

Task complexity analysis and QoS management for mapping
dynamic video-processing tasks on a multi-core platform
Citation for published version (APA):
Albers, A. H. R., & With, de, P. H. N. (2012). Task complexity analysis and QoS management for mapping
dynamic video-processing tasks on a multi-core platform. Journal of Real-Time Image Processing, 7(3), 185-
202. https://doi.org/10.1007/s11554-011-0195-8

DOI:
10.1007/s11554-011-0195-8

Document status and date:
Published: 01/01/2012

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.1007/s11554-011-0195-8
https://doi.org/10.1007/s11554-011-0195-8
https://research.tue.nl/en/publications/43bf2af2-31a6-4758-a178-ef8786995e1f

SPECIAL ISSUE

Task complexity analysis and QoS management for mapping
dynamic video-processing tasks on a multi-core platform

A. H. R. Albers • P. H. N. de With

Received: 15 July 2009 / Accepted: 18 January 2011 / Published online: 26 February 2011

� The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract This paper addresses efficient mapping and

reconfiguration of advanced video applications onto a

general purpose multi-core platform. By accurately mod-

eling the resource usage for an application, allocation of

processing resources on the platform can be based on the

actually needed resources instead of a worst-case approach,

thereby improving Quality-of-Service (QoS). Here, we

exploit a new and strongly upcoming class of dynamic

video applications based on image and content analysis for

resource management and control. Such applications are

characterized by irregular computing behavior and memory

usage. It is shown that with linear models and statistical

techniques based on the Markov modeling, a rather good

accuracy (94–97%) for predicting the resource usage can

be obtained. This prediction accuracy is so good that it

allows resource prediction at runtime, thereby leading to an

actively controlled system management.

Keywords Video processing � Performance modeling �
Multiprocessing � Object recognition � Stochastic

approximation

1 Introduction

1.1 Preliminaries

The design of video signal processing systems is gradually

entering a new phase, where instead of straightforward

video processing for multimedia and quality improve-

ments, the systems adapt the processing to the platform and

content conditions by considering in detail the actual

content that is being processed. This ranges from extracting

simple features, such as color and texture, to an in-depth

analysis of the video signal and its characteristic features.

Examples of such applications are intelligent surveillance,

face and behavior recognition, computer analysis of dis-

eases in the medical domain, etc. In addition, computing

platforms for executing these processing algorithms have

been subject to continuous changes, but are now gradually

converging towards multi-core processor architectures,

where depending on cost and application constraints, some

of the cores are application specific and others are fully

programmable. At first glance, video processing is well

suited for multi-core processing, given the possibilities for

dividing the tasks and the amounts of data that are involved

in this type of processing, but the mapping on the platform

and the optimal distribution of tasks is a complex matter.

With respect to platforms, the trend to go to multi-core

systems is fueled by the desire to further improve the

computing power, while maintaining energy efficiency.

These architectures are characterized by a set of parallel

processing cores on a chip centered around a communi-

cation infrastructure, which is connected to a large off-chip

memory. Chip connections and power consumption for

drivers hamper the use of high-bandwidth buses, so that

memory bandwidth cannot grow with the same speed as

computation. Unfortunately, the mapping of complicated

A. H. R. Albers (&)

Interventional X-ray, R&D, Philips Healthcare, P.O. Box 10.000,

5680 DA Best, The Netherlands

e-mail: R.Albers@philips.com

P. H. N. de With

Electrical Engineering, Signal Processing Systems,

Eindhoven University of Technology, P.O. Box 513,

LG 0.28, 5600 MB Eindhoven, The Netherlands

e-mail: P.H.N.de.With@tue.nl

123

J Real-Time Image Proc (2012) 7:185–202

DOI 10.1007/s11554-011-0195-8

video processing tasks is difficult on such parallel plat-

forms, because compilers for automated mapping do not

exist or perform poorly. The system designer has no other

alternative than to analyze the applications with respect to

their computing requirements and behavior and divide the

processing tasks over the multiple cores on the system

accordingly. This creates a demand for techniques to

facilitate the design of such systems.

In competitive imaging markets, such as professional

healthcare, surveillance or multimedia, computer platforms

are subject to a restricted bill of material. To be cost-

effective, it is required that the applications make efficient

use of the available resources on the platform. The map-

ping and control of multiple applications onto a multi-core

system is an unsolved case in the scientific literature. This

is due to the large design space and the fact that operating

systems have no understanding about the consequences of

scheduling decisions to the individual applications in terms

of throughput, latency or visual quality. It is only recently

that the first publications on this topic have become

available. In a paper from [5], an integration of hard/soft

real-time tasks and best-effort jobs executed on a multi-

processor system is studied. The study involves computing

only and does not address other resources. The optimal

scheduling of tasks over a multiprocessor system is not yet

found. If the processors operate independently of each

other, then the solution of [6] can be applied on an indi-

vidual processor basis. The work of Pastrnak et al. [30]

introduces a hierarchical Quality-of-Service (QoS) protocol

for monitoring the performance of streaming tasks. In this

way, the multiprocessor system can be fully active and

deliver the highest possible quality for the most prioritized

computing tasks. As the validation of this framework was

limited to streaming tasks only, it is not sure whether this

can be used for more modern video processing such as

content analysis and object-based processing.

This paper contributes to this problem by concentrating

on the control of both the computing and the bandwidth

between the processing cores for image analysis applica-

tions. For validation of our contribution, we will explore a

case study for medical image analysis in the professional

domain. Medical imaging is a fast growing imaging

domain with challenges on fusion of sensor data and the

automatic computer analysis of diseases. The application

described in this paper is carefully chosen to serve as a

general representative case for modern video processing, as

the underlying processing tasks also appear in many other

application domains or systems.

1.2 Scope and problem statement

The scope of this paper is to build a system that can

execute a set of heterogenous video applications on a

multi-core processor system in a controlled way to

optimize efficiency and/or quality. In many applications

and cases, cost constraints are imposed on the system, so

that computing resources are inherently limited. If the

amount of applications and their load is too high for the

system, there is no other way then to control the allo-

cation of resources to individual processing tasks. The

optimization of quality for a set of parallel video tasks is

carried out by a QoS unit. For a good QoS control,

performance analysis and prediction is indispensable. If

the application tasks are well modeled and their required

performance is known in the form of computation,

memory and bandwidth budgets, the platform can be

efficiently filled with a suitable set of applications. One

trend makes the concept of performance analysis and

QoS more complicated: video applications tend to be

less streaming oriented and increasingly make use of

analysis of the data and specific features contained

within the data for further processing steps. This trend

not only occurs at the application level, but also in

general video processing, i.e. to extract features about

the content of the video so that processing becomes

aware of the type of data that is being processed. In

addition, the nature of analysis applications is more

dynamic in its behavior with respect to both computing

and memory usage, when compared with streaming and

regular video processing.

Summarizing the problem statement is that given a

multi-core system, how should a dynamic video application

consisting of multiple tasks be efficiently mapped on the

system? Furthermore, if the application desires a sudden

change in functionality or an increase in complexity, how

do we reconfigure the mapping of the video application

into another efficient solution? Finally, can we consider

general quality attributes as image quality, throughput or

latency in this optimization and what techniques can be

used to consider this optimization?

1.3 Case study applied in this paper

Our case is based on the medical imaging and analysis, in

particular on advanced enhancement processing with strict

latency constraints. Region-based image analysis contains

advanced and conditional processing. These processing

tasks occur also in intelligent surveillance systems and

many other video content analysis applications such as face

recognition, etc.

With minimal invasive interventions, cardiologists

diagnose and treat coronary artery diseases using a

catheter inserted into the groin and threaded through the

arterial vessel tree to reach the heart [22]. Radiologists

diagnose and treat vascular stenosis, thromboses and

aneurysms by inserting catheters in the veins [20].

186 J Real-Time Image Proc (2012) 7:185–202

123

Coronary angioplasty is a catheter-based procedure

performed by an interventional cardiologist to open up a

blocked coronary artery and restore blood flow to the

heart muscle [27]. The analysis and motion compensa-

tion techniques can improve the visualization and

measurement of objects of interest (such as stents) in

real-time X-ray interventional imaging, thereby making

it easier to realize optimum and complete stent place-

ment. We focus on a medical-imaging application to

detect and enhance moving features, combined with a

second pipeline of tasks for increasing the image

quality during a live interventional angioplasty procedure

[3], (Fig. 1a).

The case study involving image analysis and motion-

compensation tasks is used to detect and enhance objects

of interest (Fig. 1b). Although a first branch contains

stream-oriented tasks having a static nature in terms of

computations and memory, a second branch contains data-

dependent dynamic processing tasks, involving image

analysis, which has a more dynamic nature than streaming

video. The dynamics come from properties like the vari-

able size of the analysis region, the feature detection and

the dynamic abortion of non-appropriate tasks if the

detection or registration result is insufficient.

1.4 Paper overview

The paper is organized as follows. In Sect. 2, we propose a

performance-analysis technique leading to a prediction

model for computing tasks. In Sect. 9, the memory and

bandwidth usage is analyzed and modeled. The combina-

tion of computation and memory bandwidth modeling

allows us to analyze the mapping of tasks at a higher level

and involve estimation of the complexity. In Sect. 4, a

hierarchical QoS framework is introduced, addressing

individual task quality optimization and overall perfor-

mance simultaneously. The section concludes with recon-

figurable application flow graphs such that an optimal

combination of quality and application functionality is

obtained. Section 5 presents conclusions.

