follows: .=--{-[--I} J J 2 - 1  for 2 > 1  

2 2 xu .=--{-[--I} J J ! c + l  for % < - I  
2 2 2 L  

z = o  otherwise (7) 

where xu and XL are taken as the maximum and minimum 
state values, respectively, of the entire CNN array at one 
iteration. 

Fig. 7 displays the graphs corresponding to both color 
mapping techniques. The plots show RGB values versus 
state values. It can be seen that the continuous mapping 
approach presents a fairly good distribution of RGB values. 
The quantized mapping scheme is characterized by the abrupt 
step between state values of (-1, 1). Notice that for this 
approach most of the ROB values are concentrated in the 
upper and lower range. This results in the desired limited set 
of colors that can be displayed. 

Fig. 8 shows the benchmark used to test the mapping 
techniques. The template used for this example corresponds to 
a nonfiltering application characterized by minimum feedback 

and high gain feedforward as follows: 

A = !  i i] 
I = -1. 

This template is applied to all three layers LR, LG, and LB. 
A high entry value in the B template ensures that the strength 
of the input pixel value remains unchanged. This is further 
balanced with I bias whose negative value brightens every 
single pixel in the whole image. We found no color difference 
between the benchmark and processed result for the quantized 
mode. The continuous color mapping was also tested on the 
benchmark of Fig. 8. This technique presented a small error 
of 2.3% on each primary color. This difference is actually not 
perceived by simple visual inspection. 

We can conclude that both color mapping techniques are 
good. From our own experience we have noticed that for 
applications in which sharp color changes need to be high- 
lighted the quantized mode projects good visualization results. 
In applications for which the color change is smooth the 
continuous mode is very suitable. Examples of applications 
with sharp color changes are edge detection and thresholding, 
and applications with smooth color changes are averaging and 
noise removal, to just mention a few. 

V. A CNN POST PROCESSOR 

The CNN simulator was built using many features of the 
public domain software XPaint [20]. The environment is menu 
driven and allows the user to create color palletes and new 
canvas, in addition to the standard graphics features such as 
brushes, lines, circles, etc. 

Doing image processing with CNN may not always yield 
the desired visual results and postprocessing becomes then 
necessary to enhance the visualization of the image. Therefore 
we developed a CNN postprocessor that consists of a compiler 
capable of handling logical pixelwise operations among dis- 
tinct color layers. This compiler follows the trends of having 
CNN as an analogic microprocessor [12], [21]. The added 
capability allows us to create new processed images with, 
for example, one layer processed by CNN and the remaining 
layers logically manipulated between CNN results and the 
original image. Detailed examples of this extended processing 
capability are given in the next section. Fig. 9 shows the syntax 
of the postprocessing language using a Backus-Naur form 
notation; keywords and variables are identified as boldface 
and italic words, respectively. 

The following describes the syntax of the postprocessor. All 
the files to be processed must be specified at the beginning 
of the program as indicated in statement 1. When a file is 
read, the program splits the pixel information into its basic 
RGB components. This strategy is used to create three unique 
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. .- 1: main-file . .- 
2: files . .- 
3 :  process : : =  
4 : process-descr : := 

. .- 

I 
I,  - ,, N , r, 

5: var : :=  

” ( ”  W N  (files)+ (process)+ (output)+ ’ I ) ”  . 
N A M E .  
‘I ( “  (process-descr) ” )  ‘‘ . 
(var) r ~ - s s > n  (layer) “, ’‘ (var) r r - r ’ ‘ ’ > r  ( layer) 

(var) ” - ” ”  >” (layer) ”,  (var) ’ ‘ - r ‘ n > n  (layer) . 
(var) J l - J c r  >” (layer) ” , ” (var) r r - s x > a  ( layer) 

(var) 11-1111 >” (layer) “, ” NUMBER (operand) (var) 
I,  - ,I I > , I  

(var) ~f-,~,, >” (layer) ‘ I ,  “ (negation) (var) 

N A M E .  

(operand) (var) ’“--”“~” layer . 

(operand) iWMBER. 

( layer) . 
(layer) . 

6: operand : := (AND ”&&“  . 
(OR I “ 1  I “ )  . 

“ * “ ) . 

‘ ’ > > ‘ I )  . 
7: negation : : =  NOT . 
8: layer : :=  RED . 

GREEN . I BLUE . 
9: output . ..- .- ” ( “  OUTPUT “ ( ’ I  (files) “ , ”  (var) ’ ‘ )“  “ ) I ‘  . 

