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Model Abstraction of Nondeterministic Finite-State
Automata in Supervisor Synthesis

Rong Su, Jan H. van Schuppen, Member, IEEE, and Jacobus E. Rooda, Member, IEEE

Abstract—Blockingness is one of the major obstacles that need to
be overcome in the Ramadge-Wonham supervisory synthesis par-
adigm, especially for large systems. In this paper, we propose an
abstraction technique to overcome this difficulty. We first provide
details of this abstraction technique, then describe how it can be
applied to a supervisor synthesis problem, where plant models are
nondeterministic but specifications and supervisors are determin-
istic. We show that a nonblocking supervisor for an abstraction of
a plant under a specification is guaranteed to be a nonblocking su-
pervisor of the original plant under the same specification. The re-
verse statement is also true, if we impose an additional constraint
in the choice of the alphabet of abstraction, i.e., every event, which
is either observable or labels a transition to a marker state, is con-
tained in the alphabet of abstraction.

Index Terms—Automaton abstraction, discrete-event systems,
nondeterministic finite-state automata, supervisor synthesis.

I. INTRODUCTION

T HE automaton-based Ramadge-Wonham (RW) supervi-
sory control paradigm first appeared in the control litera-

ture in 1982, which was subsequently summarized in the well
known journal papers [18], [26]. Since then there has been a
large volume of literature under the same paradigm. In the RW
paradigm one of the main problems is to synthesize a supervisor
for a plant such that the closed-loop behavior is nonblocking,
controllable [18], observable or normal [11], and satisfies some
prescribed requirements. The main difficulty of supervisor syn-
thesis is to achieve nonblockingness because the total number
of states of a plant model increases quickly when the number
of local components increases, due to the synchronous product
which incurs Cartesian product over automata. To overcome
this difficulty, some authors attempt to introduce sufficient con-
ditions which allow local supervisor synthesis. For example,
in [27] the authors propose the concept of modularity, which
is then extended to the concept of local modularity in [17].
When local supervisors are (locally) modular, a globally non-
blocking supervisory control is achieved. Nevertheless, testing
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(local) modularity itself usually imposes prohibitive computa-
tional complexity. Another notable work is presented in [10],
where, by imposing interface consistency and level-wise con-
trollability among subsystems and local supervisors in a hier-
archical setup, a very large nonblocking control problem may
be solved, e.g. the size of the state set reaches in the Ate-
lier Interétablissement de Productique (AIP) example [10]. But
the approach does not tell how to deliberately and systemati-
cally design interfaces that allow synthesis of local supervisors
that satisfy those properties. Instead, it assumes that those in-
terfaces are given before synthesis, as mentioned in [9]. In [12]
the authors present an interesting approach, which is aimed at
synthesizing a state-feedback supervisor. The authors represent
product states as state tree structures, upon which the power of
symbolic computation (as manifested by the manipulation of bi-
nary decision diagrams) is fully utilized. It has been shown in
[12] that a system with states can be accommodated. Nev-
ertheless, this approach is essentially a centralized approach,
and it does not deal with cases when only partial observations of
states are available for control. In this paper we will discuss the
usage of abstraction to reduce complexity in synthesizing non-
blocking supervisors, where partial observation may be present.

Our first contribution is to present a novel automaton-based
abstraction technique. The idea of abstraction has been known
in the literature, e.g. in [2] abstraction is used in the modular
and hierarchical supervisor synthesis; it is also used in [16] for
testing the nonblocking property, and in [19] for decentralized
control. Nevertheless, their approaches are language-based, and
rely on natural projections that satisfy the observer property
[23]. Although a natural projection can always be modified to
become an observer (with respect to a specific language) [24],
such a modification has a potential drawback in the sense that
the alphabet of the codomain of the projection may be fairly
large for the sake of achieving the observer property, and the
consequence is that the size of the projected image may not be
small enough to allow supervisor synthesis for large systems.
Our abstraction technique is automaton-based, which computes
an abstraction for any pre-specified abstraction alphabet, and
guarantees that the abstraction is suitable for supervisor syn-
thesis. Thus, the drawback of the language-based abstraction
techniques is avoided in our approach. Several strategies for au-
tomaton abstraction have been proposed, e.g., in [4], [5], [7],
[13], [22]. Among them, [22] aims to achieve weak bisimi-
larity between an automaton and its abstraction. In [4], [5], [7],
[13] the authors first use special events, which are called silent
events and usually denoted by , or and when distin-
guishing controllable and uncontrollable events is necessary, to
replace internal events that are not in the abstraction alphabet.

