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Chapter 1

Introduction

This chapter describes the studied research topic and summarizes
the content of this thesis. First, the research topic is in our focus,
where we elaborate on definitions, discuss the main representa-
tive articles, and position our work. Afterwards, we pose research
questions, to be answered in the later chapters. Description of
the research methodology used and the steps towards gaining the
answers follow the research questions. Finally, we give an outline
of the rest of the thesis.

1.1. The research topic under study

This thesis investigates tactical capacity planning of single stage, single item
production-to-stock, production-to-order and service environments, which face
stochastic demand and which, in response to demand uncertainty and fluc-
tuations, can employ contingent capacity next to their in-house, permanent
capacity.

By tactical planning, we refer to the middle level, medium term decision mak-
ing in the framework of Anthony’s hierarchical classification (see Anthony
(1965)). The tactical level of decision-making is situated between the long
term, strategic level (e.g. facility location planning), and the short term, op-
erational level (e.g. job scheduling). On the one hand, the decisions at the
strategic level constrain or direct the decisions at the tactical level. A very
common example of constraining the tactical level decisions at the strategic
level is to create budgets restricting the expenses for a given period of time. On
the other hand, by decision-making at the tactical level one needs to anticipate
the system’s operational capabilities and flexibilities. The anticipation means
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creating a simplified, aggregated view on the system’s behavior. This sim-
plification is often necessary because of the complexity at the tactical level of
decision-making. These two practices (constraining and anticipating) are used
overall in production-to-stock, production-to-order and service environments.

Capacity is a quite general term that in this thesis we limit to covering only
the capacity of human production or service resources. Hence, we do not study
storing capacity (warehouses, depots, reservoirs, buildings), nor capital equip-
ment capacity, which need strategic considerations (power plants, networks’
bandwidth, terminals, capital investments). Even for the limited definition of
the word, capacity, we employ, categorization can be established in multiple
ways. According to the permanent-contingent capacity concept, capacity is
categorized into permanent and contingent capacity based on the time needed
to commit a change in the size. Namely, changing the size of the permanent
capacity has a longer lead-time than that of the contingent capacity. Perma-
nent capacity we can relate to the regular in-house capacity, which is efficient
and cheap, but is difficult to change in a short time. Contingent capacity is, as
opposed to permanent capacity, used to follow quick changes in the demand,
but these cost more. Examples for contingent capacity include contingent
worker capacity, overtime, or external capacity reservations. Once we submit
an order for an amount of contingent capacity, it may become available after a
given lead-time, which we refer to as the capacity acquisition lead-time later.

If voluntary contingent capacity is used, then there is uncertainty about the
amount of contingent capacity available; the contingent capacity order may
be only partially fulfilled. This is called the voluntary compliance regime. In
contrast, if contingent capacity is used on an obligatory basis, then a con-
tract enforces the contingent capacity to become fully available in a given
fixed lead-time, when it is asked for. This latter regime is called the forced
compliance regime. This thesis discusses tactical capacity planning under the
permanent-contingent capacity concept, addressing decisions of setting the size
of the permanent capacity and/or selection of a contingent capacity control
policy, such that we take into account the capability of facilitating contracted
contingent capacity under forced compliance at the operational level.

One emerging form of contracted contingent capacity used is the workforce
provided by external labor supply agencies (ELSAs), which served as a main
motivation for this thesis. ELSAs establish agreements with companies guar-
anteeing contingent capacity availability in the form of temporary workforce.
The agreement enforces the ELSA to deliver the workforce within a given fixed
lead-time, which the ELSA uses for contacting the workforce pool they have
registered, or for the searching process, in general. The main clients of ELSAs
are companies having fluctuating demand, as fluctuating demand often asks
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for frequent capacity changes. For such companies the main benefit in con-
tracting an ELSA originates from the difference between the costs of changing
the permanent and the contingent capacity: Since the temporary workers pro-
vided are employed by the ELSAs, decreasing the temporary workforce levels
is different than decreasing permanent workers for the companies and does not
bring any additional costs. On the other hand, ELSAs benefit from the higher
costs of the contingent capacity, the pooling effect, as they are in touch with
multiple companies, and from provision of related services. For statistical ev-
idence on significant usage of ELSA workforce in different countries, we refer
the reader to Tan and Alp (2005).

1.2. Characteristics of to-stock/to-order

manufacturing systems, and services

This thesis is to contribute to the framework of operations management using
mathematical knowledge. The goal of operations management research is to
gain understanding the product creation and delivery processes and improve
their performance. Operations research is a set of mathematical tools and
techniques that support among others operations management to achieve this
goal. We use operations research techniques throughout the thesis.

Delivering products often means delivering goods coupled with services.
Hence, products are combinations of tangible physical items (goods) and in-
tangible ones (services). The operations management literature often distin-
guishes the products, where the emphasis is put on the tangible part, from
those where it is on the intangible part, calling the former manufacturing,
and the latter services (see e.g. Waters (1996)). It is important to point out
that this distinguishment does not mean that manufacturing and services are
opposites or that they are separable. This distinguishment defines only an
intended approach declaring if our focus should be on the tangible or on the
intangible part of the product. In this thesis, we study both manufacturing
and service systems.

Other obvious differences between goods and services are that goods can
be kept in stock, while services cannot. Therefore, manufacturing systems
are given the flexibility of employing inventories, while services are not.
Those manufacturing systems that use finished-goods inventories are called
production-to-stock systems (or in short, to-stock systems); those manufactur-
ing systems that do not use finished-goods inventories are called production-to-
order (or to-order) manufacturing systems. The reason for not using finished-
goods inventories is often the lack of exact information on what to produce.
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In this thesis, we study both to-order and to-stock manufacturing systems.

We can enhance our overview of the three types of systems discussed in this
thesis, if we enumerate these systems in the order of their interaction level
with the customers. To-stock systems’ production is highly decoupled from
the actual customer needs, as both the production lead-time and the inventory
help to hedge against demand fluctuations and uncertainty. To-order systems
are only moderately decoupled, as the production lead-time (or to that propor-
tional, the work-in-process inventory) is their only mean for managing demand
variations. Service systems have the most interaction with the customers and
depend the most on the actual customer demand, because no decoupling is
possible (or it is so limited that it can be considered being negligible). We can
conclude that the stronger the dependence on the customers, the less freedom
there is in hedging against demand uncertainty.

The build-up of this thesis reflects the discussed threefold structure of opera-
tions management: first we study to-stock, then to-order manufacturing sys-
tems, and we end with services. The research questions as well as the chapters
are sequenced to present the three operations management environments in
this order, in an increasing order of customer interaction.

1.3. Research goals

The management practice of using flexible resources to effectively meet fluctu-
ating or uncertain demand has a long tradition and received sufficient scientific
attention. However, the area of flexible capacity management, the (human)
resource management practice of using contingent capacity is a recently es-
tablished new tradition, and it is definitely underresearched in the operations
management literature. The goal of our research is to provide an overview
of the scientific literature related to permanent-contingent capacity manage-
ment, and to make a contribution to the existing literature in all the three
environments of operations management discussed in section 1.2.

We targeted conducting research on permanent-contingent capacity manage-
ment knowing the scientific advancements and findings in the to-stock (Bradley
and Arntzen (1999), Angelus and Porteus (2002)), to-order, and service envi-
ronments (Pinker (1996), Tan and Alp (2005)). The following section summa-
rizes the mentioned scientific papers and outlines the main research streams
related to contingent capacity management.
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1.4. Related literature

To position our research, we discuss the related operations management liter-
ature on capacity planning, and on planning with contingent capacity. We are
not aware of books or book chapters that give an overview on tactical capac-
ity planning under the permanent-contingent capacity concept. The two most
related survey papers are fairly recent: van Mieghem (2003) is on capacity
management and investment, Wu et al. (2005) is on capacity management
in high-tech industries. However, even these surveys together cover only par-
tially the papers, which served as a starting point for this thesis. By necessity,
we summarize the key articles of our primary concern. These closely related
articles form three main research streams. The first research stream contains
models with capacity adjustment costs, the second is concerned with contin-
gent capacity planning in services, and the last one is on aggregate planning.

The first research stream developed an answer for optimal capacity control
with convex capacity adjustment costs (starting from Rocklin et al. (1984),
Bentolila and Bertola (1990), and Dixit (1997)). The optimal solution of the
model with non-stationary stochastic demand and finite or infinite planning
horizon is called the ISD policy (Invest/Stay put/Disinvest), found in Eberly
and van Mieghem (1997). For stationary finite horizon model with IID de-
mands, a closed form expression characterizes the optimal investment strategy.
The ISD policy is a target interval policy: when the actual capacity exceeds
the lower bound, we invest, when it is within the boundaries, we take no
action (stay put), when exceeding the upper bound, we disinvest. This ISD
policy was shown to be optimal not just for capacity planning, but also in the
more general framework of investment strategies. Although the models of this
research stream give this general result on the optimality of the ISD policy,
a major drawback of these models is that they do not represent production
decisions, contingent capacity or the demand process, explicitly.

The second research stream comprises research that has been conducted on
optimal capacity decision making under the permanent-contingent concept in
services. The thesis of Pinker (1996) studies different types of capacity flexi-
bilities (numerical, working time, and functional flexibilities) in a special type
of service environment, where workload can be backordered (as e.g. a mail
sorting facility). The contingent capacity has a fixed acquisition lead time,
which is zero or one period, and what has been ordered becomes always avail-
able (or, alternatively, there is an infinite contingent capacity supply). The
models presented in Pinker (1996) are discrete time and of finite horizon; the
demand is represented as a sequence of independent random variables; both
the contingent and the permanent capacity costs are linear. Some of the mod-
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els incorporate absenteeism of permanent workers. For a synthesis of the work
on the numerical and working time flexibilities, see also Pinker and Larson
(2003).

The third research stream is concerned with production environments, where
the main question is the coordination of production and capacity planning
decisions. The models addressing such coordinated planning were given the
name aggregate planning (see Holt et al. (1955)). In two case studies, Bradley
and Arntzen (1999) demonstrate that companies can benefit tremendously by
optimizing their capacity and production decisions simultaneously rather than
making first the capacity decision and then the production decisions. Angelus
and Porteus (2002) generalize some of the results of Eberly and van Mieghem
(1997) to aggregate planning. For the case of no backorder, the ISD policy’s
target intervals are characterized for the case when demand stochastically in-
creases at the beginning of the life cycle and decreases thereafter. Additionally,
when backordering is allowed, it is shown that capacity and inventory are eco-
nomic substitutes: The target intervals decrease in the initial stock level and
the optimal unconstrained base stock level decreases in the capacity level.

Aggregate planning under the permanent-contingent concept with setup costs
for production and contingent capacity ordering was studied in Tan and Alp
(2005). Apart from the additional production decision and holding costs, their
model follows the set of assumptions introduced in Pinker (1996). In particu-
lar, the contingent capacity acquisition lead time is fixed to zero, the ordered
amount is always available without limit, and the contingent and permanent
capacity costs are linear. They also adopt the discrete time, finite horizon
dynamic programming approach with demand represented as a sequence of
independent random variables. As for the production, they assume zero lead
time. Having zero lead time both for production and for contingent capacity
ordering leads to a simple order of events, repeated in each period. This order
of events coincides with that in Angelus and Porteus (2002) except for the
minor difference that there setting the total capacity level stands in place of
the contingent capacity ordering and receipt. For this model, Tan and Alp
(2005) conclude that the target interval policy is not optimal because of the
irregular structure of the cost-to-go function, and they suggest that the setup
costs account for the irregularities observed.

A part of the dual sourcing literature (see the review of Minner (2003)) also
addresses the combined use of permanent and contingent resources. In partic-
ular, Rosenshine and Obee (1976) and Janssen and de Kok (1999) study the
combination of standing and emergency shipments incoming from a fixed and
a flexible supplier, respectively.
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The subcontracting, outsourcing, and expediting literature contains further
relevant papers to our topic. We discuss the most closely related work, Yang
et al. (2005), in the introduction of Chapter 2. Later we elaborate on the sim-
ilarities and dissimilarities between the permanent-contingent capacity man-
agement, the subcontracting, and the dual sourcing models in section 5.3 of
Chapter 5.

In the next section, we pose research questions to establish a line of research
for this thesis. Following Pinker (1996) and Tan and Alp (2005), our research
addresses tactical capacity decisions under the permanent-contingent concept,
where both the contingent and the permanent capacity costs are linear, and
the contingent capacity is always available and has a fixed (non-negative)
acquisition lead time.

1.5. Research questions and methodology

Our general interest is to give an overview on tactical capacity planning with
contingent capacity, along various industries, and to take the next logical
research steps. When taking these steps, we build on the literature we dis-
cussed in the previous section. We study the use of permanent and contingent
capacity covering industries in production-to-stock, production-to-order, and
service environments. In what follows, we pose research questions for these
environments and explain their relevance.

1. Production-to-stock aggregate planning

a. What form do optimal policies have in aggregate planning
with backordering for non-stationary demand under the permanent-
contingent concept, if the contingent capacity acquisition lead time
is zero?

We are inspired by Angelus and Porteus (2002), who study the single capacity
source case with linear capacity adjustment costs. For the backordering case,
their main result is that if we assume stochastic non-stationary demand with
independent periods and immediate capacity acquisition, then a target interval
policy is optimal, as well as capacity and inventory are economic substitutes.

Tan and Alp (2005) developed the permanent-contingent correspondent to
the single capacity source, backordering model in Angelus and Porteus (2002).
While the model in Angelus and Porteus (2002) is at the strategic level, the
model in Tan and Alp (2005) is at the tactical level, incorporating more details
on capacity, using the permanent-contingent concept. In the model in Angelus
and Porteus (2002) there is only one type of capacity, which can be reduced
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or extended at some linear costs, whereas the model in Tan and Alp (2005)
incorporates a given level of permanent capacity, to be paid in all the peri-
ods, and an additional amount of contingent capacity, which is to be ordered,
and paid proportionally to the ordered amount. Additionally, setup costs are
incurred for ordering and production. These modeling differences, of course,
can substantially affect the form of the optimal aggregate planning policies in
question.

We intend to study the model in Tan and Alp (2005), without setup costs. The
reason is that Tan and Alp (2005) show that the structural results in Angelus
and Porteus (2002) do not hold under the permanent-contingent formulation if
setups are present. What can be done is to step back a little in complexity by
neglecting setups, and demonstrate analytical results for this case. Therefore,
we aim at characterizing the optimal policy under the permanent-contingent
concept with neither production nor capacity ordering setups.

b. Can we generalize the results answering (a) to fixed, positive
contingent capacity acquisition lead times?

Our motivation originates from a particular sentence in Angelus and Porteus
(2002). In their discussion, they address a call for extending their aggregate
planning model: ”This important generalization to the case of a positive capac-
ity lead time with inventory carry-over merits further research”. We address
an extension to question (a) by considering fixed (deterministic), positive ca-
pacity acquisition lead times, and as such an extension to the model of Tan
and Alp (2005) without setups.

The practical motivation for studying research questions (1a) and (1b) are
issues by manufacturing of neon-light encasement boxes, which actively uses
contingent workforce to respond for demand fluctuations. The acquisition of
contingent workers takes two days. In this case, the appropriate level of per-
manent capacity is in question, and how the capacity and production decisions
need to be coordinated.

2. Production-to-order

How can we use fast-response contingent capacity (approximately)
optimally in production-to-order systems under setup costs and a
fixed quoted customer lead time?

Fast-response capacity are those having insignificant acquisition lead-time.
The ISD policy (see section 1.4, Eberly and van Mieghem (1997)) was devel-
oped for such capacity, but not for production-to-order systems. Although the
ISD policy could be interpreted in a to-order environment, it would disregard
both the work-in-process information and the due-date performance, which
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are important factors.

While seeking for (approximately) optimal policies, we would like to specifi-
cally address the characteristics of a production-to-order setting. Therefore,
optimality needs to be defined such that it includes due date performance for a
quoted lead time. Furthermore, policies may utilize work-in-process informa-
tion. The capacity acquisition lead-time we neglect in this question, because
Eberly and van Mieghem (1997) assumes no lead-time, also, and we can find
practical applications already without lead times.

In contrast to the previous question, we use setup costs now in order to conform
to the capacity control with capacity adjustment costs research line. This way,
we can establish the connection between the literature on capacity planning
with adjustment costs and that of the contingent capacity planning. However,
we need to overcome the complicating fact that the decisions in Eberly and van
Mieghem (1997) are at the highly aggregated strategic level, whilst deciding
on the contingent capacity ordering policy is at the tactical level. Naturally,
at the tactical level more details about the system need to be studied.

One of our motivating examples from real life is in the pharmaceutical pro-
duction, where expensive machines are used. The expensive machine may be
used seven days a week, 24 hours a day. However, demand is sometimes less
than what full production could satisfy. Therefore, capacity may be varied
depending on the actual workload. The question is at which workload levels
should the number of shifts changed. Later we give some further examples.

3. Services

What dynamics of contingent capacity usage does a budget con-
straint entail in service environments, where backordering is not
possible?

For the manufacturing environments we have not studied the effect of the
strategic level decisions on the tactical capacity decisions. Since the amount
of contingent capacity planning literature on services exceeds far that on man-
ufacturing, we can study a bit more complex service systems building on the
accumulated knowledge. We selected the service environments for investigat-
ing the effect of constraining the tactical level by a decision made at a higher
level.

Within services, an obvious example for a strategic constraint on the tactical
capacity decisions is an annual budget. Hansen and van der Stede (2004)
term budgeting an important control in almost all organizations. We study
service systems, where the tactical capacity decisions are constrained by a
given budget for a finite horizon. This budget is allocated to cover permanent
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and contingent capacity cost over a finite horizon. In the beginning of the
horizon the permanent capacity cost are incurred, and the rest of the budget
is dynamically allocated to the contingent capacity.

For services, budget allocation along time has been already studied in the
operation research literature (see Trivedi (1981)), but we are not aware of a
production environment counterpart. A possible reason why budgeting was
studied less in production environments than in services is that the addi-
tional possibilities the production systems have (inventory, work-in-process
inventory, as discussed in Section 1.2) are generally budgeted together with
the capacity, and the pooled budget creates a rather loose budget-constraint.
Therefore, budgeting issues may be less relevant in production systems.

We focus on budgeted service environments, where backordering is not possi-
ble. If backordering is not possible, we talk about lost opportunities or qual-
ity deterioration, which can be, characterized by a loss (or capacity shortage
penalty) function. Our reason for studying loss function formulations instead
of backordering is that we can contribute the existing literature more in this
way, since the backordering case has been already studied extensively in Pinker
(1996). Moreover, Warner and Prawda (1972) have developed the concept of
capacity planning related quality loss, giving a good starting point for the loss
function case. Warner and Prawda (1972) couple the use of a loss function with
the use of a capacity budget, inspiring the setting of our research question:
how to minimize quality loss given a certain capacity budget. The emphasis in
their research question is on the capacity usage dynamics. Although Trivedi
(1981) studies capacity decisions under a budget constraint, the mixed-integer
goal programming approach employed does not enable finding results about
the dynamics. We are aware of neither analytical nor numerical studies that
investigate longitudinal budget allocation dynamics.

A few army-hospitals serve as our motivation in this question. All these hospi-
tals operate from a given annual budget, face uncertain demand, and have no
significant budget uncertainty. The largest portion of the budget is dedicated
to cover the permanent and contingent capacity costs. Once the permanent
staffing level is given, we can be interested in how the remaining part of the ca-
pacity budget should be allocated along the year for using temporary staffing.

Research methodology

We use the axiomatic quantitative model based research methodology to ap-
proach all the research questions posed. This research methodology relies on
the concept that real-life processes can be appropriately represented by quan-
titative models, meaning that the applicability of the observations resulting
from the analysis of these models is likely. The quantitative models we study
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are axiomatic, as they rely on idealized models of reality, and normative, since
our model development and analysis are concerned with finding optimal de-
cisions or policies. More details on the quantitative model based research
methodology can be found in Bertrand and Fransoo (2002).

1.6. Outline of the thesis

The remaining part of the thesis consists of three main parts in line with
the three groups of research questions. These three parts correspond to the
production to stock (Chapter 2), production to order (Chapter 3) and the
service environments (Chapter 4), respectively.

Chapter 2 addresses research questions 1a and 1b on to-stock systems. First,
we discuss the related literature more extensively than when introducing the
research questions. Our starting point is the model in Tan and Alp (2005)
having setups omitted. We develop a natural extension of this model by
including a fixed capacity acquisition lead-time. Since we allow this capacity
acquisition lead-time to be zero as well, our model allows us to deal with both
questions under a unified approach. We study the analytical properties of the
model with respect to the optimal policy structure and economic substitution
properties. Further insights are gained on the effect of the acquisition lead-
time and the characteristics of the optimal decisions with the help of numerical
experiments. We verify the validity of our conclusions with sensitivity analysis
on demand forecast error. The content of this chapter has been presented in
Mincsovics et al. (2008).

Chapter 3 is dedicated to deliver an answer for research question 2 on to-order
systems. For this research question, we have not found real starting point in
the literature on how to establish a tactical capacity planning model under
the permanent-contingent concept. Therefore, we start with an extensive lit-
erature study in order to find the roots both in the theory and in real-life.
We embrace the idea of workload-dependent capacity changes, already exist-
ing in the literature, and introduce stationary Markovian models to represent
each of the workload-dependent policies. Standard evaluation of these mod-
els permits counting capacity, capacity level switching, and lost sales costs.
Furthermore, we present two ways for due-date performance evaluation. The
computational experiments performed let us show the situations for low and
high benefits of using workload-dependent contingent capacity management
policies as compared to using permanent capacity exclusively. We perform
sensitivity analysis on the demand distribution to support our conclusions’
validity. This chapter is based on Mincsovics and Dellaert (2008).
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Chapter 4 comprises an analytical and a numerical part, both investigating
research question 3 on budgeting in services. In both parts, we consider mod-
els with periods having independent, identically distributed demand with the
dynamics, where the demand up to the forthcoming period is known with
certainty. First, we formulate a dynamic programming model with a general
capacity shortage function. In the analytical part, linear capacity shortage and
budget deficit penalty costs are assumed. Under these assumptions, an approx-
imate implicit analytical expression is developed for the optimal permanent
capacity level; the optimal contingent capacity ordering is straightforward.
The quality of the approximation is numerically presented. In the numerical
part, two of more realistic shortage penalty functions are considered: these are
the halfway quadratic and the halfway relative quadratic penalty functions.
Employing these functions we evaluate our dynamic programming model via
backward induction for various experimental settings. Finally, the optimal
budget spending patterns are studied and compared with observed patterns
reported in the empirical budget allocation literature. This chapter has been
presented in Dellaert et al. (2008).

Chapter 5 is dedicated to drawing conclusions as well as to giving suggestions
for future research. Because of the different assumptions and incomparable
parameter space of the models in the different environments (to-stock, to-
order, services), we found that discussing the similarities and dissimilarities in
tactical capacity planning with contingent capacity would be too ambitious.
Rather, we conclude the main insights for each environment separately.



Chapter 2

Integrated Capacity and
Inventory Management with
Contingent Capacity
Acquisition Lead Times

We model a make-to-stock production system that utilizes perma-
nent and contingent capacity to meet non-stationary stochastic
demand, where a constant lead time is associated with the ac-
quisition of contingent capacity. We determine the structure of
the optimal solution concerning both the operational decisions of
integrated inventory and flexible capacity management, and the
tactical decision of determining the optimal permanent capacity
level. Furthermore, we show that the inventory (either before or
after production), the pipeline contingent capacity, the contingent
capacity to be ordered, and the permanent capacity are economic
substitutes. We also show that the stochastic demand variable and
the optimal contingent capacity acquisition decisions are economic
complements. Finally, we perform numerical experiments to eval-
uate the value of utilizing contingent capacity and to study the
effects of capacity acquisition lead time, providing useful man-
agerial insights. We verify the validity of our conclusions with
sensitivity analysis on the demand forecast error.
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2.1. Introduction and related literature

In a make-to-stock production system that faces volatile demand, system costs
may be decreased by managing the capacity as well as the inventory in a joint
fashion, in case there is some flexibility in the production capacity. In some
production environments, it is possible to increase the production capacity
temporarily while it may take some time to do so. We refer to this delay as
capacity acquisition lead time. In this chapter we consider such a make-to-
stock production system subject to periodic review in a finite-horizon under
non-stationary stochastic demand, where our focus is on the effects of capacity
acquisition lead time.

Throughout this chapter, we primarily consider the workforce capacity setting
for ease of exposition. We use the temporary (contingent) labor jargon to refer
to capacity flexibility. In that setting, we generally assume that the produc-
tion quantity is proportional to the workforce size, permanent and contingent.
Since the workforce productivity often diminishes, especially by the presence
of machines in the production, we also address the case that the production
quantity is a concave function of the workforce size.

