EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

A communication protocol for interactively controlling software
tools

Citation for published version (APA):
Wulp, van der, J. (2008). A communication protocol for interactively controlling software tools. (Computer
science reports; Vol. 0823). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2008

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/bb7f3e80-824f-4100-ab16-8d520739cbf8

A Communication Protocol for Interactively
Controlling Software Tools

J. van der Wulp

Technische Universiteit Eindhoven
PO Box 513, 5600MB Eindhoven, The Netherlands
j-v.d.wulp@tue.nl

Abstract
We present a protocol for interactively using software ¢anla loosely coupled tool environment. Such
an environment can assist the user in doing tasks that eetheruse of multiple tools. For example,
it can invoke tools on certain input, set processing pararagawait task completion and have tools
communicate the resulting output. It can also keep trackes firoduced by tools and prevent tools from
reading and writing to the same file at the same time. The pobferves as an interface between the
tools and a central tool manager. Generally, the managératenhe tools and forms an interface to a
human user. The protocol is used to connect our tool mana@QaABT to a variety of tools, hereby
allowing these tools to be used on all major software platfor

1 Introduction

The mCRL2 toolset (see [GMR7]) is a collection of tools around the formal modellingdgalage mMCRL2
that can be used for formal verification and analysis of ed®haviour. Most of the tools have a tradi-
tional command line interface and today not everyone is ootalble with this way of working. Therefore
we started working on a tool integration framework to malesttiolset usable for a broader audience. The
idea is that a uniform graphical user interface should makasier to use tools without having too much
knowledge about the specifics of every tool. The focus is kiyipg the use of individual tools as well as
combinations of tools and to automate frequently occurtasggs that involve the use of multiple tools.

The SQUADT desktop application is a graphical user interflayer around a new tool integration
framework, within which a central part is played by the conmication protocol described in this text. The
name SQUADT, stands for Systems Quality, Analysis and DeEmglset, which refers to the kind of tasks
that can be performed with the connected tools. The condéatds are those found in the mCRL2 toolset.
Most of these tools can be used stand-alone by means of sidreddicommand line interface and some
with a graphical user interface. The only communicatiomieetn the tools is uni-directional by means of
files or file streams (also known as piping). The design of QaADT graphical user interface as well as
much of its functionality have, so far been targeted at tadtls this specific behaviour.

The idea of using a graphical user interface to simplify the of a toolset is is not new. The SQUADT
application is very much influenced by the Eucalyptus apgibn (see [JHA96]) in the CADP toolset.
Eucalyptus was developed (around 1996) in the context of E&dD a very similar purpose as SQUADT is
for the mCRL2 toolset. However, this does not mean that elltiderlying ideas of SQUADT are the same
as those of Eucalyptus.

Contrary to Eucalyptus, in SQUADT every action is perfornmeithe context of a project. This approach
is adapted from integrated development environments (|B&8 [Ecl, Net] for two popular examples. An
IDE is an integration framework for software developmehintegrates a number of often stand-alone
software tools that are used for software development.diptbject context SQUADT manages a collection
of files and a collection of tools that can be used to add new fdea project. The user observes and
directs this process through a graphical user interface ctine of that user interface is focused around
an interactive visual overview of all data dependenciehiwit project. Every dependency represents an
application of a tool on a set of files with another (disjosg} of files as the result (where output depends
on input). Within the context of a project SQUADT keeps tra¢kool applications and through it the
dependencies between files in the project. The file depergence then used to monitor consistency
(explained shortly).

Consistency is an relationship between input and outpabéshed by an arbitrary tool. Nothing is
known about the exact relationship since nothing is knowsuathe tool. So any change to either an input
or output file can potentially violate consistency. Openagion files within a project can be monitored so
operations that may violate consistency can be detectedigndlled to the user automatically.

A file can be added to a project either by having the user sélast such or it can be produced by
applying a tool to a set of files in the project. In the lattesecthe file is calledlerived Ideally it should
be possible to recreate all derived files from non-derives fithose added manually by the user). To this
end we have imposed the restriction in SQUADT projects thaltapplications may either modify or add
files to a project, not both at the same time. When tool apjiticaesults in creation of both new (output)
files and modification of files in the project then all informoatregarding this tool application including the
new output files is removed from the project. Basically thesams that the project context can store all file
dependencies in a project as a directed acyclic graph. <itat we could have avoided the restriction for
instance by adding a version attribute to every project fithghat the dependencies between the versioned
files form an acyclic graph. We decided against this apprbachuse of the associated complexity and the
fact that it does not add any immediate benefits for any ofdbkstin the mCRL2 toolset.

Monitoring consistency can help the user to find problemsrbsult from the changes made to files
in the project. This is not a novel idea. In much the same wdyslmonitor changes to files in a project
in order to conservatively rebuild executables from sotites. The main difference between the two is
that an IDE takes care of generation and maintenance of alledkfiles, whereas in our case the user is
expected to actively do these tasks.

Integrating tools works better ‘when tools are aware’ of ithegration context. For example, tools
and tool integration framework must cooperate in order tgimae the effectiveness of any inconsistency
detection mechanism. Another example is an applicatiohdmuitop of an integration framework, that will
likely offer a different user interface to the functionglirovided by a tool (than for instance a command
line interface). A different user interface may have difierinformation requirements. For example in the
context of a graphical user interface it is convenient armbpted practise to visualise state and progress.
Showing state or progress when operating within the integraontext may requires that a tool is tailored
to this setting. Our communication interface is built on ithea of such a symbiosis between integration
context and tool.

The following section introduces a number of important @pis and their connections. This is fol-
lowed by a high level overview of the communication protoddie purpose of this abstract perspective is
to give the reader a picture of the structure of communicatidhat is communicated, in what way and why,
without going into detail. Next is a more detailed descaptof the protocol, consisting of a description
of the contents of messages, and their representationeAerttl is a short comparison between integration
frameworks that we know of (at least those with similar scapeé purpose).

2 Concepts

It is only useful to consider integration between softwaralg when there is a meaningful way in which
the tools can be used together. The purpose is then to obtasuli that cannot be obtained by any of the
individual tools in isolation.

The tool integration problem can be characterised by theneran which a given set of software tools
can be used together in order to achieve a given goal. Ndtatewhen the goal is not compatible with the
functionality (or any combination thereof) provided by tailable tools, then the problem does not have
a solution.

The SQUADT tool integration framework assists the user iwisg tool integration problems. To
this end the framework has functionality for execution adiiidual tools, monitors consistency of files
produced as input/output of tool application, and it offeeenmunication facilities for communication
between a user and a tool. All of this functionality is tiedtte communication protocol for interactively
controlling software tools, which functions as interfa@tteen tool and tool integration applications such
as SQUADT.

2.1 Tool

A (software) toolis a program that processes input and produces output thetidnally depends on that
input. Both input and output of a tool are sets of referenagemtirces and sinks respectively consisting of
binary data. The output of a tool is the result or accomplishinIn practise a data source/sink is often
a file in the local filesystem, but it could also be a stream ¢a dasociated with user interaction through
connected human interface devices. The latter are aretrspecially.

Any tool is always used with a particular purpose in mind.'d assume that the use serves the purpose
(i.e. the tool is right for the job). A tool may serve diffetgrurposes and for each unique purpose the tool
is said to have &nctionfor that particular purpose. For all thinkable purposes,|l#ingest set of functions
for a particular tool makes up itetal functionality

2.2 Task

A taskfor a tool is the use of a specific combination of functionshaitttool. This combination determines
input and output requirements. The input of a tool neededftask, calledask input is a non-empty
set of resource identifiers (discussed shortly). Similatjput of a tool for a task, calle@dsk outputis a
non-empty set of resource identifiers. Every input as weddput is associated with a type that is specified
using the MIME format (Multipurpose Internet Mail Extensi& [Res01]). The input/output requirements
for tasks typically include constraints on the types of itspand outputs.