0018-9286/$26.00 © 2010 IEEE
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Then they apply heuristic rewriting rules to ensure that appro-
priate equivalence relations hold between automata before and
after rewriting, e.g., conflict equivalence in [4], [7], supervision
equivalence in [5] and synthesis equivalence in [13]. The pri-
mary goal of our approach is to create an abstraction for an au-
tomaton , which is not necessarily weak bisimilar to , such
that any automaton , whose alphabet is the same as that of the
abstraction and is nonconflicting with the abstraction, must be
nonconflicting with . If we impose an additional constraint in
the choice of the alphabet of abstraction, then it is also true that

is nonconflicting with implies that is nonconflicting with
the abstraction—at this point, our approach is close to achieving
conflict equivalence, but it does not require silent events and
heuristic rewriting rules.

Our second contribution is to show how the proposed abstrac-
tion technique can be applied to a synthesis problem, where the
plant model is nondeterministic but the specification and the su-
pervisor are deterministic. There exists a large body of publica-
tions on supervisor synthesis for nondeterministic systems. For
example, in [1] both plant and supervisor models are nondeter-
ministic and different types of deterministic or nondeterministic
specifications are considered. In [6], [8] the plant is considered
to be nondeterministic and both the specification and the super-
visor are deterministic. In [15] the plant and the specification
are nondeterministic but the supervisor is deterministic. In [28],
[29] the plant and the specification are nondeterministic and
the supervisor can also be nondeterministic. The main differ-
ence between these papers and ours is that, we focus on how to
use automaton abstraction in synthesis to reduce computational
complexity. We consider a nondeterministic plant because an
abstraction of a deterministic plant is usually nondeterministic.
We consider a deterministic specification and a deterministic su-
pervisor because they are typical in industrial systems, and they
allow automaton abstraction to be used in synthesis. We are still
investigating whether the proposed abstraction technique is also
applicable to cases with nondeterministic requirements and su-
pervisors. Although [5], [7], [13], [22] also utilize abstraction in
synthesis, their abstraction techniques are different from ours.
Because the main objective of this paper is to establish a con-
nection between the existence of a nonblocking supervisor for a
plant model and the existence of a nonblocking supervisor for an
abstract model created by our abstraction technique, details of
how to synthesize a nonblocking supervisor based on nondeter-
ministic finite-state automata are not mentioned in this paper,
but addressed in [21]. We also introduce the concept of state
normality, which allows for the computation of a supremal non-
blocking state-normal supervisor for a nondeterministic system.

This paper is organized as follows. In Section II we intro-
duce an abstraction technique over nondeterministic automata.
In Section III we show the usage of the proposed abstraction
technique in supervisor synthesis. After an illustrative example
in Section IV, conclusions are stated in Section V. Long proofs
are presented in the Appendix.

II. AUTOMATON ABSTRACTION AND RELEVANT PROPERTIES

In this section we follow the notations used in [25]. We first
briefly review concepts related to languages and automata, then

introduce the concept of automaton abstraction. After that, we
present properties of abstraction which are used in supervisor
synthesis.

A. Concepts of Languages, Automata and Abstraction

Let be a finite alphabet, and denote the Kleene closure
of , i.e., the collection of all finite sequences of events taken
from . Given two strings , is called a prefix sub-
string of , written as , if there exists such that

, where denotes the concatenation of and . We
use to denote the empty string of such that for any string

, . A subset is called a language.
is called the prefix closure

of . is called prefix closed if . Given two languages
, let be the con-

catenation of and , which contains every string obtainable
by concatenating one string from and one string from .

Let . A mapping is called the natural
projection with respect to , if

1) ;

2) if
otherwise

;

3) .
Given a language , . The
inverse image mapping of is

Given and , the synchronous product of
and is defined as , where

and are natural
projections. Clearly, is commutative and associative. Next, we
introduce automaton product and abstraction.

A nondeterministic finite-state automaton is a 5-tuple
, where stands for the state set, for the

alphabet, for the nondeterministic transition
function, for the initial state and for the marker
state set. As usual, the domain of is extended to . If
for all and , contains no more than one
element, then is called deterministic. Let

Any string can lead to a state , from which no
marker state is reachable, i.e. for any ,

. Such a state is called a blocking state of , and we call
the blocking set of . A state that is not a blocking state is

called a nonblocking state. We say is nonblocking if
. For each , we define another set

, and call the nonblocking set
of , which is simply the set of all strings recognized by . For
the notation simplicity, we use to denote . It is
possible that , due to nondeterminism. Let

be the closed behavior of .
Given two nondeterministic automata

( , 2), the product of
and , written as , is an automaton such that
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where is defined
as follows:

if
if
if .

Clearly, is commutative and associative. is extended
to . By a slight abuse of
notations, from now on we use to denote its reachable
part, which contains all states reachable from by

and relevant transitions between each pair of these states.
Next, we introduce automaton abstraction, which requires the
following concept of marking weak bisimilarity.

Definition 1: Given , let
and be the natural projection. A marking weak
bisimulation relation on with respect to is an equivalence
relation
such that, for all , and

The largest marking weak bisimulation relation on with re-
spect to is called marking weak bisimilarity on with re-
spect to , written as .

Marking weak bisimilarity is almost the same as weak bisim-
ilarity described in [14], except for the special treatment on
marker states. We now introduce abstraction.