Flexible capacity management refers to adjusting the total production capacity
with the option of utilizing contingent resources in addition to the permanent
ones. Since long-term changes in the state of the world can make permanent
capacity changes unavoidable, we consider the determination of the permanent
capacity level as a tactical decision that needs to be made only at the beginning
of the planning horizon. This permanent capacity level will not be changed
to the end of the horizon. The integrated inventory and flexible capacity
management problem that we deal with in this chapter refers to determining
the contingent capacity to be ordered which will be available in a future period
as well as determining the optimal production quantity in a certain period
given the available capacity which has been determined in an earlier period.
We note that this problem is essentially a stochastic version of the aggregate
production planning problem.

The dynamic capacity investment/disinvestment problem has been investi-
gated extensively in literature. This problem aims at optimizing the total
production capacity of firms at a strategic level to meet long-term demand
fluctuations. Rocklin et al. (1984) show that a target interval policy is op-
timal for this problem. This policy suggests investing in (expanding) the
capacity if its current level is below a critical value, disinvesting in (contract-
ing) the capacity if its current level is above another critical value, and doing
nothing otherwise. Eberly and van Mieghem (1997) later extend this result
to environments with multiple resources. Further multidimensional optimality
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results are shown by Gans and Zhou (2002) and Ahn et al. (2005). Angelus
and Porteus (2002) show that target interval policy is still optimal for man-
aging the capacity in the joint capacity and inventory management problem
of a short-life-cycle product under certain assumptions. In general, the lead
time for the realization of the capacity expansion and contraction decisions is
neglected in this literature and Angelus and Porteus (2002) state that ‘this im-
portant generalization to the case of positive capacity lead time with inventory
carry-over merits further research’. The lead time issue is considered in the
capacity expansion literature to a certain extent. Angelus and Porteus (2003)
show optimality of the echelon capacity target policy for multiple resources,
which can have different investment lead times and for which investments can
be deferred. Ryan (2003) presents a summary of the literature on dynamic
capacity expansions with lead times. There are two main differences between
the dynamic capacity investment/disinvestment problem and the integrated
inventory and flexible capacity management problem that we consider: (i)
investment results in possession of capital goods, which still has some value
at the time of divestment, whereas flexible capacity is not possessed, but ac-
quired only for a temporary duration, (ii) investment decisions are strategic,
while integrated inventory and flexible capacity management is tactical and
operational.

The problem that is addressed in this chapter is closely related to the problems
considered by Tan and Alp (2005), Alp and Tan (2008), and Yang et al.
(2005). Tan and Alp (2005) deal with a similar problem environment where
the lead time for capacity acquisitions is neglected and only the operational
decisions are considered. Alp and Tan (2008) extend this analysis by including
the tactical level decision of determination of the permanent capacity level.
Both of these studies consider fixed costs that are associated with initiating
production as well as acquiring contingent workers. We ignore such fixed costs
in this chapter and focus on the effects of capacity acquisition lead time. When
the fixed costs of the model in Alp and Tan (2008) and the capacity acquisition
lead time of the model in this chapter are ignored, these two studies reduce to
a common special case. We refer the reader to these two studies for analysis of
this special case and also for a review of the literature on flexible capacity and
inventory management for all aspects of the problem other than the capacity
acquisition lead time.

Yang et al. (2005) deal with a production/inventory system under uncertain
permanent capacity levels and the existence of subcontracting opportunities.
Subcontracting takes a positive lead time, which is assumed to be one period
longer than or equal to the production lead time and a fixed cost is asso-
ciated with subcontracting. The optimal policy on subcontracting is shown



16 Integrated Capacity and Inventory Management

to be of capacity-dependent (s,S)-type. The authors also show that there is
a complementarity condition between slack capacity and subcontracting: If
subcontracting is more costly than production, no subcontracting will take
place unless production capacity is fully utilized. There is a major operational
difference between this form of subcontracting option and the use of contin-
gent capacity as in our setting. Subcontracting affects the inventory level
directly (any amount subcontracted increases the inventory position with full
quantity), while contingent capacity gives extra flexibility as it allows under-
utilization of capacity at the time of production.

The rest of the chapter is organized as follows. We present our dynamic pro-
gramming model in Section 2. The optimal policy and some of its properties
are discussed in Section 3 and our computations that result in managerial in-
sights are presented in Section 4. We summarize our conclusions and suggest
some possible extensions in Section 5.

2.2. Model formulation

In this section, we present a finite-horizon dynamic programming model to
formulate the problem under consideration. Unmet demand is assumed to be
fully backordered. The relevant costs in our environment are inventory holding
and backorder costs, and the unit cost of permanent and contingent capacity,
all of which are non-negative. There is an infinite supply of contingent capac-
ity, and any number of contingent workers ordered become available with a
given time lag. The notation is introduced as need arises, but we summarize
our major notation in Table 2.1 for ease of reference.

We consider a production cost component which is a linear function of per-
manent capacity in order to represent the costs that do not depend on the
production quantity (even when there is no production), such as the salaries
of permanent workers. That is, each unit of permanent capacity costs cp per
period, and the total cost of permanent capacity per period is Ucp, for a per-
manent capacity of size U , independent of the production quantity. We do not
consider material-related costs in our analysis, but it can easily be extended to
accommodate this component. In order to synchronize the production quan-
tity with the number of workers, we redefine the “unit production” as the
number of actual units that an average permanent worker can produce; that
is, the production capacity due to U permanent workers is U “unit”s per pe-
riod. We also define unit production cost by contingent workers as cc in the
same unit basis. For ease of exposition we consider the productivity rates
of contingent and permanent capacity to be the same, but our model can
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T : Number of periods in the planning horizon
L : Lead time for contingent capacity acquisition
cp : Unit cost of permanent capacity per period
cc : Unit cost of contingent capacity per period
h : Inventory holding cost per unit per period
b : Penalty cost per unit of backorder per period
α : Discounting factor (0 < α ≤ 1)

Dt : Random variable denoting the demand in period t
Gt(w) : Distribution function of Dt

gt(w) : Probability density function of Dt

U : Size of the permanent capacity
xt : Inventory position at the beginning of period t

before ordering
yt : Inventory position in period t after ordering
θt : Contingent capacity available in period t (that is

ordered in period t − L)

θt :

⎧⎨
⎩

(θt, θt+1, . . . , θt+L−2, θt+L−1) if 0 < t ≤ T − L
(θt, θt+1, . . . , θT−1, θT ) if T − L + 1 ≤ t ≤ T
0 if t = T + 1

ft(xt, θ
t, U) : Minimum total expected cost of operating the system

in periods t, t + 1, ..., T , given the system state (xt, θ
t, U)

Jt(yt, θ
t+1, U) : Cost-to-go function of period t excluding the period’s

capacity related costs, given the system state (yt, θ
t+1, U)

st : Slack capacity in period t, after production
·∗ : Optimal solution
·̂ : Unconstrained optimum

ȳt : Optimal inventory position after ordering in
period t subject to θt+L = 0

θ̄
A
t+L : Optimal contingent capacity ordered in period t

subject to yt = xt

θ̄
B
t+L : Optimal contingent capacity ordered in period t

subject to yt = xt + θt + U

Table 2.1: Summary of Notation

accommodate different productivity rates as explained in Tan and Alp (2005).

We consider a finite decision horizon with periods indexed from 1 to T . In every
period, a decision is made to determine the number of contingent workers to be
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available in exactly L periods after the current period, as long as there are at
least L periods before the end of planning horizon. If θt contingent workers are
ordered in period t−L then that many workers become available in period t at
a total cost of ccθt which is charged when they become available. In any period
t ≤ T − L, we keep a vector θt = (θt, θt+1, ..., θt+L−1) which consists of the
number of contingent workers that are ordered in periods t−L, t−L+1, ..., t−1.
In the next period, the vector θt+1 consists of the information on the hired
contingent workers for periods t+1, t+2, ..., t+L− 1, carried from the vector
θt, as well as the decision made for period t + L, θt+L, in period t. Since no
contingent workers are ordered after period T −L, θt = (θt, θt+1, ..., θT−1, θT )
for T − L + 1 ≤ t ≤ T and θT+1 := 0. The size of the permanent workforce,
U , is determined only at the beginning of the first period, and it is considered
to be fixed during the whole planning horizon.

The order of events in a period is as follows. At the beginning of period t, the
initial inventory level, xt, is observed, and the number of previously ordered
contingent workers, θt, become available. The total amount of capacity at
period t becomes U +θt, which is the upper limit on the production quantity of
this period. Then, the operational decisions, i.e. the production decision given
the available capacity and the decision on the number of contingent workers to
be available in period t + L, are made. According to the production decision,
the inventory level is raised to yt ≤ xt + U + θt. We note that the optimal
production quantity (yt − xt) may result in partial utilization of the available
capacity, which is already paid for. At the end of period t, the realized demand,
wt ≥ 0 is met/backordered, resulting in a starting inventory for period t + 1,
xt+1 = yt−wt. The vector θt+1 is constructed as explained above. We assume
the demand to be independently but not necessarily identically distributed,
and we denote the random variable corresponding to the demand in period t
as Dt ≥ 0 and its distribution function as Gt. Finally, we denote the minimum
cost of operating the system from the beginning of period t until the end of
the planning horizon as ft(xt, θ

t, U).

We define the holding-backorder cost function, Lt (z), for a given inventory
level after production, z. We use the notation

Lt (z) = h
z∫

−∞
(z − ω) dGt (ω) + b

∞∫
z

(ω − z) dGt (ω)

for this cost function, which corresponds with a news-vendor formula. With
the help of this holding-backorder cost function, the problem of integrated
Capacity and Inventory Management with Capacity Acquisition Lead Times
(CILT) can be formulated as a dynamic programming model.
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(CILT )

ft(xt, θ
t, U) = Ucp + θtcc +⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

min
yt∈[xt;xt+θt+U ]

{
Lt(yt) + αE[ft+1

(
yt − Dt, θ

t+1, U
)
]
}

if T − L + 1 ≤ t ≤ T

min
θt+L≥0,yt∈[xt;xt+θt+U ]

{
Lt (yt) + αE

[
ft+1

(
yt − Dt, θ

t+1, U
)]}

if 1 ≤ t ≤ T − L

f0(x1) = min
U≥0, θ1≥0

f1

(
x1, θ

1, U
)

where fT+1(·) ≡ 0, and 0 ≤ L ≤ T .

We note that the number of contingent workers hired before the planning
horizon begins, θ1, is also optimized in the above formulation, assuming that
those decisions are made in advance in an optimal manner. Nevertheless, all
of our analytical results would hold for any given θ1 as well.

When capacity acquisition lead time is zero (L = 0), the minimization opera-
tor,

min
θt+L≥0,yt∈[xt;xt+θt+U ]

is to be read as min
θt≥0

min
yt∈[xt;xt+θt+U ]

, the cost θtcc gets

inside the minimization, and θt disappears from the state space. This two-
dimensional minimization can be reduced to a single-dimensional one.

2.3. Analysis of the optimal policies

In this section, we first characterize the optimal solution to the problem that
is modeled in Section 2.2. Then we introduce some properties of the optimal
solution, including those that regard the utilization of the available capacity.

Let Jt denote the cost-to-go function of period t excluding the period’s capacity
related costs.

Jt

(
yt, θ

t+1, U
)

= Lt (yt) + αE
[
ft+1

(
yt − Dt, θ

t+1, U
)]

Accordingly, ft(xt, θ
t, U) can be rewritten as

ft(xt, θ
t, U) = Ucp + θtcc +⎧⎨

⎩
min

yt∈[xt;xt+θt+U ]
Jt(yt, θ

t+1, U) if T − L + 1 ≤ t ≤ T

min
θt+L≥0, yt∈[xt;xt+θt+U ]

Jt(yt, θ
t+1, U) if 1 ≤ t ≤ T − L

.
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Let
(
ŷt, θ̂t+L

)
be the unconstrained minimizer of the function Jt(·) for given

state variables θt+1, ..., θt+L−1, and U . We use the following definitions in our
further discussion for t ∈ {1, ..., T − L}:

ȳt := arg min
yt∈[xt;xt+θt+U ],θt+L=0

Jt

(
yt, θ

t+1, U
)

is the optimal production when no capacity is ordered;

θ̄
A
t+L := arg min

θt+L≥0
Jt

(
xt, θ

t+1, U
)

is the optimal contingent capacity order when no production takes place; and

θ̄
B
t+L := arg min

θt+L≥0
Jt

(
xt + θt + U, θt+1, U

)
is the optimal contingent capacity order when full production takes place.

Let
(
y∗t , θ

∗
t+L

)
be the joint optimal production and contingent capacity hiring

decision in period t given that the state variables are xt, θt and U .

2.3.1 Optimal policy characterization

The optimal decisions in any period t (inventory level after production, yt,
and number of contingent workers hired, θt+L) are made by minimizing the
function Jt over the feasible region. First, we characterize the solution of CILT
in Theorem 2.1.

Theorem 2.1 The following hold for any capacity acquisition lead time L =
0, 1, 2, . . . T − 1.

1. For any period t (1 ≤ t ≤ T ), ft and Jt are (jointly) convex funtions.

2. For any period t such that 1 ≤ t ≤ T − L, the optimal production and
contingent capacity ordering policy is given by

(y∗t , θ
∗
t+L) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ŷt, θ̂t+L) if ŷt ∈ [xt;xt + θt + U ] , θ̂t+L ≥ 0

(xt, θ̄
A
t+L) if ŷt < xt, θ̂t+L ≥ 0(

xt + θt + U, θ̄
B
t+L

)
if ŷt > xt + θt + U, θ̂t+L ≥ 0

(ȳt, 0) if ŷt ∈ [xt;xt + θt + U ] , θ̂t+L < 0

(ȳt, θ̄
A
t+L) with (ȳt − xt)θ̄

A
t+L = 0

if ŷt < xt, θ̂t+L < 0

(ȳt, θ̄
B
t+L) with (ȳt − xt − θt − U)θ̄

B
t+L = 0

if ŷt > xt + θt + U, θ̂t+L < 0
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Proof: See Appendix.

The convexity of Jt as stated in part 1 implies that the production quan-
tity should bring the inventory level to the base-stock level ŷt

(
θt, θt+L, U

)
for a given θt+L, where ŷt

(
θt, θt+L, U

)
is the minimizer of Jt for a given(

θt, θt+L, U
)
, as long as the base-stock level is in the interval [xt, xt + θt + U ].

Otherwise, y∗t = xt if the base-stock level is less than xt, meaning that no pro-
duction should take place, and y∗t = xt+θt+U if the base-stock level is greater
than xt + θt + U , meaning that all of the available capacity (permanent and
contingent) should be utilized. With respect to the contingent capacity or-
dering decision, θ∗t+L = θ̂t+L

(
yt, θ

t, U
)

for any given yt, where θ̂t+L

(
yt, θ

t, U
)

is the minimizer of Jt for a given
(
yt, θ

t, U
)
, as long as θ̂t+L

(
yt, θ

t, U
)
≥ 0.

Otherwise, no contingent capacity should be ordered. We also note that for
periods T − L + 1 to T , the optimal level of inventory after production is
given by a state-dependent base-stock policy, due to convexity of Jt. Part 2
of Theorem 2.1 characterizes the optimal integrated production and contin-
gent capacity ordering decisions in terms of the unconstrained minimizer and
ȳt, θ̄

A
t+L, and θ̄

B
t+L, which are the minimizers on the borders of the feasible

domain (θt+L ≥ 0, yt ∈ [xt;xt + θt + U ]). The first case corresponds to the
situation where the unconstrained minimizer falls in the feasible region, and
hence the unconstrained minimizer is the optimal solution. In the latter five
cases the unconstrained minimizer is outside the feasible region, where the op-
timal solution is then on the boundary of the feasible region, due to convexity
of Jt. The last two cases further characterize the optimal solution by impos-
ing a condition (that we refer to as “complementary slackness property” in
Section 2.3.3) when neither ŷt nor θ̂t+L is within its feasible interval. Finally,
part 1 also states that the recursive minimum expected cost function of the
dynamic programming formulation, ft(xt, θ

t, U) is convex. Therefore, finding
the optimal permanent capacity level, U∗ is a convex optimization problem.

Remark 1 If cc < cp, then U∗ = 0.

Remark 1 holds due to the fact that any solution, U ′ and θ′t with U ′ > 0 would
be dominated by the solution U = 0 and θt = U ′ + θ′t for all t.

In what follows we utilize the notion of supermodularity and submodularity
to show properties on the pairwise relations of the variables and parameters
in our model, which is a notion employed in economic theory often to explore
economic complements and substitutes. A function which is supermodular
(submodular) on two arguments implies that more of one of the arguments
induces less (more) of the other (see Porteus (2002)). In particular, Theorem
2.2 identifies such relations in our problem environment between contingent
capacity ordered, inventory position, permanent capacity, and demand.
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Theorem 2.2 For any period t (1 ≤ t ≤ T ), and capacity acquisition lead
time L = 1, 2, . . . , T − 1, the following hold.

1. ft

(
xt, θ

t, U
)

and Jt

(
yt, θ

t+1, U
)

are supermodular functions.

2. Jt is submodular in
(
Dt,

(
θt+1, U

))
and in (Dt, yt), where Dt ∈ D, and

D is the poset of discrete random variables with the first order stochastic
dominance as partial order,

(
θt+1, U

)
∈ R

L+1, on which the product order
is the partial order.

Proof: See Appendix.

Supermodularity of Jt

(
yt, θ

t+1, U
)

implies, for example, that yt and θt+1 are
economic substitutes: in any element we increase in θt+1, the optimal yt is non-
increasing. Naturally, it implies as well that substitution holds between yt and
U , any element of θt+1 and U , or any two elements of θt+1. Supermodularity
of ft

(
xt, θ

t, U
)

allows similar interpretation as that of Jt

(
yt, θ

t+1, U
)
: the

inventory, the pipeline contingent capacity and the permanent capacity are
economic substitutes. For example, a higher starting inventory eliminates the
necessity for a higher permanent capacity.

Submodularity of the function Jt in (Dt, θt+L) given in part 2 indicates that
Dt and θt+L are economic complements. That is to say, stochastically larger
demand distributions lead to hiring more contingent capacity. A similar rela-
tion also exists between Dt and yt. Note that the sub- and supermodularity
results in Theorem 2.2 do not apply only to optimal decisions. For example,
supermodularity of Jt in yt and θt+L implies that the marginal cost of increas-
ing yt increases in θt+L. The reader is referred to Porteus (2002) and Topkis
(1998) for further details on sub- and supermodular functions, and Puterman
(1994) for partial ordering of random variables.

The following corollary to the second part of Theorem 2.2-1. helps to reduce
the search space by providing bounds on the decision variables yt and θt+L,
using the fact that they are economic substitutes.

Corollary 1 For any period t (1 ≤ t ≤ T−L), the (constrained) optimal solu-

tion of Jt is in the domain
{
(yt, θt+L) : yt ∈ [xt; ȳt] , θt+L ∈

[
θ̄

B
t+L; θ̄

A
t+L

]}
.

2.3.2 Note on the concave productivity function

In most of the real-life cases the production quantity is not a linear function of
the workforce size. Increasing the workforce size has diminishing returns on the
production output. Passing some high workforce level the overall productivity
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can even decrease. Our goal in this subsection is to study if the analytical
results, formulated in Theorem 2.1 hold when the production quantity is a
concave function of the workforce size.

For a given total workforce size (including both permanent and contingent
workforce), u, we denote the maximal production quantity as Q(u). We can
reformulate the (CILT) model by replacing the minimization operators

min
yt∈[xt;xt+θt+U ]

and min
θt+L≥0,yt∈[xt;xt+θt+U ]

with

min
yt∈[xt;xt+Q(θt+U)]

and min
θt+L≥0,yt∈[xt;xt+Q(θt+U)]

, respectively.

We can characterize the modified (CILT) similar to the original (CILT).

Theorem 2.3 For the modified (CILT) model, which includes concave pro-
ductivity, for any capacity acquisition lead time L = 0, 1, 2, . . . T − 1 and for
any period t (1 ≤ t ≤ T ), ft and Jt are (jointly) convex funtions.

Proof: See Appendix.

The second part of Theorem 2.1 can be also inherited with minor modifications
(all upper bound xt+θt+U needs to be replaced with xt+Q(θt+U), including
the optimal production and contingent capacity ordering policy formula and
the definition of ȳt and θ̄

B
t+L).

In what follows, we continue studying the (CILT) model, where the production
quantity is proportional to the workforce size.

2.3.3 Complementary slackness

In our model, we have two decision variables to be determined in every period:
the inventory level after production and the contingent capacity ordered that
will arrive L periods later. The production decision is bounded from above by
the maximum amount of capacity available (the permanent capacity level plus
the contingent capacity that was ordered L periods ago) whereas the contin-
gent capacity ordering is only constrained to be non-negative. Let st denote
the slack capacity in period t after the production decision is implemented,
st = xt + U + θt − yt. We define the complementary slackness property as
follows:

Definition For any period t, there exists a Complementary Slackness Prop-
erty (CSP) between slack capacity, st, and contingent capacity ordered, θt+L,
only if stθt+L = 0.

If a solution does not satisfy CSP, a positive contingent capacity is ordered for
future use, while the current capacity which has already been paid for is not



24 Integrated Capacity and Inventory Management

fully utilized. If such a solution is optimal then ordering contingent capacity to
be available L periods later is preferred to utilizing currently available capacity
fully which might lead to carrying inventory. In case the optimal solution is
known to satisfy CSP, this helps not only to further characterize the optimal
solution, but also to simplify the solution of CILT. In particular, whenever
the optimal solution satisfies CSP, the problem reduces to one-dimensional
optimization problems. In what follows, we present some special cases where
the optimal solution satisfies CSP.

For the special case where the demand is deterministic, it is straightforward
to show that the optimal solution satisfies CSP if

∑L−1
i=0 αih < αLcc. This

condition simply implies that it is less costly to carry inventory than to order
contingent capacity, which assures that contingent capacity is never ordered
unless available capacity is fully utilized.

Theorem 2.4 When L = 1, the optimal solution satisfies CSP in the follow-
ing cases:

1. In the infinite horizon problem with stationary and positive demand
(T → ∞, Dt ≡ D > 0), when h < αcc.

2. In the two-period problem, when h (1 + α) < αcc.

Proof: See Appendix.

Note that for the special case of L = 1, Theorem 2.4 is valid under reasonable
cost parameter settings. The interpretation of the first part of the theorem
is that if demand is the same (and non-zero) in each period being subject
to the same uncertainty, then we can directly compare the cost coefficient of
the two options. Namely, the optimality of complementary slackness follows
if the unit holding cost is less than the discounted unit contingent capacity
cost. The second part of the theorem gives a condition for a two-stage problem
with changing demand. In contrast to the stationary case, the unit cost of the
holding option is estimated with the unit holding cost of both periods. While
an optimal solution which does not satisfy CSP might seem to be counter-
intuitive, it turns out that in some cases this is true, as we illustrate in the
following examples where CSP does not hold in the optimal solution.

Example 2.1 For T = 15, L = 2, h = 1, b = 5, cp = 2.4, cc = 3.2, α = 1,
U = 10, x1 = 0, θ1 ≥ 0, and θ2 ≥ 0, consider the following demand stream:
P (D1 = 0) = 1, P (D2 = 30) = 0.4, P (D2 = 0) = 0.6, P (D3 = · · · =
D11 = 0) = 1 and P (D12 = · · · = D15 = 10) = 1. The optimal decision is
(y∗1 , θ

∗
3) = (0, 10). That is, 10 units of contingent capacity is ordered while the

available capacity is not fully utilized which violates CSP. The intuition behind
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this solution is as follows: Because the uncertainty will be resolved in period
2, any production before that may result in holding inventory for a number
of periods. On the other hand, if the production capacity in period 3 is not
increased -which requires requesting 2 periods in advance-, there may be high
backordering costs in case positive demand in period 2 is materialized.

Example 2.2 For T = 2, L = 1, h = 2.98, b = 5, cp = 2.5, cc = 3, α = 0.99,
U = 6, x1 = 0, and θ1 = 0, let the demand follow normal distribution with
E [D1] = 3, V ar [D1] = 0.36, and E [D2] = 21, V ar [D2] = 17.64 (both yielding
coefficient of variation = 0.2). In this case, (y∗1 , θ

∗
2) = (4.8, 10.4), violating

CSP.