A resource identifier is a name of a file or stream associatdae principle method of specifying
input/output files or streams is the Uniform Resource Idiemt{or URI, see [MD02]). A URI that is
specified as part of input must identify an existing resolne®re a tool can be applied. Similarly, a URI
that is specified as output must identify an existing reseafter the tool completes its task.

2.3 Task Configuration

The process of bringing a tool in the state where it can perfospecified task is callddsk configuration
After task configuration is complete the state of a tool cambele explicit by capturing it as a task speci-
fication. Atask specificatioffior a tool is a concrete specification that uniquely definessk for that tool
(without accounting for user-interaction).

A task specification, as depicted in figure 1, consists of &rifgson of the task input/output and it
specifies the specific combination of functions that defiretéisk. The task input is a set of URIs that all
identify an existing resource. The task output is a set ofdiiRIpotentially non-existing resources. Every
input as well as output is associated with a type. A tool méyctanpleting its task if the actual resource
identified by the URI does not match the type.

Specification
of function

Input
ndino

Figure 1: Graphic overview of the contents of a task spetifina

Atool creates its own task specification and communicatdtgtwards with the integration framework.
The framework can read and modify the part that specifiesagleibhput and output, e.g. it can rename input
files. The remainder of the task specification is tool-spedifie framework can only store this information
but not interpret. The purpose of communicating the confiion with the framework is to have a means
to preserve it.

Task execution is the process of using a tool to fulfil a coméduask. To configure a task the tool must
create a task specification in cooperation with the user andrunicate it with the integration framework.
To actually start execution the framework communicatesk $pecification with the tool that must either
accept or reject it. Once a task specification is accepteghbiztsk execution may commence.

2.4 Display

Since tools create task specifications themselves, witluskee as beneficiary, the tool must have means
of communicating with the user. THmteraction) displayis a tool-controlled graphical user interface that
acts as a direct communication channel between a runningtabthe user. Every running instance of a
tool has its own display. The display can also be used foairtst to show task progress or to query a user
during task execution.

3 Communication Protocol (high level)

The SQUADT application is built on top of a portable tool ontation framework built in C++. At the
heart of this framework is a communication protocol for ratgively controlling tools. That is, SQUADT
is responsible for controlling tools on behalf of a user; #meuser can directly communicate with a tool
through the display facility. So there are three commuiacgtarties: user, framework and tool.

Tools ||

}
A

User Controller

Figure 2: Communication parties

The protocol only concerns framework and tool, and from leeréhose parties are referred tocm-
troller andtool respectively. The role of a tool is that of a configurable &ervthat of a controller is to
orchestrate tool actions on behalf of the user.

The smallest unit of communication is a message. Messageseat and received in a particular order
and the protocol specifies how each message must be inepietvery message is equipped with a type
that identifies its purpose. The type indicates how the ngesshould be interpreted and provides a means
to specify restrictions on message order. Interpretatfarmessage is based on both its type and the role
of the party that receives it.

Message interpretation, besides type and role of the riegeparty, is also affected by the messaging
context. Amessage conteig a chronologically ordered list of messages that werdthkesent or received
by the same communication partner in that particular orflerre formally letp andg be communication
partners. Theeceiving contexbf p (pertaining toq) is the sequence @l messagesn,mp, ms, ... that
were sent byg and received by in this particular order. Theending contexvf p (pertaining toq) is
the sequence dll messagesy,my, Mg, ... that were sent by and received by in this particular order.
From hereon we will assume that every message that is sdralsdglbe received and that message order is
preserved. More precisely, the receiving contexp @lertaining tog is a prefix of the sending context qf
pertaining top.

A basic pattern used in the protocol is a request-respomgeseee. The tool, as well as the controller,
can issue a request that the other pantystrespond to. So a request in the sending context can always be
uniquely paired to a response in the receiving context. dgssihis clear pattern there are also notification
messages, e.g. messages that do not require any response.

The remainder of this section provides a high level overvidéuhe protocol in terms of the different
message types and their purpose. The next section zoomslie @oncrete representation of the different
messages.

3.1 Message Presentation

Messages have a name and are specified as a tuple consistirigpe, a direction and a specification of
the structure of its contents. In practise, the type is nrdtarmation that is kept on the message ‘envelope’
which hides the contents of the message. The direction @ fesepecifying which communication party
is allowed to send such a message. In practise the direst@ways clear for the party that sends/receives
a message. Whether a message (contains data) can be bsthblishout ‘opening the envelope’ (or
inspecting the data).

Message types are introduced on demand; they are namegthats identify message purpose. The
type determines the way in which a communication partneuishimterpret the data. The way in which
data inside a message is structured is described in termanoéch types that may be composed of other
(nested) types. The type notation is adapted from the mGC#lta-syntax for specification of data types
[GMR107]. A BNF specification style is used to highlight the sturetof the data and hint at the repre-
sented information. Concrete representational detaglsat discussed until section 4.

The names of the types in the data field hint at both the purgodenter-dependencies between mes-
sages. There is a small number of standard types, nanielyRl , M ME-type, B, N, andS. AnID
represents a textual identifier with the purpose of refgrtin communicated information objects across
message boundaries. Typd , M ME-t ype are string types that specify a URI [MD02] and MIME-type
[FB96] respectively. Types may be composed usingdtaperator, as usual, and there are the parametrised
typesSetandList for specifying sets and lists (in the usual mathematicadsprStructured sorts are used
for specification of sum types and compact representatioaofed product types.

The following two tables specify messages named ‘exampjeest’ and ‘example response’ respec-
tively. The request is sent by the controller and the respbiysa tool. The idea is that the tool computes
distances for a trajectory specified by a list of time periadd relative orientation changes. Picture a tool
that acts as a simulator for mars rover movement on a comgieadr.

example request

message type: exanpl e

direction: tool to controller

data: Listétruct distances(minimumR, maximum :RR)

The request contains a list of pairs@fr ati on andDi recti on. Think of duration as time range type
that coincides with the (actually positive) Real number dom The direction is used for specification of
relative orientation either forward for no change in or&ittn or some degrees left or right.

example response

message type: exanpl e

direction: controller to tool

data: List(Durationx Direction)
Direction =struct left(Angle) | straight| right(Angle)
Duration =R
Angle =N

The response consists of a list of pairs of minimum and mawxindistances travelled. The result may of
course depend on minimum/maximum acceleration initij&tary velocity, and robot and terrain charac-
teristics etc. The message content description in termgesftis simply used as high-level specification of
input versus output of a tool for this specific task.

3.2 Communication behaviour

State diagrams are used to specify the allowed communicbgbaviour. An action label on a transition
is the name of the message being sent. Special cases aretonim@tiation and severing transitions. An

incoming arrow from no state identifies the initial stategl¥e 3.2 shows an example of how we specify
allowed communication behaviour.

start
example example notification
: reque“m
stop
notification

From the initial state an example request takes place, mg#mat a communication action occurs between
the partners. Subsequently an example response must aéienrwhich a state is reached from which a
start notification can occur. A start notification can onlyfbkowed by a stop notification and vice-versa.

The starting and stopping can be repeated ad infinitum.