Definition 2: Given , let .
The automaton abstraction of with respect to is an
automaton where

1)
;

2) ;
3) ;
4) , where for any ,

.

The time complexity of computing mainly
results from computing , which can be es-
timated as follows. We first define a new automaton

, where is called the silent
event, which denotes all events in , and for all ,
if there exist with and
such that , then ; if there exists

such that , then .
We can show that is equal to . The
total number of transitions in is no more than , where

and . Based on a result in [3], the time
complexity of computing is if
we ignore the complexity caused by checking the condition
“ ” in Def. 1. If we consider this extra
condition, which requires comparing at most
pairs of states in the worst case, then the overall complexity
is . From
now on, when is clear from the context, we simply use

to denote , and use for an element of .
If is also clear from the context, then we simply use
for . In other comparable automaton-based abstraction
techniques, e.g., [4], [7], [13], [22], the weak bisimilarity is
also used, except that in their definition two equivalent states
need not have the same marking status, which may potentially
make the size of the quotient state set under their construction
slightly smaller than the size of . On the other hand,
in those techniques the definition of utilizes the following
standard quotient construction:

if

if .

Our definition of is nonstandard in the sense that, two quo-
tient states are only connected by events in , and is not used.
As a result of this nonstandard definition, two different quotient
states in may become equivalent in ,
which usually makes smaller than . In
the next section we will see that, can be replaced by

in supervisor synthesis. There exists a proce-
dure that computes directly from without
applying the abstraction procedure twice, and the complexity of
computing is equal to , where

. Owing to the limited space, we will not
discuss this procedure in this paper. As a comparison, we use

to denote the standard quotient construction under the
weak bisimilarity. Then is the same as
(under automaton isomorphism), whose size is close to that of

. Thus, in practice our technique can obtain smaller ab-
stractions than the standard quotient construction can achieve,
which is illustrated in the following example.

Let be a nondeterministic au-
tomaton depicted in Fig. 1, where . As-
sume . Then we have the quotient state set

.
The abstraction is depicted in Fig. 1. We can check
that, in states and are equivalent under

, and so are and . This happens because the
transition map in our definition of abstraction is nonstan-
dard, making the path from state 2 to the blocking state 7
(and from state 6 to state 11) disappears in . The
abstraction is depicted in Fig. 1, where

.
As a comparison, we apply the standard quotient construc-
tion on . To distinguish elements of from those of

, we use for a quotient state under . We have

. We can see that
because both quotient sets are constructed

based on the weak bisimilarity. The quotient automaton
is depicted in Fig. 1, which is different from and has
more states and transitions than has. In this
example, we can see that our abstraction technique does enjoy
some computational advantage over other automaton-based
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Fig. 1. Example 1: �, �� � , ��� � �� � and �� � .

abstraction techniques, which utilize the standard quotient con-
struction. Next, we present properties of automaton abstraction.

B. Properties of Automaton Abstraction

We first introduce two more concepts, which are important
for applying the aforementioned automaton abstraction in su-
pervisor synthesis.

Definition 3: An automaton is
marking aware with respect to , if

where is the natural projection.
If is marking aware with respect to , then any string

reaching a marker state from a non-marker state must contain
at least one event in . A sufficient and necessary condition
to make marking aware with respect to is to put in
every event that labels a transition from a non-marker state to a
marker state, namely

.
Definition 4: Given an alphabet , we bring in a new event

symbol , and call
standardized if

1) ;
2) ;
3) .

A standardized automaton is nothing but an automaton, in
which is not marked and has only outgoing transitions with
no incoming transitions, and no state except has outgoing
transition. For an ordinary automaton
we can standardize it (i.e., convert it into a standardized au-
tomaton) by simply (1) extending the alphabet to , (2)
adding a new state , and (3) defining a new transition map

such that and for any
we have . The resulting automaton

Fig. 2. Example 2: � and �� � .

is a standardized automaton.
From now on, unless specified explicitly, we assume that every
alphabet contains . Thus, if we say and are two alpha-
bets, then ; and if we say is an alphabet,
then . Let be the collection of all standardized fi-
nite-state automata, whose alphabet is . By a slight abuse of
notation, we use to denote a standardized automaton . We
can easily see that the product of two standardized automata is
still a standardized automaton, and abstraction of a standardized
automaton is also standardized as long as is in the abstraction
alphabet. The concepts of marking awareness and standardized
automata are used in the following result, which is extensively
used in this paper.

Proposition 1: Given alphabets and with , let
and be the natural projection. Then

1) and .
2) If is marking aware with respect to , then

.

The proof is given in the Appendix, which indicates that, if
is not standardized, then we may not always have

and , which are critically
important in abstraction-based synthesis.

As an illustration of Prop. 1, Fig. 2 depicts an example, where
and . We can check that

. But and
, namely . In this example, to

make marking aware with respect to , must be included
in . If we set then , as
predicted in Prop. 1.