2.4. Numerical results and discussion

The main goal of this section is to gain insights on how the value of flexible
capacity and the optimal permanent capacity levels change as the following
system parameters change: capacity acquisition lead time, unit cost of con-
tingent capacity, backorder cost, and the variability of the demand. For this
purpose, we conduct some numerical experiments by solving CILT. We use
the following set of input parameters, unless otherwise noted: T = 12 (e.g. in
days, weeks, or months), b = 10, h = 1, cc = 3, cp = 2.5 (all in units of e33,
e250, or e1000, respectively), α = 0.99, and x1 = 0. We consider Normal
demand with a coefficient of variation (CV ) of 0.2 that follows a seasonal pat-
tern with a cycle of 4 periods, where the expected demand is 10, 15, 10, and
5, respectively. Recall that the values of the pipeline of contingent capacity at
the beginning of the first period are optimized in CILT, and accordingly the
results containing different lead times are comparable.

Solution of CILT on a Pentium 4 with a 2.79GHz CPU and 1Gb RAM for the
parameter set given above took less than 1 second for L < 3 and 14 seconds
for L = 3. For longer lead times, the curse of dimensionality prevails and
computational limitations become prohibitive.

In the results that we present, we use the term “increasing” (“decreasing”)
in the weak sense to mean “non-decreasing” (“non-increasing”). We provide
intuitive explanations to all of our results below and our findings are sup-
ported in several numerical studies. However, like all experimental results,
one should be careful in generalizing them, especially for extreme values of
problem parameters.
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2.4.1 Value of flexible capacity

The option of utilizing contingent capacity provides additional flexibility to
the system and leads to reduction of the total costs, even though there is a
certain lead time associated with it. We measure the magnitude of cost reduc-
tion in order to gain insight on the value of flexible capacity. We compare a
flexible capacity (FC) system with an inflexible one (IC), where the contingent
capacity can be utilized in the former but not in the latter. We define the ab-
solute value of flexible capacity, V FC, as the difference between the optimal
expected total cost of operating the IC system, ETCIC , and that of the FC
system, ETCFC . That is, V FC = ETCIC − ETCFC . We also define the
(relative) value of flexible capacity as the relative potential cost savings due
to utilizing the flexible capacity. That is, V FC% = 100 · V FC/ETCIC . We
note that both V FC and V FC% are always non-negative because it is always
an option not to use contingent capacity. We also note that the permanent
capacity levels are optimized in both systems separately to ensure that the
differences are not caused by the insufficiency of permanent capacity in the
inflexible system.

We first test the value of flexibility with respect to the backorder and contin-
gent capacity costs under different capacity acquisition lead times, by varying
the value of one of the parameters while keeping the rest fixed. We present the
results in Table 2.2, which support intuition in the sense that V FC% is higher
when capacity acquisition lead time is shorter. These results also generalize
the findings of Tan and Alp (2005) for L = 0 to the case of positive capacity
acquisition lead times, such that V FC% is higher when contingent capacity
cost is lower or backorders are more costly (equivalently, when a higher service
level is targeted).

We note that, although V FC% decreases with an increasing lead time, the
marginal decrease appears to be decreasing as L increases. Besides, we also
observe that V FC% with higher lead times persists to be comparable with
V FC% with lower lead times, meaning that flexibility is still valuable even
when the capacity acquisition lead time is relatively long.

We also analyze the relation between the value of flexible capacity and the de-
mand variability. The results presented by Alp and Tan (2008) indicate that
the value of flexibility is not necessarily monotonic (i.e. it does not increase or
decrease consistently) as the demand variability increases for the case where
the lead time is zero. We find out that this continues to be true for the case
where the lead time is strictly positive as well, because the system has the
ability to adapt itself to changes in coefficient of variation, CV , by optimizing
the permanent capacity level accordingly. Nevertheless, for increasing values
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L 0 1 2 3

cc V FC%

1.0 63.35 58.94 57.63 57.36
2.0 36.35 31.50 28.34 27.18
2.5 22.87 17.90 14.57 12.71

�

�

�

�3.0 14.91 10.30 8.55 7.50
3.5 11.10 7.26 6.27 5.61
4.0 8.92 5.58 4.91 4.21
5.0 6.02 3.18 2.98 2.74
8.0 1.75 0.42 0.37 0.34

b V FC%

5 11.79 7.91 6.49 5.54
�

�

�

�10 14.91 10.30 8.55 7.50
20 17.50 12.22 10.22 9.07
50 20.51 14.63 12.31 11.09
250 24.82 18.06 15.49 14.22

Table 2.2: V FC% as L, cc, and b change (base values marked)

0 1 2 3
5

10

15

20

Lead time (L)

R
el

at
iv

e 
va

lu
e 

of
fle

xi
bl

e 
ca

pa
ci

ty
 (

V
F

C
%

)

Deterministic
Normal, CV=0.1
Normal, CV=0.2
Normal, CV=0.3

Figure 2.1: V FC% as a function of L for different demand streams

of the contingent capacity acquisition lead time we observe that the value of
flexibility generally decreases when the demand variability increases as is the
case in Figure 2.1. A longer capacity acquisition lead time deteriorates the
effectiveness of capacity flexibility. This effect is amplified in case of higher
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demand variability. In other words, since the capacity needs are more pre-
dictable for lower demand variability, use of contingent capacity -which has
to be ordered one lead time ahead- becomes more effective as compared to
the high variability case. This also explains why the decrease in the value of
flexibility as lead time increases is steeper when the variability is higher.

2.4.2 Sensitivity analysis on V FC% for demand forecast error

Estimation of future demand is subject to error. Even if demand is predicted
in stochastic terms, the forecasted distribution is often just an estimate in
real-life situations. In order to calculate a more realistic value of the capacity
flexibility, we represent some demand forecast error in our calculation.

We study the effect of the relative demand forecast error on the value of ca-
pacity flexibility via sensitivity analysis. In the numerical experiments we per-
form, the relative demand forecast error means misestimation of the demands’
real expected value (E [Dt]) or coefficient of variation, for all t. Namely, the
estimates are

Ê [Dt] = E [Dt] (1 + ΔE [Dt]), and

ĈV [Dt] = CV [Dt] (1 + ΔCV [Dt]) for all t = 1, 2, . . . , T .

We perform sensitivity analysis on V FC% for demand forecast error. In our
numerical experiments we calculate the V FC% values over the entire horizon
while constantly over-/underestimated demand expectation or demand coeffi-
cient of variation. We preserve the same definition of V FC%. The only change
is that both the inflexible and the flexible expected total costs (ETCIC and
ETCFC) are calculated under the misestimated demand stream.

Our numerical experiments use the base case (demand CV is 0.2, cc = 3,
and b = 10) extended by the values of demand coefficient of variation 0.1
and 0.3, cc = 2.6, 3.5, and b = 5, 20, in all the possible 33 = 27 combinations.
Additionally, we vary ΔE to take the values −0.04, −0.02, 0, +0.02, and +0.04;
and ΔCV to take the values −0.14, −0.07, 0, +0.07, and +0.14. The values
±0.02 and ±0.07 originate from simulating demand forecast error based on a
history of 100 instances. Furthermore, the capacity acquisition lead time, L is
0, 1 or 2. The base case, which we found being a typical case in our sensitivity
analysis, is presented in Table 2.3.

The ΔE = 0 row as well as the ΔCV = 0 row correspond to the estimated
value of capacity flexibility already depicted in Figure 2.1. The ΔE > 0 (< 0)
rows or the ΔCV > 0 (< 0) rows correspond to the real value of capacity
flexibility for overestimated (underestimated) expected value or coefficient of
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L 0 1 2

ΔE V FC%

-0.04 14.57 10.00 7.18
-0.02 14.57 10.09 7.85
0.0 14.91 10.30 8.55
0.02 15.70 10.74 9.29
0.04 17.04 11.50 10.13

ΔCV V FC%

-0.14 14.26 10.26 8.29
-0.07 14.57 10.26 8.43
0.0 14.91 10.30 8.55
0.07 15.31 10.38 8.67
0.14 15.76 10.52 8.80

Table 2.3: V FC% as L, ΔE, and ΔCV change, for the base case

variation. E.g. the V FC% value of 14.57% in the first row, first column (for
L = 0) means that if the expected value was underestimated by 4% (ΔE =
−0.04), then our V FC% value estimate of 14.91% (ΔE = 0) overshoots the
(real) V FC% value, which is 14.57%.

Based on the 27 cases observed, we found that varied ΔE, or varied ΔCV
results in similar V FC% behavior. We can typically observe convexly increas-
ing shapes, particularly for short lead times, which straightens for longer lead
times. However, we observed slightly concave shapes for L = 2 and b = 20:
along changes in ΔE, ΔE = 0 is peak value, and when ΔCV is varied, then
ΔCV is decreasing. Except for the cases of long lead time and high backorder
unit costs, overestimation of the expected demand induces underestimation
of V FC%, while underestimation of the expected demand gives less error in
estimating V FC%.

Not all the properties observed in Figure 2.1 hold under demand forecast
error. Although we observed that the lower contingent capacity cost cc and the
shorter capacity acquisition lead times still consistently yield higher V FC%,
the value of flexibility as a function of the backorder cost coefficient becomes
more irregular: especially for long lead times and large forecast errors, it
becomes neither increasing nor decreasing (e.g. for ΔE = −0.1, ΔCV = 0,
L = 2, and cc = 3.5, for b = 5, 10, and 20, we have V FC% = 4.79, 4.64, 7.16,
respectively).
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2.4.3 Optimal level of permanent capacity

In this section we investigate how the optimal level of permanent capacity
changes as the problem parameters change. We present the data regarding
some of our results in Table 2.4. We first note that the optimal permanent
capacity decreases as the contingent capacity acquisition lead time decreases,
in all of the cases that we consider. That is, since the decreased lead time
makes the capacity flexibility a more powerful tool, it decreases the required
level of permanent capacity. When cc and L are small enough, the benefits of
capacity flexibility becomes so prevalent that, even when cc > cp the optimal
permanent capacity level may turn out to be zero. We also note that the find-
ings of Alp and Tan (2008) for the case of L = 0, which state that the optimal
permanent capacity level decreases as contingent capacity cost decreases or
backorder cost increases, also hold for positive capacity acquisition lead times.

L 0 1 2 3

cc U∗ for b = 10

2.5 0 0 0 0
2.51 0 0 2 3
2.6 3 3 4 6

�

�

�

�3.0 7 7 8 9
3.5 8 9 10 10
4.0 9 10 10 10
5.0 10 11 11 11
8.0 11 12 12 12

demand U∗ for b = 10

deterministic 7 7 7 7
normal, CV=0.1 7 8 8 8

�

�

�

	
normal, CV=0.2 7 7 8 9

normal, CV=0.3 6 7 9 9

demand U∗ for b = 50

deterministic 7 7 7 7
normal, CV=0.1 7 7 7 8

�

�

�

	
normal, CV=0.2 6 7 8 9

normal, CV=0.3 5 6 8 9

Table 2.4: U∗ as a function of the lead time, L, for varied cc, b and demand
distribution streams (base values are marked)
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Similar to the value of flexibility, we observe that the optimal permanent
capacity level is not necessarily monotonic in demand variability. Nevertheless,
for longer capacity acquisition lead times or higher costs of contingent capacity,
optimal permanent capacity level in general increases as demand variability
increases. On the contrary, for shorter capacity acquisition lead times and
lower costs of contingent capacity, optimal permanent capacity level in general
decreases as demand variability increases.

2.5. Conclusions and future research

In this chapter the integrated problem of inventory and flexible capacity man-
agement under non-stationary stochastic demand is considered, when a fixed
lead time is present for flexible capacity acquisition. Permanent productive
resources may be increased temporarily by hiring contingent capacity in every
period, where this capacity acquisition decision becomes effective with a given
time lag. Other than the operational level decisions (related to the production
and capacity acquisition levels), we also keep the permanent capacity level as a
tactical decision variable which is to be determined at the beginning of a finite
planning horizon. We provide insights into the effects of capacity acquisition
lead time.

We first prove that all of the cost functions under consideration for decision
making are convex. Moreover, we prove that the inventory (either before or
after production), the pipeline contingent capacity, the contingent capacity to
be ordered, and the permanent capacity are economic substitutes. We also
show that the stochastic demand variable and the optimal contingent capac-
ity acquisition decisions are economic complements; for stochastically larger
demand streams, we observe higher contingent capacity levels in optimality.
A similar interpretation is also true for stochastically larger demand streams
and the optimal inventory levels obtained after production.

The convexity results help us to provide an optimal policy for the operational
decisions and to find the optimal permanent capacity level. The optimal policy
for managing contingent capacity ordering can be termed as a special target
interval policy (see Eberly and van Mieghem (1997)), where the target interval
reduces to a single point. Our convexity results also imply that, provided the
capacity level, the optimal level of inventory after production is given by a
state-dependent base-stock policy, where the dependency is on the capacity
pipeline and the actual capacity. Furthermore, from the economic substitu-
tion results between inventory and capacity levels, it follows that the optimal
target capacity level is a decreasing function of the inventory level, and that
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the optimal inventory level is a decreasing function of any of the capacity
dimensions including the permanent capacity.

A policy that might seem to be optimal is never to order contingent capacity
unless the actual capacity is fully utilized, which we refer to as complimen-
tary slackness property (CSP). We show through numerical examples that an
optimal solution does not necessarily satisfy CSP. We also provide some cases
where the optimal solution is assured to satisfy CSP.

By making use of our model, we develop some managerial insights. First of
all, the value of flexibility naturally decreases with an increasing lead time.
Consequently, there is a value in trying to decrease capacity acquisition lead
time in the system through means such as negotiating with the external labor
supply agency or forming a contingent labor pool perhaps within different or-
ganizations of the same company. This especially holds when the demand is
highly variable. Nevertheless, the value of flexibility remains considerable even
when the capacity acquisition lead time is relatively long. Therefore, the exis-
tence of a lead time in acquiring contingent capacity should not discourage the
production company from making use of capacity flexibility, especially if the
demand variability is not very high. Consequently, the managers should invest
in higher levels of permanent capacity when capacity acquisition lead time and
demand variability are high, and it is not wise to do so when the contingent
capacity is a more “effective” tool in the sense that capacity acquisition lead
time is short and the demand variability is high.

This research may be extended in several ways. Introducing an uncertainty
on the permanent and contingent capacity levels would enrich the model. For
example, the supply of contingent capacity may be certain for larger lead times
whereas it may be subject to an uncertainty for shorter lead times. Some
other extension possibilities include considering the fixed costs for production
and/or acquisition of contingent capacity, including expansion and contraction
decisions for the permanent capacity, considering multiple types of capacity
flexibility (e.g. overtime, temporary workers, extra shifts), considering the
possibility to carry over the contingent capacity and cancel previously ordered
capacity, and developing efficient heuristic methods for the problem.

Appendix

Proof of Theorem 2.1:

We prove part 1 by induction. Note that fT+1(·) = 0 and is convex. As-
sume that ft+1(·) is also convex. The function Jt(yt, θ

t+1, U) = Lt (yt) +
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αE
[
ft+1

(
yt − Dt, θ

t+1, U
)]

is convex because (i) Lt(yt) is a convex function,
(ii) E

[
ft+1

(
yt − Dt, θ

t+1, U
)]

is convex by the convexity preservation of the
expected value operator (see Appendix A.5 in Bertsekas (1976)), and (iii) the
convexity preservation of the linear combination with non-negative weights.
Then note that the following minimization operators preserve the convexity
of J .

g(x, θ, U) = min
y∈[x,x+θ+U ]

J(y, U),

h(x, θ, U) = min
y ∈ [x, x + θ + U ]

δ ≥ 0

J(y, δ, U)

From Proposition B-4 of Heyman and Sobel (2004), coupled with the convexity
preservation of affine mappings (see Hiriart-Urruty and Lemaréchal (1993)) it
follows that the resulting g and h functions are convex when J is convex.

Finally, ft(xt, θ
t, U) = Ucp + θtcc +

{
g(xt, θ, U) for T − L + 1 ≤ t ≤ T
h(xt, θ, U) for 1 ≤ t ≤ T − L

is

convex, which completes the proof of part 1. �

Part 1 implies directly part 2. �

Proof of Theorem 2.3:

Since the set {(x,U, θ, y) : y ∈ [x, x + Q(θ + u)]} is convex for all concave Q(.)
function the following minimization operators also preserve the convexity of
J .

g(x, θ, U) = min
y∈[x,x+Q(θ+U)]

J(y, U),

h(x, θ, U) = min
y ∈ [x, x + Q(θ + U)]

δ ≥ 0

J(y, δ, U)

The rest of the proof is identical to the proof of Theorem 2.1. �

Preliminaries to Proof of Theorem 2.2: We start with two lemmas that
will help us with the proof of Theorem 2.2.

Lemma 2.1 For any cost parameters, the newsboy function (holding-
backorder cost function)

L (D, y) = h

y∫
−∞

(y − w) dFD (w) + b

∞∫
y

(w − y) dFD (w)
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is submodular with y ∈ R (real) and D ∈ D, where D is the poset of random
variables with the first order stochastic dominance (�) as partial order.

Proof : We need to show that L (D, y) is submodular; that is L (D−, y−) +
L (D+, y+) ≤ L (D+, y−) + L (D−, y+) for all D−,D+ ∈ D and y−, y+ ∈ R,
for which D− � D+ and y− ≤ y+.We denote the cumulative distribution
functions of D− and D+ by F− and F+, respectively. Then by the definition
of stochastic dominance, if D− � D+ then we have F− (w) ≥ F+ (w) for
all w ∈ R. In the first step, we split integration intervals in L (D, y+) and
L (D, y−) by y− and y+.

L (D, y+) = h
y−∫
−∞

(y+ − w) dFD (w) + h
y+∫
y−

(y+ − w) dFD (w)

+b
∞∫
y+

(w − y+) dFD (w)

L (D, y−) = h
y−∫
−∞

(y− − w) dFD (w) + b
y+∫
y−

(w − y−) dFD (w)

+b
∞∫
y+

(w − y−) dFD (w)

We denote the difference of the above standing two terms by Δ (D). One can
show with the help of partial integration that Δ (D) := L (D, y+)−L (D, y−) =

(h + b)
y+∫
y−

FD (w) dw holds.

In the final step, we subtract Δ (D+) from Δ (D−) and use the first order
stochastic dominance of D+ over D−, meaning F− (w) ≥ F+ (w) for all w ∈ R.

Δ (D+) − Δ (D−) = [L (D+, y+) − L (D+, y−)] − [L (D−, y+) − L (D−, y−)]

= (h + b)
y+∫
y−

(F+ (w) − F− (w)) dw ≤ 0. This completes the proof. �

Lemma 2.2 Convex minimization operators resulting in supermodular func-
tions

Assume that y, x, θ, c are real numbers, z is a real vector, and g is a real
valued function.

1. If g (y) is convex then H (x, θ) := min
y∈[x;x+θ+c]

g (y) is supermodular (θ ≥ 0,

c ≥ 0).
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2. If g (y, z) is supermodular, then H (x, z) = min
y∈[x;x+c]

g (y, z) is supermodular

(c ≥ 0).

3. If g (y, z) is supermodular, then H (θ, z) = min
y∈[x;x+c+θ]

g (y, z) is supermodu-

lar (θ ≥ 0, c ≥ 0).

Proof : Proof of part 1: We define the global optimum point as ŷ :=
min
y∈R

g (y) ∈ R ∪ {−∞,+∞}. For supermodularity, we aim to show for all

x− ≤ x+, θ− ≤ θ+ that

H
(
x+, θ−

)
+ H

(
x−, θ+

)
≤ H

(
x−, θ−

)
+ H

(
x+, θ+

)
The domain of H (x, θ) can be divided into three parts.

H (x, θ) =

⎧⎨
⎩

g (x) increasing in x , if ŷ ≤ x
g (ŷ) constant , if ŷ − c ≤ x + θ and x ≤ ŷ
g (x + θ + c) decreasing in x + θ , if x + θ ≤ ŷ − c

We can observe that H
(
x−, θ+

)
≤ H

(
x−, θ−

)
holds for all x−, θ−, θ+, when

θ− ≤ θ+. We distinguish two cases by where x+ is situated:

When x+ ≥ ŷ − c, then H
(
x+, θ−

)
= H

(
x+, θ+

)
holds, which implies that

supermodularity inequality holds.

When x+ ≤ ŷ − c, then we can define a function with a single variable
h (x + θ) := H (x, θ) which is convex (as discussed in Theorem 2.1.1). Note
that a function (H) is supermodular if it is defined as a single argument convex
function (h) at its arguments’ non-negative linear combination, due to Lemma
2.6.2.a in Topkis (1998). This completes the proof. �

Proof of part 2: We introduce yA := arg min
y∈[x−;x−+c]

g (y, z−) and yB :=

arg min
y∈[x+;x++c]

g (y, z+) with x− ≤ x+ and z− ≤ z+. Now we can express

H (x−, z−) and H (x+, z+) as g
(
yA, z−

)
and g

(
yB , z+

)
, respectively. Further-

more, H (x−, z+) ≤ g
(
yA, z+

)
and H (x+, z−) ≤ +g

(
yB, z−

)
holds because

yA ∈ [x−;x− + c] and yB ∈ [x+;x+ + c].

If yA ≤ yB, then by supermodularity of g, we have

H (x−, z+)+H (x+, z−) ≤ g
(
yA, z+

)
+ g

(
yB, z−

)
≤ g

(
yA, z−

)
+ g

(
yB, z+

)
=

H (x−, z−) + H (x+, z+) from which supermodularity of H follows.

If yB ≤ yA, then both yA and yB are in the [x+, x− + c] interval, which imply
H (x+, z−) ≤ g

(
yA, z−

)
and H (x−, z+) ≤ g

(
yB, z+

)
. Therefore,
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H (x+, z−) + H (x−, z+) ≤ g
(
yA, z−

)
+ g

(
yB , z+

)
= H (x−, z−) + H (x+, z+)

from which supermodularity of H follows. �

Proof of part 3: We introduce y− := arg min
y∈[x;x+c+θ−]

g (y, z) and y+ :=

arg min
y∈[x;x+c+θ+]

g (y, z), for which y− ≤ y+ obviously holds.

By supermodularity of g (y, z), we have H
(
θ−, z−

)
+ H

(
θ+, z+

)
=

g (y−, z−) + g (y+, z+) ≥ g (y+, z−) + g (y−, z+) = H
(
θ+, z−

)
+ H

(
θ−, z+

)
implying the supermodularity of H (θ, z). �

Proof of Theorem 2.2:

Proof of part 1 is by induction. The base step consists of the following substeps:

fT+1 ≡ 0 and JT (yT , U) = LT (yT ) + fT+1 are obviously
supermodular. min

yT∈[xT ;xT +θT +U ]
LT (yT ) is supermodular in

(
xT , θT , U

)
by

Lemma 2.2.1. Finally, fT

(
xT , θT , U

)
= Ucp + θT cc + min

yT ∈[xT ;xT +θT +U ]
LT (yT )

and JT−1

(
yT−1, θ

T , U
)

= LT−1 (yT−1) + αE
[
fT

(
yT−1 − DT−1, θ

T , U
)]

are
supermodular because of the supermodularity preservation of the non-negative
linear combination and limit operators (see Lemma 2.6.1 and Corollary 2.6.2
in Topkis (1998)).

The general inductive step includes substeps as in the base step, and one
additional substep. That is to prove

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min
yt∈[xt;xt+θt+U ]

Jt

(
yt, θ

t+1, U
)

is supermodular in
(
xt, θ

t, U
)

with θt = (θt, θt+1, . . . , θT−1, θT ) ,
if T < t + L and

min
yt∈[xt;xt+θt+U ],θt+L≥0

Jt

(
yt, θ

t+1, U
)

is supermodular in
(
xt, θ

t, U
)

with θt = (θt, θt+1, . . . , θt+L−1, θt+L) ,
if t + L ≤ T

given that Jt

(
yt, θ

t+1, U
)

is supermodular and convex in
(
yt, θ

t+1, U
)
. The

first branch follows directly from Lemma 2.2, the second branch follows
from the supermodularity preservation of the projection operator (see Top-
kis (1998)), additionally. �

Proof of part 2, first statement: From part 1, we have ft+1

(
xt+1, θ

t+1, U
)

being
supermodular. By the definition of supermodularity, for x− ≤ x+, z− ≤ z+ we
have ft+1 (x+, z−)+ ft+1 (x−, z+) ≤ ft+1 (x−, z−) + ft+1 (x+, z+), where z± =
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θ±t , . . . , θ±min{t+L,T}, U

±
)

are vectors such that θ−t ≤ θ+
t , . . . , θ−min{t+L,T} ≤

θ+
min{t+L,T}, and U− ≤ U+.