3.3 Instance identification

Although the integration framework (controller-side)ritatools, this does not automatically mean that
protocol communication with that tool has been establisiée tool must initiate communication and the
framework is to wait for this to happen. In the meanwhile ffaerfework may be communicating with other
tools. So when communication is established the contratlest identify the its communication partner
as a tool that was started previously. Instance identiioas the means by which a tool (instance) must
somehow identify itself to the controller.

Actual identification requires a pre-communicated sedreis secret takes the shape of an identification
token, which is passed to the tool at startup. When the tdmdesyuently initiates communication, the first
communication action consists of exchanging the identibioatoken. The framework then validates the
token and in case of failure it cuts off further communicatio

A new messaging context (connection) is established fdr pattners when a tool initiates communi-
cation with a controller. The message is used for exchandaemgification tokens; it looks as follows.

identification notification
message type: i dentification

direction: tool to controller
data: Token
Token =S

There is no response to such a message, after this messagemmsinicated the controller-side has the
initiative. The result is that either the connection is sedeor the controller will send any command or
request message (which will be treated shortly). Figureo8vstthe combined behaviour of a controller and
a tool with regard to instance identification.

controller

breakg identification
connection notification (rejected)

tool
initiates identification
connection notification (accepted)

Figure 3: Process of instance identification

A tool initiates a connection, sends an identification ncatfion and starts waiting for incoming messages.
At the side of controller the value of the token is used to ceobetween breaking the connection and
accepting the identity of the tool on the other side.

6

3.4 Capabilities

Capabilities represent both an information facility forrceommunication partner to learn about the capa-
bilities of the other, as well as a protocol extension meddmn The extension mechanism currently only
consists of a means to check for the protocol version supgdiy a communication partner. This pro-
vides some limited backward and forward compatibility bexdw protocol versions. For example it allows
a tool developer to check controller side support for féieithat have been introduced in specific proto-
col versions. The exchange process follows the basic regeggonse pattern and is symmetric for both
communication parties. A request for capabilities mes$aajes as follows.

capabilities request capabilities request

message type: capabilities message type: capabi lities
direction: controller to tool|| direction: tool to controller
data: data:

The partner that receives a capabilities requasstsend a capabilities response message. For a controller
the response only contains the protocol version numberaoiclas follows.

capabilities response (controller)

message type: capabilities

direction: controller to tool

data: Version sstructversion(major N, minor : N)

The response for a tool additionally contains a sort of ‘atisement’ of the tools functionality in the shape
of a non-empty set of input configurations. Aput configurations a pair of acategory and a non-empty
list of names for inputs associated with a type (storage &ynThe category is a descriptive name for the
type of functionality that a tool offers for that specific itronfiguration.

capabilities response (tool)

message type: capabilities

direction: tool to controller

data: Versionx Set(InputConfiguration)
Version =structversion(major N, minor : N)
InputConfiguration = Category List(I D x M ME-t ype)
Category =S

The exchange of capabilities follows a request-resporgesee as illustrated by the following figure.

capabilities capabilities
response (controller) response (tool)

capabilities capabilities
request (tool) request (controller)

Figure 4: Process of exchange of capabilities

The set of input configurations partition the entirety okiathat a tool can perform into classes that have
the same input requirements and whose functionality falthé same category. Every task specification is
based on a single input combination. The input combinatipmessses a set of basic input requirements for
configuration and abstractly characterises what funclityrat the tool will be used.

3.5 Task Configuration

The process of task configuration starts as soon as a usetssel®ol for use of some of its functionality.
An input configuration (see section 3.4) serves as a conoeptesentation of the selected functionality
and represents the starting point of further configuratfotask specification can be obtained in two ways,
either by constructing it from an input configuration, ore®ing one as the result of a task configuration
process. Important to note is that every task configurationgss starts by sending a task specification as
part of a configuration request. The request message ldaks li

configuration request
message type: configuration
direction controller to tool
data: Interactivityx Configuration
Interactivity =B
TaskSpecification = Categosy List(Configurationltem)
Category =S
Configurationltem sstructobject(D,Object)| option(List§ x DataType))
Object =structinputURl x M ME-type) | outputURl x M ME-t ype)
DataType sstructboolean string| realrangeR,R) | integetrangel,Z)

The request message consists of a pair of a Boolearnntiectivity flag and a task specification. The
interactivity flag specifies whether or not further configima through interaction with the user is desired.
Notice that a tool may initiate interaction with the useraedjess the interactivity flag. The intended
purpose however, is that when no interactivity is desireduber is consulted as little as possible. A more
detailed explanation of a task specification follows afterintroduction of the response message.

Configuration details, as part of task specifications, caneydst outside the tool. A consequence is that
it opens up the opportunity that a tool receives an invak#t &pecification, e.g. it does not uniquely specify
a configuration. Whatever the cause, it is necessary on theside to check whether task specifications
are usable. In other words a tool developer must provide eggiure to test task specification for validity.
Moreover in the case a task specification is not valid thedewkloper must resolve this problem through
communication with the user.

Before sending a response the tool may initiate arbitrasraction with the user (see subsection 3.9).
The user as beneficiary is supposed to direct the processkettanfiguration.

configuration response
message type: confi guration

direction tool to controller

data: Validity x TaskSpecification
Validity = B
TaskSpecification = Categosy List(Configurationltem)
Category =S

Configurationltem sstructobject(D,Object)| option(List§ x DataType))
Object =structinputURl x M ME-type) | outputURl x M ME-t ype)
DataType sstructboolean string| realrangeR,R) | integetrangel,Z)

The response carries a judgement, the validity flag, andtlédonfiguration. Depending on the value of

the validity flag the embedded configuration was judged @sabll the configuration is accepted. Notice

that the task specification that is sent as part of a requast isecessarily the same as that in the response.
A task specification is modelled after the non-interactiggt pf a traditional command line interface.

Traditionally non-interactive command line interfaces ased to capture the configuration of a program

into a single string, the command. A command can be decordgosean identifier of the program and

a list of options that have a list of arguments. The purposemdn-interactive command line interface is

exactly the same as that of a configuration specification. éljagapturing the configured state of a tool
with the purpose of reproducing that state automaticallylater time.

A minimal task specification consists of a category speddinet a non-empty list of configuration items.
The category specifier is a name that characterises thddnatity of the tool, which is used to classify the
tool in the user interface of an integration context. Configjon items are either objects (corresponding
to input/output source, see figure 3.2) or options (as irr ttminmand line equivalents) with an arbitrary
number of arguments. The options represent the languagdkrspecification. A single option is a
parametrised entity that represents the smallest parttadrag configurable behaviour. The list of options
identifies a combination of functions that make up the task.

The following figure depicts the basic (isolated) commutiicabehaviour of the task configuration
process.

configuration configuration task start
request response (accepted) command
configuration task stop
response (rejected) notification

Figure 5: Schematic overview of the process of task conftgarand execution

The process of task configuration is a straight-forward iappbn of the request-response pattern. The
state with label represents the configured state, i.e. the state from wh#theteecution may commence.
Similarly the state with labek represents the state in which the tool is executing a taslctid®e3.6
introduces the messages that deal with task execution.

3.6 Task Execution

When configuration is complete the controller may start &gkcution by sending a task start command.
Configuration is complete when the controller receives digaration response message with an accepted
configuration and it has not sent a new configuration reqéetsk is calledn progressas soon as a task
start signal is sent, and as long as no task stop signal hasrbeeived. See figure 3.5 for a schematic
overview of the process of task execution.