2 Performance analysis for computations

2.1 Preliminaries and related work

The above-described application and the dynamic behavior

of video analysis tasks in computing lead to more com-

plicated situations for the QoS control unit. For this

purpose, we have developed a technique to design com-

putational models for dynamic applications, estimating the

computational complexity.

Before presenting an approach, we first classify different

performance techniques to come to our proposed modeling

technique. This modeling involves several important

aspects. First, the signal processing is described by Syn-

chronous Data Flow (SDF) graphs [19]. On these graphs,

the processing is executed in the form of jobs and tasks

which can have a processing or memory-oriented nature.

The complexity of the task is captured by the Worst-Case

Execution Time (WCET). If several tasks are executed on

the same processor, they can be queued and the involved

delay and order can be analyzed with queueing theory. The

execution of signal processing tasks can be deterministic or

non-deterministic from nature. As the WCET is a worst-

case model, it would lead to unused load of resources with

data-dependent tasks. Therefore, we also consider statisti-

cal techniques for the modeling of the execution. Finally,

simulations contribute provide insight about the execution

and the model accuracy during the execution. Let us now

discuss this in more detail.

• Analytical methods based on queueing networks. The

execution of a platform is described by servers and

jobs. Jobs are first inserted into queues and waiting until

the server can handle their requests. A job is charac-

terized with an arrival rate, a queue by an average

number of jobs in the queue, and a server with the mean

service time. The platform can then be described and

analyzed as an M/M/1 queueing problem [18]. Because

this modeling applies to general purpose computing of

tasks, modeling stream-oriented processing of chains of

functions with a high accuracy is difficult.

S
W

IT
C

H

S
W

IT
C

H

S
W

IT
C

H

INPUT
FRAMES

IMAGE
FEATURES

LIVE
VIEWING

ROI
ESTIMATED

DETECTION
SUCCESSFUL

REGISTRATION
SUCCESSFUL

Y

N

Y

N

Y

N

FEATURE
DETECTION

ROI

FEATURE
DETECTION

FULL

REGISTRA-
TION

ENHANCE
/ ZOOM

SPATIAL
FILTER

CONTRAST
ENHANCE

TEMPORAL
FILTER

ba

Fig. 1 a Coronary angiogram of a stented bifurcation and the view of the enhanced stent. b Flow graph of an interventional X-ray application to

detect and enhance moving features, combined with several image quality functions

J Real-Time Image Proc (2012) 7:185–202 187

123

• Statistical techniques. These techniques are data-driven

approaches based on the input data characteristics.

Popular techniques are linear models [16], stochastic

models [38], or Markov-chain analysis [8, 40]. The

advantage of such models are the abstraction from

irrelevant issues at different stages of the design, and

very fast estimation of the execution behavior. This

type of modeling is particularly attractive for process-

ing with data dependencies or dynamics within the

processing tasks itself, leading to considerable varia-

tions in execution time and behavior. Statistical tech-

niques are then used to describe these variations in a

model.

• Simulations. One of the mostly employed techniques,

which is based on the construction of a simulation

model that is typically executed on a host computer

system [12]. It is used when the analytical methods do

not allow the use of previous methods, because of the

complexity of the exploration space. The results are

highly dependent on a proper selection of the input

data. Prior work by Pastrnak and de With [28] modeled

the execution of multimedia streaming tasks in linear

timing equations, where possible data dependencies are

handled by including important coding parameters into

the model.

When considering the above classification, the problem

of performance analysis for dynamic video processing

applications is only partially suited for queueing theory

approaches. It will give a model that is not accurate enough

for the behavior prediction of dynamic tasks, when the

objects are relatively small, leading to unpredictable sta-

tistics. For dynamic processing, we have to adopt another

method, as the above approach will fail in case of depen-

dencies and dynamic behavior in processing. Statistical

techniques describing the stochastic nature of the execution

seems more elegant, because the data dependencies need

not to be known in detail to construct a feasible model.

Simulation and modeling play an important role for model

construction and tuning to sufficient accuracy. In our case,

we can distinguish tasks that are fully independent of the

input data and also tasks of which the complexity is highly

dependent on the input. Furthermore, tasks exist for which

the algorithm switches between scenarios, leading to a

highly varying computation behavior. The case that we will

present is dynamic (and data dependent) with the following

characteristics:

• dynamic decision making in the flow graph is based on

outcomes of the analysis tasks,

• the flow graph may switch to a different group of tasks,

based on the image content,

• tasks cannot be easily switched off, as this will lead to

an unacceptable processing result.

In the next subsection, we develop a concept for per-

formance analysis and prediction of resource usage, which

addresses each of the previous aspects individually to

closely follow the statistical variations in computing

requirements.

2.2 Performance analysis and prediction employing

statistical techniques

Approach. Prior to developing the actual model, we first

introduce a design flow for the resource-usage estimation

process (Fig. 2). The input from the application is in the

form of an executable specification. The specification dis-

tinguishes individual processing jobs and each job is

divided into tasks. Note that for the mapping of a set of

tasks onto a multi-core platform, the assignment of tasks to

a distinct processor core requires advanced mechanisms

(such as floating tasks in the form of actors [28], and a

runtime framework such as described in [35], which will

not be addressed here. The hardware architecture is rep-

resented by accurate simulation models, e.g. an instruction-

set simulator for a processing cores. At the timing analysis

stage, each job is characterized by application-specific

performance constraints on the throughput of the job. The

complete application activates a sequence of jobs. Each job

can use multiple processing cores in parallel. We model a

job as an iterative ‘‘for’’ loop, taking J iterations to produce

J data tokens of a video data block. The body of the ‘‘for’’

Phase 2: multi-core processor mapping

Job

1. sequential executable
 specification

2. set of tasks definition

job : for j = 1 .. J do
 task set V = vi

3. task scenarios identification

vi:{M0, M1, }

Architecture
A. simulation models of
 processing cores

 (computation time)

B. simulation models of
 memory interconnect
 (comm. bandwidth)

C. simulation models of
 (cache) memories

 (memory size)

Phase 1a:
task i stochastic timing model

t for scenario k
ti,k(j) = Mk(ti,k(j – 1))

Task-specific storage
and caching

Phase 1b:
task i parametrical bandwidth

model b

bi(j) = n0i + n1i . l1i(j) + n2i . l2i(j) + ...

Scenario
constraints

Parameter
constraints

Fig. 2 Design flow for the resource-usage estimation process (Phase

1a) and memory and bandwidth analysis (Phase 1b)

188 J Real-Time Image Proc (2012) 7:185–202

123

loop in Fig. 2 is described by tasks and the dependencies

between them.

We denote the set of tasks as V = {vi}. An actor can be

described as a function in a programming language like

C/C??, representing an atomic unit of computation that

can be assigned to a processing core. We assume that the

firing delay of a task vi can be expressed as a linear timing

function ti. As motivated earlier, we propose to model the

computation resources for task i and scenario k in job j

giving computation time ti,k(j), specified by ti;kðjÞ ¼
Mi;kðti;kðj� 1ÞÞ, with Mk, the stochastic model for scenario

k, depending on the timing results from the previous job

iteration. Note that both the values of the individual timing

functions and the task scenarios may change in each iter-

ation of the ‘‘for’’ loop.

Let us now continue to develop the statistical model for

the computing behavior of the jobs and tasks as defined

above. Dynamic behavior generally points to the direction

of creating a state-space diagram to capture al the dynamic

transitions in the processing. A deterministic state-space

covering all the dynamics with sufficient accuracy will

have two problems. First, the state space will grow expo-

nentially when adding more algorithm characteristics to the

model, which can cause memory or computation problems.

Second, another problem is to obtain statistical signifi-

cant estimates for the transitions between states. The state

space becomes large with an increasing number of states,

and the number of samples for each state may become very

small, even if we use very long training data sets. There-

fore, we have decided that the modeling should be based on

stochastic properties and it should be able to handle abrupt

changes in behavior and statistics.

To illustrate our solution direction, we have measured

the computation behavior of a representative task in the

dynamic image analysis part of the case study. The result

of this dynamic behavior is shown in Fig. 3. The complete

case involves several of such dynamic tasks and various

branching situations. An alternative view on the modeling

of the system behavior is to consider the timing statistics of

the video frames and classifying the statistics in categories.

The figure suggests to consider trend-based changes inde-

pendently from the local variations in computing require-

ments. Let us investigate short-term and structural

fluctuations in processing time on the platform.

Short-term fluctuations can be caused by cache misses

or the overhead imposed by task switching and control.

Structural or long-term fluctuations are caused by the

dependency of the processing time of the tasks on the video

content itself over a longer time period. This motivates the

splitting of the computational statistics in categories and

employing different models for those categories.

• Short-term data correlations. We have investigated

literature on video traffic modeling [13]. An approach

resulting from the literature is the creation of a Markov

chain, since the estimation of the model parameters is

straightforward and various analysis techniques are

available. A first-order Markov chain is by definition

memoryless, where in the model it is implicitly

assumed that the processing times of successive frames

are independent. However, Markov chain prediction

falls short if processing times between video frames are

correlated over a longer time period. Next, we will

describe the modeling of long-term structural data

dependencies.

• Long-term data correlations. We consider the predic-

tion model to consist of long-term low-frequency

fluctuations, around which short-term high-frequency

fluctuations can take place. Discrimination between the

two frequency parts can be made by various types of

filters, such as Finite Impulse Response (FIR) or

Infinite Impulse Response (IIR) filters. In Fig. 3, this

is illustrated when applying a Low-Pass Filter (LPF)

and a High-Pass Filter (HPF) to a given input signal.