We introduce new variables w− := y − x+, w+ := y − x− with an arbitrary
y. For w− ≤ w+, z− ≤ z+ we have ft+1 (y − w−, z−) + ft+1 (y − w+, z+) ≤
ft+1 (y − w+, z−) + ft+1 (y − w−, z+) for all y. This means that Ht (w, z) :=
ft+1 (y − w, z) is submodular for all t. By submodularity preservation of
the expected value and the non-negative linear combination operators (see
Topkis (1998)), Jt = Lt (yt) + αE

[
Ht

(
Dt,

(
θt+1, U

))]
is also submodular in(

Dt,
(
θt+1, U

))
. �

Proof of part 2, second statement: We denote the first order stochas-
tic dominance by �. Since ft+1

(
xt+1, θ

t+1
)

is convex for all t, we have
Ht (x) := ft+1

(
x, θt+1

)
convex for all t. H−

t (w, y) := Ht (y − w) is also sub-
modular in (w, y) for all t (due to Lemma 2.6.2.b in Topkis (1998)).

We introduce Q (w) := H−
t (w, y−)−H−

t (w, y+) with some y− ≤ y+. Because
H−

t (w, y) is submodular, it has non-increasing differences (see Theorem 2.6.1
in Topkis (1998)), so Q (w) is non-increasing. Therefore, for any D− � D+,
we have Q (D+) � Q (D−) implying E [Q (D+)] ≤ E [Q (D−)], as well (see
Proposition 4.1.1 and Lemma 4.7.2 in Puterman (1994)). The latter expression
means that E

[
H−

t (Dt, yt)
]

has non-increasing differences, which is equivalent
with its submodularity in (Dt, yt).

Finally, Jt = L (Dt, yt) + αE
[
H−

t (Dt, yt)
]

is submodular in (Dt, yt) because
of Lemma 2.1 and the submodularity preservation of the non-negative linear
combination operator (see Corollary 2.7.2 in Topkis (1998)). �

Proof of Theorem 2.4:

We prove the first statement indirectly. The limiting (y∗1, θ
∗
2) for T → ∞ exist

because of the discountedness (see Puterman (1994)), and y∗1 = ŷ1 holds. Let
Dmin > 0 be the smallest possible realization of D. Assume, that (y∗1, θ

∗
2)

does not satisfy the complementary slackness property. We can define an-
other feasible strategy (y1, θ2) such that y1 := y∗1 + ε and θ2 := θ∗2 − ε with

ε := min
{

Dmin

2 , x1 + θ1 + U − y∗1, θ
∗
2

}
> 0. We study the cost difference ΔJ1

between the two strategies.

ΔJ1 := J1 (y∗1, θ
∗
2, U) − J1 (y1, θ2, U)

= Pr [ŷ1 ∈ [x2 + ε;∞)] (L (y∗1) − L (y1) + αccε)

+ Pr [ŷ1 ∈ [x2;x2 + ε)] C1

+ Pr [ŷ1 ∈ (−∞;x2)] C2
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with x2 = y∗1 − D, and some C1 and C2 expected costs for the remaining
periods. By the first term of the summation, the two strategies follow the
same sample paths from the second period on, while none of the latter two
terms are possible, as 0 < ε < Dmin. Thus, we have Pr [ŷ1 ∈ [x2;x2 + ε)] =
Pr [ŷ1 ∈ (−∞;x2)] = 0 and Pr [ŷ1 ∈ [x2 + ε;∞)] = 1.

Therefore, ΔJ1 = L (y∗1)−L (y∗1 + ε)+αccε. Since L is convex and L′ < h, we
have L (y∗1 + ε)−L (y∗1) < hε. Using the required h < αcc sufficiency condition,
we find ΔJ1 > −hε + αccε > 0. However, the positive ΔJ1 contradicts with
(y∗1 , θ

∗
2) being the optimum. �

The proof of the second part is as follows. For the two-period problem, J1 can
be expressed explicitly. For a given U , the curve of the intersection of J1 with
the plane y1 + θ2 = 0 defines a new function, J̃1, which we parameterize with
variable y1.

J̃1 (y1) = L1 (y1) + αUcp − αy1cc + αL2 (ŷ2) [G1 (ω)]U−ŷ2

y1−ŷ2

+α
y1−ŷ2∫
−∞

L2 (y1 − ω) g1 (ω) dω

+α
∞∫

U−ŷ2

L2 (U − ω) g1 (ω) dω

We take the derivative of function J̃1 (y1) and look for negative values.

0 > ∂y1
J̃1 (y1) = +L′

1 (y1) − αcc − αL2 (ŷ2) g1 (y1 − ŷ2)

+α∂y1

y1−ŷ2∫
−∞

L2 (y1 − ω) g1 (ω) dω

As a result, we have the inequality,

L′
1 (y1) + α (h + b)

y1−ŷ2∫
−∞

G2 (y1 − ω) g1 (ω) dω < αcc + αbG1 (y1 − ŷ2)

By increasing its LHS, we create a sufficient condition for this inequality to
hold.

L′
1 (y1) + α (h + b)

y1−ŷ2∫
−∞

G2 (y1 − ω) g1 (ω) dω

≤ h + α (h + b)
y1−ŷ2∫
−∞

1 g1 (ω) dω = h + α (h + b) G1 (y1 − ŷ2)

≤ h (1 + α) + αbG1 (y1 − ŷ2)

When we check if the increased LHS is still below its RHS, we find
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h (1 + α) + αbG1 (y1 − ŷ2) < αcc + αbG1 (y1 − ŷ2)

which is equivalent to h (1 + α) < αcc.

Consequently, for a given U , {y1 + θ2 = 0, y1 → +∞} is an always decreas-
ing ray for J1 (y1, θ2, U) when h (1 + α) < αcc. Therefore, the constrained
optimum of the first period satisfies the complementary slackness property. �





Chapter 3

Workload-Dependent
Capacity Control in
Production-to-Order Systems

The development of job intermediation and the increasing use of
the Internet allow companies to carry out ever quicker capacity
changes. In many cases, capacity can be adapted rapidly to the
actual workload. The use of fast response contingent capacity
next to the permanent capacity is an especially important mean
for coping with demand variations in production-to-order systems,
where, as opposed to production-to-stock systems, inventory can-
not be used as a buffer. We introduce a set of Markov chain
models to represent workload-dependent capacity control policies.
We present two analytical approaches to evaluate the policies’ due-
date performance based on stationary analysis. One provides an
explicit expression of throughput time distribution, the other is a
fixed-point iteration method that calculates the moments of the
throughput time. We compare due-date performance, capacity,
capacity switching, and lost sales costs to select optimal policies.
We also give insight into which situations a workload-dependent
policy is beneficial to introduce. Our results can be used by man-
ufacturing and service industries when establishing a policy for
dynamic capacity planning.
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3.1. Introduction

Most production-to-order companies do not have a constant flow of orders.
This often leads to a varying queue of customers. Despite the uncertainty in
both arrival and service of orders, customers request tight due dates, and they
are also resentful of late deliveries. To compensate for the variations in the
orders’ frequency, they cannot use inventory, but a good practical solution is
to try to match the production rate to the actual workload or, when orders
are statistically identical, to the length of the queue. Such a policy may bring
benefits in labor cost reduction or in due-date performance. This chapter
investigates the value of using an optimal workload-dependent policy, where
“workload” means the number of orders in the system.

For studying workload-dependent capacity planning, we found a strong real-
life motivation in the area of engineer-to-order (ETO). As a definition for ETO,
we quote that of Gelders (1991): “In an engineer-to-order environment a com-
pany designs and produces products to customer order.” In the same paper,
Gelders concludes that ETO companies need “fast-response capacity,” which
is to be considered as a general characteristic of competitive ETO production.

Similarly to ETO companies, production-to-order (PTO) companies also need
to adjust their capacity to meet customer demand (see e.g. Vollmann et al.
(2005)). Apart from the motivating example for ETO in the paper of Gelders,
we give three examples of PTO companies, where workload-dependent capac-
ity management is applicable. In our first example, we describe a general
manufacturing situation with an expensive bottleneck machine. In this case,
the number of shifts the bottleneck machine works determines the production
capacity. The capacity can be set between zero to three shifts, depending on
the workload. Our second and third examples are companies, which typically
face unforeseen variations in the number of orders. The second is a special
translator service, where topic leaders share translation tasks and assign them
to specialized free-lance translators. The third example is a data recording
company, where audio tapes are transcribed to digital text format in order to
make later searches possible. While workers listen to the tapes, they type the
text into a computer.

In all the examples, using fast-response contingent capacity next to the per-
manent capacity is not just desirable, but also affordable. Production capacity
in manufacturing does not usually require high educational labor; labor ac-
quisition lead times are often very short. Although, in most service industry
situations labor has specific knowledge, acquisition lead time substantially de-
creased in the last decade due to the increasing use of the Internet. In the
case of the translator company, contact information of free-lance translators
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is carefully maintained, so distributing new tasks takes just hours. In case
of workers with high education, capacity flexibility can be gained by using
overtime or by contracting workers for flexible working times (see e.g. Filho
and Marçola (2001)).

In this chapter, we assume that we can afford instantaneous capacity changes
as an abstraction of opportunity for fast-response contingent capacity. For
our analysis, we consider a stationary, homogeneous Poisson arrival process
of orders, exponentially distributed service time, and FCFS service discipline.
We consider two tactical decisions. These are on the permanent capacity
level and on the policy for the use of fast-response contingent workers. The
contingent worker policy declares the necessary number of workers depending
on the number of jobs in the system. The actual number of contingent workers
(servers) is assumed to follow the contingent worker policy. Our objective is
to minimize the total average cost per time unit, where the costs consist of
labor costs, costs of contingent capacity adjustments, costs related to order
acceptance, work-in-process holding, and early or tardy order completion.

For this problem, we present our model by applying two evaluation approaches.
One approach aims at the exact calculation of the distribution of the through-
put time (time spent in the system). Another approach, which can be used to
deal with problems of a larger scale, is based on a moment-approximation of
the throughput time. With respect to the effectiveness of the flexible capacity
it is essential to increase and decrease capacity at the right moment. We deter-
mine the proper switching states for small scale problem instances by searching
exhaustively. The optimal strategy is compared in terms of performance with
the fixed capacity rules, which utilize permanent capacity only.

Previously, a number of researchers pointed out relations among service rate,
work-in-process and due-date performance. One application of due-date per-
formance measures is the evaluation of batch scheduling rules. In the schedul-
ing rules, capacity level and work-in-process are both consistently present as
parameters showing the strong relation to the due-date performance (see e.g.
Philipoom et al. (1993)). Lead time setting is a topic where work-in-process is
also recognized as an adequate parameter, which improves the performance of
the rules (see e.g. Bertrand (1983)). These two examples reveal the connection
between capacity level, work-in-process and due-date performance. However,
there is no model in the literature that incorporates all these three closely
related notions.

Our contribution to the existing literature is studying a queuing system with
adaptive capacity to satisfy the objective of having reliable production lead
times. Moreover, our examples and their analysis provide insight into when
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a workload-dependent strategy is effective, and also what characteristics this
strategy has.

The chapter is organized as follows. In the next section, we describe the related
literature. Then, in Section 3.3, we give a mathematical formulation of our
problem. Results on the effectiveness and characteristics of the strategy are
shown in Section 3.4. Finally, conclusions and plans for future extensions are
presented.

3.2. Related literature

Decisions on capacity changes were studied first in capacity expansion prob-
lems. In the case of deterministic demand with positive trend, Chenery (1952)
found that gas pipelines constantly have extra capacity. This was the basis
of his “excess capacity hypothesis” that says capacity is always larger than
demand; optimal overcapacity is to be investigated by looking at economies of
scale. Manne (1961) revised Chenery’s hypothesis when extending his model.
The extension of the model with a backlog option created an environment
in which the “excess capacity hypothesis” no longer held. Manne also stud-
ied stochastic, stationary demand without the backlog option. This model
resulted in a smaller deviation from what Chenery’s model suggested. Luss
(1982) gave a comprehensive review of the literature on capacity expansion.

Models with capacity expansion/reduction decisions and hiring/firing costs are
usually studied by means of dynamic programming. One example is the contin-
uous time DP model of Bentolila and Bertola (1990), where sensitivity analysis
on firing costs was presented. Rocklin et al. (1984) studied a service system
with non-stationary demand, including both capacity expansion/reduction de-
cisions and hiring/firing costs. Rocklin et al. showed the optimality of the
(S′, S′′)-policy known from inventory theory by the means of discrete time
DP. In their model, demand must always be met; if demand exceeds available
capacity, the capacity must be immediately increased to overcome the deficit.
For the most recent developments on capacity expansion/reduction models
see Eberly and van Mieghem (1997) (multi-factor investment strategies) and
Angelus and Porteus (2002) (aggregate planning). These two papers provide
similar optimality results as in Rocklin et al. for models, which do not require
automatical capacity addition as a response for capacity shortage.

Pinder (1995) deduced an approximation of optimal workload-dependent ca-
pacity control policy for stationary demand. In the model of Pinder, capacity
(resources) is treated as discrete; capacity adjustments are dependent on the
actual number of jobs (work), which are particular points in common with the
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content of this chapter. However, the workload-dependent policy class defined
by Pinder seemed too broad to give an explicit formula of policy evaluation
or to find an optimal solution. In addition, Pinder did not consider due-date
performance in any form, which is an essential part of our model. Besides, we
define a less broad policy class that entails less limitations in the analysis so
that we can provide additional insights.

Queuing models have made use of servers with load-dependent service times for
approximate performance analysis since the fundamental work of Avi-Itzhak
and Heyman (1973). These servers are apt to represent a sub-network as they
can be set to provide nearly the same characteristics. Marie (1979) introduced
a similar approximation technique. A comparison of the two techniques is
given in Baynat and Dallery (1993).

In some simple workload-dependent policy classes, the optimal (capacity) con-
trol policy can be analytically determined. Faddy (1974) introduced the class
of PM

λ policies for the control of water reservoirs. Namely, the policy PM
λ sets

the output rate to M if the water level in the reservoir reaches (or exceeds) λ,
and the output rate is set to zero if the reservoir is empty. This policy is still
a subject of research (see Kim et al. (2006)). Another simple policy class, the
two-step service rule, was defined in Bekker and Boxma (2005). A policy of
this class has a lower service rate, r1, when the workload is not more than K,
and a higher service rate, r2, if the limit K is exceeded. Such threshold-type
workload-dependent policies are also used for managing call-centers, border-
crossing stations, and airport check-in desks (see Bhandari et al. (2008), the
references therein, and Zhang (2005)). This policy class has the drawback
that the undesired frequent service rate changes are not excluded. Tijms and
van der Duyn Schouten (1978) proposed a different class of policies for inven-
tory control, called two switch-over level rule. A rule is characterized by two
inventory levels, y2 ≤ y1. An inventory decrease to y2/increase to y1 trig-
gers compensating raise/reduction. This design restrains frequent service rate
changes. In the next section, we specify a class of control policies for man-
aging capacity with a higher degree of freedom than the three simple classes
discussed. As a result, finding the optimal solution in our policy class allows
a better characterization of how to control capacity optimally.

3.3. Model formulation

In the context of this chapter, a workload-dependent capacity planning policy
is defined by two “switching points”, one down and one up switching point, for
each pair of neighboring capacity levels. Switching points are specific workload
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values, for which a job arrival or departure can trigger a switch in capacity.
If the system is at an up switching point, and a job arrives, we switch from
the lower capacity level to the upper. If the system is at a down switching
point, and a job departs, we switch from the upper capacity level to the lower.
Each up-switch incurs a hiring cost (ch), and each down-switch incurs a firing
cost (cf ). The firm has an admissible domain of permanent and contingent
capacity levels. The feasible permanent capacity levels are the integers larger
than or equal to Umin ≥ 0, and there is a joint constraint restricting the total
capacity level being at most Cmax ≥ 0. Naturally, the firm also needs to pay
for the used capacity. The unit costs of permanent and contingent capacity
per unit time are denoted by cp and cc, respectively.

Although this chapter does not investigate the impact of efficiency aspects,
one may also take into account the psychological effect of lower or higher
workload (see Bertrand and van Ooijen (2002)), and the efficiency of using
different levels of capacity (see Schlichter (2005)). Practically, the service rate
can be measured for each workload and capacity level (μw,c) and used in our
model.

The firm works with a fixed lead time (L). It has to pay charges for each
time unit when a job is late (ct). A smaller cost is due for holding if a job
is ready before the due date (ce). The same or somewhat less needs to be
paid for the work-in-process holding (cw). The number of jobs with which
the firm can deal is constrained from above by a constant integer, Wmax.
New jobs are refused if the firm already has Wmax number of jobs pending.
Consequently, lost sales can occur, which is penalized by a cost of cl for each
occasion. To sum up, we have an eight element vector of cost coefficients
(ch, cf , cp, cc, ct, ce, cw, cl). Although we use linear cost components for the
ease of presentation, our analysis applies for general cost functions, as well.

In this section, we define a workload-dependent capacity planning policy class,
and formalize the firm’s capacity control problem.

3.3.1 Definitions, assumptions and problem formulation

We assume a stationary environment with a homogeneous Poisson arrival pro-
cesses and exponential service times. Arrivals have a constant rate of λ; de-
partures have, in general, capacity level and workload-dependent rates. We
denote by μw,U,θ the service rates for a given number of jobs, w (workload),
and permanent/contingent capacity levels, U and θ. For the sake of better
comprehension, we assume
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μw,U,θ =

⎧⎨
⎩

cμ by joint processing, and
min {w,U} μ
+γ (min {max {0, w − U} , θ})μ by one-to-one processing

for all w, with c = U+γθ, where γ is the average productivity rate of contingent
workers, relative to the productivity of permanent workers. Joint processing
refers to the situations, where all capacity can concentrate on a single job (as
e.g. the three shifts case), while by one-to-one processing each job is processed
by one unit of permanent or contingent capacity (as e.g. machine processing).
In what follows, we use joint processing for the sake of easier presentation;
the model and analysis of the one-to-one processing mode differs only slightly
from the joint processing. Note that the γ = 1 case corresponds to assuming
identical servers (machines, workers or shifts). Jobs are served according to
FCFS discipline.

We define the set of workload-dependent capacity control policies for given
values of Umin, γ, Cmax and Wmax as Ω (Umin , γ , Cmax ,Wmax). A feasible
policy can be characterized by a triple Ψ = (U, θmax,Θ). The terms U ,
and θmax stand for the permanent, and maximum contingent capacity level
used by the policy. Necessarily, these terms have to satisfy the inequalities,
U ≥ Umin, θmax ≥ 0 and U + θmax ≤ Cmax. The term Θ denotes a θmax-by-2
matrix, which describes all the switching points. For the cases when θmax = 0,
we have an empty matrix. We use indices c → c + γ or c + γ → c with c ∈
{U + γθ : 0 ≤ θ ≤ θmax, θ is integer} to show that the switch occurs between
the capacity levels c and c + γ either up or down. Particularly, Θc→c+γ, and
Θc+γ→c are workloads, where the capacity is changed from c to c+γ, upwards,
or from c+γ to c, downwards, if a job arrival or departure occurs, respectively.
The elements of Θ are constrained by Wmax, and by each other as follows,

• Constraints on the lowest down- and the highest up-switching points
1 ≤ ΘU+γ→U and ΘU+γ(θmax−1)→U+γθmax

≤ Wmax − 1,

• Constraints between up-down switching points for each pair of capacity
levels
Θc+γ→c ≤ Θc→c+γ + 1 for all c ∈ {U + γθ : 0 ≤ θ ≤ θmax − 1, θ is integer},

• Constraints between down-switching points and between up-switching
points
Θc+γ→c ≤ Θc+2γ→c+γ and Θc→c+γ ≤ Θc+γ→c+2γ

for all c ∈ {U + γθ : 0 ≤ θ ≤ θmax − 2, θ is integer}.

In Figure 3.1, we show two workload-dependent capacity control policies,

Ψ = (1, 2,

(
3 1
4 2

)
) and Ψ = (1, 2,

(
3 3
4 5

)
) in the set Ω (1, 1, 3, 6). E.g.
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the former policy, Ψ = (1, 2,

(
3 1
4 2

)
), has the permanent capacity and max-

imum contingent capacity level parameters set to U = 1 and θmax = 2, up-
switching points Θ1→2 = 3, Θ2→3 = 4, and down-switching points Θ2→1 = 1,
Θ3→2 = 2. Other feasible policies are e.g. Ψ = (1, 1,

(
3 1

)
), which uses

only two capacity levels, or Ψ = (1, 2,

(
3 4
4 5

)
), when capacity becomes a

function of the workload. We assume that capacity adjustments can be done
instantaneously, in parallel with the change in workload.

Within the defined set of workload-dependent capacity control policies, we
define the subset of fixed policies, as the set of policies using only permanent
capacity (θmax = 0). Next, we define the set of continuous fixed policies
broadening the set of fixed policies by allowing the permanent capacity level
to be set to any real values between Umin and Cmax. The set of fixed policies is
the intersection of the set of continuous fixed policies and the set of workload-
dependent policies.

In order to simplify the exposition, we do not separate costs of hiring to firing,
but use a single cost coefficient, cs that penalizes capacity adjustments in
general. Note that as stationarity implies balance of hiring and firing, we
can aggregate the cost coefficients of hiring and firing to a switching cost
coefficient: cs = (ch + cf )/2. Based on this formula, cost counting with cs

provides the same result as separate cost counting with ch and cf .

For the cost coefficients mentioned in the model description, we have the
related costs. These costs can be separated into two groups. The costs of
capacity, switching, lost sales, and work-in-process holding are functions of
the policy only. The costs of earliness and tardiness are functions of the lead
time, additionally.

Now, we can formulate the capacity control problem as

min
Ψ∈Ω(Umin,γ,Cmax,Wmax)

costgroup1 (Ψ) + costgroup2 (Ψ, L) (1)

where L is the fixed lead time, costgroup1 (Ψ) is the sum of costcapacity (Ψ),
costswitching (Ψ), costlostsales (Ψ), costWIP (Ψ) and costgroup2 (Ψ, L) is the sum
of costearliness (Ψ, L), and costtardiness (Ψ, L) (see the description of the cost
components in Table 3.1). E.g. the first policy (left) in Figure 3.1, we can
expect to outperform the second policy (right) in all the costs but costcapacity.
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costgroup1 (Ψ) cost components dependent only on the policy

costcapacity (Ψ) permanent and contingent capacity costs
costswitching (Ψ) contingent capacity level adjustment costs
costlostsales (Ψ) lost sales costs
costWIP (Ψ) holding costs of the work-in-process

costgroup2 (Ψ, L) cost components dependent on the lead time, L, as well

costearliness (Ψ, L) holding costs of the finished products
costtardiness (Ψ, L) tardiness costs

Table 3.1: Description of the cost components (all are in terms of average
daily costs)

3.3.2 Evaluation of cost functions

In this section, we aim to express the costs one by one. First, we derive
the costs that are independent of the quoted lead time (costgroup1) except
for costWIP (Ψ). After that, we show two approaches to evaluate the lead
time dependent costs (costgroup2) and costWIP (Ψ). We note that in real-life
situations, where the cost functions need to be evaluated for general arrival
and service processes, our Poisson process based approaches can help finding
the optimal policy by giving a starting guess, however simulation is necessary
for tuning the policy parameters afterwards.

We create a Markov chain, MCΨ,γ,λ,μ, according to the policy, the given arrival
rate, and the given service rate unit. In this Markov chain, we have the
states labeled by (w, c), the workload (number of jobs in the system), and
the capacity usage. A policy Ψ can be given by the arrival matrix (AΨ), and
the departure matrix (DΨ). These matrices are square; rows and columns
are indexed by the states of the Markov chain. Elements are ones at the
related arrival or departure arcs of the Markov chain and zeros elsewhere.
The state space of MCΨ,γ,λ,μ depends on the policy. As an example, we
show the transition rate diagram of MCΨ,γ,λ,μ in Figure 3.1 for the policies

Ψ = (1, 2,

(
3 1
4 2

)
) and Ψ = (1, 2,

(
3 3
4 5

)
). Note that the previously

defined policy class, Ω (Umin , γ , Cmax ,Wmax), for Umin = 0 contains policies
with U = 0, which correspond to M |M |θmax|Wmax queuing systems for any
θmax = 1, 2, . . . , Cmax.