A message representing a task start command looks as irftinest table below. When a tool receives
a task start command it must start executing the configustd #s task execution completes the tool must
send a task stop notification as shown in the table on the. right

task start command task stop notification
message type: t ask message type: t ask
direction controller to tool| direction tool to controllern
data: data Result
Result =B

The data in the stop notification signifies success or faitdirask execution. In case of failure the user
should probably be notified of the details of the failure gdihe display or the reporting facility both of
which will be discussed shortly.

3.7 Reporting

The purpose of the reporting facility is to inform the usérgugh the controller) of individual task activities
and their progress. A report may be sent from any context amdfies either a warning, error or just
notification of some event. The facility is intended as seleoy source of information (next to the display)
that a user may consult to get more feedback on configuratitask execution. A report message looks as
follows:

report notification

message type: report

direction: tool to controller

data: ReportType Description
ReportType sstructnotice| warning| error
Description =S

This facility is meant as an indirect method of communiaatidth the user. The information from the

reporting facility ends up in a log that is only visible whéretuser wants it. So the reporting facility must
not be relied on as a part of the user regular user interfalee.rd@porting facility is intended as additional
source of information for the user andtan exception handling facility for the tool developer.

3.8 Termination

The termination facility allows the controller to termieaa tool in a controlled fashion. In this way a
tool is allowed to free resources and remove inconsisteipidst A termination command/request and the
message that is sent as response are depicted below.

termination command termination notification
message type: terni nation message type: terni nation
direction: controller to tool|| direction: tool to controller

The response such a request is a termination notificatioa.nTdndatory response signifies that the tool is
shutting down (making preparations for termination) anll t@rminate soon. Additionally the notification
can also be send by a tool when it is shutting down for othesmesithan after a prior termination request.
This functionality is meant to be used only in exceptionalesasuch as that a tool must terminate after an
unrecoverable error.

The following figure shows the communication behaviour wigard to termination commands and
notifications.

termination termination
command notification

termination
notification

Figure 6: termination behaviour

When a tool fails to respond to a termination request, thegirattion framework may force a tool to termi-
nate by other means.

10

3.9 Display

The display facility represents the primary means of a to@dmmunicate with the user. Think of it as an
interactive bulletin board containing a set of user integfprimitives (calledvidgetd in some arrangement.

Every change to the widgets as a result of user interactiairéstly communicated with the tool. The

set of widgets on the display and their arrangement are aibedrby the tool that owns the display. A

layout specifications a description of a set of widgets and a set of constraintsoaf to position them

relative to each other on the space made available by théagisfph message that looks as follows is used
to communicate layout specifications.

display change command
message type: di spl ay_l ayout
direction: tool to controller
data: LayoutManager
LayoutManager = BoxLayoutManager
BoxLayoutManager structhorizontal(ElementList) vertical(ElementList)
ElementList = List(LayoutConstraints | D x LayoutElement))
LayoutConstraints = Visibilityx Statusx Marginsx Alignment
Visibility = structvisible | hidden
Status sstructenabled disabled
Margins =structmargins(top N, left : N, bottom :N, right : N)
Alignment = HorizontalAlignmenk VerticalAlignment
HorizontalAlignment =structleft | centre| right
VerticalAlignment =structbottom| middle| top
LayoutElement sstructlayoutmanager(LayoutManaggrvidget(Widget)
Widget =structprogresshar(N x N x N) | radio_.button§ x B) |
button§ x B) | checkbox$ x B) | label§) | text field(S)

Every widgetmusthave an identifier, that uniquely identifies it in a layout.bSequent communication
of changes to the state of a widget rely on the identifier agetipecifier. A special subsection 3.9
is devoted to explaining the structure of a layout specificat For now we focus on communication of
display interaction data and changes to the state of widgetise display.

User interaction with widgets on the display is relayed todksociated tool as soon after the interaction
took place. On the other hand a tool can change the interai@ of widgets, e.g. change the label of a
button from ‘okay’ to ‘cancel’. In both cases informatiomifn individual widgets, calledisplay datais

exchanged between the communication partners. A tool aarest a state change for a set of widgets on
the display using a message that looks as follows.

display manipulation command
message type: di spl ay_dat a
direction: tool to controller
data: List(D x Widget)
Widget =structprogresshar(N x N x N) | radio.button§ x B) |
button§ x B) | checkbox§ x B) |
labelE) | text field(S)

When a controller receives such a message it is interprstedstate change of a widget that matches the
identifier. The controller manages the display on behalf tdad and needs to process these updates as
follows. Let (d, s) be a pair of identifier and widget state specificatioridlfioes not identify a widget on
the display the state update represented by the pair isegndfid identifies a widget on the display and

the type of this widget is not the same as thas tife state update is ignored. Otherwsdgecomes the new
state of the widget on the display that is identifiedidy

11

As noted before, changes to widgets on the display as a resuker interaction are directly com-
municated with the tool. The tool does not have direct acteske display and is assumed to a local
representation of the contents of the display in order terpret the results. Communication of changes
due to interaction is performed with a message that loolks lik

display interaction notification
message type: di spl ay_dat a
direction: controller to tool
data: List(D x Widget)
Widget =structprogresshar(N x N x N) | radio_.button§ x B) |
button§ x B) | checkbox$ x B) | label§) | text field(S)

When a tool receives a display interaction naotification interpreted as a state change of the widgets that
matches any of the identifiers. Led (s) be a pair of identifier and widget state specificationdlfloes not
identify a widget on the display the state update represdnte¢he pair is ignored. lid identifies a widget

on the display and the type of this widget is not the same d®flsthe state update is ignored. Otherwise
sbecomes the new state of the widget on the display that igifebehby id.

Initially the display contains no widgets. User interantigithout widgets is not possible, so display
interaction notification messages will not be sent by therodler. Similarly display manipulation requests
will not be sent by a tool and otherwise will be ignored. Theufegbelow shows the communication
behaviour regarding use of the display facility.

display .
change . dlsplay
command interaction
notification
display
manipulation
command

Figure 7: Communication behaviour with regard to use of ikpldy facility

A display manipulation command is ignored when the corgraannot identify the widget that was targeted
or when the state is not a valid state description for theetadywidget. The display becomes non-empty
when a layout change command with a valid non-empty layoetifipation is communicated. A display
interaction notification is ignored when the tool cannoniify the widget that was targeted or when the
state is not a valid state description for the targeted wiidge

Widgets and Layouts

The display facility shows an arrangement of widgets withichilthe user can interact, e.g. a button. To
keep the message structure simple only a small set of badigets is supported. A very basic relative
positioning scheme is available for positioning widgetsha available display space. As we have seen,
altering the contents of the display is only possible by stigig one set of widgets and a layout for
another. Furthermore the state of widgets can be altered toplatheir arrangement (their layout) is
immutable.

A layout specification subdivides the available space bynseely assigning space to so-called layout
managers. Aayout managerspecifies the way in which elements are laid out across th@agis The
display always contains at least one layout manager, ctilkstthp layout managethat indirectly contains
all other elements on the display. The top layout managditipas the available space of the display to

12

its child elements. The elements of a layout manager coobisither widgets or layout managers that
themselves may contain a number of elements.
The following figure shows an example of how widgets can ek dait using nested layout managers.

Available space on the display
(filled by top layout manager)

horizontal alignment: centre

A Button

top margin

~—This is a label:

n

left marg
us]
os]
c
+
+
o
S

[() 35%]

vertical alignment: middle |

Figure 8: Example layout with annotation

The dotted lines in figure 8 mark the boundaries of spaceathalto different layout managers at the same
nesting level. Abox layout manageis a special type of layout manager that arranges its chélshehts on
the screen either horizontally, or vertically and expanesents (to fill space) in the direction perpendicular
to the chosen direction.

