EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

A quantitative method to decide where and when it is
profitable to use models for integration and testing

Citation for published version (APA):

Braspenning, N. C. W. M., Boumen, R., Mortel - Fronczak, van de, J. M., & Rooda, J. E. (2007). A quantitative
method to decide where and when it is profitable to use models for integration and testing. (SE report; Vol. 2007-
14). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2007

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023


https://research.tue.nl/en/publications/00305bda-3d1d-470e-939e-853a89828a3b

Systems Engineering Group
Department of Mechanical Engineering
Eindhoven University of Technology

PO Box 513

5600 MB Eindhoven

The Netherlands

http://se.wtb.tue.nl/

SE Report: Nr. 2007-14

A quantitative method to decide
where and when it is profitable to
use models for integration and
testing

N.C.W.M. Braspenning, R. Boumen,
J].M. van de Mortel-Fronczak, J.E. Rooda

ISSN: 1872-1567

SE Report: Nr. 2007-14
Eindhoven, April 2008
SE Reports are available via http://se.wtb.tue.nl/sereports






Abstract

Industrial trends show that the lead time and costs of integrating and testing high-tech multi-
disciplinary systems are becoming critical factors for commercial success. In our research,
we developed a method for early, model-based integration and testing to reduce this critical-
ity. Although its benefits have been demonstrated in industrial practice, the method requires
certain investments to achieve these benefits, e.g. time needed for modeling. Making the
necessary trade-off between investments and potential benefits to decide when modeling is
profitable is a difficult task that is often based on personal intuition and experience. In this
paper, we describe how integration and test sequencing techniques can be used to quantita-
tively determine where and when the integration and testing process can profit from models.
An industrial case study shows that it is feasible to quantify the costs and benefits of using
models in terms of risk, time, and costs, such that the profitability can be determined.



Introduction

High-tech multi-disciplinary systems, such as wafer scanners from ASML [1] which are used
worldwide to manufacture integrated circuits, consist of many components from different
disciplines, e.g., optics, mechanics, electronics, and (embedded) software. The close inter-
action between components results in system behavior that aims at satisfying the system
requirements, e.g., providing some system functionality with a defined performance. In the
current industrial practice of developing such systems, the main effort of system develop-
ment is shifting from the design and implementation phases to the so-called integration
and test (I&T) phases [2]. During the I&T phases, usually at the end of the system devel-
opment process and on the critical path, the system is integrated by combining component
realizations and, subsequently, tested against the system requirements. In the current indus-
trial way of working, most of the system level problems can only be detected during the I&T
phases, where the costs of repairing these problems are significantly higher than in earlier
phases [3]. As aresult, the I&T phases have a large and growing disadvantageous influence on
the time-to-market and on the product quality, which are the main business drivers of litho-
graphic equipment manufacturers such as ASML [4]. Our research within the TANGRAM
project [5, 6] focuses on a model-based integration and testing (MBI&T) method which aims at
a reduction of this disadvantageous influence.

In previous work [7, 8], we showed how formal and executable models can replace not yet re-
alized system components (e.g., software, mechanics, electronics) allowing early integration
and system testing, i.e., before the complete system is realized. Application of the MBI&T
method to a realistic industrial case study showed that the use of models enabled early de-
tection and prevention of several system design and integration problems, months before
the real integration and test phases started. Although the model-based I&T activities form
new possibilities to reduce the time-to-market or to increase the product quality, they also
introduce additional costs, e.g., time needed to model the components. These investments
in modeling need to be made before the actual benefits become clear, often without knowing
if and to which extent the benefits outweigh the costs. In some cases, the investments in
modeling are profitable, e.g., when the realization of a component is available only late in the
development process or when testing with realizations is expensive. In other cases, it is wise
not to invest in models but to perform the tests with realizations only, e.g., for mature or low
risk components.

Making decisions on whether or not to use models for integration and testing can be sup-
ported by estimations on the risk involved in the system, on the development or delivery
times and the availability of realizations, and on the costs of testing with realizations. In cur-
rent industrial practice, the decision making process is usually based on personal intuition
and experience. In this paper, we describe a quantitative decision making process that takes
the costs into account to determine where and when the I&T process can profit from models.
This quantitative decision is based on an I&T sequencing method [9], also developed within
the TANGRAM project, in which ‘assembly by disassembly’ techniques [10] and sequential
diagnosis techniques [11] are combined and adapted for application in the current industrial
practice of high-tech multi-disciplinary system development. Although it is recognized in [12]
that model-based activities like simulation should produce benefits that outweigh the costs of
modeling, we are not aware of any method to determine the profitability of a certain model-
based activity based on a quantification of its costs and benefits.

This paper is based on [13] and it is organized as follows. Section 2 first describes the cur-
rent I&T process and distinguishes nine categories of I&T activities. Subsequently, this sec-
tion shows where models can be applied in the current I&T process, by applying the MBI&T
method and techniques to each of the nine categories. Section 3 shows when it is profitable
to apply models in the I&T process, by quantifying the costs of various I&T processes using



2.1

the integration and test sequencing method from [9]. This paper extends the work described
in [13] by including an industrial application of this quantitative decision making process,
which is described in Section 4. Concluding remarks are given in Section 5.

Current and model-based I&T process

This section first describes the current I&T process, such as used at ASML, in more de-
tail. Subsequently, we show which activities in the current I&T process can be supported by
models. As an example, we use an I&T process that is common for many high-tech multi-
disciplinary systems: upgrading a system with new hardware and software to improve the
system performance, e.g., adding a new sensor with accompanying control software to im-
prove the measurement accuracy. In this example, the goals of integration and testing are to
show the functionality and performance of the system upgrade as soon as possible, and to
show that the system upgrade does not negatively affect the functionality and performance of
the original system. We show how such a system upgrade is dealt with in both the current
I&T process and the model-based I&T process.

Current I&T process

Let us consider an existing system that consists of several hardware and software compo-
nents. The system is upgraded by implementing some new or improved functionality, which
is denoted by a delta sign (A). To implement this A-functionality, certain components of the
original system need to be upgraded, or new components need to be developed and added
to the system. In our view, the development process of this A-functionality starts with the
definition of the overall requirements Rp and the creation of the overall design Dy, as shown
on the left-hand side of Fig. 1. After that, the software and hardware components for the A-
functionality, denoted by ASW and AHW, respectively, are separately developed, starting with
the requirements Rasw and Ragw, followed by the designs Dasw and Dagw and, finally, the
realizations Zasw and Zapw. The right-hand side of Fig. 1 shows the integration of the A com-
ponents Zasw and Zypw with the software and hardware components of the original system,
considered here as one software component Zsw and one hardware component Zyy, respec-
tively. The four components are integrated by means of an infrastructure I. In this paper,
we abstract from the details and different forms of infrastructure described in [8] and only
consider the generalized infrastructure I.

define design realize integrate integrate
> Rasw > Dasw > Zasw Zsy

define R, de51gn7 D, -

define design realize | integrate integrate
> Ranw > Dy > Zanw i

[ infrastructure | j

Figure 1: Current development and integration of a A-functionality

The four component realizations Zasw, Zanw, Zsw and Zyw can be integrated and tested
in many ways during the I&T process. Within the current I&T process at ASML, nine dif-
ferent categories of I&T activities can be distinguished, which focus on different aspects of

Current and model-based I1&T process



the components or the system and require different combinations of realized and integrated
components. These nine categories are listed in Table 1, where the integration of component

realizations Z; and Z; by means of infrastructure I is denoted by {Z;, Z} ;.