Let us now further analyze the meaning of Fig. 3 and

concentrate on the short-term statistics (Fig. 3b). Given the

separation of correlation behavior, the short-term fluctua-

tions are modeled with Markov chains. We have validated

the applicability of the Markov chain modeling by

Fig. 3 Decoupling a the long-term from b the short-term statistics with Low-Pass (LPF) and High-Pass Filters (HPF)

J Real-Time Image Proc (2012) 7:185–202 189

123

analyzing the autocorrelation function ACF. As the func-

tion has an exponential decay, Markov chain analysis is

applicable.

The state-space description of an application can be

generated by analyzing the computation time C over a long

time period. The number of states evolves from analyzing

the computation behavior function and quantizing this

function into categories becoming Markov states, based on

the number of samples in that category. More specifically,

the number of states M is Cmax=rC; where Cmax denotes the

largest measured value and rC the standard deviation. We

have experimentally evolved to a model with approxi-

mately 2M states to obtain sufficient accuracy. The quan-

tization intervals are adaptively chosen such that each

interval contains on the average the same amount of sam-

ples. The entries of the transition probability matrix Pij are

now estimated by

Pij’nij

XM

k¼1

nik

 !,
ð1Þ

where nij denotes the number of transitions from interval i

to interval j. The short-term behavior is now emulated by

allowing a random variable to be executed according to the

specified Markov source, based on the actually measured

value of the computation complexity within the preceding

interval.

Besides the modeling of short-term behavior, long-term

behavior prediction is based on the statistical filter theory,

as mentioned earlier. We have adopted a moving average

filter for this purpose, specifically the Exponentially

Weighted Moving Average (EWMA) filter. The starting

state is the preceding interval where the computation

complexity parameter is used as an input to the filter. The

output of the filter then produces the prediction for the

upcoming interval. As this Infinite Impulse Response

(IIR) filter weights recent inputs more heavily than long-

term previous ones, it adapts more quickly to the input

signal compared with FIR filters. The EWMA filter is

defined by

yðtkÞ ¼ ð1� aÞyðtk�1Þ þ axðtkÞ: ð2Þ

Because we have now covered both short-term and long-

term statistics, the computation time for the current video

frame can be predicted using a combination of both

approaches as suggested by Fig. 3. More details will be

provided after the presentation of the case study that was

used to validate the above techniques.

Case description. The presented application for motion-

compensated feature enhancement consists of several steps,

as shown in Fig. 4. As mentioned earlier, the application

contains several dynamic tasks, based on analysis, in

combination with conditional switch statements. The pre-

sented flow graph is based on a cascading of four stages

which are individually described in [9, 10, 11, 36]. After

stent placement, the marker candidates are detected in the

image using an automatic marker extraction algorithm.

Ridge detection (RDG) and filtering is applied to the input

images such that all structures except marker candidates

are removed.

Figure 3 (left) shows the computation–time statistics for

the ridge detection (RDG FULL) task, as a representative

example of the more variable nature of the computing

statistics. Subsequently, marker extraction (MKX EXT)

selects punctual dark zones contrasting with a brighter

background, as candidate markers. Based on a priori known

distances between the balloon markers, couples selection

(CPLS SELECT) selects the best marker couple from the

set of candidate couples. The guide wire is detected by a

ridge filter in guide-wire extraction (GW EXT). If the

markers of a possible couple are situated on a track cor-

responding to a ridge joining them (the guide wire), then an

indication occurs that the results obtained by automatic

marker extraction are found stable. Subsequently, temporal

registration (REG) to align respective markers in selected

image frames is based on a motion criterion, where a

temporal difference is performed between two succeeding

images of the sequence. A region of interest (ROI) is

estimated in the original image (ROI EST), where the

150

30
60

RDG
ROI MKX

EXT
ROI

CPLS
SELECT

REG ENH ZOOM

S
W

IT
C

H

REG.
SUCCESSFUL

Y

N

75

60

INPUT
IMAGE

OUTPUT
IMAGE120

S
W

IT
C

H

ROI
ESTIMATED

Y

N

150RDG
FULL MKX

EXT
FULL

75

S
W

IT
C

H

RDG
DETECTION

15

15

S
W

IT
C

H

Y

N

Y

N

GW
EXT

Fig. 4 Detailed flow graph of the interventional X-ray application to detect and enhance moving features [the required inter-task memory

bandwidth is shown on the arrows between tasks (MB/s)]

190 J Real-Time Image Proc (2012) 7:185–202

123

markers have previously been detected. Enhancement

(ENH) of the stent is performed by temporal integration of

the registered image frames according to the markers. The

output is presented by zooming (ZOOM) in the ROI con-

taining the stent.

Case analysis. The MKX EXT, REG, ROI estimation,

ENH and ZOOM functions are independent of the video

content or size of the images. The prediction can be defined

with a constant value. There are four data-dependent switch

statements in the flow graph. The current state is based on

the information from previously processed video frames

and can be described with a state table. Each switch can

signal tasks to process for example only on a region of

interest of the video frame or even skip processing. The

RDG, CPLS SELECT and GW EXT functions have a

resource usage that is highly dependent on and correlated

with the video content. Summarizing, the described appli-

cation is dynamic in three major aspects: (1) at the start, an

ROI of variable data-dependent size is chosen for further

analysis, and (2) at every stage, a switch function selects a

specific flow graph, depending on the previous stage(s).

Moreover, (3) some of the internal flow graphs require

intrinsically a variable processing.

Model results. The computation behavior is modeled

with the presented approach using long-term and short-

term statistics and their corresponding modeling tech-

niques. Supplementary to these techniques, we have found

that the computation behavior is dependent on a linear

function representing the size of the analyzed part in the

image (the ROI size). An additional element is the handling

of the switch statements in the flow graph. To come to a

realistic modeling result, the state result of the possible

switch in the algorithm has been used as pre-knowledge for

selecting the correct scenario.

Based on the computation of the autocorrelation func-

tion, we have concluded that ridge detection, (RDG),

couples selection (CPLS SEL) and guide-wire extraction

(GW EXT) tasks can all three be modeled with Markov

chains. Data-dependent switch statements in the flow graph

can cause the total processing time to change rather

abruptly. For example, the first switch in the flow graph can

select the RDG task to operate only on an ROI instead of

the full video frame. Other switch statements trigger or

cancel tasks to be executed. The switches are controlled

with information extracted from the previously processed

video frames, and stored in a state table. At the start of

processing each new video frame, the state is extracted in

advance. By exploiting this information prior to the actual

processing of the task graph, the prediction model is made

adaptive to dynamic changes in the data flow. This part

corresponds to the scenario-based switching in [33].

Processing time statistics for different ROI sizes show

that the RDG task has a linear dependency on the size of

the ROI. To analyze load fluctuations, caused by depen-

dencies on the video content itself, we have subtracted a

linear growth function from the obtained statistics. This

function is specified by

ytk ¼ 0:067� ROISizeþ 20:6: ð3Þ

For the remaining data-dependent fluctuations after

subtraction, we have analyzed the autocorrelation

function. As the function has an exponential decay, it can

again be described with a Markov chain. Because the

fluctuations are in the same order as the high-frequency

behavior described earlier, we have included these statistics

to the Markov state-generation process, to generate a single

Markov chain for the ridge-detection (RDG) task.

The prediction results for all tasks in the flow graph of

Fig. 4, are shown in Fig. 5c. Computation time statistics

are obtained by profiling the executed application on a

general-purpose multi-core platform [34]. For training the

stochastic models, we used a data set of 37 video sequences

of in total 1,921 video frames. In the training set, different

scenarios exist to which the algorithm tasks are adaptive. In

Fig. 5a, the Markov transition matrix is shown for the

ba c

Fig. 5 a Markov transition matrix for RDG task and b summary of the prediction models and c visual representation of the obtained timing

model and real execution for 10 test sequences of the full flow graph of Fig. 4 (the prediction is plotted 10 ms lower for improved visibility)

J Real-Time Image Proc (2012) 7:185–202 191

123

ridge-detection task. Similar Markov transition matrices

are generated for the couples selection and guide-wire

extraction tasks. A summary of the prediction models can

be found in Fig. 5b. To validate the prediction mode, we

have applied a set of 10 test sequences. The results show an

average prediction accuracy of 97% with sporadic excur-

sions of the prediction error up to 20–30%.

Discussion of the results. It seems interesting to compare

the dynamics of the case study to similar published appli-

cations, although the numbers are sometimes not available

or not suited for a fair comparison. Generic examples can

be found in the domain of computer vision algorithms [39].

Within medical imaging, registration and object recogni-

tion tasks with similar dynamics are studied for quite some

time [23] although these algorithmic tasks are still not

readily available in applications with real-time constraints.

It is expected that with the continuous increase in com-

putational power, future applications will arise in the real-

time video domain [15]. In other applications, for example

within surveillance, object-tracking applications having

similar dynamics and can be found in [25].

In the next section, we continue our modeling with

performance analysis and prediction for communication

resources and memory usage.

3 Performance analysis for memory communication

bandwidth

3.1 Introduction

Besides the modeling of the computation time, as presented

in the previous section, the allocation of memory com-

munication resources is at least as important and motivated

as follows.

Multi-core systems are characterized by a set of pro-

cessing cores on a chip centered around a communication

infrastructure, which is connected to a large off-chip

memory. For such architectures, it is evident that off-chip

memory bandwidth is a critical part for system perfor-

mance and cost. Chip connections and power consumption

for drivers hamper the use of large width buses, so that

memory bandwidth cannot grow with the same speed as

computation. Communication bandwidth is, therefore, a

scarce resource in the system, and efficient usage of the

available bandwidth is of equal importance as the use of

computation resources.