Fig. 9. Syntax of the CNN postprocessor 

Fig. 10. (a) Image “Iceworld,” (b) contrasting effect, and (c) edge detection. 

layers that contain the color-coded information of the image. 
Statement 3 shows the logical pixelwise operations among 
layers. These operations include the conventional NOT, OR, 
AND, XOR, shift-left, and shift-right functions indicated in 
statement 6. Operations can be performed on the layers of 
a file or a variable but must always be stored in a variable. 
The only three valid layers are assigned to the triplet (RGB) 
and are specified by means of keywords, see statement 8. 
Every variable’s layer i s  initialized to “black” when first used. 
Finally, the new processed image is spooled out in statement 

9 in which it is required to specify the name of the output file 
and the variable containing the image to be printed. 

VI. COLOR IMAGE PROCESSING USING CNN 

This section of the paper will try to demonstrate the capa- 
bilities of our software and the enormous potential that CNN 
has on a wide variety of fields. For this purpose, we will 
present three examples with applications in medical image 
processing, weather forecast, and simple color manipulation. 
Where possible an explanation on the design of the templates 
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Fig. 10. Continued. (d) result from Laplacian template, and ( e )  result from Sobel template. 

used in the example-applications will be provided. However, 
the reader is encouraged to read the corresponding references 
for full details. 

The first example deals with color contrasting. Let us bring 
your attention to the top region of Fig. 10(a) (160590 pixels) 
at the height of the astronaut’s helmet. Here, it is very difficult 
to perceive a set of clouds hidden in the blue background. This 
image was processed with the following templates [22 ] :  

0.01 -0.075 0.01 ] 
-0.075 1.28 -0.075 

0.01 -0.075 0.01 
-0.04 -0.13 -0.04 

-0.04 -0.13 -0.04 
-0.12 0.71 -0.13 

(9) 
The purpose of this template combination is to do a soft 

1 
I = -0.365. 

the continuous transition of states. Naturally, these data can be 
meaningful or meaningless depending upon the application. 

Fig. 10(d) and (e) shows the outcome of applying the Sobel 
and Laplace edge detection operators using the “image works” 
tool of a Silicon Graphics workstation. These operators are 
well established in conventional linear one-step filtering [ 171, 
[18]. The application of the operator is equivalent to making 
every element of the A template be equal to zero and letting the 
CNN run using only the B template. By doing so, essentially 
all the state dynamics are cut out of the operation since local 
feedback interactions are suppressed. Under these conditions, 
(1) is reduced now to 

edge detection on all three color layers. The simulator was 
set to operate in a quantized color mode and was stopped 
after three iterations. The resulting processed image with the 

which for steady-state conditions resembles the convolutional 
operation of one-step image filters [18], see (lob) 

clouds uncovered is shown in Fig. 10(b). Fig. 1O(c) shows the 
same image after the edge detection process was completed in 
2 1 iterations. Edging and contrasting operations performed by 
CNN are quite obvious. This particular example raises the 
following interesting remark. Notice that although CNN is 
searching for the steady-state solution of a partial differential 
equation, in image processing applications intermediate or 
partial solutions may be sufficient to visualize some interesting 
results. For instance, in addition to obtaining the edge features 
of this picture, it was possible to visualize the “hidden” clouds 
before CNN reached its final solution. As noted in Section 
111, the image transform by a cellular neural network is a 
dynamical transform. Thus, it is important to consider the 
transient response. By taking the information from the state 
of the cell rather than from its output, a wealth of data can 
be obtained before the system reaches equilibrium because of 

Thus, conventional one-step filters are a particular case of 
CNN. The second example deals with the X-rays image of 
a chest cage (148370 pixels) displayed in Fig. ll(a). The 
objective is to color-code the black and white image and 
to highlight hidden features in the esternun. The image was 
treated two times with distinct templates. First, a “pixel peeler” 
template was used to widen visual and hidden contours in 
the image. This template was chosen instead of a common 
edge detector because the latter leaves only the contours and 
darkens the body of the image. This would actually alter the 
information contained in the image as our goal was to only 
highlight the edges. The template “peels” the rightmost pixel 
from any two or more adjacent pixels; this action is executed 
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Fig. 11. (a) Chest cage X-rays image, (b) after a filler operation, and (c) after using the CNN postprocessor 

through the B template. Both templates are as follows [23]: two remaining layers were processed with the unity template 
described by (7). These templates are as follows [24]: 