Via steady state analysis, the first cost group can be easily evaluated. If we
add λAΨ to μDΨ weighted in rows (w, c) by capacity c, we can obtain QΨ,
the transition rate matrix of the Markov chain.
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Figure 3.1: MCΨ,γ,λ,μ for Ψ = (1, 2, [3, 1; 4, 2]) and Ψ = (1, 2, [3, 3; 4, 5])

QΨ
(w1,c1),(w2,c2)

= λAΨ
(w1,c1),(w2,c2)

+ c1μDΨ
(w1,c1),(w2,c2)

(2)

We define the diagonal elements of QΨ as the negative state leaving rates:
vΨ
i := diag

(
QΨ

)
i

= −
∑
j �=i

QΨ
i,j. Solving the linear equation system{

QΨπΨ = 0
eπΨ = 1

, where e is the all one vector, we gain the limiting dis-

tribution πΨ, with elements πΨ
w,c corresponding to the time fraction being in

state (w, c). Eventually, we can specify all the costs of the first group.

costcapacity (Ψ) = cp

∑
w

πΨ
w,U + cc

∑
U<c

c
∑
w

πΨ
w,c

costadjustment (Ψ) = 2csλ
∑

(w,c)∈Υ

πΨ
w,c

costlostsales (Ψ) = clλP (lost sale)
costWIP (Ψ) = cwλP (lost sale) E [X]

(3)

where P (lost sale) = πΨ
Wmax,U+θmax

is the probability that a job is rejected,
E [X] is the throughput time’s (or sojourn time’s) expected value, and Υ is
the set of states from which the up-switches in capacity are made. Recall that
it is enough to count costs for the up-switches twice because of the stationar-
ity assumption, and that the calculation of costWIP needs the yet unknown
expected throughput time.

In what follows, we complete the calculation of the work-in-process costs, and
deduce the earliness and tardiness costs in two different ways. Both approaches
aim at identifying the throughput time as a random variable so that the due-
date performance of the policies can be determined.
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3.3.2.1 Derivation of the throughput time distribution

In order to derive an explicit formula for the throughput time distribution, we
observe an arbitrarily selected job while it is in the system. In addition to the
system’s workload and the used capacity, we observe the queue position of the
pointed job. Therefore, we extend our Markov chain MCΨ,γ,λ,μ to an extended
Markov chain EMCΨ,γ,λ,μ, which has the queue position of the pointed job
(q) as an extra dimension. EMCΨ,γ,λ,μ has states labeled by (w, c, q), the
workload, capacity, and queue position of the pointed job, respectively, with
c ∈ {U + γθ : 0 ≤ θ ≤ θmax, θ is integer}, and 0 ≤ q ≤ w ≤ Wmax. When
the pointed job arrives, it enters one of the states, for which 0 < q = w hold;
its lifetime ends when entering a state having q = 0. Because of the FCFS
discipline, during the lifetime of the job, the queue position of the pointed job,
q decreases when a job is ready, whereas it is unaffected by arrivals. Naturally,
both arrivals and departures may affect its total time in the system.

We want to obtain the probability that starting from state r at time 0 we will
be in state s at time t in EMCΨ,γ,λ,μ. This probability we denote by P̄Ψ

r,s (t).

In the appendix, we show an example for EMCΨ,γ,λ,μ and derive an explicit
expression for P̄Ψ

r,s (t) by applying uniformization.

The states (w, c, 0), where the pointed job may exit the system, are modeled
as absorbing states. This way, we can express the throughput time CDF as
the sum of probabilities of getting to certain exit states as follows.

F r,Ψ (t) =
∑

s∈{(w,c,0)}

P̄Ψ
r,s (t) (4)

is the throughput time CDF if the pointed job arrives when the system is in
state r = (wr, cr, qr) with qr = wr.

The stationary distribution (πΨ for MCΨ,γ,λ,μ) is different from the distribu-
tion right after the arrival of the pointed job, which we denote by πΨ

A. We
can use the arrival matrix (AΨ) to determine the probability distribution of
being in a state right after the arrival πΨ

A = πΨAΨ. We can express the after
arrival distribution of the extended Markov chain, EMCΨ,γ,λ,μ, which we call
π̄Ψ

A, from the after arrival distribution of MCΨ,γ,λ,μ.

π̄Ψ
A,(w,c,q) =

{
πΨ

A,(w,c) , if q = w

0 , if q 
= w
(5)

Once we have the extended starting distribution π̄Ψ
A, the throughput time CDF

(FΨ) can be expressed.

FΨ (t) =
∑

r=(wr,cr,qr)
qr=wr

π̄Ψ
A,rF

r,Ψ (t) (6)
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Finally we can give formulas for the lead time dependent cost functions.

costearliness (Ψ, L) = ceλ (1 − P (lost sale))
L∫
0

(L − t) dFΨ (t)

costtardiness (Ψ, L) = ctλ (1 − P (lost sale))
∞∫
L

(t − L) dFΨ (t) (7)

In the special case, when ce = cw, we can use a simplified formula for the sum
of the throughput time related costs.

costearliness (Ψ, L) + costtardiness (Ψ, L) + costWIP (Ψ) =

λ (1 − P (lost sale))

(
(ct + ce)

∞∫
L

(t − L) dFΨ (t) + ceL

)
(8)

3.3.2.2 Moment approximation of the throughput time

Apart from the distribution function, we also derive a moment approxima-
tion for the throughput time as an alternative for the steps from applying
uniformization to the step of expressing F (t) in (6). This approach allows
evaluation of large scale problems, as it both speeds up the calculations and
needs less memory. Besides, throughput time moments can be determined with
higher accuracy than extracting them from the throughput time distribution.

We evaluate the moments based on the equation that describes the relation
of the conditional expected throughput times. We denote the kth moment of

the throughput time if starting from state r by E
[
(Xr)

k
]

and the duration of

the visit to state r by Zr. Then we have

E
[
(Xr)

k
]

=
∑
s

P̄Ψ
r,s E

[
(Zr + Xs)

k
]

(9)

where P̄Ψ is the extended transition probability matrix, containing the prob-
abilities of going from state r to some neighboring state s. Similar to the
approach in the previous subsection, a state is described by the components
(w, c, q) and therefore the definition of P̄Ψ in (9) is identical to the one in the
appendix, equation (17).

For small state spaces, we can solve this linear system by matrix inversion, but
for larger state spaces, we need a vector iteration to determine the moments
for the relevant states. This vector iteration can be established by indexing
the equation by the iterator n, and declaring the starting state.⎧⎨

⎩
En+1

[
(Xr)

k
]

=
∑
s

P̄Ψ
r,s En

[
(Zr + Xs)

k
]

E0

[
(Xr)

k
]

= 0
(10)
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Using the independence of conditional throughput time and visit duration, we
can write

E
[
(Zr + Xs)

k
]

=
k∑

j=0

(
k
j

)
E

[
(Zr)

k−j (Xs)
j
]

=
k∑

j=0

(
k
j

)
E

[
(Zr)

k−j
]
E

[
(Xs)

j
] (11)

We can notice in expression (11) that for the evaluation of higher moments all
the previous ones are needed in the iteration, (10). In the general form, we
evaluate the first K moments.

We can use the following algorithm. We increase the moment iterator k from
1 to K. For each k we take limit of n at ∞ with the vector iteration to
evaluate the moments E

[
(Xr)

k
]

one after the other, inductively. Similarly

to (6), we weight the conditional moments by the after arrival distribution
of the extended Markov chain, EMCΨ,γ,λ,μ (that is π̄Ψ

A), which gives the kth
moment of the throughput time, E

[
Xk

]
.

E
[
Xk

]
=

∑
r=(wr ,cr,qr)

qr=wr

π̄Ψ
A,rE

[
(Xr)

k
]

(12)

In practice, we can evaluate the equation for the first two moments, E [X] and
E

[
X2

]
, and fit a suitable distribution, e.g. in the class of gamma distributions

to approximate the throughput time CDF, FΨ (t). Eventually, cost of earliness
and tardiness can be found using equations labeled by (7).

3.4. Results

We try to achieve two goals with our numerical experiments. First, we would
like to show in which situations workload-dependent capacity planning is worth
using. We study the effect of setting high/low switching cost coefficient as
well as the different settings of lead time, and arrival rates for a fixed service
rate. Second, we would like to characterize the workload-dependent policies as
compared to the fixed capacity policies, the policies that can use one capacity
level only. We illustrate the practical use of workload-dependent policies in
the end of the section.

Our model has its limitations. We find the optimal policy via enumeration.
Therefore the number of policies is an important factor of the computation’s
duration. Using our exact, throughput time distribution evaluation approach
is not possible in acceptable time for systems that can either use many capacity
levels, or handle high number of orders economically. In these cases the number
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of workload-dependent policies and their state space increases to large values,
so we need to use the approximation approach (e.g. when Umin = 0, Cmax = 6
and Wmax = 10, the number of policies is 16844, the largest state space by
the due-date performance evaluation has 203 states). As an initial setting, we
take Umin = 0, Cmax = 3 and Wmax = 6 (number of policies is 288, maximum
number of states is 57) for which we use the throughput time distribution
evaluation approach. We study large scale settings in subsection 3.4.3, and
3.4.5, where we use the moment approximation approach.

We assume a service rate of μ = 0.04/hour in all of experiments, and vary
the interarrival rate, λ, from 0.01 to 0.12/hour with step size of 0.01/hour.
We study lead time (L) values from the interval 0 to 180 hours with step
size of 10 hours. In our cost coefficient test-bed the capacity cost coefficients
have a pointed role. Namely, we fix the permanent capacity cost coefficient
to 100e/hour, to normalize the test-bed. Our basis values for the contingent
capacity productivity rate, γ, is 0.9 and for the contingent capacity cost coef-
ficient is 110e/hour. We observe the model’s behavior for different switching
cost coefficients, interarrival rates, and lead time settings. For each of the
remaining cost parameters we examined three values. To the lost sales coef-
ficient, cl the values, 3000, 4000, and 5000e/occasion are assigned. We do
not distinguish the earliness and the work-in-process holding unit costs, and
calculate according to formula (8). For ce = cw, we take the values 1, 2, and
5e/job·hour. Finally, ct has values 10, 25, and 100e/job·hour, respectively.

3.4.1 Value of workload-dependent capacity control

We investigate the value of workload-dependency in capacity control in dif-
ferent environments. We compare workload-dependent capacity policies with
fixed capacity policies. The (relative) value of workload-dependent capac-
ity flexibility, V FC%, we define as the difference between the expected total
cost of the optimal fixed and the optimal workload-dependent capacity policy,
which is divided by the expected total cost of the optimal fixed policy, and is
expressed in percentages. For example, a V FC% value of 5 means that given
a firm that uses the optimal fixed capacity policy, it can reduce its costs by
5% by introducing the optimal workload-dependent policy. We conduct nu-
merical experiments to circumscribe the cases where high V FC% values are
to be expected.

In Figure 3.2, we depict contour lines of V FC% value functions for cs values
1000 and 3000e/occasion.1 Contour lines are drawn at the V FC% values 2,
8, and 15. As an example for interpreting Figure 3.2, we take the V FC%

1This type of figure is called contour map, first used in cartography. It shows level sets
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Figure 3.2: V FC% values for Umin = 0, Cmax = 3, Wmax = 6, and μ = 0.04

function for cs = 3000e/job·hour, which correspond to the solid contour lines.
E.g. we look at the V FC% function values on the line, L = 40: for λ = 0.05
or λ = 0.09 . . . 0.12 the value is below 2, for λ = 0.06, 0.07 or 0.08 the value
is between 2 and 8, for λ = 0.02, or 0.04 the value is between 8 and 15, for
λ = 0.01 or 0.03, the value is above 15. The cost coefficients, cl, ce, and ct take
the values 5000e/occasion, 1e/job·hour, and 100e/job·hour, respectively. In
what follows, we discuss the major properties of the V FC% value that can
be observed in this figure. The 33 = 27 combinations of the cost coefficients
cl, ce, and ct that we checked consistently support these properties and its
reasonings, however they do not guarantee the properties to hold for different
cost coefficient settings. An exception is the first property, which we present
as a lemma with the sketch of the proof.

Lemma 1. When the switching cost coefficient decreases, the V FC% value
increases

Proof. Since fixed capacity policies use a constant capacity level, they do not
incur switching cost as opposed to the rest of the policies. While an increasing
switching cost coefficient entail increasing total costs among the workload-
dependent policies, the optimal fixed policy and its cost remain the same.

of a function, which has two arguments. Here, we plot two V FC% functions for cs=1000

and 2000, respectively, with the arguments, interarrival rate and lead time
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Consequently, the lower the switching cost coefficient, the higher the V FC%
value.

Property 1. When the quoted lead time increases, the V FC% value de-
creases

Long quoted lead times, or equivalently, loose due dates penalize less the long
waiting times. Long waiting times have a utilization smoothing effect similar
to workload-dependent capacity flexibility. This means that when lead time
(L) values are high enough, the V FC% values are low.

Property 2. When the arrival rate increases, the V FC% value decreases

As interarrival rate (λ) increases, we use correspondingly more capacity. U
also increases for the optimal policy. This way, there is less and less room
for workload-dependent policies to use contingent capacity. This results in a
decreasing trend in the V FC% value.

Property 3. The effect of capacity discreteness: cuts in the V FC% value

Independently of the switching cost coefficient, one can observe some regions,
where the V FC% value drops. The reason is the discreteness of the capacity.
It would make a difference if we could set an optimal fixed capacity level on
a continuous basis. We plot the integer contours of the optimal continuous
capacity level in Figure 3.3 keeping the contour lines of Figure 3.2. There
are regions where the optimal fixed policies get close to the continuous fixed
optimum, and regions where they are distant. Where the continuous fixed
optimum is close to an integer, the (discrete) fixed capacity policies perform
reasonably well, while where the continuous fixed optimum is far from an
integer level, fixed capacity policies perform poor. As the workload-dependent
policies are less affected by the discreteness of the capacity, the V FC% value
decreases around the integer contours of the optimal continuous fixed capacity.

Property 4. Steep increase in the V FC% value for small interarrival rates
for Umin = 0

To the left from the continuous fixed capacity contour at the value of one in
Figure 3.3, the V FC% value steeply increases when the interarrival rate gets
smaller. Fixed policies cannot adapt to low interarrival rates, as the fixed
policy with a fixed zero capacity level is highly uneconomical, whereas the
workload-dependent policy can make use of the zero capacity level for low
workload values. As a result, the V FC% value is high for low interarrival
rates, when Umin = 0.

Our further experiments showed that Property 4 does not generally hold. In
particular, we need to differentiate between closable systems, which we define
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Figure 3.3: Continuous fixed optimum for Umin = 0, Cmax = 3, Wmax = 6 ,
and μ = 0.04

as Umin = 0, and non-closable systems having Umin > 0. We adjust property
4 for the case of non-closable systems. Figure 3.4 depicts what happens if we
change Umin in the parameter setting of Figure 3.2 from zero to one.

Property 4.* Low V FC% values for small interarrival rates and Umin > 0

If we consider a non-closable system with Umin = 1, then the constant one
fixed capacity is optimal among both the fixed and the workload-dependent
policies when the interarrival rate tend to zero, resulting in V FC% = 0.

We also performed sensitivity analysis in Wmax and Cmax. We observed an
increase of the V FC% value in both cases. The reason may be that if we
increase the Wmax or Cmax value by one, the number of fixed capacity policies
remains the same or increases only by one, respectively, whereas the increase
in the number of workload-dependent capacity policies is very large in general.
The increase in Wmax induces an overall increase in V FC% values, while the
increase of Cmax from Cold

max = 3 to Cnew
max = 4 affects the graph of V FC%

values only at λ values above around μCold
max.
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Figure 3.4: V FC% values for Umin = 1, Cmax = 3, Wmax = 6 , and μ = 0.04

3.4.2 Sensitivity analysis on V FC% for estimated interarrival
rates

In real-life situations the interarrival rate is not known with certainty, so its
estimation is subject to error. Naturally, the value of capacity flexibility,
V FC%, is also not certain, but an estimate. It is therefore important to study
how significant V FC% estimation errors the various levels of interarrival rate
estimation error entail. In other words, it is important to perform a sensitivity
analysis on the value of workload-dependent capacity control for estimated
interarrival rates.

We study the effect of the relative interarrival rate estimation error, which we
denote by Δλ, on the estimation of the value of capacity flexibility, V FC%.
The interarrival rate estimation can be expressed as

λ̂ = λ (1 + Δλ). (13)

We perform sensitivity analysis on V FC% for interarrival rate estimation
error. In our numerical experiments we calculate the V FC% values for over-
/underestimated interarrival rates. The definition of V FC% remains the
same as before. The only difference is that both the fixed and the workload-
dependent costs are calculated under the misestimated interarrival rates.

Our numerical experiments use the already introduced 33 = 27 combinations
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of the cost coefficients cl, ce, and ct, and we additionally take four values of
the switching cost coefficient, cs: 0, 1000, 2000, and 3000, and three quoted
lead-time values, L: 30, 60, and 90, with Umin = 0, Cmax = 3, and Wmax = 6.
Table 3.2 shows the real value of introducing the workload-dependent capacity
control, the average of the 33 cases, for the cost coefficient setting of Figure
3.2 (cl = 5000 ce = 1, and ct = 100), for a quoted lead-time of L = 60, and
cs = 3000. The Δλ = 0 line corresponds to the estimated value of capacity
flexibility already depicted in Figure 3.2, and the Δλ 
= 0 lines correspond to
the real value of capacity flexibility for various nonzero relative error levels of
the interarrival rate estimation. The Δλ values of −0.3, −0.15, 0, 0.15, 0.3
were selected based on a simulation that measures demand forecast error for
an interarrival time history of 50 jobs.

Although in the 27 cases we typically observed that an overestimated (underes-
timated) interarrival rate (Δλ < 0) implies an underestimated (overestimated)
V FC% value (in line with Property 2), few exceptions occur for higher switch-
ing cost coefficients, which we demonstrate in Table 3.2 (see λ = 0.02, 0.03,
0.06, 0.07, and 0.08). These few exceptions correspond to λ values where the
Δλ = 0 case has locally increasing V FC% values, because then Property 2
does not hold.

interarrival rate (λ)

Δλ 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

-0.30 44.40 0.87 5.96 30.90 21.04 -0.45 -0.65 -0.09 19.43 0.00
-0.15 34.53 2.21 12.06 23.17 11.58 -0.48 0.32 1.87 10.39 0.00
0.00 25.60 5.01 19.61 15.44 3.56 0.42 2.18 4.74 2.17 0.00
0.15 17.68 8.51 26.42 7.68 -1.70 1.70 4.88 7.85 -3.98 0.00
0.30 10.73 12.76 32.00 1.01 -4.54 3.56 7.61 10.39 -7.75 0.00

Table 3.2: Average V FC% values for L = 60, and cs = 3000

The positive and negative absolute V FC% estimation errors are similar in
absolute value. For L = 60 the positive and negative worst-case scenarios yield
−15.01, and 20.09 absolute error, respectively. The absolute error does not
decrease substantially with higher interarrival rates (for λ = 0.9, . . . 0.12 the
worst-case absolute errors are −10.72, and 16.77), which results in high worst-
case relative errors −40.40%, and 111.19%. For lower interarrival rates (for λ =
0.1, . . . 0.8) worst-case relative errors are much lower: −6.32%, and 16.29%.
Worst-case absolute error of the V FC% estimation on the whole parameter-
scenario setting was 20.30 for L = 90. Thus, the dangerous settings are the
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high λ values, where underestimation of λ can lead to drastic overestimation
of V FC%, while only moderate estimation errors can be expected for lower λ
values.

3.4.3 Characterization of workload-dependent policies for un-
capacitated, large scale settings

An uncapacitated situation means that one can always hire the necessary
capacity. That capacity is not limited, can be expressed either by Cmax =
Wmax or Cmax = ∞. We study the uncapacitated setting with Umin = 0,
λ = 0.10/hour, μ = 0.04/hour, γ = 0.9, L = 30 hours, and cost coefficients,
(cp, cc, cs, cl, cw, ce, ct) = (100, 110, 1000, 3000, 5, 5, 100), and observe changes
of the optimal workload-dependent policy for an increasing Wmax value. Our
findings hold for all the other cost coefficient combinations from our test-bed.
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Figure 3.5: Total cost and maximum capacity of optimal workload-dependent
policies for changing Wmax

We found that the capacity/lost sales cost component is monotone increas-
ing/decreasing in Wmax for the optimal policy. Moreover, the simultaneous
stagnation of these two costs entails the stagnation of the total costs. Figure
3.5 shows that

• the total cost is decreasing in Wmax up to a certain value (about Wmax = 6);
thereafter it stagnates as the visiting probabilities of the high workload
levels become very small, and it converges in a generally decreasing manner
(not necessarily monotonically decreasing). As a consequence, it is a safe
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alternative to allow arbitrarily high workload values in the uncapacitated
case.

• the maximum capacity level (U+θmax) and the number of used capacity lev-
els (θmax) show a monotone increasing, converging shape. U is unaffected;
here it is always 2.

We also observed that optimal switching points of the lower levels tend to
change less and less, when Wmax increases. In Figure 3.6, the first six pairs of
switching points can be seen, in which optimal policies did not differ for large
enough Wmax values (13 ≤ Wmax ≤ 40). We can see that up- (to the right)
and down-switching points (to the left) limit the attainable states in a closely
linear manner.

0 1 2 3 4 5 6 7 8 9 10 11
2

4

6

8

workload

ca
pa

ci
ty

up−switching points
down−switching points

Figure 3.6: First six pair switching points of optimal policies for
13 ≤ Wmax ≤ 40

3.4.4 Characteristics of workload-dependent policies vs. fixed
policies

We try to answer the question of why workload-dependent policies outperform
the fixed policies. Workload-dependent policies often compensate for switching
costs by using less capacity, avoiding lost sales, and providing a throughput
that gives less earliness-tardiness costs. The primary cost savings these policies
achieve are normally in tardiness and lost sales cost. In the example shown in
Table 3.3, the optimal workload-dependent policy beats the fixed optimum in
all the cost components except costswitching.

We emphasize that costcapacity and costearliness + costtardiness + costWIP both
decreased. Thus, the throughput time distribution adapts better to the lead
time (L), which in turn results in a better due date performance. The reason
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parameter λ μ L cp cc cs cl ce = cw ct

value 0.07 0.04 50 100 110 1000 3000 5 100

policy class optimal Ψ V FC% capacity switch. lost s. WIP+early+tardy

workl.-dep. (1,2,[3,1;4,2]) 0 193.0 17.9 11.4 45.6
fixed (2,0,[ ]) 7.3 200 0 19.4 69.6

cont. fixed 2.18 6.1 218.2 0 14.7 52.4

Table 3.3: An example, where all cost components are decreased by workload-
dependency, except for the switching cost.

for the better adaption is twofold. With workload-dependency the expected
value of the throughput time gets closer to the actual lead time. In addition,
the variance of throughput time decreases. Table 3.4 shows the expected value
and standard deviation of throughput times (E [X] and Std [X]) for the pre-
vious example, for which the corresponding Markov-chain, MC(1,2,[3,1;4,2]),λ,μ

was illustrated in Figure 3.1.

Policy E [X] Std [X]

Ψ = (1, 2, [3, 1; 4, 2]) 37.5 21.5
Ψ = (2, 0, [ ]) 39.0 30.3
continuous fixed 2.18 33.0 26.9

Table 3.4: Expected value and standard deviation of throughput time in the
same setting.

3.4.5 An illustration to the use of workload-dependent policies
in real-life

This subsection we dedicate to illustrating how our procedure can be applied
for evaluation of real-life labor arrangements options. We compare two fast-
response labor arrangements alternatives to using permanent capacity exclu-
sively: the use of overtime, and the use of temporary labor.

A firm produces colored neon light figures using a quoted production lead
time of 4 weeks (L). On average, the firm receives 3.8 orders weekly (λ). One
worker can manufacture one neon light figure in a week (μ). In the present
situation, all 4 regular workers work 8 hours each day. The manager would
like to introduce a fast-response flexible labor arrangement in order to cope
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better with the varying workload. He compares two alternatives, well-known
in practice: the overtime and the on-call temporary labor arrangements.

Including the present situation, we define three workload-dependent policy
classes corresponding to the alternatives: the fixed, the overtime, and the
temporary labor policy classes. The classes we parameterize with the number
of regular workers, an integer, which we denote by U , and the switching points,
Θ. The capacity levels of the classes are U ,

(
U, 9U

8

)
,(U,U + 1, . . . , U + 5),

respectively. Overtime costs 1.5 times the regular capacity cost, but it does
not incur switching cost, whereas temporary labor costs 1.25 times the regular
capacity and it does incur switching cost. The service rate at workload w, and
capacity level c is μw,c = cμ, as before. New orders are rejected if the firm
already has 40 jobs (Wmax).

Table 3.5 summarizes the results for the cost coefficients
(cp, cs, cl, cw, ce, ct) = (50e/hour, 100e/occasion, 3000e/occasion, 5e/week,
5e/week, 100e/job·hour). We conclude that the temporary labor arrangement
is the manager’s best alternative in this particular case.

fast-response flexible
labor arrangement

opt. #reg.
workers (U)

optimal switching points
(Θ)

total
costs

fixed 4 ( ) 8586.7
overtime 4 (21 22) 8506.8

temporary labor 3 (
14 16 18 21 23
10 11 13 14 15

)T

8275.6

Table 3.5: Expected costs of the different labor arrangements.