Table 1: Categories of I&T activities in current I&T process

Category

| Required components

Explanation

L SW qualification
testing

{st, ZHW}I and
later {Zasw, Zsw, Zuw }

Periodic qualification of the so-called ‘qualified baseline’
(QBL) [14], a common repository for all new software de-
velopments that supports all machine types, by testing it on
a set of representative hardware systems Zyw

2. SW component | Zasw Testing the new software component in isolation

testing

3. SW integration | {Zasw, Zsw}r Testing the new software component in combination with
testing the original software system Zgw

4. SW regression testing

{Zasw, Zsw, Zuw 1

Testing whether any of the original system functions are
negatively affected by the new software component, per-
formed on the original hardware system Zyy

5. HW  component
testing

Zauw

Testing the new hardware component in isolation

6. HW integration
testing

{Zanw, Zuwhi

Testing the new hardware component in combination with
the original hardware system Zjy

7. A-functionality test
bench testing

{Zasw, Zsw, Zanwhi

Testing the new A-functionality (also called progression test-
ing) on a ‘test bench, i.e., a partial hardware system includ-
ing the new hardware component Zyw, used for develop-
ment tests

8. A-functionality sys-
tem testing

{Zasw, Zsw, Zanw, Zuw 1

Testing the new A-functionality on a complete system,
i.e., Zyw upgraded with Zypw

9. System testing

{Zasw, Zsw, Zanw, Zuw 1

Testing the functionality and performance of the complete

system after all A-functionalities are integrated and tested,
before system shipment

Fig. 2 shows a typical I&T process for a system upgrade. From left to right, the sequence
of I&T activities, denoted by vertical lines, is shown. The numbers correspond to the nine
categories of I&T activities in Table 1, and the dots indicate which components are integrated
and tested. The horizontal lines depict the lifetime of each component: a dashed line means
that the component is being developed; a flag symbol followed by a solid line means that the
component realization is available. The flag symbols and the letters indicate the following
milestones: (a) QBL Zsw passes qualification tests; (b) development of Zxsw and Zapw is
started, possibly based on the original system (denoted by dashed upward arrows); (c) Zasw is
available; (d) Zasw passes software tests and is integrated in the QBL Zgyw (denoted by down-
ward arrow); (€) upgraded QBL {Zasw, Zsw}1 passes qualification tests; (f) Zanw is available;
(g) Zasw and Zapw pass test bench tests; (h) Zapw passes hardware integration tests and
the hardware system Zyw is upgraded to {Zauw, Zuw}: (denoted by downward arrow); (i)
similar to the depicted A-functionality, the other A-functionalities are integrated and tested;
(j) complete system with all A-functionalities passes tests and is shipped to customer. Note
that the figure only shows a sequence and does not contain information on the possible start
times and durations of the activities. For example, in the case that the hardware upgrade is
available earlier than the software upgrade (i.e., milestone f before b), I&T activities 5 and 6
could be performed before I&T activities 2, 3, and 4.

Note that by removing particular components and related I&T activities from the system
upgrade example, other I&T processes can also be represented. For example, a software only
I&T process is obtained by removing the hardware components and all I&T activities that
involve hardware. The I&T process of a completely new system is obtained by removing the
original system software and hardware, implying that there is no initial software QBL, and
that the first software component that is realized becomes the software QBL.

The main disadvantage of the current I&T process is that the I&T activities can only be per-
formed when the realizations are available. Especially for testing on the system level (cate-



2.2

Zasw 1: €3¢ ¢
ool ]
Zanw ])

Zuw °

Figure 2: Typical I&T process for the system upgrade example

gories 77, 8, and 9) this is problematic, because it means that feedback on the system behavior
and performance is obtained late in the process, where fixing the problems is expensive. In
our research, we investigate how models can be used to enable early integration and testing,
i.e., before all components are realized and integrated. The remainder of this section shows
which activities of the I&T process can be supported by models, using the same system up-
grade example.

Model based I&T process

Fig. 3 shows the development and integration of a A-functionality using the MBI&T method
of [7]. Here, the models Masw, Mapw, and Myw are used as early representations of the A
software component, the A hardware component, and the original complete hardware system,
respectively. The reason for having Myw but not Msy is explained in [13]. The choice of
integrating either the model or the realization of a component, or none of them, is depicted
by the integration ‘switches’.

)
O
™ Rasw > Dasw o o o Zgy
—
ZASW — v
£
—> Ry, > D, — £
12}
&
®) =t O
"> Ryyow > Danw _—0 O
ZAHW —© S ZHW
N

Figure 3: Development and integration of a A-functionality in the MBI&T method

When only models are integrated, the behavior of the resulting system model can be analyzed
by several model-based techniques. For example, simulation techniques can be used to ana-
lyze particular scenarios regarding both nominal and exceptional system behavior. When the
models have a formal semantics, formal verification techniques such as model checking [15]
can be used to prove particular properties of the system, e.g., deadlock and livelock freeness,
as well as system specific behavioral properties such as a required sequence of actions or a

Current and model-based I&T process



required system performance. When both models and realizations are integrated, the mod-
els need to be executed in the realization environment, which involves real-time simulation
and adapting the communication mechanisms used by the models to the communication
mechanisms used by the realizations and vice versa. The resulting model-based integrated
system is tested on the system level using tests derived from the system requirements Rx and
the system design Da.

An industrial application of these MBI&T activities to an ASML wafer scanner is described
in [7] (simulation and model checking) and in [8] (model-based integration and system test-
ing). These applications showed that the use of models for certain I&T activities has several
advantages when compared to the current I&T activities in which only realizations are used.
First, models are usually available before the realizations, which means that the total inte-
gration and test effort can be distributed over a wider time frame and that the effort to be
invested during the real integration and testing phases at the end of the development process
can be reduced. Second, the use of models enabled detection of system design and integra-
tion problems at an earlier stage of system development, which means that the corresponding
diagnosis and fix costs are lower [3] and the quality of the system can be improved at an earlier
stage. Third, formal models enable the use of sophisticated model-based analysis techniques
such as simulation and verification, which increase the insight in the system behavior for the
engineers, which in turn improves the system quality as well. Finally, looking at the costs
of testing, many of the MBI&T activities can be performed on a common computer system
using modeling and analysis software tools. The test costs in such a desktop environment are
generally lower than the costs of realization tests, which, in the case of ASML, may require
expensive machine time and cleanroom facilities.

Although models can support all nine categories of I&T activities as shown in Table 1, they
cannot fully replace testing with realizations, since models are always abstractions of reality
and usually do not cover all aspects of a component. For example, the models in the indus-
trial application of [7, 8] focused on the interaction and time behavior of several wafer scanner
components, which is suitable to test and detect problems related to these aspects but unsuit-
able to test other aspects such as the quality of the light needed to expose wafers in the wafer
scanner. Sooner or later, when they become available, the realizations of the components
and the system will be used to test at least the remaining aspects. However, these realization
tests can probably be performed faster and with less costs, since the MBI&T activities already
reduced some risk by detecting and preventing several problems. This was also experienced
in the wafer scanner case study: in the period after the successful MBI&T activities for a par-
ticular wafer scanner component, no further problems were detected in the interaction and
time behavior of this component, i.e., all test time could be spent on other aspects such as
the quality of the light for exposure.

The following list identifies all possible I&T activities for each category, including both the
current I&T activities from Table 1 and the new MBI&T activities of the MBI&T method.
For each of the nine categories, the I&T activities with realizations only are marked with
a ‘Z’, and the MBI&T activities are marked with an ‘M’, followed by a letter in the case of
multiple MBI&T activities. Note that MBI&T activities 2Mb and sMb involve model-based
testing techniques [106, 17], in which tests are automatically generated from a model M and
executed on a realization Z, in order to determine the conformance of Z with respect to M.
This paper only describes the MBI&T activities of categories 1, 4 and 77 in more detail. We
refer to [13] for a complete overview.

1. Software qualification testing: 2. Software component testing:
1Za: {st, ZHW}I 27: ZASW

1Ma: {st, MHW}I 2Ma: MASW

1Zb: {ZASW: st, ZHW}I 2Mb: ZASW VS. MASW

IMb: {Zasw, Zsw, Muw}1



3. Software integration testing:
3Z: {Zasw, Zswh
3M: {Masw, Zswh

7. A-functionality test bench testing:
7Z: {Zasw, Zsw, Zanwh
7Ma: {Masw, Manw}

. . 7Mb: {Masw, Zsw, Manw } 1
4. Software regression testing: ;
4Z: {Zasw, Zow, Zinwh 7Mc: {Zasw, Zsw, Manw} 1
4Ma: {Masw, Zsw, Maw}: 7Md: {Masw, Zsw, Zauw

4Mb: {Masw, Zsw, Zuw}i 8. A-functionality system testing:

5. Hardware component testing: 8Z: {Znsw, Zsw, Zanw, Zuwh

5Z: Zapw 8Ma: {Masw, Manw, Muw }1
5Ma: Mapw 8Mb: {Masw, Zsw, Manw, Muw }1
SMI): ZAuw VS. Mapw 8Mc: {ZASWiZSWiMAHWrMHW}I

8Md: {Masw, Zsw, Zauw, ZHW }
6. Hardware integration testing:
6Z: {Zanw, Zuw} 9. System testing:
6M: {Mapw, Muw}r 9Z: {Zasw, Zsw, Zauw, ZHW )T
OM: {Zasw, Zsw, Manw, Muw}i

In the current I&T process of ASML, the software qualification tests (category 1) consume
quite some machine time, approximately one full day of testing each week. Besides that ma-
chine time is limited and expensive, experience shows that also setting up the system for
testing may consume a considerable amount of time. Moreover, much time may be lost on
solving minor machine problems that are unimportant for the tests, e.g., a malfunctioning
sensor that is not involved in the test but prevents the system from initializing. Test time
and costs may be reduced by using hardware models instead of hardware realizations for
certain parts of the qualification tests. For example, the qualification of the system through-
put in principle depends only on the sequence and durations of all hardware actions. When
the durations of these hardware actions are modeled as time delays in a model Mgy of the
hardware system Zpw, and when the software Zsw executes the sequence of actions on the
model My, the system throughput can be qualified without a hardware realization Zyw.
In this way, software qualification tests can be performed in a low cost desktop environment
with a hardware model My, i.e., using {Zsw, Muw}: instead of {Zsw, Zuw};. Furthermore,
models require less test setup time, and they do not suffer from the minor problems that may
occur in other components not involved in the tests, since the hardware model only contains
the behavior important for the tests and abstracts from these problems.