Besides the layout managers that distribute availableespamng widgets there are also layout prop-
erties for further control over how elements are positioaed whether they are visible/hidden and usable
(mutable/immutable for the end user). Figure 8 also ilktsts the use of some of the layout properties. Ele-
ment visibility determines whether this element is visibtenot. The effect can can be used to create empty
spaces with the dimensions of the invisible widgets. A widga be enabled or disabled for user interac-
tion. A widget is calledactiveor enabledvhen the user can interact with it, otherwise itlisabled Actual
positioning properties: alignment, margins (in pixelsgaf (top, right, bottom, left), vertical alignment
(top, middle, bottom), horizontal-alignment (left, cemtgght).

3.10 Protocol Extension

Protocol extension is supported in the form of adding newsags types and changing the structure for
any of the existing message types. Depending on the natuhe @hanges it is necessary to increase the
major or minor component of the protocol version tag (asrretd after a capabilities request). Backwards
incompatible changes require an increase of the major coemio Naturally the changes to the version
number are supposed to make it easy to test for additionatiumality and/or to implement a fall-back
mode for compatibility. Extension to the information exogad with the capabilities facility can be used
to provide means and check for even finer degrees of comiitgtibi

13

4 Implementation details

Up until here we have presented only a high level view of thammnication protocol for controlling tools
in our integration framework. This section focuses on thpl@mentation details and addresses important
design decisions.

Our communication protocol represents an interface betweaur rather abstract notion of a tool and
a tool integration framework. An important design goal wasrtake the use of this interface as simple
as possible e.g. to not restrict its use to specific operatstems or programming languages. For imple-
mentation we have only looked at established inter-processmunication mechanisms available as part
of standard facilities provided by operating systems sisckoakets and pipes. To further simplify the use
of the interface from other programming languages it wasdgeklto create a text-based message format
based on XML [YPB 06].

We decided not to pay to much attention to security aspedttheitime we felt that putting a focus on
security would have slowed down the development procesmtath. The main goal has been on getting
a proof-of-concept implementation of a communicationrifatee on top of which to build the SQUADT
application.

The OSI model [DZ83] is a popular way of analysing and desegiltommunication protocols. Our
use of this model only serves to provide a frame of referebe.OSI| model divides communication into
subproblems (using seven layers) that can be solved indep#y. Layers 1 through 5 represent basic
functionality covered by widely available standard comination protocols. Those five layers provide a
data communication connection between applications ahdrigh data can be transported. Our commu-
nication protocol covers thé'B(presentation) layer. The integration framework that isduas part of the
SQUADT application covers thé™(application) layer.

4.1 Transport

For transport of data layers 1 through 5 of the OSI model therhet (or TCP/IP) protocol suite is used (see
[Pos81b] and [Pos81a] for TCP(-v4) respectively IP). Thé>lIE protocol provides reliable bi-directional
order-preserving delivery of a byte stream (layers 1 thhodigof OSI). TCP/IP also offers session func-
tionality (5" layer OSI) or a connection between applications on top ottvai messaging context can be
implemented. As a result one-time tool identification (get8.3) is possible, i.e. when a new messaging
context is established.

4.2 Messaging

The presentation layer of the OSI model is about mapping éatvapplication level concepts (with their
own syntax and semantics) and data representation in coiatiam (data in messages). The topic of this
subsection is the representation of the messages presestadion 3 and their interpretation in the domain
of the application.

4.2.1 Basic Structure: Envelope

Messages are wrapped in theessagelement. A mandatory attribute fgpethat specifies the type of
the message. The type attribute can occur only once andlite waust be among those introduced in the
previous sectionidentification capabilities configuration display layout, display data, termination task
report. As an example consider the following message with typerieation’.

<nessage type="term nation"><![CDATA[nessage content]]></message>

The content of a message is wrapped in a so-called CDATAmeCcTihe contents of a CDATA section is
treated as character-only data and not parsed as markigalldws embedding arbitrary character data into
XML documents. To deal with data that contains fragmentsnisch the end-markéi >, any instance of
11> in the message contemustbe replaced by]] ><! [CDATA[] >.

14

Below the message structure is specified for all the messamps.t Usually the structure of an XML
document is specified using XML Document Type Definition (JCB6]) or the XML Schema standard
[ACDPO06]. An XML Schema specification for the complete setm#ssages is available but not included.
For presentation purposes either of the two specificatiothous is very suboptimal; so we use tables to
introduce the different elements and their usage conssrain

4.2.2 Capabilities

Capabilities are exchanged to inform each of the commubpit@artners about the precise capabilities of
the other. A request for capabilities is an empty messaggpefdapabilitiesthat looks as follows.

<message type="capabilities"></nmessage>

Depending on which party sent the request message the sespmssage looks different but it carries at
least the protocol version. A response message as sent bgritreller looks as follows:

<nessage type="capabilities">
<capabilities>

<protocol -version mgjor="1" mnor="0" />
</ capabilities>
</ message>

In subsequent examples the message tags will often be drifittee type of the message is clear from the
context. The table below describes the protocol-versiemeht. All attributes are mandatory except for
those that are marked with

| element protocol-version |
attribute | description
major integer that represents the major version component
minor integer that represents the minor version component
contents empty

Table 1: XML element descriptions for protocol version

Any other child elements of the capabilities element mustgoered. The response as sent by a tool
looks differently. The capabilities element must contaimoa-empty set of input-configurations. An input-
configuration is represented by means ofitiput-configuratiorelement.

elementinput-configuration

attribute | description

category| short string that specifies a category
contentsan arbitrary number of object elements

element object

attribute | description

id string without white-space
format | MIME-type that specifies a storage formjat
contentsempty

Table 2: XML element descriptions for input configurations

15

As an example consider the following fragment that reprissiie contents of a capabilities response mes-
sage. As input the tool can take a file in the text based formiggct ‘mcrl2’ and then behaves either as
an editor or as a visualiser. Alternatively it can also takiesain the binary ‘Ips’ format and behave as an
editor.

<capabi |l ities>

<protocol -version mgjor="1" mnor="0" />
<input-configuration category="editing">
<object id="ncrl2_in" format="text/mcrl2" />
</input-configuration>

<input-configuration category="visualisation">
<object id="ncrl2_in" format="text/mcrl2" />
</input-configuration>

<input-configuration category="editing">
<object id="Ips_in" format="application/lps" />
</input-configuration>

</ capabilities>

4.2.3 Configuration

By design, our integration framework is oblivious to therf@t of any data (as in files) that are produced
by connected tools. As noted earlier, the reason for thigigeality in order not to inhibit applicability of
the framework for software tools developed elsewhere. & ieea critical dependency from framework on
tool to supply complete information on files that have be@dpced as output and the format of these files.
The configuration process and the resulting task speciitaplay a critical part in this.

Task specifications are both the source for dependencigsifioing tools in a project as well as for
information about file formats. Initially there is no knowllge about any specific data format. MIME-type
specifiers contained in task specifications provide the ss&gg information on the data format used in
output files. The primary motivation for adopting the usehaf MIME standard for representing the type of
data sources is that it contains additional informationualwchat the data represents. When used properly
it can be used to determine whether the data represents @ stisgam or whether it is stored as text. In
addition it gives opportunities for interoperability withther software applications such as the use of text
editors or web-browsers.