A =  [i 1 A =  [! 
B = [ %  B = f  !] 
I = -1. (114 

I = -1. (1 1b) The resulting image was further processed by a “filler tem- 
plate.” The template was applied only to the red layer setting 
the simulator to work in a quantized color mode; the other 

Basically, the function of the A template is to feed the pixel 
values of the neighboring pixels into the current pixel. A 
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Fig. 12. (a) Satellite weather map and (b) after thresholding operations with CNN 
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(C) 

Fig. 12. Continued. (c) Satellite weather map after using the CNN postprocessor. 

negative bias is used to avoid having an excessively dark 
image. The result of both operation is shown in Fig. ll(b). 
Observe the red dots along the enhanced contour of the ribs. 
The CNN processor undoubtedly did its work. Unfortunately, 
the visualization of the results is not optimal as the image has 
still many gray tones. Hence, the image was postprocessed 
to achieve an optimal color manipulation. The postprocessing 
program is listed below. 

(main original.gif edge.gif edge2.gif 
(xxired, edge.gif+red 1 1  edge2 .gifired) 
(xx + green, original.gif 4 green I /  
edge.gif 4 green) 
(xx + blue, original.gif 4 blue) 
(output (out,xx)) ) . 
The files original.gif, edge.gif, and edge2 .gif 

correspond to the original black and white image, the im- 
age processed in the continuous color mode, and the image 
processed in the quantized mode, respectively. The program 
does the following: 1) The red layer of both edge detection 
operations is ORed to obtain soft and hard tone contours; 2) 
the green layer of the original image is ORed with the green 
layer of the edge detection obtained using the quantized color 
mode; and 3) the blue layer is left intact. The result of this 
post processing is shown in Fig. 1 l(c). It is quite obvious that 
CNN was able to detect the hidden features in the esternun 
which otherwise are impossible to perceive from the original 
black and white image. 

This forthcoming example demonstrates CNN’ s ability to 
color-code a black and white image. The image presented 
in Fig. 12(a) corresponds to an actual satellite weather map 
(200984 pixels) taken on 25 May, 1994 (the reader can see 
that we had very cloudy weather). The goal was to obtain a 
result as close as possible to the standard color-coded maps 
used in weather forecasts. These maps use bright tones of 
green to show light clouds up to red tones to show strong 
rain intensities. The image was treated with color thresholding 
techniques [25] using intensively the bias factor 1. The result 
of this operation is displayed in Fig. 12(b). The templates are 
as follows: 

0 0 0  
AgTeen= 0 20.2 0 r 0 0 0  

ro  o 01 
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The A template is used basically to operate on the quality of 
the colors. A large value in the center of this template helps 
to obtain a brighter color on the result. This explains the very 
high value for the green layer. A large value in the center 
of the B template is used to reinforce the effect of the input 
image on the final result. The thresholding function of I bias 
works as follows. Negative values, force the color of the layer 
to dominate on the final image. In other words, if we make I 
bias very negative, a weaker degree of gray will be enough to 
make the corresponding color appear on the resulting image. 
This explains the different values adopted for I .  The result 
was further processed by the following program: 

(main map.gif 
( w - + r e d ,  map.gif-+hlue 1 1  map.gif-+red) 
(w-+green ,  map-gif-green ,. map.gif+blue) 
(output (out,w))). 

This program changes the white color into red, allowing us 
to obtain the result that we were looking for [see Fig. 12(c)]. 

VII. CONCLUSION 
When low-level hardware simulations of CNN’s are very 

costly for exploring new applications, the use of a behavioral 
simulator becomes indispensable. The system hereby presented 
allows to explore new color image processing applications in 
short turn around times. Processing with CNN’s is attractive 
because the continuous transition from state to state shows 
the evolution of the image to its final appearance. Although 
the systematic development of programming templates is still 
an active area of research, the procedure to process an image 
using only two templates is appealing for its simplicity. The 
work hereby introduced advanced the state of the art into 
processing of color images. It was demonstrated that by 
collecting results from the cell’s state rather than from its 
soft limited output, it is possible to obtain a full gamut of 
color tones. Two color mapping schemes were introduced 
that effectively assign states to distinct color hues. The error 
produced by these schemes is minimum. Therefore, they are 
deemed to be suitable for CNN color simulations. 

Finally, from the examples presented in the last section, 
one can see the unquestionable potential of CNN in image 
processing applications. 
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