3.5. Conclusions and future research

Under the assumption that fast-response capacity changes are possible, we de-
fined a set of workload-dependent capacity planning policies. We introduced a
general capacity control model to find the optimal workload-dependent policy
with respect to permanent/contingent capacity, capacity switching, lost sales,
work-in-process holding, and earliness/tardiness costs for a fixed quoted lead
time. Providing formulas for the cost components one by one via station-
ary analysis, we evaluated this model, and gave insight into the value of the
workload-dependent capacity management policies.

We measured the cost savings by using the workload-dependent policies as
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compared to the fixed policies, which can use only one capacity level. Large
switching cost coefficients, high demand rates, and long quoted lead times
are detrimental, while high workload limits (Wmax) are beneficial for the sav-
ings. Capacity discreteness can strongly affect the cost savings, as workload-
dependent policies can counteract non-integer capacity needs, while fixed poli-
cies cannot. We showed that when the necessary capacity is between level 0
and level 1, we need to differentiate two cases: if the zero permanent capac-
ity level is feasible (closeable system) then the savings are particularly high,
whereas if the zero level is infeasible the savings are low.

In the uncapacitated case, we observed that using a sufficiently high order-
acceptance rate, or equivalently a high workload limit (Wmax), is a safe choice
when selecting the workload-dependent strategy. We found that for high work-
load limits, the optimal capacity up- and down-switching points tend to change
less and less, and appear to form two lines. This observation may facilitate
future research on the policy class comprising this linear type of policies.

Finally, we revealed that compared to the optimal fixed capacity policies, the
optimal workload-dependent capacity planning policies can achieve a better
due-date performance. In particular cases they can also spare capacity, and
decrease lost sales probability at the same time (as shown in Table 3.3).

Appendix

In this appendix, we apply uniformization for EMCΨ,γ,λ,μ in order to obtain
the probability that starting from state r at time 0 we will be state s in t
time.

We can define both ĀΨ extended arrival matrix, and D̄Ψ extended departure
matrix for EMCΨ,γ,λ,μ based on AΨ, and DΨ, as follows.

ĀΨ
(w1,c1,q1),(w2,c2,q2)

=

{
1 , if AΨ

(w1,c1),(w2,c2)
= 1, and q1 = q2

0 , otherwise

D̄Ψ
(w1,c1,q1),(w2,c2,q2)

=

{
1 , if DΨ

(w1,c1),(w2,c2)
= 1, and q1 − 1 = q2

0 , otherwise
(14)

for all (w1, c1, q1), and (w2, c2, q2). The transition rate diagram of EMCΨ,1,λ,μ

for the policy Ψ = (1, 2, [3, 1; 4, 2]) can be seen in Figure 3.7.

The extended transition rate matrix, Q̄Ψ, can be given in two steps like before.

Q̄Ψ
(w1,c1,q1),(w2,c2,q2)

= λĀΨ
(w1,c1,q1),(w2,c2,q2)

+ μc1
D̄Ψ

(w1,c1,q1),(w2,c2,q2)
(15)

if (w1, c1, q1) 
= (w2, c2, q2).
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Figure 3.7: EMCΨ,γ,λ,μ, for γ = 1 and Ψ = (1, 2, [3, 1; 4, 2])

Next, we define the vector of state leaving rates, v̄Ψ.

v̄Ψ
s =

∑
s �=r

Q̄Ψ
s,r (16)

Now, the remaining diagonal elements of Q̄Ψ can be defined as Q̄Ψ
s,s = −v̄Ψ

s .

From Q̄Ψ we can derive the extended transition probability matrix, P̄Ψ.

P̄Ψ
r,s =

{
Q̄Ψ

r,s

v̄Ψ
r

, if r 
= s

0 , if r = s
(17)

We use the uniformization method; we add loop arcs to most of the states
in the extended Markov chain (EMCΨ,γ,λ,μ) so that the distribution of the
time between two subsequent events (arrival or departure or loop) becomes
identical. The uniformized event occurrence rate is v̄UΨ = max

s
v̄Ψ
s . The

uniformized extended transition probability matrix, elementwise, is

P̄UΨ
r,s =

{
v̄Ψ

r

v̄UΨ P̄Ψ
r,s , if r 
= s

1 − v̄Ψ
r

v̄UΨ , if r = s
(18)

Using the matrix, P̄UΨ, we can determine the probability of getting from state
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r to s in time t.

P̄Ψ
r,s (t) =

∞∑
n=0

((
P̄UΨ

)n)
r,s

e−v̄UΨt (v̄
UΨt)

n

n! (19)



Chapter 4

Permanent-Contingent
Budgeting in Services

We model budgeted services with fixed and variable expenditures
and illustrate this general setting with the situation, where the
fixed and variable expenditures correspond to permanent and con-
tingent capacity costs, respectively. No backordering of tasks
is allowed, instead, capacity shortages are penalized in each pe-
riod. Dedicated to optimizing the permanent and contingent ca-
pacity levels, six models are developed, distinguishing restricting
and guiding budget environments, as well as linear, quadratic and
relative quadratic capacity shortage penalty cost functions. We
provide some analytical results on the linear shortage cost case,
and perform numerical experiments for all the six models, showing
among others the optimal budget spending patterns.

4.1. Introduction

Lately, budgeting and budget allocation received particular research attention.
This attention may be due to the fact that there are still many fundamental
questions remaining in this field and that budgets are still the most often
used means of financial control, primarily in large organizations. Hansen and
van der Stede (2004) term budgeting as being an important control in almost
all organizations. Their survey, which study 37 manufacturing and 20 service
firms in 2001, shows that an annual budget was used in 77% of the (surveyed)
US companies. Although the budgeting practice has been already established
for many decades, there is still no clear understanding, how one should operate

67
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a given budget, throughout the budgeted period. In this chapter, we study
the budget spending problem with fixed and variable costs. In the beginning
of the budgeted period, a part of the budget is allocated to cover permanently
occurring, fixed expenses, which can decrease the variable costs originating
from contingent expenditures.

Managers may face budget, demand and cost uncertainty while they allocate
the budget over time. These uncertainties can make the allocation task rather
difficult. In the following paragraphs, we discuss two studies containing data
on monthly spending patterns.

Balakrishnan et al. (2007) is a remarkable empirical study, which indicates a
strong support of the so-called saving-dissaving behavior under budget lapsing
(when unspent funds are lost). According to the saving-dissaving model, man-
agers build reserves in the beginning of the year against budget uncertainty
and/or demand uncertainty. These reserves are consumed later on, especially
in the end of the year, where it results in a peak spending.

Zimmerman (1976) suggests that the high end of year spending is a rational re-
sponse to the budget uncertainty, experienced throughout the year. Assuming
existence of cardinal utility, he summarizes analytical results on the spending
behavior. Additionally, he performs additional regression calculations to cap-
ture the budgeting uncertainty in an empirical setting. Based on the analytical
results and the regression, his conclusion is that there is a rational basis for
the practice of deferring expenditures until uncertainty is resolved.

We remark that the data collection in these two studies took place in quite
different environments. The more recent study, Balakrishnan et al. (2007),
is in a hospital setting, where the demand uncertainty drives the spending
behavior. By the older study, Zimmerman (1976), presents data on the bud-
geting pattern of a single research institute, where the budget uncertainty
leads the longitudinal budget allocation decisions. We also note that cost-
uncertainty plays in neither of the studies a significant role. Naturally, ad-
ditional empirical studies could strengthen the results of Zimmerman (1976).
Nevertheless the empirical observations coincide with the analytical claims, so
we may conclude that we gained understanding of what spending pattern the
budget uncertainty can entail. However, it is not the case as far as demand
uncertainty is concerned. Although Balakrishnan et al. (2007) provides an
empirical evidence of the saving-dissaving spending behavior in response to
demand uncertainty, it is still an open question if this spending behavior was
rational. The goal of this chapter is to answer this question, providing either
justification or unjustification in analytical and numerical ways.

To help understanding, we illustrate the budget spending problem with dis-
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tinct fixed and variable costs via a longitudinal capacity planning situation.
We interpret the fixed and variable costs as permanent and contingent capac-
ity costs, respectively. In this setting, we use disutility instead of utility, which
takes the form of a cardinal capacity shortage penalty. We note that another
setting could be the use of an advertising budget, which is a lot more com-
plicated because of the necessary representation of the competing companies
(see Zufryden (1975)).

Our main contribution with this chapter is that we give a plausible explanation
for the saving-dissaving spending behavior under the permanent-contingent
capacity concept. We support this explanation by a broad set of numerical
experiments. In the end of the chapter we suggest another, alternative expla-
nation, additionally.

In the capacity planning literature, there is a good basis for studying
permanent-contingent budgeting under demand uncertainty. On the one hand,
capacity planning for services with permanent and contingent capacities has
been already studied under stochastic demand (see Pinker (1996)), on the
other hand budgeting has been also addressed in connection with capacity
planning (see Trivedi (1981)). The application of the cardinal utility concept
can be also found in the capacity planning literature. In particular, Warner
and Prawda (1972) develops the concept of capacity shortage penalty cost.
The shortage penalty cost is a convexly decreasing function of the capacity; it
hits zero at some point called the required capacity, and it remains zero after-
wards. We mention that an alternative to the penalty cost concept is to target
a prespecified service level (see e.g. Abernathy et al. (1973)) throughout the
year.

We can draw parallels between this chapter and some specific two-stage supply
chain models. We illustrate it with the following perishable (or alternatively a
short life-cycle) production example, which is similar to the two-stage case in
van Houtum et al. (2007) except for the perishability. The raw material arrive
in long, monthly periods to stock. The production stage consumes the raw
material on stock day by day and delivers perishable goods to satisfy demand.
There is also an option to contract a supplier for delivering fixed quantities of
the perishable product, daily. Here, the permanent capacity corresponds with
the external supplier of perishable goods, the contingent capacity corresponds
with the production quantity, the budget corresponds with the monthly stock
of raw material, the capacity shortage penalty cost corresponds with a linear
lost sales penalty.
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4.2. Models

We study various problem settings of determining the permanent capacity level
and contingent capacity levels under stochastic demand. We develop several
models in the following sections. The next subsection introduces the common
points of these models, and we discuss their differences afterwards.

4.2.1 Common modeling aspects

We define permanent-contingent capacity planning problems under stochastic
demand, in which we minimize the annual capacity shortage costs over a finite
horizon of periods taking into account the presence of a budget. The horizon
length is H, and the periods are indexed by integers, 1, 2, . . . , H − 1, H.
We assume that the demand in each period is identically distributed with
some known, arbitrary demand distribution, and that each period’s demand
is independent from demand of all the other periods.

Our capacity planning model is a sequence of budget-allocation decisions. The
budget is allocated to cover expenses of the permanent and contingent capac-
ity. In the beginning of the horizon, we take the the tactical level decision on
the permanent capacity level (U), which will be present throughout the whole
year. At the operational level, calling some contingent capacity (θt) may take
place in each period of the year. In all these periods, we assume the following
order of events,

• Demand of the coming period, Dt, is revealed, and the remaining budget,
bt, is observed.

• Contingent capacity may be called, which amounts to θt.

• Capacity shortage costs are registered.

Thus, demand of the actual period is known in advance, before the contingent
capacity decision, while only the distribution of demand is known for later
periods. In line with the capacity shortage penalty cost concept in Warner
and Prawda (1972), surplus capacity in any periods is assumed to be lost.

4.2.2 Overview of the models

We present a categorization of the models we address. Our models are de-
veloped systematically, so that we can study the role of the budget and the
capacity shortage cost function in depth.
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In our models, we represent the role of the budget in two ways.

• Either capacity shortages are minimized for a given budget,

• or capacity shortages and budget deviations are jointly minimized.

The first budget model type corresponds to the situations alike the army hos-
pital in Balakrishnan et al. (2007), and the second type can be regarded as the
generalization of the first to include situations, where budget overspendings
are common. We point out that in the second model type such coefficients
are to be given to capacity shortages and budget deviations that make them
comparable, and establish their proper balance. The goal programming ap-
proach in Trivedi (1981) addressed the tuning of these coefficients. Our second
type models follow the budget deviation penalty assumption in Trivedi (1981):
the end-of-year budget surplus is rewarded linearly, having the coefficient, c+

b ,
while budget deficit is penalized linearly with another, larger coefficient, c−b .

The capacity shortage cost function can take the following forms in our models,

• halfway linear

• or halfway quadratic

• or halfway relative quadratic.

The prefix ‘halfway’ we added to all the function types, referring to that all the
function types are zero when the capacity exceeds the demand, since surplus
capacity is assumed to be lost. We consider the halfway linear shortage cost
functions because of their simplicity, the halfway quadratic one because it is
a traditional assumption (see Warner and Prawda (1972)), and the halfway
relative quadratic one because we suspect it being more realistic, than the
halfway quadratic function.

Table 4.1 enlists the sections showing their correspondence with the models.

4.3. Linear capacity shortage costs and restricting

budget

This section is devoted to the analytical results we derive under the assump-
tion that the capacity shortage cost is a linear function, and that the budget
may not be overspent. We first develop a simple model to provide analytical
formulas, and then turn to a numerical illustration emphasizing the efficiency
of the cost function approximation we propose.
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Models Budget model type Capacity shortage cost function type

Section 3 restricting budget halfway linear

Section 4 penalized budget deviations halfway linear

Section 5 restricting budget, halfway quadratic
penalized budget deviations

Section 6 restricting budget, halfway relative quadratic
penalized budget deviations

Table 4.1: The models in the following sections

4.3.1 Model development and analysis

Let cs be the penalty cost associated with one unit of capacity shortage (or
equivalently, lost sale), and let (a)+ be defined as (a)+ := max {0, a}. The
total annual costs are then given by

cs

H∑
t=1

(Dt − U − θt)
+ (1)

with an expected value of

cs

H∑
t=1

∞∫
U+θt

(x − U − θt)
+ dF (x) (2)

where F (x) denotes the demand probability distribution function per period,
and θt is determined dynamically, based on the budget available in the begin-
ning of period t, bt. Because of the linear shortage costs, it is never advanta-
geous to accept some shortage in a period t to avoid shortages in later periods,
as the future savings can never exceed the current extra costs. This feature
makes the decision about contingent capacity simple.

As long as the remaining budget is large enough we use contingent capacity
to exactly meet the actual demand, otherwise we use all remaining budget for
the contingent capacity. Denoting the unit contingent capacity cost by cc, the
contingent capacity used in period t can be expressed as

θt =

{
(Dt − U)+ if bt ≥ cc(Dt − U)+

bt/cc otherwise
(3)

where Dt can be interpreted both as a revealed demand value and as a yet
unrevealed random demand.

This means that the only decision left is the determination of the permanent
capacity level, U . Suppose that the cost of permanent capacity per unit per
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period is cp. When we have a budget of B, the total contingent capacity is a
function of U . This function, T (U), has the form

T (U) =
B−cpHU

cc
≥

H∑
t=1

θt. (4)

The annual shortage cost, which is a random variable, can be expressed for a
given random demand stream D1, D2, ... DH , with the difference between the
total excess demand that the permanent capacity could not satisfy and the
total contingent capacity used, as follows.

Cs (U) = cs

((
H∑

t=1
(Dt − U)+

)
− T (U)

)+

(5)

Our goal is to find the optimal permanent capacity level, U , which minimizes
the expected annual shortage costs. Since it is difficult to obtain an analytical
expression of the optimal U , we provide an approximation of expected annual
shortage costs. In particular, we bring the expected value operator inside of
the outer positive part, and use that the demand of the periods are identically
distributed. Denoting the expected excess demand that the permanent capac-
ity could not satisfy by R (U) = E

[
(Dt − U)+

]
for all t, we can develop the

approximation

E [Cs (U)] ≈ cs (H · R (U) − T (U))+ (6)

Minimizing the approximation shown in the right-hand side of (6) is consider-
ably easier. Its minimization is equivalent with the minimization of the term
inside the positive part operator. Substituting back with T (U), we obtain a
newsvendor problem, having the following straightforward approximation of
the optimal permanent capacity level,

U∗ ≈ arg min
0≤U

{
H · R (U) −

B−HPcp

cc

}
= F−1

(
cc−cp

cc

)
(7)

In subsection 4.3.3, we illustrate the accuracy of this approximation via nu-
merical experiments.

4.3.2 A special case: gamma-distributed demand

We can proceed from equation (5) in an alternative, possibly more precise way,
if we assume that the demand per period is given by a gamma distribution. In
particular, we can determine the first and second moments of the total excess

demand that the permanent capacity could not satisfy,
H∑

t=1
(Dt − U)+. As the

summed terms are independent, and identically distributed, we can gain the
moments of the sum as
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E

[
H∑

t=1
(Dt − U)+

]
= HE

[
(Dt − U)+

]
and (8)

V ar

[(
H∑

t=1
(Dt − U)+

)]
= H V ar

[(
(Dt − U)+

)]
Now assume the special case of the gamma-distributed demand, so that we
have

Dt is of Γα,λ for all t = 1, 2, . . . ,H (9)

with the distribution function

FD (x) = Pr [Dt ≤ x] =
x∫
0

λe−λy(λy)α−1

Γ(α) dy (10)

Then the first two moments of the expected excess demand that the permanent
capacity could not satisfy can be obtained by

E
[
(Dt − U)+

]
=

∞∫
U

(x − U) dFD (x) =
∞∫
U

(x−U)λe−λx(λx)α−1

Γ(α) dx

= α
λ

(1 − Γα+1,λ (U)) − U (1 − Γα,λ (U))

and (11)

E
[(

(Dt − U)+
)2

]
=

∞∫
U

(x − U)2 dFD (x) =
∞∫
U

(x−U)2λe−λx(λx)α−1

Γ(α) dx

= α(α+1)

λ2 (1 − Γα+2,λ (U)) − 2αU
λ

(1 − Γα+1,λ (U)) + U2 (1 − Γα,λ (U))

Once the moments are obtained, a suitable distribution function can be fit to

approximate
H∑

t=1
(Dt − U)+, which we call G. Finally, an approximation of the

expected shortage cost can be calculated as

E [Cs (U)] ≈ cs

∞∫
T (U)

(z − T (U))+ dG (z), (12)

corresponding to equation (5).

4.3.3 Numerical illustration

We consider the following example. The budget B is set to 3250 over 50
periods. The capacity shortage cost and the cost for the permanent capacity
are both equal to 1 and the cost for one unit of contingent capacity is 2.5.
Figure 4.1 displays the average results of 50000 simulations, for the exact and
approximate shortage costs, with a value of U ranging from 30 to 70, assuming
a normal and a gamma distribution for the demand, with average of 50 units
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and a standard deviation of 20 units. With a normally distributed demand,
the best permanent capacity level is 55 units for both methods (exact and
approximation), although there is some difference between the two total costs
for medium and high permanent capacity level. This illustrates the usefulness
of the approximation.

When demand is gamma-distributed, the shortage quantity can be determined
by using (12) for the appropriate permanent capacity levels. As the ’exact’ re-
sults of the simulation are always within 1 percent of the approximation, there
is only one line representing both costs in the figure. The optimal permanent
capacity is 53, slightly different from the 55 for the normal distribution. Min-
imizing (12) leads to a permanent capacity of 53.12, whereas (7) leads to a
permanent capacity of 52.44.
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Figure 4.1: Expected capacity shortage cost as a function of the permanent
capacity level

This illustration supports that it is sufficient to optimize the capacity use
per period with formula (7). Since this approximation formula is budget-
independent and it works well, we can conclude that the budget has only little
influence on the optimal permanent capacity level.
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4.4. Linear capacity shortage and budget deviation
costs

The situation in which we include costs for budget deviations is slightly more
complicated, but also more realistic. The objective is to allocate the budget
dynamically so as to find a good balance between capacity shortages and
budget deficit for a given annual budget.

4.4.1 Model development and analysis

We consider linear costs for budget deficits, and linear reward for budget
surpluses. The budget deficit is assumed to be at least as much penalized as
the budget surplus is rewarded. We express the budget deficit cost (C−

b (U))
and the budget surplus reward (−C+

b (U)) in two ways: first with the difference
of the budget and the total capacity costs, second with the difference of the
demand and the total contingent capacity used.

C−
b (U) = c−b

(
cpHU + cc

H∑
t=1

θt − B

)+

and (13)

C+
b (U) = −c+

b

(
B − cpHU − cc

H∑
t=1

θt

)+

where c−b is the unit cost of the budget shortage and c+
b is the unit cost of the

budget excess.

We minimize the expected value of the total cost, which is the sum of the
capacity shortage, the budget deficit and the budget surplus costs.

min
0≤U

TC(U)=Cs(U)+C+

b
(U)+C−

b
(U)

E [TC (U)], (14)

for which we distinguish four cases, as follows.

Case 1. When c+
b cp < c+

b cc ≤ c−b cc < cs, all demand is satisfied (at the ex-
pense of incurring budget penalties), which implies Cs(U) = 0. Consequently,
the total costs have only two components, which we can express as

TC (U) = C−
b (U) + C+

b (U)

= c−b cc

(
H∑

t=1
(Dt − U)+ − T (U)

)+

− c+
b cc

(
T (U) −

H∑
t=1

(Dt − U)+
)+

. (15)

We can use the same recipe as in (6) to obtain the following simple approxi-
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mation,

E [TC (U)] ≈ c−b cc (HR (U) − T (U))+ − c+
b cc (T (U) − HR (U))+

= c−b
(
cpU + ccR (U) − B

H

)+
− c+

b

(
B
H

− cpU − ccR (U)
)+ . (16)

The approximation suggests that the optimal permanent capacity level,
U∗ ≥ 0, is close to the maximizer of

B
H

− cpU − ccR (U). (17)

This maximization reduces to the same newsvendor problem, as in (7), yielding
the same optimal permanent capacity level,

U∗ ≈ arg min
0≤U

{ccR (U) + cpU} = F−1
(

cc−cp

cc

)
. (18)

Case 2. When c+
b cp < c+

b cc < cs < c−b cc, demand is satisfied only if there is
budget left (to avoid budget deficit), which yields C−

b (U) = 0. In this case,
the total costs have again two components, namely,

TC (U) = Cs (U) + C+
b (U)

= cs

(
H∑

t=1
(Dt − U)+ − T (U)

)+

− c+
b cc

(
T (U) −

H∑
t=1

(Dt − U)+
)+

. (19)

We can proceed similarly to Case 1 to obtain the approximation,

E [TC (U)] ≈ cs (HR (U) − T (U))+ − c+
b cc (T (U) − HR (U))+

= cs

cc

(
cpU + ccR (U) − B

H

)+
− c+

b

(
B
H

− cpU − ccR (U)
)+ , (20)

which leads to the same observation, and approximation, as in Case 1, equation
(18).

Case 3. When c+
b cp < cs < c+

b cc ≤ c−b cc, budget is used for permanent
capacity exclusively and exhaustively, which results in T (U) = C−

b (U) = 0
and C+

b (U) = −c+
b (B − cpHU)+. The total costs can be written as

TC (U) = Cs (U) + C+
b (U) = cs

H∑
t=1

(Dt − U)+ − c+
b (B − cpHU)+. (21)

In this case, the expected total cost formula can be formulated as

E [TC (U)] = csHR (U) − c+
b (B − cpHU)+, (22)

which is another newsvendor equation, yielding

U∗ = F−1
(

cs−c+
b

cp

cs

)
≤ B

Hcp
. (23)

If the budget is sufficiently high, it will totally be spent, meaning U∗ = B/Hcp.

Case 4. In the extreme case, when cs < c+
b cp, we would not spend any budget

at all.
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4.4.2 Numerical illustration

We consider the experimental setting of the previous section, with gamma-
distributed demand. Additionally, we take the budget deviation unit costs,
c−b = 2 and c+

b = 1.

In Case 1, for a unit cost of capacity shortage, cs = 6, the optimal permanent
capacity level is 52.76, the suggested newsvendor approximation, equation
(18), provides the estimation of 52.44, and the two-moment approximation,
equation (12), gives an estimate of 53.12. Actually, the optimal permanent
capacity does not deviate much from the one in the situation described in the
previous section, as the budget surplus term, C+

b (U), is small.

In Case 2, taking a shortage cost coefficient, cs = 4, the optimal permanent
capacity level is 52.68, and the whole budget is used with probability 80−90%.
Therefore, the outcome is hardly different from that of the previous section,
showing an almost identical pattern for capacity shortages.

To illustrate Case 3, we considered a capacity shortage unit cost of cs = 1.
The optimal permanent capacity for the gamma-distributed demand is 47.36
with a yearly expected shortage quantity of 456.12 units.