A model Mjgsw of the A software component can be used as replacement of Zxsw for software
regression testing (category 4), i.e., i.e. {Masw, Zsw, Zuw}1 (4MDb) instead of {Zasw, Zsw, Zuw}i
(4Z). By real-time simulation of the model in combination with the other software Zgy, tests
can be performed on the original hardware system Zyy to check whether any of the original
system functions are negatively affected by the new software component. Similar to model-
based software qualification testing in test activity 1Ma, the hardware realization Zyw could
also be replaced by its model Muw, i.e. {Masw, Zsw, Muw}1 (4Ma).

Testing the complete A-functionality using a test bench (category 7) can be supported by four
MBI&T activities. First, the A-functionality can be tested by using the integrated models of
the A components, i.e., {Masw, Mauw}1, in which Mapw is a model of the test bench includ-
ing Zapw. Since only models are used in this test, model-based analysis techniques such as
model checking can be used for exhaustive analysis of all possible behaviors of the system
model, as shown in [7]. Second, the model Masw can be integrated with the other soft-
ware Zgw, and tested on the test bench model Mapw. Third, the realization of the upgraded
software system, i.e., {Zasw, Zsw}1, can be tested on the model of the test bench Mapw. Fi-
nally, in the case that Zxpw is available before the software realization Zasw, the model Masw
can be tested with Zsw on the test bench realization Zayw, as shown in [8].

Current and model-based I&T process



Fig. 4 shows all I&T activities of the MBI&T process, in a way similar to Fig. 2. The flag sym-
bols and the letters indicate the following milestones: (a) QBL Zsw passes qualification tests;
(b) modeling of Masw and Mapw is started, possibly based on the original system (denoted by
dashed upward arrows); (c) Masw and Maypw are available; (d) Masw and Mapw pass model
tests; (e) development of Zasw and Zapw is started, possibly based on the original system and
the models (denoted by dashed upward arrows); (f) Zasw is available; (g) Zasw passes soft-
ware tests (automatic model-based component testing, i.e., testing realization against model,
is denoted by a double headed arrow) and is integrated in the QBL Zsw (denoted by down-
ward arrow); (h) upgraded QBL {Zasw, Zsw}; passes qualification tests; (i) Zapw is avail-
able; (j) Zasw and Zapw pass test bench tests; (k) Zapw passes hardware integration tests
and both Zyw and Myw are upgraded (denoted by downward arrows); (1) similar to the de-
picted A-functionality, other A-functionalities are integrated and tested; (m) complete system
with all A-functionalities passes system tests and is shipped to the customer.

As an example, the circles indicate the I&T activities of category 7, A-functionality test bench
testing. Their positions in the development process clearly illustrate how models enable ear-
lier testing on the system level when compared to the current I&T process, in which only the
realization test 7Z can be performed late in the process.

Mc! A
Zasw .
M: M
b [ ?Mmal s b MEMaAMP ) \ 7Md 8Md
b
\ J o 1@ 82 1 oM 9Zfm

|
| e gt

b chMa 6 ﬁi

Figure 4: Model-based integration and testing process

Although Fig. 4 shows more I&T activities than Fig. 2, the number of activities does not relate
to the total duration of the I&T process, because the possible start times and the durations of
the I&T activities are not included. For example, in the case that the hardware upgrade is re-
alized earlier than the software upgrade (i.e., milestone i before f), the MBI&T activities 7Md
and 8Mc could be performed before 27Z.

Integration and test sequencing

Although all possible (model-based) 1&T activities have been defined in the previous sec-
tion, there is still a problem that needs to be addressed before the MBI&T process can be
applied to a real I&T problem. This problem, which also exists in the current I&T process,
is called integration and test sequencing, which was investigated in another part of the TAN-
GRAM project [9, 6]. Integration and test sequencing involves making decisions on which
components should be integrated when, and which tests should be performed in which or-
der on which components. These decisions result in a sequence of I&T activities that can



be optimized towards criteria such as lead time, total test time, test costs, and remaining
risk (i.e., quality) in the system, depending on the importance of the business drivers, i.e.,
time-to-market, product quality, and costs.

For the MBI&T process, there is not only the problem of deciding on the sequence of the I&T
activities, but there is also a choice whether or not to use models for certain I&T activities.
This choice involves a trade-off between the potential benefits of applying the MBI&T method
(e.g., shorter time-to-market and improved product quality) and the additional costs needed to
enable the MBI&T activities (e.g., time needed to model and integrate the components). We
use the I&T sequencing method from [9] to determine the (nearly) optimal I&T sequences
and to quantify the related costs for various I&T processes. By comparing the costs of I&T
processes with and without models, this provides a quantitative decision making process to
decide when it is profitable to use models for integration and testing.

In this section, we discuss this quantitative decision making process by giving an illustrative
example that is based on the system upgrade I&T process from the previous section. The
system upgrade example is instantiated once with realizations only (as in the current I&T
process), and once with the possibility to use models as well (as in the MBI&T process), such
that the resulting I&T sequences and related costs can be compared.

The input for the I&T sequencing method is an I&T process model that contains an abstract
representation of an I&T problem. An I&T process model defines properties of and rela-
tions between the components and interfaces of a system, the potential faults related to the
components and interfaces, and the tests that can be performed on certain combinations of
integrated components to detect certain faults.

Fig. 5 and Table 2 show the information used for the I&T process models of the system up-
grade example. Figs. 5(a) and 5(b) depict the components (boxes for realizations and circles
for models) and interfaces (lines) for the current and for the model-based I&T process, re-
spectively. The numbers between the brackets denote the development or delivery times of
each component. This example uses fictitious but representative development times for the
system upgrade I&T process, in which the original hardware and software are available from
the start (development time is zero) and the A software component is available after 6o time
units, which is 20 time units before the A hardware component. In the MBI&T process, the
models of the A components are available after 40 time units. Note that an interface can
also indicate a possible integration of components that is only needed for a certain I&T activ-
ity. For example, the interface between Zgw and Zapw is only needed for test bench testing
and does not necessarily exist in the actual system. Also note that the model-based interface
layout is symmetrical except for the additional interface between Masw and Mapw. This in-
terface is used for model-based analysis of the A-functionality (I&T activity 7Ma), which can
be performed early in the I&T process without realizations (see Fig. 4).

Table 2 shows the available tests in the I&T process model of the system upgrade example,
including the components that need to be available and integrated for each test, and the test
durations. The tests in the table relate to all 29 I&T activities of the nine categories listed
in the previous section, including both the current and the model-based I&T activities. In
the I&T process model, the choice of using models or realizations for a certain test can be
expressed in several ways. For the system upgrade example, we express it in a simple way
which is sufficient to explain the quantitative decision making process in this section. In the
industrial application described in the next section, we use a more detailed and more realistic
way of expressing this choice.

For the system upgrade example, we subdivide all tests into tests that can be performed with
realizations only (denoted with a “Z’ in Table 2) and into tests that can possibly be performed

with models (denoted with an ‘M’ in Table 2). This subdivision is done for both the current

Integration and test sequencing



10

Zysw Zasw Masw
(60) (60) (40)
Zsw Zsw
(0) ()
Zanw Zuw Zanw Zyw Muw Manw
(80) (© (80) (© © (40)
(a) Current I&T process (b) MBI&T process

Figure 5: Components and interfaces for the system upgrade example

and model-based I&T process, under the assumption that the aspects covered by an ‘M’ test
can also be tested using realizations, i.e., also in the current, non model-based, I&T process.
This assumption is valid in most cases since the models are abstract representations of the
realizations and their behavior, implying that the tested behavior of a model will also occur in
the corresponding realization. As a result, the ‘M’ tests contain a choice of using realizations
as an alternative to the models, which is denoted by the round brackets in the second column
in Table 2. For the current I&T process, only the realization alternatives can be chosen, while
for the MBI&T process, both alternatives can be chosen. In this way, we can use a single
set of tests to compare the current and model-based 1&T process. Taking category I as an
example, we see that I&T activity 1Za requires Zsw and Zyw to be available and integrated.
I&T activity tMa always requires Zsw, but gives a choice to use either the hardware system
model Myw or the realization Zyy. For the current I&T process, only the equivalent realiza-
tion test with Zyw can be used for 1Ma, while in the MBI&T process, the model Myw can
also be used for 1Ma if this is profitable.