For many applications in video processing, there is a

direct relation between memory usage, memory bandwidth

and the algorithm parameters [17]. For example, in the case

of MPEG-2 coding, the required amount of memory nee-

ded in the search area for motion-vector search depends

linearly on the maximum allowed velocity of motion of

moving objects. Furthermore, the memory usage for VLC

coefficient scanning grows linearly with the amount of

coefficients.

Memory requirements for stream-based functions

depend on the filter processing aperture. Similarly, for

content-analysis applications, the region-of-interest size

around objects in feature analysis has a direct relation to

the amount of memory and communication required.

Summarizing, an estimation model for communication

bandwidth will depend linearly on key parameters of each

task and the amount of required input data. This reasoning

was validated earlier by [28] for a case with object-based

MPEG-4 coding. We adopt the approach to use linear

models for communication and memory usage and refined

it for our case study on medical image analysis. The result

is that the design flow for computations from Sect. 2 is

reused except for some memory-specific modifications.

Probably, memory-bandwidth analysis has an even more

practical impact than computations, because in a multi-core

system, bandwidth is becoming increasingly the most

scarce resource parameter in the system.

3.2 Memory-bandwidth analysis

Approach. We deploy a cooperative user-level task

scheduling framework from literature [35] on top of the

operating system. The framework creates only one thread

per processor core and one task queue per last level cache

memory. Applications are specified as connected (stream-

ing) tasks of a directed dataflow graph, where the input and

output buffers of tasks are kept locally in the cache

memory of the processor. When an input image is received,

the input relations of the first task are satisfied and the task

is send to one of the task queues of the scheduling

framework. Cooperative task scheduling is preferred when

throughput is more important than fast response times.

At compile time, splitting of tasks into subtasks is

organized in such a way that all processor cores are active

and the load on the system is balanced. Tasks cannot move

between processor cores as we did not implement task

stealing or dynamic scheduling concepts. Tasks that are

scheduled to a task queue for a particular processor core

can not move to another task queue. In this way, task data

blocks remain local in one of the two L2 caches, which

avoid cache misses due to tasks that are moving from one

core to the other. The interested reader is referred to [1, 14]

for more details.

We denote the set of tasks as V = {vi}. The timing

properties of the individual tasks need to be completed with

the bandwidth requirements between tasks bi,k(j), to pro-

vide a complete analysis on a multi-core platform [32]. As

192 J Real-Time Image Proc (2012) 7:185–202

123

motivated earlier, we propose to model the communication

resources with linear parametrical equations, for task i in

job j for scenario k giving bandwidth bi,k(j), specified by:

bi;kðjÞ ¼ n0;i þ n1;il1;iðjÞ þ n2;il2;iðjÞ þ � � � : ð4Þ

The variable ni stands for the weighting coefficients of

the term contributing to the communication, and the

variable li denotes a specific input-data parameter, such

as the size of the ROI in the image. This specification

completes the analysis model. The modeling of bandwidth

is defined as the total amount of input and output memory

traffic for all tasks between the external memory and the

last level cache memory near the processor cores. As some

of the tasks require more memory intrinsically than

available in the cache, additional memory traffic is

generated due to cache misses. This aspect is modeled as

a separate factor, and then added to the input/output

memory bandwidth.

Case analysis. When analyzing the case study used

throughout this paper, the required amount of memory for

each task can be derived by extracting the input/output

requirements and intermediate storage requirements from a

reference software implementation. In Table 1, the results

are shown for the RDG, MKX, ENH and ZOOM task. For

concentrating on significant bandwidth requirements, only

operations on arrays are taken into consideration. The tasks

that operate on a subset or feature data are negligible in

terms of memory consumption. Note that some of the

functions have different memory requirements, depending

on the state of a switch in the flow graph. For example, if

the RDG task is switched off, the succeeding MKX func-

tion has a much smaller input buffer requirement. The

amount of communication bandwidth required for correct

operation of the image analysis application is derived by a

mapping of the memory requirements onto the platform

architecture.

To calculate the amount of memory communication

bandwidth of the application under study, there are a

number of constraints that influence the actually measured

bandwidth load on the platform architecture.

Hardware platform. The choice for a particular platform

sets an upper limit on the available resources. For the

experiments, we use a general-purpose multi-core platform

containing of two quad-core (Xeon) processors. In Fig. 6,

the system is shown. In total, the system consists of eight

processors of 2.33 GCycles/s, eight level-1 caches of

32 kB and four level-2 caches of 4 MB. The system is

equipped with 4 GB of external memory. For more details

about the instantiated architecture, we refer to [34].

Application scenarios. The memory-bandwidth require-

ments vary continuously by switching between different

groups of processing tasks (scenarios). For the worst-case

scenario in terms of bandwidth requirements, the tasks

operate on a full-frame granularity, the ridge-detection task

is activated and the registration phase completes success-

fully. On the opposite, for the best-case scenario in terms of

bandwidth requirements, the tasks operate on a small ROI

granularity, which will save a significant amount of

required bandwidth. Furthermore, if the ridge-detection

task is not required and the registration is not successful,

the enhancement and zoom tasks will be skipped, which

will save another significant amount of required bandwidth.

Note that in this ‘‘best-case’’ scenario in terms of band-

width, the algorithm will not output a satisfying result. In

total, there are eight different scenarios possible, given the

three switch statements in the flow graph.

Intra-task memory. If a task internally requires more

memory that can be stored locally in the cache memory of

the processor, additional memory bandwidth will be

CPU
0

CPU
1

CPU
2

CPU
3

L1 L1 L1 L1

L3 / SNOOP FILTER

I/O HUB

L2 L2

MEMORY HUB

D
R

A
M

 0

D
R

A
M

 3

D
R

A
M

 2

D
R

A
M

 1

CPU
4

CPU
5

CPU
6

CPU
7

L1 L1 L1 L1

L2 L2

DMA

G
F

X

N
E

T

W
O

R
K

N
E

T

W
O

R
K

CPU

CACHE

I/O MEMORY

B
U

S

ba

B
U

S

8 x 2,327 MCycles/s

0.94 – 3.83 GB/s

72 GB/s

48 GB/s

29 GB/s

Fig. 6 a Generic architecture model, b instantiated architecture with

parameters

Table 1 Memory requirements for each task of Fig. 4

Task RDG

select

Input

(kB)

Intermediate

(kB)

Output

(kB)

RDG FULL 2,048 7,168 5,120

RDG ROI 2,048 5,120 5,120

MKX FULL – 512 512 2,560

MKX ROI – 512 512 2,560

MKX FULL X 4,608 512 2,560

MKX ROI X 4,608 512 2,560

ENH 2,048 8,192 1,024

ZOOM 1,024 4,096 4,096

J Real-Time Image Proc (2012) 7:185–202 193

123

initiated to swap data in and out the local cache memory.

For the application under study, the RDG, ENH and

ZOOM tasks have an intra-task memory requirement that is

higher than the level-2 cache capacity of the processor. The

amount of bandwidth of each task can be modeled by

analysis of the access pattern of the internal buffers. As the

above tasks operate on a whole image granularity, scanning

of the pixels linearly in the (x, y) direction will enable that

all data items will be accessed.

Inter-task memory. The partitioning of the application on

the platform has a direct relationship with the required

amount of memory bandwidth between tasks. In Fig. 4, the

required inter-task bandwidth is shown on the arrows

between tasks (1,024 9 1,024 pixels, 30 Hz, 2 Bytes/

pixel).

Results. Memory communication bandwidth is estimated

for each task by analysis of the cache-memory usage for

the set of test sequences. For each task, we start with the

analysis of the input and output memory requirements. This

sets a lower bound of the required memory communication

bandwidth between the external memory and the local

cache near the processor cores. As an example, for the

RDG task, at the input, 2,048 kB of memory is required,

where at the output, 5,120 kB is required. The required

memory bandwidth, counting only input and output buffer

requirement is, therefore, already more than 100 MB/s,

when processing images at 15 Hz. In addition, some of the

tasks internally require more memory that can be stored

locally in the cache memory of the processor. This addi-

tional bandwidth that needs to be initiated to swap data in

and out the cache memory is modeled separately. The RDG

task consists of 3 subtasks, where in total 13 intermediate

storage buffers are required of in total 5,120 kB. As the

size of the local cache memory is 4,096 kB, shared

between two processor cores, the required memory usage

will overload the cache memory, which obviously results in

additional memory communication bandwidth to and from

external memory.

We model the cache-memory usage and corresponding

load/store behavior with space–time buffer occupation

models. As a representative example, we describe the

modeling for the RDG task in more detail. The load/store

pattern between external memory and cache memory is

shown in Fig. 7. Although the access pattern of the storage

buffers is linear, some of the internal buffers are required

more than once, which requires some additional book-

keeping to keep track of the amount of bandwidth that will

be generated due to the limited cache capacity. The

memory bandwidth between external memory and the local

cache of the processor is estimated by the amount and size

of the temporary buffers that are loaded, flushed and

reloaded from external memory, at the start of processing

each subtask (stages 2–4 in Fig. 7).

Summarizing, the complete model for the memory

bandwidth usage is created by adding the bandwidth

requirements of intermediate storage to the input/output

bandwidth requirements, as explained in the beginning of

this paragraph. We have compared the model output values

with the actually used bandwidth for execution of the

image analysis application. At a scenario level, the memory

resource usage is more or less constant. The size of the ROI

only slightly impacts the memory usage, therefore, the

differences between a large ROI and a small ROI are

negligible in terms of bandwidth.