To show the usefulness of automaton abstraction in super-
visor synthesis, we need the following concept.

Definition 5: Given automata
( , 2), we say is nonblocking preserving with respect
to , denoted as , if ,

and for all and all , there
exists such that

We say is nonblocking equivalent to , denoted as
, if and .
By Def. 5, if is nonblocking preserving w.r.t. then their

nonblocking behaviors are equal, but ’s blocking behavior
may be larger. The last condition is used to guarantee that non-
blocking preserving is conserved under automaton product and
abstraction. If additionally is nonblocking preserving w.r.t.

, then they are nonblocking equivalent. We now present a few
results.
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Fig. 3. Example 3: automata � and � .

Fig. 4. Example 3: automata � �� and �� �� �� � .

Fig. 5. Example 3: automata� � � ,� � � and �� � �
� � �� � � �.

Proposition 2: Given , if
then .

Corollary 1: Given , if
then .

By Prop. 2 and Cor. 1 nonblocking preserving and equiva-
lence are invariant under automaton product.

Proposition 3: Given with , 2, let
. If , then

1) .
2) If additionally ( , 2) is marking aware with respect

to , then

By Prop. 3, the abstraction of the automaton product is non-
blocking preserving with respect to the product of the abstrac-
tions; if in addition the marking awareness is imposed then the
nonblocking preserving relation can be replaced by the non-
blocking equivalence relation. To illustration Prop. 3 we present
a simple example. Suppose we have and

. Let and be as shown in
Fig. 3, and . The results of
and are depicted in Fig. 4, and ,

, are in Fig. 5.
Clearly

But because

it is not true that

To make and marking aware, we need to set .
Then by using the same procedure we can check that

as predicted by Prop. 3.

Theorem 1: Given two alphabets and with , let
and . Then

1) ;
2) If is marking aware with respect to , then

if and only if .

Proof: Let be the natural projection

Thus, .
Clearly, is marking aware with respect to because

. If is also marking aware with respect to , then by
Prop. 3, we have

(1)

Furthermore, is also marking aware with respect to
because both and are marking aware with respect to . By
Prop. 1 we get that

(2)

Thus we have

Thus, if is marking aware with respect to , then
.

Theorem 1 can be interpreted as follows: if the abstraction of
is ‘nonconflicting’ with , i.e. , then
is ‘nonconflicting’ with . The inverse implication is also true

if we impose the marking awareness condition. Next, we discuss
the usage of abstraction in synthesis.

III. AUTOMATON ABSTRACTION IN SUPERVISOR SYNTHESIS

In this section we first introduce concepts of a supervisor syn-
thesis problem, which is to compute a deterministic nonblocking
state-controllable, state-observable (or state-normal) supervisor
of a nondeterministic plant under a deterministic specification.
Then we achieve our main objective of this paper: to establish a
connection between the existence of a nonblocking supervisor of
aplantandtheexistenceofanonblockingsupervisorofanabstrac-
tionof theplant,generatedbytheproposedabstraction technique.

A. Concepts of a Supervisor Synthesis Problem

Given , for each let

Thus, is simply the set of all events allowable at in .
We now bring in the concept of state controllability. Let
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, where is the set of controllable events, is the
set of uncontrollable events and .

Definition 6: Given and ,
let and be the natural
projection. is state-controllable with respect to and if
for all , and , we
have .

The concept of state controllability is slightly different from
the one used in the literature, e.g., [1], because of the involve-
ment of . We can check that is state controllable implies
that . This can be briefly
shown as follows. Let and with

. There must exist and such that
, and . Therefore,

. There are two cases: (1) . Then
since is state-controllable, by Def. 6 we have ,
which means . Thus, ; (2)

. Then implies that .
Therefore, we have . In either case we have

. Thus, it is always true that state controllability
implies language controllability described in the RW paradigm.
But the reverse statement is not true unless both and are
deterministic. We now introduce the concept of state observ-
ability. Let , where is the set of observable
events, is the set of unobservable events and . Let

be the natural projection.
Definition 7: Given and , let

. is state-observable with respect to
and if for all with , and for
all and ,
we have .

State observability defined in Def. 7 is more general than the
one defined in [7], as the authors in [7] consider to be a sub-
automaton of and only one event is unobservable. By Def. 7, if

is state observable then for any two states and
in reachable by two strings and having the same
projected image (i.e. ), any event allowed
at and must be allowed at as well. We can check
that, if is state-observable then for all with

and

This can be briefly shown as follows. Let
with and , and

. There must exist and such that
, ,

, . Clearly,
and . There are two cases: (1) . Then since

is state-observable, by Def. 7 we have
. Thus, , which means

; (2) . Then implies
that , which means . In
either case, we have . Thus, state observability
implies observability defined in [11]. But the inverse statement
is not always true unless both and are deterministic. No-
tice that, if , namely every event is observable, may
still not be state-observable, owing to nondeterminism. In many

applications we are interested in an even stronger observability
property called state normality which is defined as follows.