Table 2: Available tests for the system upgrade example
Test | Required components Time
1Za | {Zsw, Zuwh 6
1Ma {%WWWMWW

1Zb | {Zasw, Zsw, Zuw}i

IMb | {Zasw, Zsw, (Muw/Zuw)}

2Z Zasw

2Ma | (Masw/Zasw)

2Mb ZASW VS. MASW

3Z {Zasw, Zswhi

3M {(Masw /Zasw), Zsw}1

4Z {Zasw, Zsw, Zuw }i

4Ma | {(Masw/Zasw), Zsw, (Muw/Zuw) }r

4Mb | {(Masw/Zasw), Zsw, Zuw}i

52 Zanw

sMa | (Manw/Zanw)

SMb ZAHW VS. MAI—[W

6Z {Zanw, Zuwh

6M | {(Manw/Zanw), (Muw/Zuw)}i

7Z {Zasw, Zsw, Zanw}i

7Ma | {(Masw/Zasw), (Mauw/Zanw)}

IMb | {(Masw/Zasw), Zsw, (Manuw /Zanw)}

7Mc | {Zasw, Zsw, (Manw/Zanw)

7Md | {(Masw/Zasw), Zsw, Zanw }1

82 {Zasw, Zsw, Zanw, Zuwh

8Ma | {(Masw/Zasw), (Manw/Zanw), (Muw/Ziw)}H
8Mb | {(Masw/Zasw), Zsw, (Manw/Zanw), (Muw/Zuw) }H
8Mc | {Zasw, Zsw, (Manw/Zanw), (Muw/Zuw)}i

8Md | {(Masw/Zasw), Zsw, Zanw, Ziw }

9Z {Zasw, Zsw, Zanw, Zuwh

oM {Zasw, Zsw, (Manw /Zanw), (Maw /Zuw)}

MMM N AN HND HWH A DN HW AN RSN GN

N G\
[el6]




11

The test durations in the third column of Table 2 are fictitious but give a representative dis-
tribution of the test time over all I&T activities of the system upgrade I&T process. For
simplicity, this example I&T process model uses constant test durations, which is sufficient
to explain the quantitative decision making process and to compare the current and model-
based I&T process for the system upgrade example. In reality, the duration of a test depends
on the remaining risk in the system, i.e., on how much risk is already reduced by previous
tests, on different risk reduction rates of certain tests, e.g., tests with realizations or with
models, and on the stopping criterion of a certain test, e.g., reduce all risk or stop at a certain
remaining risk threshold. The industrial application in Section 4 uses a more detailed I&T
process model that incorporates potential faults and their risks to determine test durations.

Although the I&T process model for the system upgrade does not express differences in
durations or costs for testing with realizations or with models, the differences can be deter-
mined and analyzed afterwards, based on the generated I&T sequences and on different test
costs per time unit for testing with realizations or with models. Taking software qualification
testing (category 1) as an example, Table 2 shows that the main part of this category can be
executed with realizations only (I&T activity 1Za, 6 time units), while some aspects could
possibly be tested with models (I&T activity tMa, 2 time units). For the current I&T process,
the aspects tested in 1Ma are covered by equivalent realization tests with the same test dura-
tion (also 2 time units). Since testing with realizations is usually more expensive than testing
with models, we see that the test costs of 8 time units of expensive realization testing in the
current I&T process are higher than 6 time units of expensive realization testing and 2 time
units of low cost model testing in the MBI&T process. In this way, we can determine and
compare the test costs for specific I&T sequences without using different test times in the
integration model, which is sufficient for this example.

Based on an I&T process model as described above, the I&T sequencing algorithm from [9]
determines all feasible I&T sequences. For the example in this section, an I&T sequence
is feasible when all components are integrated via the defined interfaces, when all defined
tests are performed, and when the tests are not performed before the required components
are integrated. Determining these sequences is based on an assembly-by-disassembly tech-
nique [10], which starts with a complete system and iteratively subdivides the system into
smaller parts by removing interfaces until only components are left. Reversing the result
gives all possible integration sequences from single components to a complete system. Since
the number of feasible sequences can be very large, heuristics can be applied to remove se-
quences that are expected to have a low performance according to the optimization criteria
used. For more details on the I&T sequencing algorithm, we refer to [9].

As explained in [4], time-to-market is the most important business driver for ASML, there-
fore we use the duration of the complete I&T process, the lead time, as the optimization
criterion for I&T sequencing. Note that the lead time is different from the total time used for
integration and testing, which is the sum of the durations of all separate I&T activities. By
performing multiple I&T activities in parallel, the total time used for integration and testing
remains equal but the lead time is reduced. To reduce the number of sequences and the
corresponding computation time, we applied a heuristic that prefers I&T sequences with as
much parallelism as possible.

Fig. 6 shows the determined I&T sequences for the current (top) and model-based (bottom)
I&T process models, in the form of a Microsoft Project Gantt Chart. The figure shows all ac-
tivities related to component development (dashed bars), component modeling (white bars at
the bottom), integration (diamonds), and testing (black bars) over time, and the precedences
between the activities (arrows). On the topmost line of the I&T sequences, the long white bar
with triangular line ends indicates the lead time.

Several conclusions can be drawn from these sequences. First, the lead time of the MBI&T

Integration and test sequencing



12

Current I&T process

Test ['8Mb','8Ma','7Z','"7Md','7 Mc',

7MD','gM,'8Z,'8Mc','8Md",'6Z',"7Ma |

Integrate ['Zsw-Zdhw', 'Zhw-Zdhw']

Test['2Z', '2Mb', 3M', 3Z', '2Ma'] r—
Integrate [Zsw-Zdsw'] T
Develop Zsw' '

Develop ‘Zdsw' ey
Test['4Mb', '4Ma’, '1Zb', '4Z', 'TMb']
Integrate [Zsw-Zdsw']

Test['1Za’, TMa']

Integrate ['Zsw-Zhw']

Develop 'Zhw'

Develop 'Zsw'

Test ['sMb', '5Z', 'sMa'] r
Develop 'Zdhw'

lead time
reduction
MBI&T process <>
Test['4Z', '7Z', '2Mb', '8Z', '9Z', '1 Zb' %
Integrate ['Zsw-Zhw', "Zsw-Zdhw',

‘Zsw-Mdhw', 'Zsw-Mdsw'|
Test ['6M]  SE—
Integrate ['Mhw-Mdhw']

Test['3M]] h
Integrate [Zsw-Zdsw']

Test['4Ma’]

Integrate [Zsw-Mhw', 'Zsw-Zdsw']
Test [7Mb'] (€=
Integrate ['Zsw-Mdhw', 'Zsw-Zdsw']

Test[3Z]

Integrate [Zsw-Zdsw']

Test['8Ma', 'SMb']

Integrate ['Zsw-Mhw', 'Zsw-Mdhw']

Test['1Ma’']

Integrate ['Zsw-Mhw'] J
Test ['1Mb]

Integrate [Zsw-Mhw', 'Zsw-Zdsw']

Test [7Mc] q
Integrate ["Zsw-Mdhw', 'Zsw-Zdsw']
Test ['2Z]

Test [7Ma] q
Integrate [Zsw-Mdhw', 'Zsw-Zdsw']
Test ['gM’, '8Mc']

Integrate ['Zsw-Zdsw', 'Zsw-Mhw']
Develop 'Mhw'

Develop Zdsw' c
Test ['yMd, '6Z', '8Md’, 'sMb'] (?
Integrate ['Zsw-Zdhw', 'Zhw-Zdhw'] r
Test['4Mb']

Integrate ['Zsw-Mdsw', 'Mdsw-Mdhw']
Test[1Za]

Integrate [Zsw-Zhw']

Develop 'Zhw'

Develop 'Zsw'

Test['5Z] r
Develop "Zdhw' c

Test['2Ma’]
Develop 'Mdsw' = ————
Test['sMa']
Develop 'Mdhw'

Figure 6: Current (top) and model-based (bottom) I&T sequences

sequence is shorter, 167 time units against 190 time units for the current I&T sequence, a
reduction of 12%. Besides lead time, also the duration of the final system test phase (the long
black bars at the right-hand side of Fig. 6) is important for ASML, since this phase is on the
critical path and has a major influence on the time-to-market. The final system test phase is
78 time units for the MBI&T sequence, 26% less than the 106 time units for the current I&T
sequence.