For the test sequences, an average accuracy between the

analysis and measured memory bandwidth usage of 90% is

obtained. A limitation of the preceding experiment is that

the model is relatively static and does not address the use of

bandwidth fluctuating functions when not captured by a

few scenarios. For such a case, we propose to explore the

techniques which have been employed for computation

analysis and we would model statistical analysis of the

memory bandwidth. This solution is not further elaborated

in this paper as the processing time of an image is by far

dominated by the computational complexity of tasks, but

the authors expect that this approach would be equally

applicable for modeling memory-bandwidth usage.

In the next section, we introduce a layered QoS archi-

tecture, employing the prediction models from the last two

sections for the predicable mapping and execution of

multiple dynamic video processing tasks on a multi-core

processor architecture.

5120

RDG
FULL

2048

C

B

A

2048

5120

C
P

U

EXTERNAL MEMORY
STORAGE

CACHE MEMORY
STORAGE

BUS

BUS

C
P

U
C

P
U

C
P

U
C

P
U

(1)

(5)

(4)

(3)

(2)

Fig. 7 Required intra-task bandwidth for RDG FULL task due to the

limited cache-memory storage

194 J Real-Time Image Proc (2012) 7:185–202

123

4 Runtime QoS and task-level scalability

4.1 Introduction

For applications sharing limited platform resources, there

will be system constraints on the available computing

power, memory and bandwidth. If the computational load

becomes too high for the platform, we intend to reduce the

effort involved for particular tasks without the complete

abortion of the job execution. To do this in a controlled

way, we need two elements. First, the applications should

have scalable properties in terms of performance and

computational effort.

Second, the platform should be able to control and

monitor a number of parallel applications and their

resource usage. Unfortunately, this overall control task

cannot be carried out by a conventional operating system,

because it lacks the knowledge about the desired overall

system usage and it has no understanding about the impact

of quality settings for the individual applications and the

overall quality of the complete system. The conclusion of

this discussion is to implement a special QoS system that is

capable of handling the control aspects dealing with mul-

tiple applications.

QoS control has been subject of research for a number of

years, for e.g. MPEG-4 3D graphics, wavelet coding, pic-

ture in picture video, etc., see [4, 7]. Thus far, this work has

focused on scaling the application and then elegantly dis-

tributing the computing tasks on a single processor system.

Therefore, we concentrate on the part that is usually

missing in this type of research. In the case study used

throughout this paper, we discuss multiple dynamic tasks

running in parallel on a multi-core processor platform. This

covers the cases of executing a single advanced application

or a set of applications in parallel. This problem statement

is a new element and distinguishes itself from previous

work on QoS management. Therefore, we focus particu-

larly on the video application part of the overall resource

management.

To allow both single and multiple video applications in

parallel, which should be controlled with the same QoS

concept, we adopt the hierarchical QoS architecture from

[30]. In this architecture, a Local QoS (LQoS) controls an

individual application while a Global QoS (GQoS) controls

the complete set of active applications and optimizes the

overall system behavior. In the sequel, the term ‘‘quality’’

in the discussion on system performance control should be

interpreted broadly. Hence, not only image quality, but also

other performance critical parameters, such as the men-

tioned latency and throughput can be involved.

The next subsection provides more details on the hier-

archical concept together with a model for runtime

resource management. Afterwards, several options for task

level scalability are presented including QoS reconfigura-

tion experiments and results.

4.2 Hierarchical QoS architecture

The hierarchical QoS system addresses both the optimi-

zation of resource allocation for individual applications and

for a complete set of applications. We will not discuss QoS

service algorithms in high detail. Instead, we assume that

an algorithm from literature can be adopted, given the

broad availability of proposals on this topic [2]. The

architecture has a hierarchical, layered structure. It consists

of two communicating managers, instead of the conven-

tional single resource manager. The layered approach

separates the system control optimizing overall quality and

behavior from the responsibilities of individual application

QoS units. The responsibilities of the two QoS managers

are as follows.

• GQoS manager. It controls the total system perfor-

mance involving all applications running in parallel.

This manager optimizes the user benefits, such as the

available parallelism and priorities of applications,

instead of a single video application.

• LQoS manager. It controls an individual application

within the assigned resources, which were provided by

the GQoS manager. This manager optimizes the

individual application quality for the agreed amount

of resources.

An overview of the system architecture and QoS

control is shown in Fig. 8a and b, respectively. Each

application is divided into jobs and the platform supports

the execution of each job. Each individual application is

controlled by a LQoS unit, which negotiates about the

assigned resources with the GQoS control. After negoti-

ation, the LQoS unit has an exact specification of the

amount of resources that are assigned to the application.

The GQoS unit depends on the resource manager for the

actual resource assignment. The resource manager pro-

vides the real allocation of physical resources in con-

junction with an operating system. The operating system

is used for allocating tasks to threads, where each thread

is fixed to a processor core. The control task then man-

ages which tasks are running at which quality setting.

This is a new aspect that is added on top of a conven-

tional operating system.

The control of an application execution is conceptually

visualized in Fig. 8b. The execution starts with the acti-

vation of the LQoS unit. The LQoS unit activates an

internal resource estimator, which calculates the resource

usage requirements at all quality levels of the required jobs.

In Step 2, the query is send to the GQoS unit, which

decides on the highest quality level that can be guaranteed

J Real-Time Image Proc (2012) 7:185–202 195

123

and allocated for the application. In Step 3, the response is

communicated back to the LQoS unit. In the case that

resources can be assigned, the LQoS unit allocates indi-

vidual tasks of the job at the chosen quality and invokes the

job execution in Step 4. In Step 5, the job signals the end of

the processing period. In the medical imaging case study,

this means the completion of the enhancement and zoom-

ing task. In Step 6, the LQoS unit evaluates the difference

between the estimation and real execution and in the case

the difference is above a predetermined threshold, the

LQoS adapts the estimation model. If this does not suffi-

ciently lower the difference, a new negotiation on resources

has to be performed (which involves restarting the process

from Step 2 onwards). The estimation of total resources is

based on the number of jobs and their individual estimates

on resource usage.

QoS problem definition and applied heuristic. Let us now

specify the QoS problem in a more formal way. We

describe the resource requirements of the job i at all defined

quality settings (vector qi) per resource J by

Ri;JðqiÞ ¼ fJðqiÞ: ð5Þ

The resource type is J 2 fC;D;Bg, where C denotes the

computation resources per task, D the data memory per

task, B the required bandwidth. The optimization problem

for our GQoS management can be formulated as

maximizing the overall quality, specified by

max
XN

i¼0

biðqiðcÞÞ; ð6Þ

with chosen quality qi(c), subject to

XN

i¼1

Ri;JðqiðcÞÞ\
XM

j¼1

PJðjÞ; with J 2 fC;D;Bg: ð7Þ

In the above equation, N denotes the number of jobs and

M indicates the number of processing cores. We define the

benefit biðqiðcÞÞ, as the contribution of job i to the user

benefit, at selected quality level c, giving the quality qi(c).

The solution to the above problem statement relates to the

0-1 Knapsack Problem [21] which is an NP-hard problem

and cannot be implemented at runtime. In literature, several

approaches can be found for solving multi-dimensional

resource allocation problems, based e.g. on Lagrangian

relaxation or Pareto algebra [26, 43]. In our case, we use a

heuristic to compute a near-optimal solution at runtime.

For simplicity, we assume that the system is in operation

and has a set of running jobs. We consider four types of

possible situations in the running system: (1) job fires a

request to be started, (2) job requires more resources, (3)

job is terminated, (4) job releases (a part of) its resources.

The second type is a special case of the first, and similarly,

the fourth type is a special case of the third. Let us further

describe the algorithm of the negotiation process for a

request to start a new job. The algorithm is detailed in

Fig. 9 and parametric descriptions are found in Table 2.

Global QoS

Resource manager

Application B

Job A1

Application A

Local QoS
A

CPU

M
E
M

C
A

CPU

M
E
M

C
A

CPU

M
E
M

C
A

Platform

Control
management OS

Job C1

Application C

Job B1 Job BN Job C2

Local QoS
C

Local QoS
B

Job B2

Application
domain

1. GQoS activates
LQoS for the activation
of an application

2. LQoS queries
GQoS for resources 3. GQoS signals

availability of resources

4. LQoS activates the job execution
at negotiated quality level

5. Job signals the
end of execution6. LQoS evaluates

the jitter of execution
and estimation

Local QoS

 - Estimator based on linear
 parametrical or statistical model
 - Evaluator checks at VOP/image
 basis
 - OS low-level services require to

 assign resources

Global QoS

 - Activation / Termination of
 applications
 - Optimization based on the benefit
 function
 - Resource manger required for
 resource availability checking

Job

 - Functional part of the
 application
 - Connect graph of
 communicating tasks
 - Executed on defined quality
 level via quality settings
 parameters tuned by LQoS

Resource manager / OS

 - TDM-like scheduling for
 guaranteed processing time
 - Guaranteed bandwidth allocations
 for connections
 - Memory allocations per task

a

b

Fig. 8 a Layered view of the system architecture and b execution of

a job in the system with the layered QoS control

Fig. 9 Heuristic QoS optimization algorithm

196 J Real-Time Image Proc (2012) 7:185–202

123

The algorithm is a simplified version of checking the

availability of resources for the chosen quality of a can-

didate Job. At a job analysis phase, appropriate benefits and

quality levels have to be assigned. Consequently, the GQoS

has defined a benefit for each job, executing on the plat-

form for every possible quality level of a job. The algo-

rithm starts by checking the ability of adding the candidate

job to the list of active jobs. The resource estimator within

the LQoS manager of a candidate job calculates the

required resources. In the case that there are not enough

resources, a search for the minimum quality decrease of

active jobs to the overall cost function is performed. For an

optimal implementation, the GQoS is storing a sorted list

of such quality changes, which limits the searching algo-

rithm for finding a new maximum to linear complexity.