Definition 8: Given and ,
let and be the natural
projection. is state-normal with respect to and if for
all , and for all

and , if
and , then .

We can check that, if is state-normal with respect to and
, then , which

means is normal with respect to and as
defined in [11]. This can be briefly shown as follows. Let

. Then and furthermore,
there exists such that . Since

and , there must exist with
such that . Since , we have

. Clearly, there exist
such that and . Since is
state-normal, by Def. 8, we have , which means

. Thus, . The inverse
statement is not true unless both and are deterministic.
Furthermore, we can check that state normality implies state
observability. But the inverse statement is not true.

Definition 9: Given and with
, an automaton is a nonblocking supervisor

of under , if is deterministic and the following conditions
hold:

1) ;
2) ;
3) is state-controllable w.r.t. and ;
4) is state-observable (or state-normal) w.r.t. and .

The first condition of Def. 9 indicates that , which rep-
resents the closed-loop system in the sense that is supervised
by , complies with the specification in terms of language
inclusion. Because of this condition we only consider to be
deterministic. The use of a nondeterministic specification is de-
scribed in, e.g. [15], where the goal is to achieve a closed-loop
system that reduces the requirement in terms of failure
semantics. Because this paper is about the usage of abstraction
in synthesis, which may or may not be applicable to cases with
nondeterministic specifications, we decide to use deterministic
specifications. For practical applications, it is not necessary that

. The second condition indicates is nonblocking.
The third and fourth ones are self-explanatory. Later we will use
the term “nonblocking state-normal supervisor,” when we want
to emphasize that is state-normal with respect to and .
The following result provides a sufficient and necessary condi-
tion for the existence of a nonblocking supervisor.

Theorem 2: Given and with
, there exists a nonblocking supervisor of under

if and only if there exists with
such that

1) ;
2) ;
3) is state-controllable w.r.t. and ;
4) is state-observable (or state-normal) w.r.t. and .
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The proof of Theorem 2 indicates that a nonblocking super-
visor is simply a recognizer of an automaton which satisfies
those four conditions. In [11], [18] we know that controllability
and normality are closed under language union. The following
result shows that state controllability and state normality bear a
similar feature.

Proposition 4: Given and with
, let ( , 2) be a nonblocking state-normal

supervisor of under and . Let
be a deterministic automaton with
and . Then is a nonblocking state-normal su-
pervisor of w.r.t. .

By Prop. 4 the ‘union’ of two nonblocking state-normal
(NSN) supervisors is still a NSN supervisor. We define a set

If , then is a nonblocking supervisor of
under implies that because .

From Prop. 4 we can derive that has a unique el-
ement such that for any , we have

. We call the supremal nonblocking state-normal super-
visor of under with respect to . In practice we are in-
terested in such a supremal NSN supervisor because it is least
restrictive and computable by a procedure proposed in [21]. The
reason why we introduce the concept of state-normality is be-
cause of the existence of the supremal NSN supervisors, which
allows for formal synthesis. Next, we describe how to use the
proposed abstraction technique in supervisor synthesis.

B. Abstraction in Nonblocking Supervisor Synthesis

Our main objective is to answer the following two questions:
(1) under what conditions is a nonblocking supervisor for an
abstraction also a nonblocking supervisor for ? (2)
under what conditions is a nonblocking supervisor
for also a nonblocking supervisor for ? To this end
we need the following lemmas.

Lemma 1: Let , and . Then is
state-controllable with respect to and if and
only if is state-controllable with respect to and .

Lemma 2: Let , , and
be the natural projection. Then (1) If is

state-observable w.r.t. and then is state-observ-
able w.r.t. and . (2) If and is state-observable
w.r.t. and , then is state-observable w.r.t. and

.
Lemma 3: Let , , and

be the natural projection. Then (1) If is
state-normal w.r.t. and , then is state-normal w.r.t.

and . (2) If and is state-normal w.r.t. and ,
then is state-normal w.r.t. and .

Based on Lemmas 1–3 we present the following result, which
answers the first question raised above.

Theorem 3: Given and with
, if there exists a nonblocking supervisor of

under , then is also a nonblocking supervisor of
under .

Proof: Since is a nonblocking supervisor of
under , by Def. 9,

1) ;
2) ;
3) is state-controllable w.r.t. and ;
4) is state-observable (or state-normal) w.r.t. and

.
By Lemma 1, is state-controllable with respect to and .
By Lemma 2, is state observable with respect to and , or
by Lemma 3, is state-normal with respect to and . Since

, by Theorem 1 we get that
. Finally, we show that as follows:

Therefore, the theorem is true.
By Theorem 3 a nonblocking supervisor for is also

a nonblocking supervisor of . Therefore, the first question has
been answered. To answer the second question raised above, we
present another result as follows.

Theorem 4: Given and with
, suppose is marking aware w.r.t. and .

Then a nonblocking supervisor of under is also
a nonblocking supervisor of under .