Before looking in detail to the configuration related megsage have a quick look at typed arguments
to options. The purpose of adding types to options is to alovomated sanity checks for checking task
specifications. When an argument is of type Boolean but it sugposed to be an integer this mismatch
can be established automatically. The details of how thitedola types are represented are shown below.

elementboolean element string |
contentseither empty and otherwise ‘true’ or ‘fals¢/ contentsan arbitrary string|

Table 3: XML element description: boolean, string

An empty element e.gbool ean /> is a place holder for a value of the appropriate type. Coa@ram-
ples for a Boolean argument axgool ean>f al se</ bool ean> and<bool ean>t r ue</ bool ean>. Since

all values are represented as strings these first two typasativery interesting by themselves. Numeric
arguments are more interesting and expected to occur quitenonly.

elementinteger-range elementreal-range

attribute | description attribute | description

minimum | an integer number in decimal notationminimum | a real number in decimal notatig
maximum | an integer number in decimal notatignmaximum | a real number in decimal notatig
contents either empty || contents either empty

>

>

Table 4: XML element description: integer-range, realgen

16

Any tool will probably use the finite approximations of thenneric types that are supported in hardware.
The two supported range types represent intervals oventbgers and real numbers.

A configuration request consists of a single configuratiariise from which a task specification can be
obtained. A configuration section consists of configuragi@ment which has the following properties.

| element configuration |

attribute description
interactivé | Boolean specifying whether interactive (re)configurat®desired
valid* Boolean specifying whether the contents is a valid taskiipation

category short string that specifies a category
contentsarbitrary number of option or object elements

elementobject

attribute | description

id string without white-space
type either ‘input’ or ‘output’
location | URI that specifies a file in the local filesystem
format | MIME-type that specifies a storage format
contentsempty

elementoption

attribute | description

id string without white-space

contentsany sequence of boolean, integange, reakange or string

Table 5: XML element description: configuration, object apton

The object and option elements correspond to sources of/myput and options respectively. The se-
guence of arguments that can be specified as childreasptién represent the list of arguments to this
option.

The contents of a response message is exactly the same a$ ttatrequest, with the exception that
attributevalid is mandatory in a response message. The following fragrhematsan example configuration
request, recognisable by the absence of/tii attribute.

<nessage type="configuration">

<configuration interactive="true" category="debuggi ng">

<option id="-v">

<i nt eger _range>1</int eger _range>

</ option>

<object id="in" type="input" |ocation="/dev/randont format="application/octet-strean'/>

<object id="out" type="output" location="/tnp/out" format="application/octet-strean/>
</configuration>
</ message>

A valid (initial) configuration can be obtained from an ingonfiguration as follows. Create an emptyn-

figurationsection and add an attribuitgeractiveset to true and add the contents of an input-configuration
section (section 4.2.3).

17

4.2.4 Display

Display manipulation is restricted to replacing the entiomtent of the display at once or modifying the
state of individual widgets on the display. In particulaisitnot possible to manipulate the layout itself.
More complete manipulation capabilities rapidly increesmplexity. A conservative approach was chosen
to keep initial complexity low and save on development time.

A small set of graphical user interface components (widgstavailable for tool developers to choose
from for constructing display layouts. The downside of thisited choice is that a tool developer has little
choice for constructing a graphical user interface usiegtibplay facility. Nevertheless layout construction
and manipulation are by far the most complex functionahty protocol currently has to offer. Should the
need arise, adding new widgets should be easy, however tthecpt will have to be refined in order to
realise this.

Widgets
We assume that the reader is familiar with the purpose arid hactions of each of the widgets presented
earlier. Nowadays the use of graphical user interfacesiguitbus. The name and function of widgets we
use and the way in which widgets are put together in a layaubased on concepts and terminology used
in Java Swing.

Every widget has a mandatorg attribute that must be unique within the scope of the coirigin
display-layoutsection (introduced shortly). The following two tables gfjethe XML elements that cor-
respond with a label and button.

| elementlabel || element button |
attribute | description attribute | description
id mandatory identifien| id mandatory identifier
contentstext-only contentstext-only
The text for the label. The text on the button.

Table 6: XML element descriptions for label (left) and but{oight)

As an example consider the following XML fragment that déses a label, a button and a checkbox (see
table 4.2.4) all with with text “Cancel”.

<l abel id="x"><![CDATA Cancel]]></Iabel >
<button id="y"><![CDATA[Cancel]] ></button>
<checkbox id="z" checked="true"><![CDATA[Cancel]]></ checkbox>

Notice how the id attribute is unique for all the elements.isTib be the case for all widget elements in
every layout specification. When a button is pressed, or ektlo is toggled this fact is communicated by
sending ai spl ay_dat a message. The contents of this message is the complete wijalgfication.

A more interesting widget is the checkbox. The checkbox hdesaription and is always in one of two
states: checked or not.

| element checkbox |
attribute | description

id mandatory identifier
checked | optional Boolean argument for presence of tick mark
contentstext-only

The text for a label that accompanies the checkbox.

Table 7: XML element description for checkbox

18

The radio button widget is a more complex entity, becauseribt a stand-alone widget. Radio buttons are
always grouped and only a single button in the group is sede(@ressed). By default the radio button in
a group is selected that is found the highest (textually)lmyaut specification. A radio button element is
specified as follows.

element radio-button |
attribute | description

id mandatory identifier

connected| matches théd attribute of another radio button element

selected | optional Boolean attribute that represents whether thie fadton is checked
contentstext-only

The text for a label that accompanies the radio button.

Table 8: XML element description for radio-button

The selectattribute can be used to select a different button. A raditbugroup is formed by means of
the connected attributes in all of the radio buttons in tleigr Everyconnectedttribute identifies another
radio button in the group, within a group tligk of every radio button occurs exactly once as value of a
connectedattribute. Every radio button in the group can be found byeadedly following theconnected
attribute to find the connected radio-button by its identifiethe selection changes then only the specifica-
tion of the radio button that gets selected must be sent bynsnafaadi spl ay dat a message to inform the
other side of this event. Such an update message could Idok@ss:

<radi o-button id="y" connected="x" sel ected="true"><![CDATA[second]] ></radi o- butt on>

A text field displays an input widget for the user to input tekispecification of the text-field element:

| elementtext-field |
attribute | description

id mandatory identifien
contentstext-only

The initial text for the text field,

Table 9: XML element description for text-field

The progress bar is used to show progress to a user. It modglsegs by means of a sub range of the
integer domain, specified by a minimum and maximum value aod's progress by colouring part of this
domain up to some ‘current’ value thaustbe in the domaifiminimum .. maximum The element looks
as follows

element progress-bar |

attribute | description

id identifier

minimum | the minimum, integer value

maximum | the maximum, integer value

current current state of progress as an integer value in range [ramiymaximum]

contentsempty |

Table 10: XML element description for progress-bar

19

Updates to the state of a widget are specified in the same waytaslayout specification. Thd attribute
identifies the widget of which the state is to be updated. Ttréates then specify the new value for the
attribute with the same name and child elements specifyr @higects of the state. When attributes are
missing, their value remains unchanged.

Layout
A display layout specification is represented byiaplay-layoutelement that contains a singl@yout-
managerelement, the top layout manager.

<di spl ay- | ayout >
<l ayout - manager >
<box- | ayout - manager variant="vertical" id="x">

</ box- | ayout - manager >
</l ayout - manager >
</ di spl ay- | ayout >

The box-layout-managehas avariant attribute that specifies the direction in which the elemelimesctly
contained in it are laid out on the available space. Everl@ement is associated with a value for each
of the available layout properties. An implicit set of ddfaralues is assumed that can be used to reduce
specification size. The default properties are as follolignment is left, no margins, elements are enabled
and visible. The effective properties of an element ardiveldo that of the previous child. For example:

<box- | ayout - manager variant="vertical" id="">

<properties margin-top="1" margin-bottonr"1" horizontal -alignnment="right" />
<but t on><! [CDATA[CK]] ></ but t on>

<properties />

<but t on><! [CDATA[Cancel]] ></ but t on>

</ box- | ayout - manager >

The layout properties for both buttons are the same, top attdrh margins are one pixel, vertical alignment
is middle and horizontal alignment is right and both eleraeare visible and enabled. Thmeoperties
element directly preceding a widget specifies the layoustaimts/properties for that widget. When there
is no properties element (or it is empty) then the last spetifalues for each of the properties are in effect.