The algorithm decreases the quality of the set of jobs by

reducing the quality of individual jobs, followed by

checking whether the system has sufficient resources for a

candidate job. The algorithm ends when the new job has

sufficient resources for executing the new set of jobs. If the

benefit cost function drops below the level at which the

system tried to activate the candidate job, the algorithm

also terminates.

Due to an increase in resource usage demands for active

jobs of application X, an undesired situation may occur

when the GQoS assigns only a very limited amount of

resources to jobs of application Y. When the LQoS has no

quality level that can be satisfied within the given resource

constraint, line 17 of Fig. 9 will report insufficient

resources, and the job of application Y cannot be executed.

As this behavior is not desired, the designer of the system

should take care that there are sufficient platform resources

available for applications, or sufficient quality levels of

tasks.

In case that the platform releases more free resources by

ending some of the jobs or changing jobs requirements

depending on the input data or a user interaction, we

introduce the following strategy. The algorithm starts with

a job that gives the highest benefit increase and checks if it

can increase a quality level by using new available

resources. For efficiency, the system has information about

the minimum resources that can increase at least one

quality level of a job. If available resources are below this

level, the negotiation algorithm stops (the algorithm stops

only when it checked all active jobs).

4.3 QoS control at the application: task-level

scalability

Introduction. In this section, we change our attention

from the platform extensions to the application domain.

Although advanced video and imaging applications are

typically adaptive to many cases, they are not intrinsically

developed to support QoS control. In the literature dis-

cussion below, it becomes clear that it is not easy to design

a fully complexity-scalable application. For this reason, we

concentrate on QoS control at the task level.

We have considered several options for implementing

scalability in applications. The approaches found in liter-

ature vary between approaches for quality scalability [37],

complexity scalability, [24, 41], or coding scalability [42].

The most attractive approach for solving our problem

statement is using complexity scalability, but the design of

a fully complexity-scalable algorithm is omitted here for

reasons as discussed above. Instead, we have defined a new

type of task scalability based on enabling, disabling,

splitting and merging of tasks that compose a job. This

form of scalability is much easier to implement and

requires only knowledge of the algorithm at the task level.

Based on the importance of the task processing to the

overall processing, we distinguish essential tasks and non-

essential tasks. Consequently, essential tasks will be given

higher priority to resources than non-essential tasks.

For introducing QoS at the task level, it is important to

identify scalability options for each task. If a job contains

tasks that may be completely idle, and in consequence, the

corresponding communication resources are idle as well,

they are denoted by dotted lines and gray circles (filter and

feature detection tasks in Fig. 10). In the sequel of this

Table 2 Definition of GQoS functions

Function Description

IsEnoughResource The function checks if the system can reserve resources at the required benefit bi qi cð Þð Þ. It returns true if the

allocation is possible.

FindMinBenefit The function search for a job that contributes with the lowest benefit bi to the overall system value, returns the job

index with lowest benefit increase.

SetQualityLevel The function sets the quality level to the job. The function is called only for the jobs having a lower benefit than the

actual benefit level and it is assumed that a lower benefit requires less resources.

LowerQualityOfCandidate The function decreases the benefit level of a candidate job, the lowest level is 0.

MapJob The function calls the Resource manager routines to allocate resources defined by the quality benefit level of a job.

ReportInsuffcientResources The function reports to the LQoS of a candidate job its inability of job execution.

J Real-Time Image Proc (2012) 7:185–202 197

123

paper, we report on experimenting with the presented

heuristic optimization algorithm to optimize latency and

throughput within a professional medical imaging

application.

Scalability with task skipping. We have implemented task

skipping in the live viewing stream to illustrate task-level

scalability for non-essential tasks. The live viewing tasks

can be pushed to a lower quality level or even skipped to

save (a part of the) assigned resources for other tasks, like

the detection of features of interest in image analysis. A

second example, which is more relevant for low-cost sys-

tems is the possibility to add functionality on a compute

platform with a more constrained amount of processing

resources (e.g. mobile systems). In more detail for our case

study, when image analysis is the main application of

interest and not all resources are allocated, the live viewing

stream can be enabled as well, with a quality-controlled

execution of the image-enhancement tasks. In earlier work

[1], we presented a resource-usage model for streaming

tasks. This model is useful when the mapping requires

multiple processor cores. We have defined the following

three quality levels Q of our experimental medical image

enhancement application:

– Q1: Basic quality and low resource demand; only

contrast enhancement is applied.

– Q2: High quality and resource demand; constrast

enhancement and spatial filtering are applied.

– Q3: Highest quality and resource-usage demand; the

complete chain is executed.

Scalability with task splitting. As task skipping can

sometimes be too coarse in terms of impact on image

quality, or the impact on the release or fetching of platform

resources, one can follow also a more selective approach,

where the task may be split into sub-tasks which can be

distributed more easily over multi-core processors. Besides

this, it also solves another problem: skipping essential tasks

is not acceptable, since it would violate the desired func-

tionality or the quality too much.

With task-splitting scalability for essential tasks, the

dynamics in the latency and throughput can be minimized

by incidentally reconfiguring the computing tasks in the

flow graph, i.e. freeing or consuming some of the resources

that were prior budgeted for background tasks. Figure 10

outlines a task-level scalable version of the computation

required for the motion-compensated feature enhancement

application. Scalability at the task level is achieved by

splitting the group of feature detection tasks (RDG and

MKX EXT) into sub-tasks, resulting in a lower end-to-end

latency. We have defined the following three quality levels

Q of our experimental medical image analysis application.

• Q1: Low resource-usage demand; feature detection is

executed sequentially.

• Q2: Medium resource-usage demand; feature detection

is partitioned into two sub-tasks.

• Q3: High resource-usage demand; feature detection is

partitioned into four sub-tasks.

Summarizing the above two concepts for task splitting and

skipping, it results in an improved scalability with respect

to QoS control and a more fine-grained distribution of tasks

over a multi-core processor system.

Experimental results. We illustrate the hierarchical QoS

concept in a real-live example. The use case on profes-

sional medical imaging is graphically shown in Fig. 11a.

The highest priority is assigned to the branch ‘‘Image

S
W

IT
C

H

S
W

IT
C

H

S
W

IT
C

H

ROI
ESTIMATED

DETECTION
SUCCESSFUL

REGISTRATION
SUCCESSFUL

N

Y

Y

N

Y

N

REGISTRA-
TION

ENHANCE /
ZOOM

Input image
frames

FEATURE
DETECTION

FOURTH

Scalable data connections Data connections

SPATIAL
FILTER

CONTRAST
ENHANCE

TEMPORAL
FILTER

IMAGE
FEATURES

LIVE
VIEWING

Local
QoS

FEATURE
DETECTION

ROI

FEATURE
DETECTION

FULL

FEATURE
DETECTION

HALF

Output scene

Fig. 10 Flow graph of the

medical imaging scene with

task-level scalability [task

splitting for image analysis

(bottom) and task skipping for

live viewing (top)]. The dotted
lines are optionally enabled or

disabled

198 J Real-Time Image Proc (2012) 7:185–202

123

Analysis’’ (bottom branch in Fig. 1). The computational

complexity of the analysis tasks depends on the size of the

ROI (in terms of pixels), and properties within the algo-

rithms itself, whereas for ‘‘Live Viewing’’ (top branch in

Fig. 1), the complexity depends linearly on the resolution

of the input image sequence. Our approach is to use the

previously presented concepts to dynamically switch

between quality levels. The dynamics in the latency and

throughput can be minimized by incidentally reconfiguring

the computing tasks in the flow graph, i.e. freeing or con-

suming some of the resources that were prior budgeted for

background tasks.

Within motion compensated feature enhancement, the

latency at the output may vary over time. However, during

a live interventional X-ray procedure, large latency dif-

ferences between succeeding frames are not allowed for

clinical reasons (eye-hand coordination of the physician).

A straightforward solution is to employ a task partitioning

on the platform, based on a worst-case resource reserva-

tion. Subsequently, at the end of the pipeline, a task with a

variable delay keeps the latency and throughput constant.

The main drawback is that for most of the time, the

reserved resource budget is set too conservative. Further-

more, the output latency is much higher than actually

required and it is impossible to exploit the difference

between average case and worst-case requirements without

affecting the reliability (guaranteed performance) of the

application.

For the (data-dependent) image analysis application, the

worst-case execution has heavy excursions (85%) on the

effective latency. The computation latency can vary

between 60 and 120 ms, when the partitioning of tasks

across processing cores is fixed. By exploiting the pre-

sented hierarchical QoS concept for latency optimization,

the partitioning of tasks across processing cores is

dynamically changed when there is a sudden change in

resource requirements. As a result, the variation on the

latency is reduced significantly to only 20% [see Fig. 11

(top)]. For the static live viewing application running in

parallel, the latency varies around 30 ms. This variation

results from the switching between different quality modes.