Proof: Since is a nonblocking supervisor of under ,
by Def. 9,

1) ;
2) ;
3) is state-controllable with respect to and ;
4) is state-observable (or state-normal) w.r.t. and .

By Lemma 1, is state-controllable with respect to
and . By Lemma 2, is state-observable with respect
to and , or by Lemma 3, is state-normal with
respect to and . Since and is
marking aware with respect to , by Theorem 1 we get that

. Finally, we show that
as follows:

Therefore, the theorem is true.
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Fig. 6. Example 4: a simple processing unit.

Fig. 7. Example 4: the specification � � ����.

Fig. 8. Example 4: abstractions � � � and � � � .

By Theorem 4, if is marking aware with respect to and
, then a nonblocking supervisor of is also a non-

blocking supervisor of , which means, under conditions
of Theorem 4, we have

On the other hand, by Theorem 3 we have

Thus, if is marking aware with respect to and ,
we have , which means
the supremal nonblocking state-normal supervisor of
under is also the supremal nonblocking state-normal super-
visor of under , whose alphabet is . When the super-
visor alphabet is not specified a priori, it is an open ques-
tion whether there exists a minimal such that the supremal
nonblocking state-normal supervisor of the corresponding ab-
straction can also achieve the maximal permissiveness for the
original plant. Next, we use a simple example to illustrate the
relevant concepts and the process of using abstraction in syn-
thesis.

IV. EXAMPLE

Suppose we have models of two machines, which are part of
one processing unit and functionally identical, except for indi-
vidual event labels. The system is depicted in Fig. 6. Each ma-
chine ( 1, 2) has the following standard operations: 1)

fetching a work piece ; 2) preprocessing ; 3) postpro-
cessing ; 4) polishing ; 5) packaging . After pre-
processing , there are two choices: to be postprocessed di-
rectly or to be polished first before postprocessing.
The latter gives a product with better quality. The negative as-
pect is that polishing may cause the machine to fail .
If failure does happen, will stop automatically and wait for
repair. Among each alphabet , the controllable alphabet is

, and for the purpose of simplicity the observ-
able alphabet , namely every event except
for is observable. There is one specification with

, depicted in Fig. 7, indicating that if a work piece
is polished in , then a work piece must be polished in
afterwards . We now start to synthesize a nonblocking su-
pervisor for that complies with the specification .

First, we create an appropriate abstraction of . We
pick . The rationality is that, since

, the abstraction can capture constraints
imposed by the specification ; and since all controllable events
are in , the abstraction also contains all
means of control available to itself. Since

, by Prop. 3

The results of and are depicted in
Fig. 8. The product of two abstractions

is depicted in Fig. 9, We now use and
to synthesize a supervisor. The product is depicted

in Fig. 9. Clearly, the transitions from state (2,0) to state
(3,1), and from (5,0) to (4,1) in must be disabled. Oth-
erwise, blocking states (3,1) and (4,1) will be reached. Once
these two transitions are disabled, transitions from (2,0) to
(1,1), and from (5,0) to (6,1) must be disabled as well because,
otherwise, the remaining automaton is neither state-normal nor
state-observable. After removing transitions at states (2,0)
and (5,0) in Fig. 9, the remaining reachable part is depicted in
Fig. 10, which is nonblocking, state-controllable, state-normal
(and state-observable). By Theorem 2 we get that a recognizer

of the marked behavior , depicted in Fig. 11, is a non-
blocking supervisor of under . We can see that does not
allow events and to happen. It is not difficult to check that

is a nonblocking supervisor of under , as pre-
dicted by Theorem 3. We can verify that the maximum number
of states of any intermediate automaton computed is 13, which
occurs when we compute . Clearly, abstractions help to
reduce the computational complexity in this example because
otherwise we will have to face the product di-
rectly, which has 61 states.

The abstraction technique has been applied to a semicon-
ductor cluster tool example in [21], where the monolithic plant
model has about states and, as a contrast, the largest
abstraction has only 985 states. Thus, the abstraction-based syn-
thesis shows a significant computational advantage over cen-
tralized synthesis. It has also been applied to a cable service
network example in [20], where the ratio of the sizes of state
sets of abstractions obtained by using our approach and the ob-
server-based approach is , where denotes the number
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Fig. 9. Example 4: the product � � �� � � � � �� � � � and the product � �� .

Fig. 10. Example 4: nonblocking, state-controllable, state-observable (and
state-normal) automaton �.

Fig. 11. Example 4: the supervisor � � ��� �.

of residents in a community. Clearly, our abstraction approach
enjoys a computational advantage over the observer-based ab-
straction approach. We are applying this technique to other case
studies at the moment to test its efficiency compared with other
automaton-based abstraction techniques in the literature.