The profitability of using models in the I&T process is determined by quantifying the costs
of enabling the above mentioned benefits of shorter lead time and shorter final system test
phase. As previously mentioned, costs were not explicitly expressed in this system upgrade
example but can be compared afterwards, using different costs per time unit for testing with
realizations or with models. At ASML, the costs per time unit for realization testing are
orders of magnitude higher than for testing software or models in a desktop environment.
The use of models influences the costs of the I&T process in both a positive and in a negative
sense. On the one hand, the costs of the I&T process increase due to the effort invested in



13

modeling the components, e.g., 8o time units in a relatively low cost desktop environment
for the system upgrade example. On the other hand, the costs of the I&T process decrease
due to the reduction of time spent on realization testing and due to the possibility to diagnose
and fix problems earlier. In Fig. 6, the current I&T process uses 138 time units of realization
testing, while the MBI&T process uses 91 time units of realization testing (34% less) and
47 time units of testing with models, with relatively lower costs. Besides a reduction in these
direct costs of testing, the use of models in the I&T process also reduces indirect costs such
as diagnosis and fix costs when problems are detected. Compared to the current I&T process,
the 1&T activities in the MBI&T process are performed earlier and more in parallel, see for
example the position of the I&T activities of category 77 in both sequences, indicated by the
circles in Fig. 6. As a result, design and integration problems can be detected and prevented at
an earlier stage of development where the costs for fixing them are lower. For example, in the
wafer scanner case study described in [7, 8], the MBI&T activities prevented problems that,
if they would remained undetected, would result in machine damage in the real I&T phases,
with high costs for fixing the problems and for the accompanying downtime. Although these
benefits of early testing cannot directly be expressed in the I&T process model of the system
upgrade example, they can be expressed in terms of risk, as shown in the industrial case study
in the next section. Summarizing, besides the benefits of a shorter lead time and a shorter
final system test phase in the I&T process, using models is also beneficial for the costs of
testing, diagnosis, and fixing.

This quantification of benefits and costs can be used as a basis for deciding whether it is
profitable to use models in the I&T process. In the system upgrade example, the estimated
benefits of using models, e.g., a lead time reduction of 12%, a reduction of realization test
time of 34%, and reduced costs for testing, diagnosis, and fixing, probably justify the onetime
investments needed for model development, which are 8o time units of modeling in a (low
cost) desktop environment.

As an overall result, this example showed the ingredients of the following quantitative deci-
sion making process, which can be used to determine when it is profitable to use models in
the I&T process:

1. Create an I&T process model with component realizations only.

2. Create a second I&T process model by extending the first I&T process model with
component models and by giving a choice of using either a model or a realization for
certain I&T activities.

3. Determine the I&T sequences for both I&T process models using the I&T sequencing
method.

4. Compare the resulting I&T sequences based on the quantified benefits and costs, e.g.,
on lead time and test costs.

5. Decide whether the benefits of using models outweigh the additional costs to achieve
the benefits.

In the next section, this quantitative decision making process is used in a case study to deter-
mine for which parts of a new version of an ASML wafer scanner it is profitable to create a
model for early integration and testing.

Integration and test sequencing



4.1

14

Practice: which components of a new ASML wafer
scanner should be modeled?

In [7, 8], different activities of the MBI&T method were successfully applied to a current ver-
sion of an ASML wafer scanner, in order to provide a proof of concept showing that models
can effectively be used for early integration and testing. Although the MBI&T method proved
to be both applicable and profitable in industrial practice, the estimated profitability was not
a main criterion for deciding where to apply the method for this proof of concept. Instead,
these decisions were mainly based on the estimated applicability, e.g., problem size and char-
acteristics, and on the personal involvement of ASML engineers in both the TANGRAM project
and in the development of the current version of the wafer scanner.

After seeing the applicability and potential profitability of the MBI&T method, the develop-
ers of the current version of the wafer scanner would like to know, for future versions of
the wafer scanner, which components are the most interesting and profitable candidates for
model-based integration and testing. Assuming that a new version of a wafer scanner should
be developed, the next subsections describe how the five steps of the quantitative decision
making process were executed in order to decide which components should be modeled.

Step 1: Create an I&T process model with component realizations only

In a new version of a wafer scanner, some components of the current version may be reused
or adapted, while other components may be new and need to be developed from scratch.
These reused, adapted, and new components should then be integrated according to a pre-
determined system architecture. Fig. 7 shows an example of a part of such a system archi-
tecture, in which the boxes represent the components and the lines represent the interfaces.
The figure shows five subsystems, A through E, for which the grey values of the boxes denote
different characteristics of the components. The light grey component realizations (subsys-
tems A and B) are reused from the current version of the wafer scanner, which means that
these components will be available earlier and have less risk since they are more mature. In
the I&T process model, the development time of a light grey component is 40 time units.
The dark grey components (subsystems C, D and E) are newly developed component realiza-
tions, which means that they will be available later and have more risk since they have never
been used and tested before. In the I&T process model, the development time of a dark grey
component is 160 time units. Finally, the white ‘switch’ components, denoted by S, are not
part of the real system but they are ‘dummy’ components to express the risk reduction of test-
ing with models in a more realistic way, which is explained later in this section. Since they
are ‘dummy’ components, they have zero development time and add no risk to the system.

The interfaces in Fig. 7 connect the components using different interaction types as explained
in [8]. Most interfaces are used to connect components of the same subsystem. Connections
between components of different subsystems are mostly established via the interfaces shown
at the top of the figure that represent software interfaces, although three other connections
exist as well: between Zc; and Zp,, between Zg, and S, and between Zp, and S.

The different characteristics of the components and the interfaces influence the amount of
risk that they introduce in the system, as well as the amount of time that is needed to reduce
this risk by testing and by fixing the detected problems. In contrast to the system upgrade
example, in which Table 2 expressed the simple relations between tests, components, and
fixed test durations, the I&T process model in this case study incorporates risk to express
these relations and to determine test durations. In the I&T process model, risk is expressed
by multiplying the probability and the impact of fault states [18]. Fault states denote possi-



15

Za: Zp: M | Za Zp: [ | ZE

ZBz ZCz ZDz

Zpy — Zp, Zc3 Zp;

ZB5 — ZBG — ZB7 ZD4. S;E

Figure 7: Components and interfaces of a new version of the wafer scanner

ble problems that may be present in the system, e.g., a broken component, an error in the
interface, missing or erroneous functionality, or insufficient performance. A fault state has
a certain probability that it is present in the system. When a fault state is present in the
system and when it manifests itself in the system behavior, it has a certain impact on the
system development process, e.g., restarting the system, replacing a broken component, or
even worse, revising the component or system design to prevent the problem. The impact
of a fault state usually also depends on the point in time at which its presence is detected:
later detection usually means more impact. In the I&T process model of a new version of the
wafer scanner, however, differences in fault state impacts are not considered, i.e., impact =1,
which means that the risk only depends on the fault state probability. Table 3 defines the fault
states and shows the risk contribution of each component and interface to these fault states.
To reduce the size and the complexity of the table, only the components and the interfaces
related to subsystems A, B, and E are shown. The components and internal interfaces of
subsystem B are grouped and denoted by Zg* and B-internal®, respectively. On the left-hand
side, the table shows five fault states denoted by an f with a subscript: three (internal) fault
states for the individual subsystems, one fault state for the interaction between subsystems A
and E, and one fault state for the interaction between subsystems B and E. The numbers in
the table denote the relative risk contribution of the components and interfaces to each fault
state, where different numbers imply different levels of risk contribution, e.g., based on the
maturity of a component or on the partitioning of interfaces, which is explained later. For
example, Z,, introduces less risk than Zg,, since subsystem A is reused from the current
version of the wafer scanner, while subsystem E is newly developed, as indicated by the grey
values in Fig. 7. Note that for Zg* and B-internal*, each of the grouped components and
interfaces has an individual risk contribution of 0.3 to fault state fg.

In a way similar to Table 3 that expresses how risk is introduced via components and inter-
faces, Table 4 expresses how risk can be reduced by performing tests. The table shows the
fault states f on the left-hand side and possible tests, denoted with ¢, at the top. The individ-
ual subsystems can be tested by t,, tg, and tg. To test the interaction between subsystems,
tasg and tp,r can be used. Finally, the complete system can be tested by tpench using a test
bench with only a part of the system, or by tygem using the complete system. The numbers

Practice: which components of a new ASML wafer scanner should be modeled?