4.5. Halfway quadratic capacity shortage costs

In this section, we address the model with the traditional halfway quadratic ca-
pacity shortages cost function (see Warner and Prawda (1972)) under strictly
limiting budget as well as under penalized budget deviations. The shortages
cost function has the form,

Cs (U) = cs

H∑
t=1

(
(Dt − U − θt)

+)2
. (24)

While in the linear capacity shortages costs case, the determination of the per-
manent capacity level was the only difficult question, by the halfway quadratic
costs the contingent capacity decisions are not straightforward. It is also dif-
ferent that by the halfway quadratic costs, it becomes particularly important
to avoid large shortages in the last periods. First, we consider the restricting
budget case and afterwards the penalized budget deviation case.

This situation we model as a dynamic program and evaluate it recursively via a
backward induction algorithm. A limited state space is necessary to calculate
the decisions. Hence we assume that we always use an integer amount of
contingent capacity per period and that the demand per period follows some
discrete distribution. We expect that this discretization has only a minor
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influence on our analysis and results.

In what follows, we build the dynamic programming models for the restricting
and guiding budget situations. First, we define expected capacity shortage
(and budget deviation) cost-to-go functions recursively, starting from the last
period. Then, we discuss the budget situation (restricting/guiding) specific
parts.

4.5.1 Halfway quadratic shortage costs and restricting budget

In this subsection, we build the dynamic programming model for the restricting
budget case, and give suggestion for a simplification in the calculations.

We develop the recursive formula of the expected capacity shortage cost-to-
go from period t on, ft (bt), where bt denotes the remaining budget at the
beginning of period t. All identical formulas correspond to the periods t =
1, 2, . . . ,H. At the start of period t, we observe demand realization, Dt, and
only afterwards make our contingent capacity (θt) decision to minimize the

overall sum of the actual capacity shortage costs, cs

(
(Dt − U − θt)

+)2
, and the

future (capacity shortage and budget deviation penalty) costs, ft+1 (bt − ccθt).

ft (bt) = EDt

[
min
0≤θt

cs

(
(Dt − U − θt)

+)2
+ ft+1 (bt − ccθt)

]
(25)

for all t = 1, 2, . . . ,H.

The minimal total expected capacity shortage cost, f0 (B), can be found if we
optimize the permanent capacity level at the beginning of the horizon, as

f0 (B) = min
0≤U

f1 (B − cpU). (26)

The part specific for the restricting budget is the closing stage of the dynamic
program. That the budget is restricting, we can express as bH+1 ≥ 0, where
bH+1 is the budget in the end of period H. The closing cost-to-go we define
as

fH+1 (bH+1) ≡ 0. (27)

Notice that because last period’s demand is known before the last period’s
decision making takes place, it is always optimal to choose θ∗H = bH

cc
, which

results in bH+1 = 0.

We note that by applying the total expectation theorem one can achieve
shorter calculation times. In particular, we can distinguish two cases: when
the permanent capacity suffices to meet demand (Dt ≤ U), and when it does
not (Dt > U). Consequently, we can rewrite ft (bt) as
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ft (bt) = EDt

[
min
0≤θt

cs

(
(Dt − U − θt)

+)2
+ ft+1 (bt − ccθt) |Dt ≤ U

]
P (Dt ≤ U)

+EDt

[
min
0≤θt

cs

(
(Dt − U − θt)

+)2
+ ft+1 (bt − ccθt) |Dt > U

]
P (Dt > U). (28)

It is easy to recognize that for Dt ≤ U , the optimal contingent capacity deci-
sion is θ∗t = 0. Using this substitution, we can simplify the formula of ft (bt)
to

ft (bt) = EDt [ft+1 (bt) |Dt ≤ U ]P (Dt ≤ U)

+EDt

[
min
0≤θt

cs

(
(Dt − U − θt)

+)2
+ ft+1 (bt − ccθt) |Dt > U

]
P (Dt > U), (29)

which can be used for speeding up the calculations.

4.5.2 Halfway quadratic shortage and budget deviation costs

In this subsection, we build the dynamic programming model for the case
when budget deviations are allowed. As in Section 4.4, the unit penalty cost
of budget deficit is c+

b , while each unit of budget surplus is rewarded with c−b .

We need to make only little changes in the previous model (in subsection
4.5.1. The cost-to-go formula, equation (25), and the total expected cost for-
mula, equation (26), remain the same. The calculation fastening simplification
formula, equation (29), is also applicable.

The only change in the model is in the final stage, stage H + 1. To represent
that budget deviations are allowed, and penalized, we rewrite equation (27)
to

fH+1 (bH+1) = c−b (−bH+1)
+ − c+

b (bH+1)
+. (30)

4.6. Halfway relative quadratic capacity shortage
costs

Next to studying the halfway quadratic capacity shortage cost function sug-
gested for calculational purposes by Warner and Prawda (1972), we introduce
the relative quadratic cost function, which we consider as being more realistic.
Our starting point is the observation that using the quadratic penalty means
that we regard the situation with one unit of demand and no capacity as severe
as having ten units of demand and nine units of capacity. We consider this
phenomenon as being unrealistic, and as being a representational shortcoming
of the halfway quadratic shortage cost function. By introducing the relative
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quadratic shortage cost function, we eliminate this unwanted phenomenon.
This cost function is defined as

Cs (U) = ccs

H∑
t=1

((Dt−U−θt)+)
2

Dt
(31)

Again, we study the restricting budget case first, and the budget deviation
penalty case afterwards.

4.6.1 Halfway relative quadratic shortage costs and restricting
budget

In this subsection, we obtain the dynamic programming model under halfway
relative quadratic shortage costs and restricting budget by changing the short-
age cost formula in the model of subsection 4.5.1. We summarize the dynamic
program formulation in the following lines.

ft (bt) = EDt

[
min
0≤θt

cs

(
(Dt−U−θt)

+

Dt

)2
+ ft+1 (bt − ccθt)

]
(32)

for all t = 1, 2, . . . ,H,

f0 (B) = min
0≤U

f1 (B − cpU), (33)

fH+1 (bH+1) ≡ 0, (34)

with bH+1 = 0. The simplification in accordance with equation (29) applies
here as well.

4.6.2 Halfway relative quadratic shortage and budget devia-
tion costs

We can arrive at the halfway relative quadratic shortage cost model with
budget deviations combining the models in 4.5.2 and 4.6.1, as

ft (bt) = EDt

[
min
0≤θt

cs

(
(Dt−U−θt)

+

Dt

)2
+ ft+1 (bt − ccθt)

]
(35)

for all t = 1, 2, . . . ,H,

f0 (B) = min
0≤U

f1 (B − cpU), (36)

fH+1 (bH+1) = c−b (−bH+1)
+ − c+

b (bH+1)
+. (37)

Simplification (29) again applies.
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4.7. Results

We perform numerical experiments to study the optimal budget spending,
shortage, and shortage cost patterns. Furthermore, we investigate the final
budget deviations of different models. We consider the same set of parameters
as default that we used in subsection 4.3.3 (horizon H = 50, demand is dis-
cretized gamma distributed with a mean of 50 and standard deviation of 20,
budget B = 3250, capacity shortage cost coefficient cs = 1, permanent capac-
ity cost coefficient cp = 1, and contingent capacity cost coefficient cc = 2.5).
Additionally, we used budget deficit coefficient c−b = 10, and budget surplus
coefficient c+

b = 5 as default values.

4.7.1 Budget spending pattern

While in almost all the guiding budget cases we observed rather flat spend-
ing patterns, in the restricting budget cases these were mostly concave and
decreasing. The most typical spending patterns we present in Figure 4.2,
showing the spending pattern outcomes in percentages of the mean spending,
for the halfway relative quadratic shortage costs, under the default parameter
setting.
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Figure 4.2: Budget spending pattern under halfway relative quadratic shortage
cost function

The restricting budget cases utilize a larger range of spending values, generally
(in Figure 4.2 from 102.7% to 88.34%) than the guiding budget cases (in
Figure 4.2 from 100.3% to 99.24%), which is a result of the steeper drop of
the restricting budget case in the last periods. Our intuitive explanation is
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that for a constantly high demand in the last periods, heavy cutbacks may be
required when the budget is limited, whereas in the guiding budget case it is
not generally necessary.

One exception from the concave and decreasing shape is the linear shortage
cost, restricted budget case, where the spending pattern is decreasing, but
it is concave only for the first 40 periods, and becomes convexly decreasing
afterwards. In the first 12 periods it decreases from 142.4% only to 141.7%,
while in the rest of the periods it drops steeply to 17.8%.

Among the flat spending patterns of guiding budget cases, there are patterns
having a slight convex increase on the whole horizon length. For instance the
halfway quadratic shortage cost case with c−b = 5 and c+

b = 1 gives an opti-
mal spending pattern, which increases from 99.5% to 101.3%. This spending
pattern is rather flat in the first 30 periods, reaching there 99.9%, and bends
more and more upwards in the last 20 periods.

4.7.2 Sensitivity analysis on the budget spending pattern for
demand forecast error

Parameter estimation of future demand is subject to error. Even if demand is
predicted in stochastic terms, the forecasted distribution parameters are only
estimates in real-life situations. These estimations may reflect risk-averse,
neutral, or risk-seeking spending behavior. We call a spending behavior risk-
averse if it consistently overestimates the demand or its variance to be met
later, risk-seeking if it underestimates, and neutral if it does not over- or
underestimate. In this subsection, we investigate the effect of the risk-averse,
neutral, or risk-seeking behaviors on the spending pattern.

We perform numerical experiments including into the model the consistent
forecast error of the demands’ real expected value (E [Dt]) and standard de-
viation (Std [Dt]), for all t. We take all the decisions based on forecast using
the demand expected value and standard deviation estimates

Ê [Dt] = E [Dt] (1 + ΔE [Dt]), and

ˆStd [Dt] = Std [Dt] (1 + ΔStd [Dt]) for all t = 1, 2, . . . ,H. (38)

Considering the coefficients cs = cp = 1, c−b = 5 and c+
b = 1, we vary ΔE [Dt]

as −0.1, −0.05, 0, +0.05, and +0.1, in combination with ΔStd [Dt] as −0.2,
−0.1, 0, +0.1, and +0.2. The experimental values originate from simulating
demand forecast error based on a history of 50 instances. Table 4.2 presents
the trends in the spending patterns of the different cases.

We term a spending pattern increasing (decreasing) if it is increasing (decreas-
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ΔStd [Dt]
ΔE [Dt] -0.2 -0.1 0 0.1 0.2

-0.1 incr incr incr incr flat
-0.05 incr incr incr flat flat

0 incr incr flat flat decr
0.05 incr flat decr decr decr
0.1 decr decr decr decr decr

Table 4.2: Trends in the budget spending pattern for demand parameter es-
timates Ê [Dt] = 50 ˆStd [Dt] = 20 (incr/decr = increasing/decreasing trend,
flat = no trend).

ing) in more than 90% of the horizon, and we term the pattern flat, in the
rest of the cases. Alternatively, we may call a spending pattern increasing
(decreasing) if it is increasing (decreasing) in more than 3% from the begin-
ning to the end, in percentages of the average (as in 4.2). Both of the two
interpretations yield the results of Table 4.2.

We can observe the risk-averse, neutral, and risk-seeking spending behaviors
at different parts of Table 4.2. Note that negative ΔE [Dt] or ΔStd [Dt] values
corresponds to overestimation of the expected value or the standard deviation
of the demand, respectively, while the positive values correspond to their un-
derestimation. Thus, we can associate negative ΔE [Dt] and ΔStd [Dt] values
with the risk-averse behavior (left, upper part), the zero values with the neutral
behavior (middle), and positive values with the risk-seeking behavior (right,
bottom part). We can conclude that risk-averse demand forecast results in an
increasing budget spending trend, a neutral behavior gives flat pattern, and
risk-seeking behavior leads to an increasing trend in expenditures.

4.7.3 Shortage and shortage cost patterns

In Figure 4.3 and 4.4, we show expected shortage and shortage cost patterns
of the halfway relative quadratic shortage cost, restricted budget case, as well
as for a low budget penalty case with c−b = 0.04 and c+

b = 0.02, and a high
budget penalty case with c−b = 0.16 and c+

b = 0.08. By analyzing the two fig-
ures together, an interesting point to start with is that although the guided,
high penalty case has a larger expected shortage than the restricted case in
the last periods, it incurs less shortage cost on average. The relatively long
tail of the shortage probability density of the restricted case is the explana-
tion to this phenomenon (we discuss it in more detail by Figure 4.5). In line
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with our expectations, the lower the budget penalty, the less attention bud-
get deficits/surplusses get, the more freedom in the capacity decisions, and,
consequently, the lower the shortage costs.
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Figure 4.3: Expected shortage pattern under halfway relative quadratic short-
age cost function

The quadratic shortage cost case, shows similar behavior as the one depicted
and described above. Naturally differently, in all the linear shortage cost cases,
expected shortage costs equal to the expected shortages times cs. The shape
of these graphs coincide with that of the spending pattern times -1, apart from
linear scaling. The shortage (cost) graph increases from 0 to 0.07 by period
15, then increases steeply to 5.7 by the end. Regarding that the mean demand
is 50, this corresponds to a service level of close to 100% in the first periods,
and 88% in the end. This we can compare with the much less affected relative
quadratic (or quadratic) cases, where a more stable service level is provided,
which is always above 94%.

An interesting halfway quadratic shortage cost case, with c−b = 5 and c+
b = 1,

is shown in Figure 4.5. We normalized both the shortage and shortage costs
by their mean value. We can observe that even if the expected shortage
has a decreasing trend, the expected shortage cost is increasing, particularly
in the last periods. This phenomenon results from the quadratic shortage
cost structure and the long tail of the shortage probabilities: although large
shortages occur only with small probabilities, these still get emphasis because
of the quadratically increasing penalty structure.
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Figure 4.4: Expected shortage cost pattern under halfway relative quadratic
shortage cost function
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Figure 4.5: Relative shortages and shortage costs under halfway quadratic
shortage cost function and guiding budget

4.7.4 Budget deviations

In Figure 4.6 and 4.7, we show budget deviation probability density functions
in the halfway relative quadratic shortage cost, restricted budget case, as well
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as for a low budget penalty case with c−b = 0.04 and c+
b = 0.02, a high budget

penalty case with c−b = 0.16 and c+
b = 0.08, and an equal penalty case with

c−b = c+
b = 0.01.

The distinguished role of zero can be especially noticed in the restricted case.
At zero its probability density reaches 0.31, which exceeds the boundary of
the figure. Figure 4.7 shows the graphs in Figure 4.6 in the environment of 0,
zoomed. There we can see that the lower the budget penalty coefficients, the
less budget enforcement, the less probability is accumulated at zero, and the
more budget deviations and deficit are allowed. In the case, when c−b = c+

b ,
the peak at zero disappears, since the value zero loses its particular role.
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Figure 4.6: Budget deviations of models with relative quadratic shortage cost
function

4.8. Conclusions

In many companies, fixed yearly budgets are allocated to the heads of depart-
ments to cover their fixed and variable expenses during the year.

In this chapter, we addressed the problem of longitudinal budget allocation
to fixed and variable expenditures. We illustrated this general problem with
a capacity budgeting task in services, where the budget is dedicated to cover
permanent (fixed) and contingent (variable) capacity costs. We developed six
different models determining the optimal permanent and contingent capacity
levels so as to minimize the capacity shortage and budget deviation penalty
costs. These models differ in the budget and in the capacity shortage cost
modeling.
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Figure 4.7: Budget deviations of models with relative quadratic shortage cost
function, zoomed to the range around zero

We considered models with restricting budgets, where the budget strictly lim-
its the total expenses, and models with guiding budgets, where budget deficits
are allowed at some costs. Besides, we considered halfway linear, halfway
quadratic, and halfway relative quadratic capacity shortage penalty costs,
where the halfway refers to the penalty costs being zero when capacity ex-
ceeds demand.

In both the restricting and guiding budget cases, we developed analytic for-
mulas in the linear shortage cost case, and found that near-optimal solutions
can be found by using a newsvendor equation. For quadratic and relative
quadratic cost functions, we proposed a solution with dynamic programming.

Through numerical experiments, we found that the service level during the
year is more stable if the cost function is a halfway quadratic or relative
quadratic instead of a linear one. This result may direct preference to not
using linear cost functions in most of the real-life situations.

Furthermore, we found that the spending, the expected shortage and the ex-
pected shortage cost patterns are all rather flat in the guiding budget cases,
as compared to the restricting budget cases. Interestingly, we found that the
typical optimal expenditure pattern is concave and decreasing instead of the in-
creasing patterns shown in Balakrishnan et al. (2007), which correspond with
the saving-dissaving behavior observed in multiple restricting budget real-life
cases. Most interestingly, decreasing optimal patterns belonged to all of the
restricting budget cases we observed, suggesting that the saving-dissaving be-
havior is not rational. We think that further investigation is necessary to fully
understand the rational behind the saving-dissaving behavior. E.g. future re-
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search may show the effect of demand autocorrelation on the optimal spending
pattern. We expect that positive autocorrelation can give an alternative ex-
planation for the saving-dissaving spending behavior.

Although, in the guiding budget, halfway quadratic shortage penalty cost case
we found situations, where the optimal spending pattern is slightly increasing,
e.g. from 99.5% to 101.3%, even there we found no indication of the optimal-
ity of starting saving behavior. This result is in line with what Zimmerman
(1976) suggests and empirically supports, even if we did not consider budget
uncertainty in our model. Furthermore, performing sensitivity analysis on
the spending pattern with consistently under- and overestimated demand, we
found that the saving-dissaving pattern can be an indicator of a risk-averse
attitude.

Finally, we found situations in the quadratic penalty case, where the expected
shortages decrease, whereas the expected shortage costs increase. We ex-
plained this phenomenon by the long tail of the shortage probability density
function, which tail gains a higher importance because of the quadratic short-
age cost structure. We also studied budget deviations, and showed that the
budget deviations have peak probability mass at zero especially in the re-
stricted budget case, and that the less the budget is enforced, the more de-
viations, larger deficits we can expect. When the budget surplus is rewarded
with the same weight as the deficit is penalized, the peak probability mass at
zero disappears.





Chapter 5

Conclusions and Future
Research

This last chapter summarizes our research studies on permanent-
contingent capacity management and the conclusions drawn in
each of them. Based on the conclusions, we give answers to the
research questions posed in the first chapter, in Section 1.5. Fur-
thermore, the study’s applicability for machine and facility capac-
ities is discussed. Finally, promising lines of future research are
drafted.

5.1. Answers and main conclusions

We dedicate the following subsections to answering the research questions
posed in the beginning of the thesis. All these subsections start with recalling
the research questions.

5.1.1 Production-to-stock aggregate planning

1a. What form do optimal policies have in aggregate planning
with backordering for non-stationary demand under the permanent-
contingent concept, if the contingent capacity acquisition lead time
is zero?

1b. Can we generalize the results answering (a) to general contin-
gent capacity acquisition lead times?

Our first research questions addressed the integrated problem of inventory
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and flexible capacity management. We investigated both research questions
(1a) and (1b) via establishing and studying a single, but generic model. This
generic model includes a fixed lead time for flexible capacity acquisition, which
may be zero.

Our analytical results gave a characterization of the optimal policy via math-
ematical statements for any fixed non-negative integer lead time. The state-
ments we proved were concerned with the convexity and sub-/supermodularity
of cost-to-go functions.

The convexity results bring three-fold contribution. First, on the basis of
convexity we can characterize the optimal policy to some extent: provided the
capacity level, the optimal level of inventory after production is given by a
state-dependent base-stock policy, where the dependency is on the capacity
pipeline and the actual capacity. Secondly, convexity leads us to surmise little
sensitivity for small mistakes in making decisions. Namely, it suggests that a
small deviation from the optimal decision does not lead to drastic cost increase.
Third, knowing convexity of the cost-to-go functions we could largely increase
the efficiency of the optimal decision’s calculation. These calculations include
that of the optimal permanent capacity level, that of the optimal contingent
capacity level, and that of the optimal production decision.

We proved sub-/supermodularity relations between multiple variables, which
are the arguments of the cost-to-go functions. These relations help in fur-
ther characterizing the optimal policy. From the economic substitution re-
sults between inventory and capacity levels, it follows that the optimal target
capacity level is a decreasing function of the inventory level, and that the op-
timal inventory level is a decreasing function of any element of the contingent
capacity pipeline vector and the permanent capacity. Moreover, we proved
that the inventory (either before or after production), the pipeline contingent
capacity, the contingent capacity to be ordered, and the permanent capacity
are economic substitutes. We also showed that the stochastic demand vari-
able and the optimal contingent capacity acquisition decisions are economic
complements meaning that stochastically larger demand streams imply higher
contingent capacity levels in optimality. A similar interpretation is also true
for stochastically larger demand streams and the optimal inventory levels ob-
tained after production.

Numerical experiments supplement our insights into the optimal permanent
capacity level selection. We observed that the optimal level is not necessarily
monotonic in demand variability. Nevertheless, for longer capacity acquisition
lead times or higher costs of contingent capacity, optimal permanent capacity
level in general increases as demand variability increases. On the contrary, for
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shorter capacity acquisition lead times and lower costs of contingent capacity,
optimal permanent capacity level in general decreases as demand variability
increases.

By our experiments, we also paid attention to the value of flexibility, V FC%,
that expresses the relative difference between not using and using contingent
capacity. Intuitively appealing, we observed that V FC% is higher when ca-
pacity acquisition lead time is shorter. Our results also generalize the findings
of Tan and Alp (2005) for L = 0 to the case of positive capacity acquisi-
tion lead times, such that V FC% is higher when contingent capacity cost is
lower or backorders are more costly (equivalently, when a higher service level
is targeted). We note that, although V FC% decreases with an increasing
lead time, the marginal decrease appears to be less and less as L increases.
Besides, we also observed that V FC% with longer lead times persists to be
comparable with V FC% with shorter lead times, meaning that flexibility is
still valuable even when the capacity acquisition lead time is relatively long.
We also analyze the relation between the value of flexible capacity and the de-
mand variability. The results presented by Alp and Tan (2008) indicate that
the value of flexibility is not necessarily monotonic (i.e. it does not increase or
decrease consistently) as the demand variability increases for the case where
the lead time is zero. We find out that this continues to be true for the case
where the lead time is strictly positive as well, because the system has the
ability to adapt itself to changes in coefficient of variation, CV , by optimizing
the permanent capacity level accordingly. Nevertheless, for increasing values
of the contingent capacity acquisition lead time we observe that the value
of flexibility generally decreases when the demand variability increases. A
longer capacity acquisition lead time deteriorates the effectiveness of capacity
flexibility. This effect is amplified in case of higher demand variability. In
other words, since the capacity needs are more predictable for lower demand
variability, use of contingent capacity, which has to be ordered one lead time
ahead, becomes more effective as compared to the high variability case. This
also explains why the decrease in the value of flexibility as lead time increases
is steeper when the variability is higher.

Not all the properties reported in the previous paragraph hold when demand
forecast error is included in the model. Although we observed that the lower
contingent capacity cost cc and the shorter capacity acquisition lead times
still consistently yield higher V FC%, the value of flexibility as a function of
the backorder cost coefficient becomes more irregular: especially for long lead
times and large forecast errors, it becomes neither increasing nor decreasing.

Additionally, we studied a policy (class) that we observed to be optimal in
many cases in our numerical experiments. This policy orders no contingent
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capacity unless the actual capacity is fully utilized, which we refer to as com-
plimentary slackness property (CSP). We showed through numerical examples
that an optimal solution did not necessarily satisfy CSP. A typical example
for CSP-policy being sub-optimal is having a highly uncertain period followed
by several periods with no demand. We also provided some cases, for which
we proved sufficient conditions assuring the optimal decisions to satisfy CSP.
Through these cases we can recognize the importance of the contingent capac-
ity - holding cost coefficient ratio: the optimal decision is likely to satisfy CSP
if the ratio is high, and it is more likely to meet situations with an optimal
decision not satisfying CSP, when the ratio is low.

5.1.2 Production-to-order

2. How can we use fast-response contingent capacity (approxi-
mately) optimally in production-to-order systems under setup costs
and a fixed quoted customer lead time?

Research question 2 is concerned with production-to-order systems, where
fast-response capacity changes are possible. We studied a set of Markov
chain models, each instance representing a capacity planning policy, which
may use workload information. Evaluation of the Markov models allowed
comparisons between the workload-dependent policies with respect to per-
manent/contingent capacity, capacity switching, lost sales, work-in-process
holding, and earliness/tardiness costs, as well as finding the optimal policy in
different situations.

The calculation procedure we developed results in the optimal workload-
dependent policy under the assumption of homogenous Poisson arrival process
and exponential service times. Its main inputs are the interarrival rate, the
service rates for each capacity level, and the maximum workload allowed. It is
assumed that the jobs arriving by the time the maximum workload level has
been achieved are lost. The permanent/contingent capacity, capacity switch-
ing, and lost sales costs are determined via steady-state analysis, whereas
the work-in-process holding, and earliness/tardiness costs are determined via
transient analysis.