Instead of pure image quality control, the experiments

concentrate on keeping the output latency constant by

dynamically spitting the essential tasks in sub-tasks and

reconfiguring those sub-tasks to processor cores. At the

same time, the live viewing complexity and the corre-

sponding image quality is decreased for short periods of

time with task skipping of non-essential filtering tasks. The

actual selection is based on the resource demand for the

image analysis tasks, as estimated by the prediction model

in the LQoS controller. Please note that the clinical user is

mainly interested in fast results from the image-analysis

application, and the concurrently operating live viewing

application is only offered as a reference.

At quality level Q2, temporal filtering is skipped, which

causes some additional blur in the image, but only when

the patient or the patient table is moving. At quality level

Q3, also spatial filtering is skipped, which causes some

additional noise in the image. Switching frequently

between quality modes can have a major impact on the

perceived image quality. We therefore restrict the QoS

controller to switch very often from a low to a medium or

high quality mode. Before a switch to a higher quality

mode can occur, the required budget needs to be available

for several seconds. This avoids the possible annoying

flickering between different quality modes.

In the case study, we process uncompressed image

frames (1024 9 1024 pixels, 30 Hz) on a general-purpose

multi-core platform, [34], where the live viewing operates

at the full frame rate, and image analysis at half the frame

rate. The assignment of processing tasks to processor cores

is done manually at design time for each application, as the

total amount of application scenarios is limited (three

quality levels for each application). At runtime, the QoS

control selects based on the prediction of required resour-

ces, the optimal quality level for each application, and a

corresponding mapping of both applications to the pro-

cessor cores platform, from a sorted list of solutions.

Tasks are not moved from one core to the other during

processing of an image. Before the start of processing a

new image, the predictor task estimates the required

resources on the platform for fluent operation. The QoS

control task then selects, based on the available resources

and desired quality setting, the best mapping from a pre-

compiled list of scenarios. The overhead of switching

Fig. 11 Results of two concurrently running medical imaging

applications with indicated image latencies and quality

J Real-Time Image Proc (2012) 7:185–202 199

123

between different mappings is negligible to the overall task

processing as switching only takes place at the image level.

Practically, switching is minimized to avoid noticeable

flickering in the image. As the task mapping is precom-

piled, a switch will result in queueing a different set of

tasks for the next image from a sorted list of quality levels.

The GQoS is storing this sorted list of quality changes,

which limits the searching algorithm for finding the new

scenario to linear complexity.

Evaluation of QoS with task scalability. The hierarchical

QoS framework executes image analysis, enhancement and

live viewing tasks. Quality level Q1 means full processing

with low resource-usage requirements. We perform task

splitting at Q2 and Q3, where for Q2, the analysis tasks are

split in two, and for Q3 the analysis tasks are split in four

sub-tasks. For live viewing, we defined three quality levels,

corresponding to changing the image quality for the

application from ‘‘highest-quality’’ to ‘‘high-quality’’ or

‘‘basic-quality’’, which means skipping of parts of spatial

or temporal filtering tasks. Let us discuss the dynamic

behavior in the scene. We focus on times t1…t10 in Fig. 11

(bottom). At time t1, Job 1 changes its requirements on the

resources (due to ROI processing) and releases some of its

resources to the system. This increases the quality level of

Job 2 from Q1 to Q3. At time t2, Job 1 changes its

requirements on the resources and requests more resources

from the system (due to FULL processing). A request for

task splitting is initiated by Job 1 and this decreases the

quality level of Job 2 back from Q3 to Q1. At time t3, Job 1

releases resources and subsequently, Job 2 increases its

quality level. The described behavior continues till t8,

where for both jobs, quality level Q2 is assigned. At t9, a

resource-usage increase requests task splitting for Job 1,

where for Job 2 the quality is decreased. At t10, again for

both Jobs, quality level Q2 is assigned. The large fluctua-

tions in execution time occur due to image analysis tasks

performed in certain regions of the image.

5 Conclusions

In this paper, we have extended QoS control for a set of

multiple parallel tasks running on a multi-core processor

system. The extension involves the use of image analysis

processing, which features a high variation in computing

and memory requirements, as apposed to regular stream-

oriented video processing. For this extension, we have

developed a Markov-based model that captures the com-

puting behavior of the analysis tasks with a reasonable

accuracy. This extension has been added to a hierarchical

QoS concept that was developed for MPEG-4 coding. We

have shown that the overall system is able to predict and

handle fluctuations in computing requirements and with

task skipping and splitting scalability, the quality is

dynamically optimized.

Performance modeling is indispensable for obtaining a

high efficiency in the mapping or to increase the func-

tionality of the applications executed on the platform. For

our case study involving dynamic image analysis, the

timing model for the unpredictable behavior is build with

statistical techniques, in particular scenario-based Markov

chains. The comparison with the mostly used worst-case

approach for resource allocation revealed that it can save

an impressive factor of 1.8 on computations for selective

cases. The linear models that were found earlier for pre-

dicting computations for streaming-based video functions

in [28] were equally applicable to model the bandwidth

usage.

The results on modeling of computing and bandwidth

have been validated by a representative case for profes-

sional medical imaging. The accuracy of the modeling is

high, between 94 and 97% accuracy, with sporadic

excursions of the prediction error up to 20–30% for the

statistical techniques. This prediction accuracy is so good

that it allows resource prediction at runtime, thereby

leading to an actively controlled system management. In

such a case, the overhead for resource prediction was

estimated to be at an acceptable low level, in the range of

1–5%.

We have adopted the concept of hierarchical QoS

management from [31], to control a set of video applica-

tions executed on a resource-constrained multi-core pro-

cessor system. The QoS control is split into two layers: a

GQoS for overall system control and a LQoS for individual

application control. The LQoS control is based on

resource-usage estimation, where the GQoS is based on a

heuristic optimization algorithm.

The system is reconfigured when the application con-

siderably changes in performance requirements or addi-

tional functionally is needed. This has an impact in two

aspects. First, to create more budget for extra functionality

or a performance increase, the non-essential tasks may be

skipped and essential tasks can be split over the computing

engines. Second, when new functionality has to be added,

the increased combination of tasks needs to be optimized

with respect to the individual task budgets, while the user

expects an overall system behavior with high quality. To

create the desired scalability in applications, we have used

task skipping and splitting as a concept because every

video application can be quickly made scalable in this way.

Task skipping is only possible with the non-essential tasks,

whereas task splitting applies to essential tasks.

Prediction of resource utilization for dynamic applica-

tions has led to a significant quality improvement of the

complete system when resources are selectively distributed

200 J Real-Time Image Proc (2012) 7:185–202

123

over the available applications. The jitter on the latency of

dynamic image analysis is reduced with almost 70% and a

constant throughput is achieved. The proposed QoS

mechanism runs fast enough to be executed in real time,

because it operates only on sorted lists of benefit functions

and related parameters.

The presented results in this paper are rather relevant for

the near future, since dynamic video applications like

image analysis are increasingly found in both the consumer

and professional domain. We are convinced that the pro-

posed solution for modeling medical analysis applications

with Markov chains can also be applied to QoS control in

other domains, such as consumer multimedia or surveil-

lance. This requires that the algorithm is known to such a

degree that tasks can be made scalable and the statistical

learning of the Markov model can be carried out properly.

Acknowledgments This work has been performed in the ITEA2

project ip07022 HiPiP. Further thanks go to the anonymous reviewers

for their constructive comments.

Open Access This article is distributed under the terms of the

Creative Commons Attribution Noncommercial License which per-

mits any noncommercial use, distribution, and reproduction in any

medium, provided the original author(s) and source are credited.

References

1. Albers, R., Suijs, E., de With P.H.N.: Optimization model for

memory bandwidth usage in X-ray image enhancement. In: SPIE

Electronic Imaging (2008)

2. Anderson, J., Calandrino, J., Devi, U.: Real-time scheduling on

multicore platforms. In: Real-Time and Embedded Technology

and Applications Symposium, IEEE, pp. 179–190 (2006)

3. Bismuth, V., Vaillant, R.: Elastic registration for stent enhance-

ment in X-ray image sequences. In: IEEE International Confer-

ence on Image Processing, pp. 2400–2403 (2008)

4. Bormans, J., Ngoc, N., Deconinck, G., Lafruit, G.: Terminal QoS:

advanced resource management for cost-effective multimedia

appliances in dynamic contexts. In: Ambient Intelligence: Impact

on Embedded System Design, pp. 183–201. Springer, Berlin

(2003)

5. Brandenburg, B., Anderson, J.: Integrating hard/soft real-time

tasks and best-effort jobs on multiprocessors. In: 19th Euromicro

Conference on Real-Time Systems, IEEE, pp. 61–70 (2007)

6. Bril, R.: Real-time scheduling for media processing using con-

ditionally guaranteed budgets. PhD thesis, Technische Universi-

teit Eindhoven (2004)

7. Bril, R., Hentschel, C., Steffens, E., Gabrani, M., van Loo, G.,

Gelissen, J.: Multimedia QoS in consumer terminals. In: IEEE

Workshop on Signal Processing Systems, pp. 332–343 (2001)

8. Burchard, L., Altenbernd, P.: Estimating decoding times of

MPEG-2 video streams. In: International Conference on Image

Processing, 2000, vol. 3 (2000)

9. Florent, R., Nosjean, L., Lelong, P., Rongen, P.: Medical viewing

system and method for enhancing structures in noisy images. US

2005/0002546 A1 (2002)

10. Florent, R., Nosjean, L., Lelong, P.: System and method for

enhancing an object of interest in noisy medical images. US

2006/0133567 A1 (2004)