16

Table 3: Contribution of components and interfaces to fault states

components interfaces
%
- E .
z = N - m
N 4 53 N o0& T N D
= I
. % - I I = I I e ! -
< Q@ 7 @
N N N |[d & & & & N 4 N
fa | o3
fo 03 03
fe 0.6
fae 0.2 0.6 0.2
fa- 02 06 06 0.2 02

in the table denote the coverage of each test, i.e., the probability that a certain test detects a
certain fault state. For example, the internal subsystem fault states are completely covered
by the subsystem tests and partially by the interaction tests, which in turn completely cover
the interaction fault states. Besides the relation between tests and fault states, the table also
shows the duration of each test at the bottom. Different tests may have different durations,
e.g., an interaction test takes more time than an internal subsystem test, but less time than
a system level test. Note that information about which components need to be realized and
integrated to perform a certain test, similar to the second column of Table 2, is omitted here,
because it is straightforward in this case study: all tests except thench require all components of
the involved subsystems, i.e., either one, two, or all subsystems. The test bench used in tpench
consists of all components except for the components on the lowest level of Fig. 7.

Table 4: Tests and their coverage on the fault states

ta 2 g tA+E tB+E thench tsyslem
fal 1 0.5 0.5 1
fs 1 0.5 0.5 1
fe I 05 05 0.5 1
faE 1 0.5 1
foE 1 0.5 1
time | 8 & 8 16 16 16 24

In this case study, the test durations in the I&T sequences are determined in another way than
in the system upgrade example of Section 3, which used constant test durations as defined in
Table 2. In this case study, the test durations are not constant, but they depend on the remain-
ing risk at the moment that a test is executed and thus on the preceding I&T sequence. Here,
we only give an informal explanation of how the remaining risk and the expected test duration
at a certain point in the I&T sequence are calculated, we refer to [9] for more details. When
two system parts, i.e., one component or multiple integrated components, are integrated by
connecting an interface between these system parts, the probability of a related fault state,
and thus the risk, increases. This increased risk is calculated using the fault state risks of
the separate system parts and the risk contribution of the connected interface as defined in
Table 3. For example, when two system parts with risks of 0.6 and 0.4 for a certain fault state
are integrated via an interface that contributes o.2 risk to that fault state, the increased fault
state risk after integration is 1— (1—0.6) * (1—0.4) % (1—0.2) = 0.808. When a test is performed
on a system part, the risk of a fault state covered by the test decreases. This decreased risk is
calculated using the fault state risk before the test and the test coverage as defined in Table 4.
For example, when a system part has a risk of 0.8 for a certain fault state, and when it passes
a test that has o.5 coverage for that fault state, the risk after testing is 0.8 % (1 — 0.5) = 0.4.
Using risk calculations like these, the fault state risks continuously change with each integra-
tion or test activity in the I&T sequence. This influences the expected duration of a particular
test activity in the following way. A test activity may involve the execution of multiple tests,
for which the optimal test sequence is determined using a test sequencing algorithm [18].
This algorithm is based on a sequential diagnosis method [11] and uses AND/OR graphs to



4.2

17

represent test trees, showing which tests should be executed depending on whether previous
tests passed or failed. The expected duration of such a test tree is calculated by multiplying
the test durations defined at the bottom of Table 4 with the probabilities that each test in the
tree will be executed, which in turn depend on the ‘pass’ and ‘fail’ probabilities of previous
tests in the tree. The ‘pass’ and ‘fail’ probabilities of a test depend on the test coverage as well
as on the fault state risks before the test, which are calculated as described above.

Step 2: Extend the I&T process model of step 1 with component models

As shown in Fig. 7, subsystem E contains a new component E1 that needs to be developed
from scratch. Besides that this means relatively long development times as described in the
previous subsection, subsystem E also interacts with many other subsystems, which increases
the risk of problems. Considering this high risk, it is expected that a model of component
E1 would be a good candidate to improve the I&T process of a new version of the wafer
scanner. In contrast to component E1, component A1 of subsystem A is reused from the
current version of the wafer scanner and it has only one interface, i.e., it is available earlier
and has a lower risk. This means that including a model of component A1 probably has a
low profitability. By creating I&T process models that include these component models and
by analyzing the resulting I&T sequences, we investigate whether the quantitative decision
making process can be used to confirm these expectations on the profitability of using a
model of components At and Er.

| —l

@ Zar Zp: 1 | Za Zp: [ | ZE @9

Zg, Zp, Sk
\ ]

Figure 8: Including models of components A1 and Er

Including component models in the I&T process model results in several changes with re-
spect to the information shown in Fig. 7, Table 3 and Table 4. As shown in Fig. 8, additional
components (circles) and interfaces are introduced to represent the models My, and Mg,.
In this case study, the development time for the models is defined at 16 time units, which
is shorter than the 40 and 160 time units of development time for the corresponding real-
izations Z; and Zg;. The models have similar interfaces as the corresponding realizations,

Practice: which components of a new ASML wafer scanner should be modeled?



4.3

18

connecting them to the same ‘switch’ components, one for M, and two for Mg;. As pre-
viously mentioned, these ‘switch’ components are not part of the real system but they are
‘dummy’ components to express the risk reduction of testing with models in a more realistic
way. Without the ‘switch’ components in the I&T process model, a model of a component
would have interfaces to all other components to which the corresponding realization is con-
nected as well, e.g., Mg, in Fig. 8 would have interfaces to Za, through Zp,, as well as to Zg,
and Zp,. Testing the combination of Mg, and some of these other components would then
require that the model interfaces, e.g., between Mg; and Za,, are integrated, while the real-
ization interfaces, e.g., between Zg; and Z,,, are not integrated. This means that the risk
of the realization interface is not tested with the model, and will completely be introduced
when the component realization is integrated via the interface. This does not correspond
to reality, since an important aspect of using models for integration and testing is that the
interaction between components, i.e., the risk in the interfaces, is at least partly tested at an
early stage. This is the reason why the ‘switch’ components were introduced and the inter-
faces were partitioned. For example, a test that uses Mg, and Z,, already includes a large part
of the interface risk between Zg; and Z,;, namely the interface between Sg and Sa (with a
relatively large risk contribution to fault state fa.r, see Table 3) and the interface between Su
and Zu,. Together with the interface between Sg and Mg, a large part of the final realization
interface and its corresponding risk is reduced when testing with models. Later, when Mg, is
replaced by Zg,, only the risk related to the interface between the Zg, and Sg is added to the
system risk and needs to be reduced by testing.

Table 3 changes in a sense that new columns for the models and the related interfaces are
added and their relative risk contributions to each fault state are defined. In principle, mod-
els should be abstract representations of the realizations and they should not introduce addi-
tional risk on top of the risk introduced by the realizations themselves. In practice, however,
there is a possibility that models differ from the actual realization, which introduces some
additional risk in the system. In the changed table (with new columns for the models and the
related interfaces as described above), this additional risk is expressed by giving the models
and related interfaces a small relative risk contribution to the same fault states as their real-
ization counterparts. For example, Mg, gets a relative risk contribution of o.1 to fault state fg,
and the interface between Sg and Mg, gets a relative contribution of o.1 to both fyg and fg.g.
This additional risk introduced by the models should also be reduced by testing, which is part
of the additional costs of using models in the I&T process. Table 4 remains unchanged when
models are added. The information about the required components for each test changes
in a sense that whenever a test requires Zu, or Zg,, there is also a choice of using the cor-
responding models My; and Mg, similar to the choices denoted by the round brackets in
Table 2. The I&T sequencing algorithm as used in the next step of the quantitative decision
making process decides which of the choice alternatives is the most profitable with respect
to the used optimization criteria.

Step 3: Determine the I&T sequences for all I&T process models

Applying the changes described in the previous subsection results in three different I&T
process models: one without component models (A), one with model Mg, (B), and one with
model My, (C). For each I&T process model, the (nearly) optimal I&T sequence is determined
using the I&T sequencing algorithm from [9], using the lead time as optimization criterion,
a ‘reduce all risk’ stopping criterion for each test activity, and a heuristic that reduces the
number of I&T sequences by preferring those that have as much parallelism as possible.