As a non contrived example there is a complete listing of tivl_Xpecification that can be used to
generate a layout similar to the one depicted in figure 8 isrgim appendix A.3.

5 Comparison

How does our approach measure up to other approaches totegtation? In Eucalyptus, the graphical
front-end to CADP, detailed knowledge about the capabditf individual tools as well as file formats
seems to be integrated. Such coupling is very tight anddiitstapplicability. For SQUADT we set the
target higher. We have chosen to avoid building in knowleatysut particular tools or even file formats.

Other approaches we know of are the electronic tool integr@glatform (ETI) [TRBO5] and repository
([IMA *07]). Both are built around web-services technology (USSP [ea03] and WSDL [CCMWO01]).
The tools either are a web service or wrapped inside a weliceamhich allows loosely connect tools in a
way very similar to ours. In ETI a tool can be connected by mseHifilling in a web-form that generates an
XML file that represents the tools’ interface. This is vemnar to the XML formatted message on tools
capabilities. Connected tools are aware of the integrationiext and ETI offers facilities that are usable to
tools via Java-specific remote procedure calls.

Repository also uses web-services but in contrast to E&lgctimnection between tool and framework is
through specialised scripts. This puts it somewhere in etwEucalyptus and ETI. The tools are not aware
of the integration context so a script is needed to make abeiohve properly in the integration context.

20

For all of the above approaches it seems that tools commtartimeugh files. A serious consideration
on our side was that files could grow very big and that you dowaott to copy those files unnecessarily
across a network. This does not necessarily preclude thefugeb-services as interface between tools and
an integration framework; but it does not make it the mosidalgcandidate either. Truthfully the use of
web-services was not considered until a protocol impleatent was already available.

References

[ACDPO06] A. Malhotra, C. M. Sperberg-McQueen, D. Petersorg P.V. Biron. XML schema 1.1 part
2. Datatypes. Technical report, W3C, February 2006. Ihivpuav.w3.org/TR/2006/WD-
xmlschemal1-2-20060217/.

[CCMWO01] E. Christensen, F. Curbera, G. Meredith, and S.r&lgarana. Web services description lan-
guage (WSDL) 1.1. W3C Note, World Wide Web Consortium, Ma2601.

[CFTT06] C.M. Sperberg-McQueen, F. Yergeau, T. Bray, J. Paolil & Maler. Extensible
markup language (XML) 1.0 (fourth edition). W3C recommetimig W3C, August 2006.
http://www.w3.0rg/TR/2006/REC-xmI-20060816.

[DZ83] J.D. Day and H. Zimmermann. The OSI reference modé&roceedings of the IEEE
71(12):1334-1340, 1983.

[ea03] M. Gudgin et al. SOAP version 1.2, part 1: Messagiaghwork, W3C recommendation.
www.w3.0rg/TR/2003REC-soap12-part1-20030624/, Jur820

[Ecl] Eclipse foundation. http://www.eclipse.org.

[FB96] N. Freed and N. Borenstein. Multipurpose Internetlatensions (MIME) Part One: Format
of Internet Message Bodies. RFC 2045 (Draft Standard), Mdpex 1996. Updated by RFCs
2184, 2231.

[GMR107] J.F. Groote, A. Mathijssen, M. Reniers, Y. Usenko, and&h Weerdenburg. The formal spec-
ification language mCRL2. In Ed Brinksma, David Harel, Ank&IMader, Perdita Stevens,
and Roel Wieringa, editordylethods for Modelling Software Systems (MMQSfmber
06351 in Dagstuhl Seminar Proceedings. Internationalge@®sungs- und Forschungszen-
trum fuer Informatik (IBFI), Schloss Dagstuhl, GermanypZ0

[IMAT07] |.G.J. Raedts, M. Petkovic - llic, A. Serebrenik, J.MVEvan der Werf, L. Somers, and M.
Boote. A software framework for automated verification. InCho, R.L. Wainwright, H.
Haddad, S.Y. Shin, and Y.W. Koo, editoBjoceedings 22nd Annual ACM Symposium on
Applied Computing (SAC 2007, Seoul, Korea, March 11-15720qtages 1031-1032, New
York NY, 2007. ACM Press.

[JHAT96] J.C. Fernandez, H. Garavel, A. Kerbrat, L. Mounier, Rtééacu, and M. Sighireanu. CADP:
a protocol validation and verification toolbox. In RajeewAbBnd Thomas A. Henzinger,
editors,Proceedings of the Eighth International Conference on QaepAided Verification
CAV, volume 1102, pages 437-440, New Brunswick, NJ, USA, 19p6n8er Verlag.

[MDO02] M. Mealling and R. Denenberg. Report from the Joint @IETF URI Planning Interest
Group: Uniform Resource Identifiers (URIs), URLs, and UnifidResource Names (URNS):
Clarifications and Recommendations. RFC 3305 (Proposeui&td), August 2002.

[Net] Netbeans community. http://www.netbeans.org.
[Pos8la] J. Postel. Internet Protocol. RFC 791 (StandSafjtember 1981. Updated by RFC 1349.

21

[Pos81b] J. Postel. Transmission Control Protocol. RFC(B#8ndard), September 1981. Updated by
RFC 3168.

[Res01] P. Resnick. Internet Message Format. RFC 2822 @BenpStandard), April 2001.

[SA04] P. Saint-Andre. Extensible Messaging and Presemomébl (XMPP): Core. RFC 3920
(Proposed Standard), October 2004.

[TRBO5] T. Margaria, R. Nagel, and B. Steffen. Remote in&igin and coordination of verification
tools in JETI. InProceedings of 12th IEEE Int. Conf. on the Engineering of Qatar Based
Systems2005.

[YPBT06] F. Yergeau, J. Paoli, T. Bray, C. M. Sperberg-McQueeny &n Maler. Extensible
markup language (XML) 1.0 (fourth edition). W3C recommaetimtg W3C, August 2006.
http://www.w3.0rg/TR/2006/REC-xmI-20060816.

A Appendix

A.1 Behavioural model

The following listing shows an mCRL2 model of the combinedhoounication behaviour of the protocol.
Besides communication tool start and termination only cemications actions are visible. The model
features a single controller and a single tool.