We also characterized situations, where it is beneficial to use fast-response
contingent capacity. We defined the value of flexibility, V FC%, measured
as the relative cost difference between the optimal fixed (which can use only
one capacity level) and the optimal workload-dependent policy. We drew the
conclusions that generally large switching cost coefficients, high demand rates,
and long quoted lead times are detrimental, while high workload limits (Wmax)
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beneficial for the value of flexibility. We also raised awareness of capacity dis-
creteness, which can strongly affect V FC%, as workload-dependent policies
can counteract non-integer capacity needs, while fixed policies cannot. Ad-
ditionally, we revealed that compared to the optimal fixed capacity policies,
the optimal workload-dependent capacity planning policies can achieve a bet-
ter due-date performance. In particular cases they can spare capacity, and
decrease lost sales probability at the same time.

Following our experiments, we can surmise the form of an approximately op-
timal policy (class). In the uncapacitated case, we observed that using a
sufficiently high order-acceptance rate, or equivalently a high workload limit
(Wmax), is a safe choice when selecting the workload-dependent strategy. We
found that for high workload limits, the optimal capacity up- and down-
switching points tend to change less and less, and appear to form two lines.
This observation may facilitate future research on the policy class comprising
this linear type of policies.

5.1.3 Services

What dynamics of contingent capacity usage does a budget con-
straint entail in service environments, where backordering is not
possible?

Our last research question addressed the effect of a budget constraint on the
planning of service capacities. We realized that the longitudinal budget al-
location to permanent and contingent capacities can be generally handled as
budget allocation to fixed and variable expenditures. This observation broad-
ened the scope and applicability of the answer we might find to this question.

We developed six different models determining the optimal permanent and
contingent capacity levels so as to minimize the capacity shortage and budget
deviation penalty costs. These models differ in the budget and in the capacity
shortage cost modeling.

We considered models with restricting budgets, where the budget strictly lim-
its the total expenses, and models with guiding budgets, where budget deficits
are allowed at some costs. Besides, we considered halfway linear, halfway
quadratic, and halfway relative quadratic capacity shortage penalty costs,
where the halfway refers to the penalty costs being zero when capacity ex-
ceeds demand.

In both the restricting and guiding budget cases, we developed analytic for-
mulas in the linear shortage cost case, and found that near-optimal solutions
can be found by using a newsvendor equation. For quadratic and relative
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quadratic cost functions, we proposed a solution with dynamic programming.

Through numerical experiments, we found that the service level during the
year is more stable for halfway quadratic or relative quadratic cost functions
than for linear cost functions. Since the unstable level of service is not ac-
ceptable in most of the real-life situations, our results show that, generally,
linear capacity shortage cost functions do not represent well the usual allo-
cation preferences. An option that may remedy the mentioned drawbacks of
using linear shortage cost is to include cost of service instability in the model
(e.g. penalizing the service level differences).

Furthermore, we found that the spending, the expected shortage and the ex-
pected shortage cost patterns are all flat in the guiding budget cases, as com-
pared to the restricting budget cases. Interestingly, we found that the typical
optimal expenditure pattern is concave and decreasing in contrast to the in-
creasing patterns shown in Balakrishnan et al. (2007), which correspond with
the saving-dissaving behavior observed in multiple restricting budget real-life
cases. Most interestingly, decreasing optimal patterns belonged to all of the
restricting budget cases we observed, suggesting that the saving-dissaving be-
havior is not rational.

In the guiding budget, halfway quadratic shortage penalty cost case we did
discover situations, where the optimal spending pattern is slightly increasing
with an even stronger growth towards the end (we gave an example for an
increase from 99.5% to 101.3%, in percentages of the mean expenditure), but
even there we have found no indication of the optimality of the starting saving
behavior reported in Balakrishnan et al. (2007).

The few slightly increasing spending patterns we found can be termed similar
to what Zimmerman (1976) suggests and empirically supports. The underlying
dissaving behavior suggested was there, however, attributed to being a result of
budget uncertainty in our model, while our examples show increasing spending
patterns under budget certainty. Consequently, the spending patterns, which
were found typical in Zimmerman (1976) are not necessarily the result of
budget uncertainty.

In order to gain insight into risk-averse and risk-seeking attitudes, we per-
formed sensitivity analysis on the spending pattern with consistently under-
and overestimating demand throughout the horizon. We found that the atti-
tudes towards risk ranging from risk-seeking to risk-averse behavior correspond
typically with patterns having from decreasing to increasing spending trends.
Consequently, risk-averse attitude can be the rational for saving-dissaving
spending patterns.

We also suggest studying the spending pattern under autocorrelated demand
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structure. Namely, we find it likely that a positive autocorrelation can be an
alternative explanation for the saving-dissaving spending behavior.

The expected shortages and the expected shortage costs do not generally follow
the same pattern. We found situations in the quadratic penalty case, where
the expected shortage decreases, whereas the expected shortage costs increase.
We explained this phenomenon by the long tail of the shortage probability
density function, which tail gains a higher importance because of the quadratic
shortage cost structure.

We also investigated the probability distributions of the final budget devi-
ations. We showed that the special role of the targeted zero final budget
manifests in a peak probability mass at zero of the budget deviation proba-
bility distribution. This peak is especially high in the restricted budget case.
When the budget surplus is rewarded with the same weight as the deficit is
penalized, the special role that the zero final budget value plays vanishes, and
the peak probability mass at zero disappears. Our other important conclusion
was that the less the budget is enforced, the more deviations, and the larger
deficits we can expect.

5.1.4 General conclusions

Up to now we discussed our conclusions on to-stock, to-order, and service
systems. After having the main results summarized, we can make a qualitative
comparison between our models. If the outcomes of our different models lead
to the same conclusion, it suggests its general applicability.

Our first observation is on the influence of service level on the relative value of
capacity flexibility. We associate an increasing service level with an increasing
backordering cost in Chapter 2, with an increasing lateness cost in Chapter 3,
and with an increasing shortage penalty coefficient in Chapter 4. Some results
we already presented in Chapter 2, Table 2.2. We show some further results
for the base-case of Chapter 3 in Table 5.1. Based on these results, our general
conclusion is that a higher service level target implies an increasing value of
capacity flexibility.

tardiness penalty (e/job·hour) 60 70 80 90 100
V FC% 1.11 1.57 2.41 3.21 4.07

Table 5.1: V FC% increases for an increasing service level in the to-order
model in Chapter 3
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Our second observation is on how the demand forecast error affects the relative
value of capacity flexibility. We observed in Chapter 2 and in Chapter 3
that a structural overestimation of demand, which can be associated with a
risk-averse behavior, leads generally to underestimating the relative value of
capacity flexibility. Exceptions could be found in both cases: in Chapter 2 for
long lead times and high backorder unit costs, in Chapter 3 for high capacity
switching unit costs.

The last of our observation is that even when the contingent capacity costs
are particularly high (e.g. twice as much as the permanent capacity costs), its
value is still significant (e.g. in Table 2.2 in Chapter 2 it is 3 − 6%).

5.2. Few words on machines and other facilities

One could ask how far permanent-contingent capacity concept and our results
on human workforce management apply for the case of machines or other
facilities. Permanent machine capacity can be interpreted as the capacity of
the in-house resources. Contingent capacity of a machine or facility can be
interpreted as lease(, rent) or capacity reservation of the resource.

Leasing takes place usually in case of mobile machines (e.g. trucks) and smaller
tools (e.g. mowers), whereas capacity reservation is more associated with
large immobile machines and facilities (e.g. furnaces). Table 5.2 presents a
few examples for leasing and capacity reservation in production and service
provision. We remark that matching leasing with production is not common
(our example is the leasing of a video camera so that a film is produced).

leasing capacity reservation

production film \ video camera medicine \ production facility
services transportation \ truck calculation \ computer-cluster

Table 5.2: Examples for leasing and capacity reservation in production and
service systems.

Capacity reservation of a medicine production facility can be a good example
for a production system, where a fixed capacity reservation lead-time plays
an important role. We could claim that the models in Chapter 2 and 3 can
be a good representation of such systems, and that the obtained results ap-
ply. However, it is better to pay attention to two aspects, which can ruin the
model’s applicability. On the one hand, the facility may not provide ample
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amount of contingent capacity, and the provided amount may not be fixed as
the contingent capacity providers often introduce production rationing. On
the other hand, when logistics costs of raw materials and finished goods are
comparable to the contingent capacity costs, the logistics and capacity or-
dering decisions need coordination. We also remark that renting production
facilities resembles more to outsourcing if the contingent capacity is never
under-utilized.

Temporary lease of helicopters to be ready for delivering emergency shipments
is an example for using contingent capacity in services. The costs of the stan-
dard and the emergency delivery modes incur fixed and variable expenditures,
respectively. It is also usual to have a common budget for transportation or
logistics cost. Therefore, the content of Chapter 4 is applicable here. Rent-
ing or capacity reservation of some additional computer-clusters is similarly a
good example. Note that the limited capacity availability in both of these two
examples can undermine using our results.

5.3. Comparison of the permanent-contingent ca-
pacity, the subcontracting, and the dual sourc-
ing models

We compare the permanent-contingent capacity management, the subcon-
tracting, and the dual sourcing strategies from decision structure and flexi-
bility point of view based on production-to-stock cases. In the service and
to-order environments both the dual sourcing and subcontracting is less rele-
vant, because in these environments the need for a rapid response on demand
makes these options less attractive. We note that the to-stock dual sourcing
models are also called dual supply models, and that we consider here the dual
supply models with deterministic production lead-times1. We summarize our
comparison in Table 5.3.

Janssen and de Kok (1999) study the use of a fixed and a flexible supplier.
The fixed supplier delivers a fixed quantity each period, while the flexible
supplier satisfies additional orders generated by a (R,S) replenishment policy.
The (R,S) replenishment policy initiates replenishment in the beginning of
each review period (that has length of R), so that the inventory position is
raised to the order-up-to level, S. In case the inventory position is not less
than S, no replenishment order takes places. We can make correspondence

1Dual supply models with stochastic lead times primarily address order-splitting, which

has no sensible counterpart in the permanent-contingent capacity planning.
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Dual sourcing Subcontracting Perm.-cont.

reference Janssen & de Kok (1999) Yang et al. (2005) Chapter 2
production

decision
No (Yes) Yes Yes

resources fixed/flexible sources in-house/subcontractor perm./cont.
underutilize none in-house both

Table 5.3: The comparison of dual sourcing, subcontracting and permanent-
contingent management strategies

between the fixed supplier and the permanent capacity, as well as between the
flexible supplier and the contingent capacity. Similarly, we can associate the
in-house capacity and the subcontractor in the subcontracting models with
the permanent and contingent capacity, respectively (see Yang et al. (2005),
discussed already in Chapter 2).

The concepts behind using the combination of a fixed supplier/in-
house/permanent capacity and a flexible supplier/subcontractor/contingent
capacity are quite similar: the level demand is satisfied by former, whereas the
demand fluctuations are absorbed by the latter. However, there is a fundamen-
tal difference between the deliveries of the supplier or the subcontractor and
the own capacity usage: once a replenishment order is placed for the supplier,
it cannot be (partly) withdrawn if low demand is observed in the meanwhile;
in contrast, ordering capacity has the advantage that when arrived it may be
still underutilized.

We can observe that the lead times play an important role when pointing
out the difference between the dual sourcing, subcontracting and permanent-
contingent management. When production/delivery lead times equal zero in
the model, this major difference between the dual sourcing, the subcontract-
ing and the permanent-contingent capacity planning models disappear. The
models, where no lead time is present are could be generally interpreted and
applicable for all the three strategies (see Tan and Alp (2005) and Bradley
(2004)).

We remark that there is no production stage considered in the model of Janssen
and de Kok (1999) (the sources deliver finished goods). We note that there
are other dual sourcing models, where the sources deliver the raw material or
to a production stage, which may produce to stock. However, these models
also do not consider production decision, just model the production lead time
(see e.g. Yan et al. (2003)).
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5.4. Future research

This section adds some ideas for future research. We stated in the very be-
ginning of this thesis that we investigate tactical capacity planning of single
stage, single item cases. Natural, but complicated extensions of the models
in Chapters 2-3-4 are considering systems having multiple production stages
or multiple products/services. In what follows, we go through the models in
the thesis, and elaborate on their less complicated and more model-specific
extensions. We finalize this last section by focusing on an environment-unified
model, which could help in the assessment of firm’s environment transition
plans.

5.4.1 Production-to-stock

One interesting extension of the to-stock model is the relaxation of the as-
sumption of independent demand periods. There are various ways of includ-
ing demand dependency in the model. The analytically more attractive way
is the use of a (first of higher order) Markov-modulated demand model with
time-independent transitions. In this case the model’s state space is extended
with dimensions, in number equal to the demand model’s order. We expect all
the convexity and super/submodularity results to hold in this setting. Evalu-
ation of the models is likely possible for a first-order demand model with 5-10
demand states and a capacity acquisition lead time of two periods. Typically,
the numerically more attractive ways are the ones using first-order demand
models. Among the first-order demand models we underline the benefits of
the AR(1) demand model (first-order autoregressive), with which numerical
calculations with varied correlation coefficient can be easily interpreted and
presented.

The model’s extension to general fixed production lead times is more com-
plicated. Imagine that the production lead time is 3 periods, and we start
to produce 12 items in the beginning of the first period. In the second and
the third periods we stop using our capacity. Should then 4 items be ready
in the end of the third period or none? The answer depends on the very
operational structure of the system. If the 4 items were ready in the end of
the first period, then the model boils down to the one in Chapter 2. If the
4 items are not ready in the first period, but ready in the end of the third,
then additional state space dimensions need to archive the production started
each period one lead-time length backwards. Additionally, a FIFO-processing
paradigm may be assumed. For the case when less than 4 or none of the items
are ready by the end of the third period, we do not see any reasonable model
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extension. An exception might be when all the work-in-process not ready in
production lead-time is lost. Losing outdated work-in-process creates a limit
on the state space dimensions, and the resulting model may be relevant in the
food industry.

5.4.2 Production-to-order

Extensions to our to-order model are numerous. We summarize the most
relevant ones only. First, more general interarrival and service time distribu-
tions can be handled by using phase-type distributions instead of exponential.
Unfortunately, employing phase-type distributions would heavily increase the
number of states in the model. Therefore, approximations may be consid-
ered, where the less visited states behave memoryless. Second, service time
parameters (μw,c) can be set so that they correspond to situations where only
one server can be assigned to a job or represent other dependencies on actual
workload or capacity level. Third, switching costs for starting or suspending
production are usually higher than increasing or decreasing production rate
when production is already running. A simple extension can assign different
costs for the different types of switchings. Fourth, a generalization of our
model to positive capacity alteration lead times could reveal to what extent
the assumption of instantaneous capacity changes is restrictive in workload-
dependent capacity planning. However, this extension seems to be more com-
plicated.

5.4.3 Services

We have analytical findings only for the service budgeting case with linear
capacity shortage penalty. Employing the more interesting halfway quadratic
and halfway relative quadratic capacity shortage penalty functions seem to
be complicated for exact analysis. Our unpublished further analytical effort
show that using a quadratic penalty function is promising. The analysis of
the model under quadratic capacity shortage penalty may lead to compact
formulas of the optimal permanent and contingent capacity decisions.

To further study the saving-dissaving spending behavior, we suggest including
demand autocorrelation in the model. Positive autocorrelation may be an
alternative explanation for the increasing spending patterns.

Empirical research has a potential for contribution in describing the capacity
shortage and budget penalty functions. A good starting point for such re-
search can be the economics literature on cardinal utility functions and their
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measurement (see Schoemaker (1982)).

5.4.4 An environment-unified model

While the previous subsections on future research were engaged in flexible
capacity management within a given environment, we now turn our attention
to more generic observations and suggestions on the basis of this thesis and the
existing literature. Our goal in this subsection is to present the way towards
establishing an environment-unified model.

Some pieces of literature have already been concentrated on combining to-
stock, and to-order models, providing an optimal choice for the type of pro-
duction (e.g. Adan and van der Wal (1998) study a Markov-chain with di-
mensions of work-in-process and finished goods inventory levels; Rajagopalan
(2002) minimizes of inventory costs under a service constraint via analysis of
an M |G|1 queue). Yet, we are aware of no unified model of the three type of
systems that includes services. Such unified model would make possible e.g.
the quantitative comparison of the value of contingent capacity in the differ-
ent environments. A unified model can also help to assess e.g. the capacity
cost implications of firms’ profile change to a new environment. Furthermore,
it has particular educational value, since it gives an overview of operations
management.

Modeling the combination of to-stock and to-order systems including contin-
gent capacity management is straightforward based on Chapter 3 and Adan
and van der Wal (1998). Similarly to the first model in Adan and van der
Wal (1998), using that inventory and work-in-process are complementary, one
can establish a single-dimensional state-space, where negative numbers refer
to a number of items on stock and the positive numbers to orders waiting to
be processed. This state-space can be extended by a capacity dimension as in
Chapter 3.

For some service systems, to-order models can be still applicable. These are the
services, which we can perceive as a guarantee for satisfying a set of orders,
which are not completely known in advance. E.g. hospitals, airlines, and
insurance companies provide services that provide coverage over a set of small
orders (e.g. ordering a drink can be part of a flight service). The majority of
the possible orders that can be demanded is often previously given in contracts
and/or protocols (e.g. coverage of health insurance packages). As compared
to the to-order systems, services have the extra complexity of anticipating the
costs of the various possible order patterns that may come. While there is
only a single order paid and a single possible outcome in the case of to-order
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systems, by services one pays for covering the anticipated costs of yet unknown
composite and pattern of future orders.

We propose an approach that may be employed to create a unified model of
to-stock, to-order, and service systems. In particular, for studying the value of
capacity flexibility in the different environments, we can take the two steps of
the previous two paragraphs: (1) extend the first model in Adan and van der
Wal (1998) by a capacity dimension as in Chapter 3, and (2) counting for
multiple orders in multiple order pattern scenarios. It is important to take
into account the cost of not immediately delivering (setup between services
and to-order), and the costs of being not customer-specific (setup between
to-order and to-stock).

We have some expectations regarding the results that a unified model of to-
stock, to-order, and service environments can yield with respect to the value
of contingent capacity. The basis of our expectations is a qualitative com-
parison that continues the contemplation on the characteristics of the three
environments in Section 1.2. There we have already remarked that the level of
customer involvement and the (production/customer order) lead time length
are the main factors that affect whether to give more emphasis to the services
or to the goods. Increasing the lead time from zero on, we can span a range
from services, via to-order, to production-to-stock systems. Naturally, a short
lead time necessary by services induces more pressure on towards employing
capacity flexibility than a longer lead time, which is attributed to production
systems. Consequently, we can expect that the value of capacity flexibility is
higher for services and lower for production environments.
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Summary

Studies on Tactical Capacity Planning with Contin-
gent Capacities

The main motivation for this thesis is the emerging use of the workforce pro-
vided by external labor supply agencies (ELSAs). This temporary workforce
we refer to as contingent capacity. Temporarily extending the in-house, per-
manent capacity by contingent capacity in peak demand periods can create a
competitive advantage for companies, which need to meet uncertain and fluc-
tuating demand. This thesis investigates tactical capacity planning of single
stage, single item production-to-stock, production-to-order and service envi-
ronments.

In production-to-stock environments, our focus is on aggregate production and
capacity planning, when there is an option of using contingent capacity next
to the permanent capacity. We analyze the optimal coordinated production
and capacity decisions when the lead times for contingent capacity acquisition
is zero or positive. Our main contribution is that we analytically show the
structure of the optimal policy and characterize the economic relations between
the inventory level, the permanent capacity, and the contingent including those
in the pipeline. We also point out important differences between the zero and
the positive contingent capacity acquisition lead time cases. Namely, while for
the zero lead time case increasing demand variability generally increases the
value of using contingent capacity, its effect is reversed when a positive lead
time is present.

In production-to-order environments, we study workload-dependent capacity
management policies. The permanent production capacity can be increased
and decreased at specific workload levels by employing contingent resources.
A workload-dependent capacity management policy specifies these workload
values, which trigger capacity level switches, and the permanent capacity level.
We perform numerical experiments to learn about the structure of the optimal
policy with respect to capacity, capacity switching, lost sales, work-in-process
cost, and due-date performance. We show the effect of discreteness of the
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capacity levels, and what potential the use of contingent capacity for given
quoted lead time - order interarrival time combination could have. Our results
also indicate that a special policy class is possibly close to optimal in many
cases.

In service environments, we concentrate on the use of a capacity budget, which
can be allocated to permanent and contingent capacity to meet demand over
a finite horizon. In the beginning of the horizon the permanent capacity cost
are incurred, and the rest of the budget is dynamically allocated to cover the
contingent capacity expenditures. Our main result is that we give a possible
explanation for the saving-dissaving behavior, which some scientists observed
with in their empirical study.

Finally, we answer the research questions posed in the beginning of the thesis,
draw conclusions, and point at interesting future research questions.



Samenvatting

Studies Aangaande Tactische Capaciteitsplanning
met Contingente Capacitiet

De belangrijkste aanleiding voor deze dissertatie is het toenemend gebruik
van personeel dat wordt geleverd door externe uitzend- en detacheringsbu-
reaus. Een dergelijk bureau duiden we aan met het Engels acroniem ELSA
(voor external labor supply agency) en het tijdelijk personeel dat ze verschaffen
noemen we ’contingente capaciteit’. Het tijdelijk uitbreiden van interne, per-
manente capaciteit met dergelijke contingente capaciteit tijdens perioden van
piekvraag kan een concurrentievoordeel opleveren voor bedrijven; zij kunnen
daarmee tegemoet komen aan de onzekere en fluctuerende vraag. Deze dis-
sertatie behandelt tactische capaciteitsplanning van enkelvoudige enkelstuks-
bewerking produktie-op-voorraad, produktie-op-bestelling en dienstverlening-
somgevingen.

In produktie-op-voorraad omgevingen ligt de nadruk op de geaggregeerde
productie- en capaciteitsplanning waarbij er de mogelijkheid is om naast de
permanente ook contingente capaciteit in te zetten. We analyseren de optimaal
gecoördineerde productie- en capaciteitsbeslissingen waarbij de levertijd voor
het verkrijgen van contingente capaciteit nul of positief is. Onze belangrijkste
bijdrage is de analytische afleiding van de structuur van het optimaal beleid
en de economische relaties tussen voorraadniveau, permanente capaciteit en
contingente capaciteit (inclusief die nog in de pijplijn). We stipuleren ook be-
langrijke verschillen wanneer de levertijd voor contingente capaciteit niet nul
maar positief is. Terwijl in geval van een levertijd van nul bij een toenemende
variabiliteit het nut van contingente capaciteit in het algemeen toeneemt, is
het effect namelijk juist omgekeerd wanneer er een positieve levertijd is.

In produktie-op-bestelling omgevingen bestuderen we beleid voor werk-
lastafhankelijk capaciteitsbeheer. De permanente productiecapaciteit kan
worden uitgebreid en ingekrompen bij specifieke niveaus van werklast door
gebruik te maken van contingente capaciteit. Een werklastafhankelijk ca-
paciteitsbeheerbeleid specificeert zowel de werklastniveaus die dergelijke ca-
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paciteitsverandering voorschrijven, alsook het niveau van de permanente ca-
paciteit. We voeren numerieke experimenten uit om de structuur van het opti-
male beleid te doorgronden in relatie tot capaciteit, capaciteitsveranderingen,
gemiste verkopen, onderhanden werk kosten en levertijdprestatie. We isoleren
de rol van de geheeltalligheid van de capaciteitsniveaus en de potentie van
het gebruik van contingente capaciteit voor combinaties van gegeven gequo-
teerde levertijd en bestelling-tussenaankomsttijd. Onze bevindingen maken
ook duidelijk dat er een speciale klasse van beleid in vele gevallen bijna-
optimaal is.

In een dienstverleningsomgeving richten we ons op het gebruik van een ca-
paciteitsbudget dat gealloceerd kan worden over permanente of contingente
capaciteit om aan vraag te voldoen gedurende een eindige horizon. In het
begin van de horizon worden de kosten voor permanente capaciteit gemaakt
terwijl de rest van het budget dynamisch gealloceerd wordt om kosten voor
contingente capaciteit te dekken. De voornaamste bevinding is een mogelijke
verklaring voor het uitstel- en inhaalgedrag hetgeen door sommige wetenschap-
pers in empirische studies geobserveerd is.

Uiteindelijk beantwoorden we de onderzoeksvraag die aan het begin van de
dissertatie gesteld is, trekken we conclusies en verschaffen interessante vragen
voor vervolgonderzoek.
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