V. CONCLUSION

In this paper, we first present a new technique that computes
an abstraction of a nondeterministic finite-state automaton and
provide some relevant properties. Then we show the usage of
this technique in a synthesis problem, where supervisors and
specifications are deterministic but plant models are nondeter-
ministic. After introducing the concepts of state controllability,
state observability and state normality, we show that a non-
blocking supervisor of an abstraction under a speci-
fication is also a nonblocking supervisor of the original plant

under the same specification. The inverse statement is true,
if all observable events are contained in and the plant is
marking aware with respect to . In this paper we also present
a sufficient and necessary condition for the existence of a non-
blocking supervisor and show that the supremal nonblocking
state-normal supervisor exists for a plant and a specification

. The concrete procedure to compute such a supremal super-
visor is not provided, owing to the different objective of this

paper and the page limit as well. It is addressed in another paper
of the authors [21].

Although results in this paper are about standardized au-
tomata, they are applicable in a supervisor synthesis problem,
where is non-standardized in the sense that . To do
this, we first standardize to obtain , then synthesize a stan-
dardized nonblocking supervisor based on . Since

is deterministic, we can convert it to a non-standardized
automaton by simply removing the transition and setting the
target state of the transition as the initial state of the resultant
automaton . Since is uncontrollable and unobservable,
we can show that is a nonblocking supervisor of , which
is introduced in [21] for aggregative synthesis of distributed
supervisors.

APPENDIX

1) Proof of Prop. 1: Let be the transition map of .
First we show that . For each string

, there exists with such that

Since is standardized, iff . Thus, we get that
. Because

we have that, . Thus,
.

To show , let . Then

Since is standardized, from we have
. Thus, . To

show , let . Then we
have , which means, there exists

with such that . Thus,
, namely . Therefore, we have

.
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Finally, suppose is marking aware with respect to . To
show , we only need to show that

. For each string ,
there exists such that

from which we can derive that, there exists such that
and

Clearly, , because otherwise
. We claim that is a blocking state of . Otherwise, there

exists such that . Since is marking
aware with respect to , we have that , which
contradicts the fact that

Thus, the claim is true. Since is a blocking state, we have
, namely .

2) Proof of Prop. 2: Let with
, 2, 3, where and . Let

and be natural projec-
tions. We first show that . Clearly,
we have . Since ,
we have . Thus, we have

.
To show that , let

. By the definition of automaton product, there exists
such tat . There are two cases to con-

sider. Case 1: is a blocking state. Then
. Thus, . Case 2: is a nonblocking

state. Since , there exists such
that . Since , there ex-
ists such that and

. We have

Thus, is a blocking state of , which means
. Therefore, in either case we have

.
Finally, from the above argument in Case 2, for any

and , we have
such that

.
3) Proof of Prop. 3: Let

with , 2. For notation simplicity let ,
and , ,
and be natural projections, for the
transition map of and for the transition map
of ( , 2).

First, we have the following:

Next, we show that

Let . Then there exists
such that and

for all

which means and there exists
with such that

and for all

Since and are standardized, from
and the fact that

we can derive that

We claim that is a blocking state of
. Otherwise, there exists such that

Since , we get that
. Thus, , which means there

exists with such that
—contradict the fact

that for all

From the claim we get that .
Let . For any

with , there exists
such that and . Since
and are standardize, if , then , which means

. Clearly, we have the following:
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If , then by the definition of automaton abstraction and the
assumption that , we get

Thus, in either case we have

We now show that

Let . If ,
then ,
from which we can derive that .
Thus, , namely

. If , then
there exists with such that

. Since ,
by the definition of automaton abstraction, we get that

. Thus,
. In either case, we have

Thus, .
Suppose ( , 2) is marking aware with respect to
. To show

we only need to prove one direction , because the other
direction has been proved. Let

. Then there exists such
that

(3)

and

(4)

where . From Expression
(3) we get that

(5)
From Expression (4) we get that . Since

and are standardized, from Expression (5) and the fact
that we have

We claim that is a blocking state of
. Otherwise, there exists such that

Since , we get that
. Thus, . Furthermore, since

( , 2) is marking aware with respect to , we have
. Thus, there exists with such that

. Since
for , 2 and , we have

which contradicts Expression (4). Thus, the claim is true, from
which we have .

Let . For all
with
, there exists

such that

Since and are standardized, if , then ,
which means . Clearly, we have

. If , then by the
definition of abstraction and the assumption that ,
we get

Thus, in either case we have

We now show that

Let . If , then

from which we can derive that . Thus

namely . If
. Then , which means

. Furthermore, there exists
with such that

. We consider three cases. Case 1: ( ,
2), namely and . By the definition of
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abstraction, we have

Thus, . Case 2:

and . Since is marking aware
with respect to , implies that .
Since , we have

Thus

which means . Case

3: and . This case is similar to Case 2. In
either case, we have

Thus, .
4) Proof of Theorem 2: The ONLY IF part is obvious. So we

only need to show the IF part. Let be a recognizer of ,
i.e. and . Then we have

Next, we show . Let ,
and . Suppose

. Then there exists and
such that for all

Let be the natural projection. Since
, there exists . Thus,

. Since , we get that

Thus, and .
Since is deterministic, . Therefore,

—contradicting the fact that
is a blocking state. Thus, .