For I&T sequencing, the heuristics should be used with care since the results showed to
be quite sensitive to the heuristic settings regarding the number of considered alternatives,
especially in combination with the fact that the I&T sequencing algorithm uses estimations
to choose between alternatives. By increasing the number of considered alternatives for a



4.4

heuristic (with the expectation that better sequences may be found), certain alternatives may
be ‘overruled’ by alternatives that have a higher estimated profitability at the time of making
the choice (e.g., shorter lead time by skipping a test), but in fact these alternatives result in
a lower profitability when the complete sequence is determined (e.g., since a skipped test
leaves more risk that needs be reduced later). To overcome this problem, the I&T sequencing
algorithm was executed multiple times with different heuristic settings regarding the number
of alternatives taken into consideration. The best results for each I&T process model are
shown in Table 5, including the lead time (total duration of the I&T sequence), the test time
(the amount of time spent on all I&T activities), and the total time (the amount of time spent
on all activities, i.e., including development) as well as the relative differences when compared
to I&T process model A.

Table 5: Results of the three I&T process models

I&T process model | Lead time Difference | Testtime Difference | Total time Difference
A. without models 438 - 426 - 1922 -

B. with Mg, 396 -9.6% 508 +19.2% 2020 +5.1%
C. with Ma, 439 +0.2% 438 +2.8% 1950 +1.5%

Fig. 9 shows the resulting I&T sequences for I&T process models A and B, in the form of
a Microsoft Project Gantt Chart. The figure shows all activities related to development and
integration (dashed bars), modeling (white bar at third line from below) and testing (black
bars) over time, and the precedences between the activities (arrows). On the topmost line of
the I&T sequences, the long white bar with triangular line ends indicates the lead time of
the sequence. For simplicity, the development and integration activities of some subsystems
and the ‘switch’ components are grouped (denoted with < and > brackets). Note that the
main ‘branches’ of the two I&T sequences are different. In I&T process model A, one main
branch contains subsystems B and D, while the other main branch contains the ‘switch’
components and the subsystems A, C, and E. In I&T process model B, subsystems C and E
are ‘moved’ from the second main branch to the first main branch with subsystems B and D,
while subsystem A and the ‘switch’ components remain in the second main branch, which
now also includes Mg; for early testing of the interface between subsystems A and E.

Step 4: Compare the resulting I&T sequences on quantified benefits and costs

Several conclusions can be drawn from the results shown in Table 5 and Fig. 9. First, these
quantitative results support the initial expectations that creating Mg, would be profitable, i.e.,
the lead time is reduced by 9.6%, and that creating M, would be less profitable, i.e., the
lead time even increases with 0.2% due to the additional risk introduced by the model. As
expected, Mg; enables early testing of the interaction between subsystem E and the other
subsystems. For example, by looking at the numbered test trees in Fig. 9, the interface
between subsystems A and E can be tested after 6o time units when Mg, is used (test tree B-
2), while this is only possible after 192 time units when no models are used (test tree A-4).
Second, the test time results in Table 5 show that more time is available for testing when
a model is used, which increases the system overview and the product quality. This is not
only caused by the possibility of earlier testing with the model, but also by the possibility of
more parallel testing, as shown by the black testing bars in Fig. 9. This increased test time
is also responsible for the major part of the increased total time as shown in the last column
of Table 5. The other and much smaller part of the increased total time is caused by model
development, 16 time units in this case study.

Another view on the effects of using models in the I&T process is shown in Figs. 10(a)
and 10(b), which contain the so-called risk profiles showing how risk evolves over time for

19 Practice: which components of a new ASML wafer scanner should be modeled?



20

A. without models < >

Test ('A-7',['testtree']) r
Integrate ['B+D','switches+Zg+C+2Z,'|

Test ('A-6',['testtree'])

Integrate ['subsystem B','subsystem D']
Test (‘A-5',['testtree'])
<Develop/integrate subsystem B>

<Develop/integrate subsystem D> E 3
Test ('A-4',['testtree'])

Integrate ['switches',' Zg,','subsystem C','Z,,'|

<Develop/integrate switches>

Test ('A-3',['testtree']) F
Develop Z, C )

Test ('A-2',['testtree']) J
<Develop/integrate subsystem C>

Test ('A-1',['testtree']) r lead time
Develop Za,

reduction

B. with model Mg, < >
Test ('B-7',['testtree'])
Integrate ['B+Zg+C+D','switches+ Mg +Za;']
Test ('B-6',['testtree'])
Integrate ['B+Zp,','Zg,','C+D -/- Zp,]
Integrate ['subsystem B','Zp,|
Test ('B-5',['testtree'])
<Develop/integrate subsystem B>
Develop Zp, I
Test ('B-4',['testtree'])
Develop Z, C )
Integrate ['subsystem C','subsystem D -/- Zp,']
Test ('B-3',['testtree'])
<Develop/integrate subsystem C>
<Develop/integrate subsystem D -/- Zp, > L
Test ('B-2',['testtree'])
Integrate ['switches','Mg,",'Z,']
<Develop/integrate switches>
Develop Mg,
Test ('B-1',['testtree'])
Develop Zu,

Figure 9: I&T sequences for I&T process model A (top) and B (bottom)

I&T process models A and B, respectively. The risk increases when components are devel-
oped and integrated, because potential problems related to a fault state may reveal themselves.
The risk decreases when a system part is tested and the detected problems are fixed (the num-
bers at the slopes correspond to the test trees in Fig. 9). For simplicity, the figures only show
the risk profiles for Zg;, Za;, and Mg;, because using Mg, has the most influence on these
risk profiles. Furthermore, linear abstractions of the risk profiles are used since the I&T se-
quencing algorithm only calculates the risk at the start and at the end of each integration or
test activity (the points in the figure); especially the decrease of risk during testing will have a
more exponential shape in reality. Also note that when system parts are integrated in the I&T
sequence, the corresponding risk profiles are combined and continued as one risk profile.
This also explains the higher risk peak at the end of the I&T sequence in Fig. 10(b), where
all components and thus all risk profiles are integrated just before the last test activity (test
tree B-7 in Fig. 9). In Fig. 10(a), however, the main risk of Zg; and Z,, is tested halfway the
I&T sequence (test tree A-4 in Fig. 9). At this point, subsystems B and D of the other main
branch are not integrated yet, hence also their risk profiles are not yet combined with the Z,
risk profile in Fig. 10(a).

The results of the case study are preliminary and need further investigation before real deci-
sions regarding the use of models in the I&T process (step 5) can be taken. For example, the
relative probabilities and impacts of fault states, as well as the coverage and durations of the
tests should be validated, the use of heuristics should be investigated in more detail, and more
risk data should be obtained, e.g., using I&T process simulation techniques [19]. Neverthe-



21

4
3.5
3
2.5
2
~ A-4
L5
I A-7
o. A-
e ’
]
o 50 100 150 200 250 300 350 400 450
Time
(a) I&T process model A (without models)
[—o—ZF: --4--Zar -+ MEi |
4
35
3
-4
2.57 ,/ F—
. B- B7
.?’. 2 7 6
~ i B2
L5 1 s -
f
1 +
i
| 'Y
0.57 1 B-
| AB ¢
o 4
o 50 100 150 200 250 300 350 400 450
Time

(b) I&T process model B (with Mg;)

Figure 10: Risk profiles

less, these preliminary results show that the shapes of the risk profiles in Fig. 10 correspond
to the initial intention of early integration and testing, namely reducing the disadvantageous
influence of the I&T phases on time-to-market and product quality. By using a model Mg,
the system risk is revealed at an earlier stage, after which it is immediately reduced by testing
(in test tree B-2), resulting in a lead time (and thus time-to-market) reduction for the I&T
process and an earlier improvement of the product quality.

Concluding remarks

This paper started with a description of the current I&T process, using a system upgrade ex-
ample that is common in industry. Nine different categories of I&T activities were identified
that cover different system aspects. Since tests can only be performed with realizations, the
test costs are relatively high and the tests can only be performed late in the process, where

Concluding remarks



22

fixing the detected problems is relatively expensive. Subsequently, it was shown how the
model-based analysis and testing techniques of the MBI&T method can be applied in each
category of I&T activities to enable earlier and more parallel testing with lower costs.

By using the I&T sequencing method from [9], we showed how (nearly) optimal sequences
of I&T activities can be determined and how the costs of using models in the I&T process
can be quantified. This quantification of costs supports the decision making process of when
the use of models is profitable. The results of a basic system upgrade example showed that
the lead time and costs of the current I&T process can be reduced by performing tests earlier
with models.