11. Florent, R., Nosjean, L., Lelong, P.: Medical viewing system and

method for spatially enhancing structures in noisy images. US

2008/7340108 (2008)

12. Fortier, P., Michel, H.: Computer Systems Performance Evalua-

tion and Prediction. Digital Press (2003)

13. Frost, V., Melamed, B.: Traffic modeling for telecommunications

networks. IEEE Commun. Mag. 32(3), 70–81 (1994)

14. Gummaraju, J., Rosenblum, M.: Stream programming on general-

purpose processors. In: Proceedings of the 38th Annual IEEE/ACM

International Symposium on Microarchitecture, pp. 343–354. IEEE

Computer Society, Washington, DC, USA, MICRO 38 (2005)

15. Gupta, N.: A VLSI architecture for image registration in real

time. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 15(9),

981–989 (2007)

16. Jain, R.: The Art of Computer Systems Performance Analysis.

Wiley, New York (1991)

17. Jaspers, E., Van Der Tol, E., Eindhoven, C., de With, P.H.N.:

System-level analysis for MPEG-4 decoding on a multi-processor

architecture. In: 16th International Parallel and Distributed Pro-

cessing Symposium, p. 310 (2002)

18. Kleinrock, L.: Queueing Systems, Volume I: Theory. Wiley, New

York (1975)

19. Lee, E., Messerschmitt, D.: Static scheduling of synchronous data

flow programs for digital signal processing. IEEE Trans. Comput.

36(1), 24–35 (1987)

20. Lee, S.: Developments in X-ray diagnostics. Med. Mundi 50(1),

40–47 (2005)

21. Martello, S., Toth, P.: Knapsack Problems Algorithms and

Computer Implementations. Wiley, Chichester (1990)

22. Meier, B.: Percutaneous coronary intervention: past, present and

future. Med. Mundi 50(1), 26–34 (2006)

23. Meijering, E., Niessen, W., Viegever, M.: Retrospective motion

correction in digital subtraction angiography: a review. IEEE

Trans. Med. Imaging 18(1), 2–21 (1999)

24. Mietens, S.: Complexity scalable MPEG encoding. PhD thesis,

Technische Universiteit Eindhoven (2004)

25. Moeslund, T., Hilton, A., Krnger, V.: A survey of advances in

vision-based human motion capture and analysis. Comput. Vis.

Image Underst. 104(2–3), 90–126 (2006)

26. Moser, M., Jokanovic, D., Shiratori, N.: An algorithm for the

multidimensional multiple-choice knapsack problem. IEICE

Trans. Fundam. Electr. Commun. Comput. Sci. 80(3), 582–589

(1997)

27. Oppelt, A.E.: Imaging Systems for Medical Diagnostics. Publicis

Corporate Publication (2006)

28. Pastrnak, M., de With, P.H.N.: Data storage exploration and

bandwidth analysis for distributed MPEG-4 decoding. In: 8th

IEEE International Symposium Consumer Electronics,

pp. 206–209 (2004)

29. Pastrnak, M., Poplavko, P., Farin, D.: Data-flow timing models of

dynamic multimedia applications for multiprocessor systems. In:

System-on-Chip for Real-Time Applications, pp. 206–209.

International Workshop, IEEE (2004)

30. Pastrnak, M., De With, P., Van Meerbergen, J.: QoS concept for

scalable MPEG-4 video object decoding on multimedia (NoC)

chips. In: IEEE Transactions on Consumer Electronics, vol.

52(4), pp. 1418–1426 (2006)

31. Pastrnak, M., de With, P.H.N., van Meerbergen, J.: Realization of

QoS management using negotiation algorithms for multiproces-

sor noc. In: Proceedings of IEEE International Symposium on

Circuits and Systems (2006)

32. Poplavko, P., Basten, T., Bekooij, M., van Meerbergen, J.,

Mesman, B.: Task-level timing models for guaranteed perfor-

mance in multiprocessor networks-on-chip. In: International

Conference on Compilers, Architecture and Synthesis for

Embedded Systems, pp. 63–72. ACM (2003)

J Real-Time Image Proc (2012) 7:185–202 201

123

33. Poplavko, P., Basten, T., van Meerbergen, J.: Execution-time

prediction for dynamic streaming applications with task-level

parallelism. In: 10th Euromicro Conference on Digital System

Design Architectures, Methods and Tools, pp. 228–235. IEEE

Computer Society (2007)

34. Radhakrishnan, S., Chinthamani, S., Cheng, K.: The Blackford

northbridge chipset for the Intel 5000. Micro. IEEE 27(2), 22–33

(2007)

35. Reinders, J.: (2007) Intel Threading Building Blocks. O’Reilly

Media, Inc

36. Rongen, P., Florent, R., Stegehuis, H.: (2005) Viewing system for

control of ptca angiograms, US 2008/0045827 A1

37. Van der Schaar, M., Radha, H.: A hybrid temporal-SNR fine-

granular scalability for internet video. IEEE Trans. Circuits Syst.

Video Technol. 11(3), 318–331 (2001)

38. Sriram, S., Bhattacharyya, S.: Embedded Multiprocessors:

Scheduling and Synchronization. CRC Press, Boca Raton (2000)

39. Thacker, N., Clark, A., Barron, J., Ross Beveridge, J., Courtney,

P., Crum, W., Ramesh, V., Clark, C.: Performance character-

ization in computer vision: a guide to best practices. Comput. Vis.

Image Underst. 109(3), 305–334 (2008)

40. Theelen, B.: Performance modelling for system-level design.

PhD thesis, Technische Universiteit Eindhoven (2004)

41. Turaga, D., Vander Schaar, M., Pesquet-Popescu, B.: Complexity

scalable motion compensated wavelet video encoding. IEEE

Trans. Circuits Syst. Video Technol. 15(8), 982–993 (2005)

42. Van Eijndhoven, J., Hoogerbrugge, J., Jayram, M., Stravers, P.,

Terechko, A.: (2005) Cache-coherent heterogeneous multipro-

cessing as basis for streaming applications. In: Dynamic and

Robust Streaming Between Connected Consumer Electronic

Devices, pp. 61–80. Springer, Berlin

43. Ykman-Couvreur, C., Nollet, V., Catthoor, F., Corporaal, H.:

(2006) Fast multi-dimension multi-choice knapsack heuristic for

MP-SoC run-time management. In: International Symposium on

System-on-Chip, pp. 1–4 (2006)

Author Biographies

Rob Albers received his B.Sc. degree in Electrical Engineering from

the Fontys Polytechnic College, Eindhoven, the Netherlands, in 2002.

Subsequently, he pursued his M.Sc. degree in Electrical Engineering

at the Eindhoven University of Technology, the Netherlands, from

which he graduated in 2005. During his undergraduate studies, he

worked, in 2002, at Siemens-VDO on a simulation system for car

navigation performance and in 2005, at Bosch Security on smart

search and retrieval for surveillance video databases. From 2005 to

2009, he was, as a Ph.D. candidate, involved in a joint project

between the Eindhoven University of Technology and Philips

Healthcare about modeling, prediction and control of interventional

X-ray imaging systems on multi-core processors. He has published a

number of papers in international conferences and cooperated within

national and international subsidy projects. Since 2009, he is

employed at Philips Healthcare in Best, where he is involved in the

research and development of interventional X-ray imaging systems.

His interests include image- and video processing, multi-core

processor architectures and systems engineering.

Peter H.N. de With , IEEE Fellow, obtained his MSc. in electrical

engineering from the Eindhoven University of Technology, and his

PhD. from Delft University of Technology, the Netherlands. He

joined Philips Research Labs, Eindhoven, in 1984, where he worked

on video coding for digital recording. From 1985 to 1993, he was

involved in several European projects on SDTV and HDTV

recording. In this period, he contributed as a principal coding expert

to the DV standardization for digital camcording. Between 1994 and

1997, he was leading the design of advanced programmable video

architectures at the same lab. In 1996, he became senior TV systems

architect and in 1997, he was appointed as full professor at the

University of Mannheim, Germany, at the faculty of Computer

Engineering. In Mannheim he was heading the chair on Digital

Circuitry and Simulation with emphasis on video systems. Between

2000 and 2007, he was with LogicaCMG in Eindhoven as a principal

consultant and also professor at the Eindhoven University of

Technology, at the faculty of Electrical Engineering. He is now with

CycloMedia Technology, The Netherlands. He has written and

coauthored over 200 papers on video coding, architectures and their

realization. He is a regular teacher of the Philips Technical Training

and for other postacademic courses. In 1995 and 2000, he coauthored

papers that received the IEEE CES Transactions Paper Award, and in

2004, the VCIP Best Paper Award. In 1996, he obtained a company

Invention Award. Mr. de With is IEEE Fellow, advisor to Philips,

scientific advisor of the Dutch Imaging school ASCII, IEEE ISCE and

board member of various working groups.

202 J Real-Time Image Proc (2012) 7:185–202

123

	Task complexity analysis and QoS management for mapping dynamic video-processing tasks on a multi-core platform
	Abstract
	Introduction
	Preliminaries
	Scope and problem statement
	Case study applied in this paper
	Paper overview

	Performance analysis for computations
	Preliminaries and related work
	Performance analysis and prediction employing statistical techniques

	Performance analysis for memory communication bandwidth
	Introduction
	Memory-bandwidth analysis

	Runtime QoS and task-level scalability
	Introduction
	Hierarchical QoS architecture
	QoS control at the application: task-level scalability

	Conclusions
	Acknowledgments
	References