For each , let and
. Since is state-controllable, for any

, we have . Since
, we have

Thus, is state controllable with respect to and .
Next, we show that is state-observable w.r.t. and if

is state-observable w.r.t. and . Suppose it is not true. Then

there exist with ,
and

such that . Since is
deterministic, there exists such that

Since , we have that there exist
with such that

Pick and , then
and . Furthermore,

we have that but ,
namely , which contradicts
that is state-observable w.r.t. and . Thus, is state-ob-
servable w.r.t. and .

Finally, we show that is state-normal w.r.t. and if
is state-normal w.r.t. and . Let and

. For any
and with , we need to show that

Suppose it is not true. Then there exist and
such that but . Since is de-
terministic, . Since , we get
that . Let such that

but . Such must exists because at least
and and

. If , then let , and we have
. But , which contra-

dicts the fact that is state-normal with respect to and .
If and , let .
There exist and such that
and . Then we have ,

but , which still contradicts the
fact that is state-normal with respect to and . Thus

which means is state-normal with respect to and .
5) Proof of Prop. 4: Since for

, 2, we have

Next, we show . Let ,
and . Sup-

pose . Then there exist and
such that for all

Let be the natural projection. Then
. Thus, either
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or . Without loss of generality, suppose
. Then there exists , namely

. Since , we have

Thus, and . Since
is deterministic, we get . Therefore,

—contradicting the fact that
is a blocking state. Thus, .

For each , let and .
Since , without loss of gener-
ality, suppose . Then because is
deterministic, we have

Thus, is state controllable with respect to and .
Finally, we show that is state-normal with respect to and
. Let and . For

any and with
, we need to show that

Suppose it is not true. Then there exist and
such that but . Since is de-
terministic, . Since , we get
that . Without loss of gen-
erality, suppose . Let such that

but . Such must exists because at least
and and

. If , then let , and
we have . But

, which contradicts the fact that is state-normal with re-
spect to and . If and , let

. There exist and
such that and . Then we have

, but ,
which still contradicts the fact that is state-normal with re-
spect to and . Thus

which means is state-normal with respect to and .
6) Proof of Lemma 1: Let and

. We first show the IF part. Suppose it is not
true. Then is state-controllable w.r.t. and , but it is not
state-controllable w.r.t. and . Thus, for all

, and

(6)

where is the natural projection, and there exist
, and such

that

(7)

where is the transition map of . By the definition of
automaton abstraction we have

Thus, implies that

From expression (7) we also get that

Thus, . Since , we
have , from which we can get that

. Thus, , which means there exist
, and such that

which contradicts expression (6). Thus, the IF part is true.
Next, we show the ONLY IF part. Suppose it is not true. Then
is state-controllable w.r.t. and , but it is not

state-controllable w.r.t. and . Thus, for all
, and

(8)

and there exist , and
such that

(9)

Since is standardized, from expression (9) we get that
. Since

there exist and such that
, which contradicts expression

(8). Thus, the ONLY IF part is true.
7) Proof of Lemma 2: (1) Let and

. Suppose is state observable with re-
spect to and . Thus, for all
with , and all
and

(10)

Assume that is not state-observable w.r.t. and . Then
there are with , and

and such that

Since is standardized, we get and
. We also have and
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. Thus,
and . We also have that

Finally, since , we have .
Thus, there exist and with ,
and there exist

such that ,
which contradicts expression (10). Thus, (1) is true.

(2) Suppose . Let be state observable w.r.t. and
. Thus, for all with , and all

and

(11)

Assume that is not state-observable w.r.t. and .
Then there exist with

, and and

(12)

Clearly, there exist with and
such that and

. We also have that

and

Thus, from expression (12), there exist and
and such that

Since and , we have
. Thus, there exist

with , and
such that

which contradicts expression (11). Thus, (2) is true.
8) Proof of Lemma 3: (1) Let

and . Suppose be state normal w.r.t.
and . Then for any ,

, we have, for each
and

(13)

Suppose is not state-normal w.r.t. and . Then there exist
and such that there

exist and

Let be the naturel projection. Since
is standardized, we have . From

we can derive that
. Since ,

we have and , which
means .
Thus, . Since

, we have

Since , if we have ;
if we have . Thus, there
exist ,

such that there exist
and

which contradicts expression (13). Thus, (1) is true.
(2) Let be state-normal w.r.t. and . Then for any

, , we have, for each
and

(14)
Suppose is not state-normal w.r.t. and . Then there
exist ,

, and such that

Clearly, there exists such that .
There also exists such that and

. Thus, . Since
, we have .

Since , we have
. Thus, .

Since , there exists such that
. From we have

. Thus,
there exist , ,

and such that

which contradicts expression (14). Thus, (2) is true.
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