Finally, the proposed quantitative decision making process was applied to the I&T process
of a new version of an ASML wafer scanner, showing that it is feasible in current industrial
practice to quantify the costs of using the MBI&T method and to decide where and when the
method should be applied. Three different I&T process models were created that described
different scenarios regarding the use of component models. The resulting I&T sequences
showed that the profitability of using models can be quantified in terms of reduced lead
time, increased and more parallel test time, and risk profiles that show the early revealing of
risk which can subsequently be reduced early by testing. The quantitative decision making
process supported the initial expectations on the profitability of using two particular models
in the I&T process. Using a model of a new component with many interfaces proved to be
profitable (9.4% lead time reduction), while using a model of a reused and more mature
component even increased the lead time by 0.2%, due to the additional model risk that has
to be reduced by testing as well.

Using this quantitative decision making process in practice requires estimations of the de-
velopment or delivery times of realizations and models. Furthermore, the knowledge about
possible fault states of the system with their (relative) probability and impact, and about the
available tests with their (relative) coverage and duration needs to be expressed explicitly in
the I&T process model, which thus acts as a knowledge container. As described in [9], ASML
test engineers that currently use the I&T sequencing method for periodic software qualifica-
tion testing (I&T activity 1 of Table 1) are able to make these estimations and to maintain the
corresponding I&T process model. However, I&T sequencing should not be considered as
a ‘push the button’ technique, since the results may be quite sensitive to the heuristics and
their configuration.

In this paper, we focused on quantifying the costs of reducing the time-to-market using the
MBI&T method. As shown in previous work [7, 8], reducing time-to-market is not the only
advantage of using the MBI&T method. Creating models allows for increasing the system
overview and the product quality, and it allows the analysis of all possible behaviors using
model checking. Furthermore, models enable a reduction of costs and lead time for diag-
nosing and fixing problems, and they enable easier and less expensive testing of exceptional
behavior, e.g., by simulating a broken component without the risk of real system damage.
Although these advantages were not considered in the case study of the quantitative decision
making process, they can be expressed in the I&T process model in the following way. As
previously mentioned, the effects on product quality can be expressed in terms of risk, e.g., by
optimizing the I&T sequences towards minimal risk at a fixed system shipment date. When
model checking is considered as a form of testing the system model with very high coverage
(all possible behaviors), this can be defined in the I&T process model by a high coverage test
that can be performed with models only. Although not incorporated in the case study, the
costs for diagnosing and fixing a fault state can also be expressed in the I&T process model.
By letting these costs increase over time, the effects of lower diagnosis and fix costs when
models are used for early testing can be taken into account. Furthermore, the tests in the
I&T process model can be defined such that they can be performed using only models or
only realizations, possibly with different test costs. This allows the modeling of, for exam-



ple, tests related to machine damage control that can be performed at low costs with models
(machine damage situations can be simulated) but not at all or only at high costs with realiza-
tions (with the risk that real machine damage occurs). Finally, ‘what if” scenarios can be used
to investigate, for example, the effects of developing more detailed models, implying higher
model development times, but also a higher coverage of the MBI&T activities and less I&T
activities that can be performed with realizations only. In a similar way, motivated choices
between longer but low cost model testing and shorter but more expensive realization testing
can be made.

These examples of possible extensions show that I&T sequencing is a suitable technique to
get insight in and to analyze possible scenarios for industrial I&T processes at an early stage.
It is also suitable for making more objective decisions on which 1&T activities should be
performed in which order, and whether or not models should be used for these I&T activities.
The I&T process models used in the quantitative decision making process are rather general,
in the sense that only the names of the components, interfaces, fault states, and tests are
used, as well as numbers to express their relations and the associated risk, time, and costs.
Since no application specific content is required, an I&T process model and I&T sequencing
can be used in a wide variety of applications. The only requirement for an application is that
the knowledge about components, interfaces, fault states, and tests needs to be made more
explicit and expressed in a model.

Acknowledgements

This work has been carried out as part of the TANGRAM project under the responsibility of the
Embedded Systems Institute, partially supported by the Netherlands Ministry of Economic
Affairs under grant TSIT2026. The authors would like to thank Johan Neerhof for his sup-
port in the wafer scanner case study. Furthermore, we would like to thank all TANGRAM
project members for the fruitful discussions and valuable comments.

23 Concluding remarks



24



Ribl |

25

[1] ASML. Website, 2007. htt p: // www. asmi . com

[2] L.G. Bratthall, P. Runeson, K. Adelsward, and W. Eriksson. A survey of lead-time chal-
lenges in the development and evolution of distributed real-time systems. Information
and Software Technology, 42(13):947-958, 2000.

[3] B.W. Boehm and V.R. Basili. Software defect reduction top 10 list. IEEE Computer,
34(1):135-137, 2001

[4] 1.S.M. de Jong, R. Boumen, ].M. van de Mortel-Fronczak, and J.E. Rooda. An overview of
integration and test plans in organizations with different business drivers. In Proceedings
of the sth Annual Conference on Systems Engineering Research (CSER’07), Hoboken, NJ,
USA, 2007. CD-ROM. Available online at ht t p: / / www. st evens. edu/ cser/.

[5] TANGRAM project. Website, 2007. htt p: // www. esi . nl /t angram

[6] J. Tretmans, editor. TANGRAM: model-based integration and testing of complex high-tech
systems. Embedded Systems Institute, Eindhoven, the Netherlands, 2007. ISBN: 978-90-
78679-02-8. Available online at ht t p: / / www. esi . nl / t angrani .

[7] N.C.W.M. Braspenning, E.M. Bortnik, J.M. van de Mortel-Fronczak, and J.E. Rooda.
Model-based system analysis using Chi and UPPAAL: an industrial case study. Computers
in Industry, 59(1):41-54, 2008.

[8] N.C.W.M. Braspenning, .M. van de Mortel-Fronczak, and J.E. Rooda. Modeling, analy-
sis, and implementation of infrastructure for model-based integration and testing. Sys-
tems Engineering report 2007-08, Eindhoven University of Technology, 2007. ISSN:
1872-1567. Submitted for publication in IEEE Transactions on Automation Science and
Engineering.

[9] R. Boumen. Integration and test plans for complex manufacturing systems. PhD thesis,
Eindhoven University of Technology, 2007.

[10] L.S.H. de Mello and A.C. Sanderson. A correct and complete algorithm for the genera-
tion of mechanical assembly sequences. IEEE Transactions on Robotics and Automation,
7(2):228-240, 1991

[11] K.R. Pattipati, S. Deb, M. Dontamsetty, and A. Maitra. START: system testability analysis
and research tool. IEEE Aerospace and Electronic Systems Magazine, 6(1):13—20, 1991.

[12] R.E. Shannon. Systems simulation: the art and the science. Prentice-Hall, 1975.

[13] N.C.W.M. Braspenning, D.O. van der Ploeg, ].M. van de Mortel-Fronczak, and J.E.
Rooda. Model-based techniques for intelligent integration and testing in industry. In
Proceedings of the 17th International Symposium of INCOSE (INCOSE’07), San Diego, CA,
USA, 2007. CD-ROM.

[14] J.W. Horch. Practical guide to software quality management. Artech House, 2nd edition,
2003.

[15] J-P. Katoen. Concepts, algorithms and tools for model checking, volume 32—1 of Arbeitsberichte
der Informatik. Friedrich-Alexander-Universitit Erlangen-Niirnberg, 1999.

[16] E. Brinksma and J. Tretmans. Testing transition systems: an annotated bibliography. In
Revised tutorial lectures of the 4th Summer School on Modelling and Verification of Parallel
Processes (MOVEP’00), Nantes, France, volume 2067 of Lecture Notes in Computer Science,
pages 187-195. Springer-Verlag, 2001.



[r7] N.C.W.M. Braspenning, J.M. van de Mortel-Fronczak, and J.E. Rooda. A model-based
integration and testing method to reduce system development effort. Electronic Notes
in Theoretical Computer Science — Proceedings of the 2nd workshop on Model-Based Testing
(MBT’06), Vienna, Austria, 164(4):13—28, 2000.

[18] R. Boumen, I.S.M. de Jong, J].W.H. Vermunt, ].M. van de Mortel-Fronczak, and J.E.
Rooda. Test sequencing in complex manufacturing systems. IEEE Transactions on Sys-
tems, Man, and Cybernetics — Part A: Systems and Humans, 38(1):1-13, 2008.

[19] I.S.M. de Jong, R. Boumen, ].M. van de Mortel-Fronczak, and J.E. Rooda. Test strategy
analysis for manufacturing systems. Systems Engineering report 2007-10, Eindhoven
University of Technology, 2007. ISSN: 1872-1567. Submitted for publication in IEEE
Transactions on Systems, Man, and Cybernetics — Part A: Systems and Humans.

26 Bibliography