% Type that represents a configuration
sort Configuration = struct configuration(valid : Bool);

% Type used for identifying messages sent by the controller
sort MessageType = struct

identification | %identification response

capabilities | % request/respond for capabilities
configuration | %tool configuration specification

task_start | %signal that a tool may start task execution
task_stop | %signal that a tool has stopped task execution
di splay_| ayout | % conmmuni cates a display |ayout

display_data | % conmuni cates state changes of the display
termnation | % request/response for tool the termnation
report; % report

sort MessageData = struct enpty | result(Bool) | other;
sort Address = Nat;

% Messages travel between a controller (address 0) and a tool instance (address 0 <)
sort Message = struct nmessage(type : MessageType, data : MessageData);

act

send, receive, communicate: Address#Message; % send or receive a message

start _tool, tool _start: Nat; % create a new tool instance
termnnate tool,tool ternminate: Nat; %termnate a tool

execut e_task: Configuration; % performthe configured operation
error; %error action

updat e_di spl ay, waiting; % ot her non- conmuni cation actions

%a: the tool id

proc unidentified tool(a : Nat) =
send(a, message(identification, other)).
tool (a, configuration(false), false, false);

%a: the tool id
% c: configuration object
proc tool(a : Nat, ¢ : Configuration, in_configuration : Bool, in_task : Bool) =
termnate_tool (a).delta +
recei ve(a, nessage(termnation, enpty)). %recei ved termnation request
send(a, message(term nation, other)) + % sends termnation signal
(receive(a, message(capabilities, enmpty)). % received request for capabilities
send(a, message(capabilities, other)) + % response capabilities (tool)
send(a, message(capabilities, empty)) + % requested controller capabilities
recei ve(a, nessage(capabilities, other)) % response capabilities (controller)
send(a, message(display_| ayout, other)) + % sent display |ayout
send(a, message(display_data, other)) + % sent display data
recei ve(a, nessage(display_data, other)) % sent display data
send(a, message(report, other))).
tool (a, ¢, in_configuration, in_task) +
('in_configuration) ->
((tin_task) ->
recei ve(a, nessage(configuration, enpty)).
tool(a, c, true, false)) <> %received a task specification
(send(a, message(configuration, other)) +
send(a, message(configuration, enpty))).
tool (a, configuration(true), false, false) + %accepted task specification
('in_task) ->
recei ve(a, nessage(task_start, enpty)). %task start signal
tool (a, ¢, in_configuration,
(valid(c) & lin_configuration)) <>
(sumb : Bool.
send(a, message(task_stop, result(b))). %task finished or aborted
tool(a, c, false, false));

+
+

% Wor karound until proper support for finite sets is inplenented
map set_add : Nat # List(Nat) -> List(Nat);
set_erase : Nat # List(Nat) -> List(Nat);

var X,xx . Nat;
Xxs @ List(Nat);

eqn set_add(x,[]) = [x];

set _add(xx, x| >xs) = if(xx in xs,xs,if(xx < x,xx|>x|>xs, x| >set _add(xx, xs)));
set_erase(x,[]) = [1];
set _erase(xx, x| >xs) = if(xx == x,xs,x| > f(xx in xs,set_erase(xx, xs),Xs));

% m the maxi mum address of a running tool

%r: the set of active tools

%c: the set of active tools that are configured

%s: the set of active tools that are executing a task

proc controller(m: Nat, r : List(Nat), ¢ : List(Nat), s : List(Nat)) =

(suma : Nat. (a<=m ->(
start_tool (a).controller(mset_add(a,r),c,s) + %starts a new tool instance
(ainr) ->(%for tool a:

recei ve(a, nessage(identification, other)). % received instance identifier
controller(mx(ma),r,c,s) +

(receive(a, message(capabilities, enpty)). %received request for capabilities
send(a, message(capabilities, other)) +

send(a, message(capabilities, empty)). % sent request for capabilities of
recei ve(a, nessage(capabilities, other)) +

recei ve(a, nessage(report, other)) + %report delivered

recei ve(a, nessage(display_data, other)). % update for display data
update_di splay +

send(a, message(display_data, other))). %data fromuser interaction

controller(mr,c,s) +

send(a, message(configuration, enpty)). % configuration request
controller(mr,set_erase(a,c),set_erase(a,s)) +

send(a, message(term nation, enpty)). % sent ternination command

recei ve(a, nessage(termnation, other)). %termnation signal

ternminate_tool (a).

controller(mset_erase(a,r), set_erase(a,c),

),
set_erase(a,s)) +
recei ve(a, nessage(display_layout, other)). % di spl ay |ayout delivered
controller(mr,c,s) +
receive(a, message(configuration, other)). % configuration was accepted
controller(mr,set_add(a,c),s) +
recei ve(a, nessage(configuration, enpty)). % configuration was rejected

controller(mr,c,s) +
(sumb : Bool.
recei ve(a, nessage(task_stop, result(b)))).
((ains &&ainc) ->
controller(mr,c,set_erase(a,s)) <>

error.controller(mr,c,s)) + % task conpleted
((ainc) -> %for tool a:
send(a, message(task_start, enpty)).
controller(mr,c,set_add(a,s)))))):; %task start command

% Execution conponent (starts tools)
proc E(current : Nat, maximum: Nat) =
(current < maximm ->
start_tool (current).E(current + 1, maxinmun;

init

hide({error, waiting, execute_task, update_display,tool _termnate},
al ow({comuni cate, tool _start, tool _termnate,
error, waiting, execute_task, update_display},
com{send| receive -> comuni cate,start_tool |start_tool -> tool_start,
termnate_tool [term nate_tool -> tool _terninate},
controller(0,[],[],[]) || unidentified_tool(0) || E(O, 1))));

Message content is abstracted to that portion that is neldea communication. In this way we distin-
guished three classes of messages, those with empty cartterde with a true/false result and all of the
others. For example, requests characterised by the metygagend empty contents.

A.2 Graphical Representation of Communication Behaviour

The following figure shows a graphical representation ofatsmunication behaviour using the mCRL2
model presented previously. For presentation purposesdhemunication actions have been replaced
by the names of the message they communicate. The picturgevesated with the Itsgraph tool after

instantiating the state-space and and minimising modudmdiring-bisimulation. The final result took
some manual polishing.

display change command report notification
capabilities response \ ,

capabilities request \
display interaction notification

task stop (failure

display change command task start

capabilities response

capabilities request /
display interaction notification

configuration response (success)

task stop (success)

report notification
termination request
configuration request
termination request
display change command

capabilities response

eport notification

termination notification
capabilities request /
display interaction notification

termination request

. . configuration response (failure)
configuration request

display change command L termination request
report notification

capabilities response

capabilities request / G 0

display interaction notification identification notification tool_start(0)
Figure 9: Graphical representation of the state-space

The constraints as they are found in section 3 together mpkbaibehaviour depicted above. What is
visible is the intended pattern of communication. A protdogplementation must abort with an error
condition for message sequences outside those allowecdbyaldel.

A.3 Example Layout
Below is a listing for the layout graphically depicted in fig.8.

<di spl ay- | ayout >
<l ayout - manager >
<box- | ayout - manager variant="horizontal " id="top">
<box- | ayout - manager variant="vertical" id="top_top">
<box- | ayout - manager variant="vertical" id="top_top_|left">
<properties margin-left="5" margin-top="10">
<l abel id="alabel"><![CDATA[This is a |abel]]></label >
</ box- | ayout - manager >
<box- | ayout - manager variant="vertical" id="top_top_right">
<properties margin-left="0" margin-top="0" horizontal -alignnent="center">
<box- | ayout - manager variant="vertical" id="top_top_right_top">
<properties horizontal -alignment="center">
<button id="abutton"><![CDATA[B Button]]></button>
</ box- | ayout - manager >
<box- | ayout - manager variant="vertical" id="top_top_right_bottont>
<properties horizontal -alignnment="|eft">
<button id="abutton"><![CDATA[A Button]]></button>
</ box- | ayout - manager >
</ box- | ayout - manager >
</ box- | ayout - manager >
<box- | ayout - manager variant="vertical" id="top_bottont>
<properties horizontal -alignnment="center">
<progress-bar id="progress" m ni mum="0" maxi nun="1000" current="350" />
</ box- | ayout - manager >
</ box- | ayout - manager >
</l ayout - manager >
</ di spl ay- | ayout >

