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Abstract

We develop a space-time large-deviation point of view on Gibbs-non-Gibbs transitions
in spin systems subject to a stochastic spin-flip dynamics. Using the general theory for
large deviations of functionals of Markov processes outlined in Feng and Kurtz [11], we
show that the trajectory under the spin-flip dynamics of the empirical measure of the spins
in a large block in Zd satisfies a large deviation principle in the limit as the block size
tends to infinity. The associated rate function can be computed as the action functional
of a Lagrangian that is the Legendre transform of a certain non-linear generator, playing
a role analogous to the moment-generating function in the Gärtner-Ellis theorem of large
deviation theory when this is applied to finite-dimensional Markov processes. This rate
function is used to define the notion of “bad empirical measures”, which are the disconti-
nuity points of the optimal trajectories (i.e., the trajectories minimizing the rate function)
given the empirical measure at the end of the trajectory. The dynamical Gibbs-non-Gibbs
transitions are linked to the occurrence of bad empirical measures: for short times no
bad empirical measures occur, while for intermediate and large times bad empirical mea-
sures are possible. A future research program is proposed to classify the various possible
scenarios behind this crossover, which we refer to as a “nature-versus-nurture” transition.
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1 Introduction, main results and research program

1.1 Dynamical Gibbs-non-Gibbs transitions

Since the discovery of the Griffiths-Pearce-Israel pathologies in renormalization-group trans-
formations of Gibbs measures, there has been an extensive effort towards understanding the
phenomenon that a simple transformation of a Gibbs measure may give rise to a non-Gibbs
measure, i.e., a measure for which no reasonable Hamiltonian can be defined (see van En-
ter, Fernández and Sokal [4], Fernández [12], and the papers in the EURANDOM workshop
proceedings [26]). From the start, R.L. Dobrushin was interested and involved in this develop-
ment; indeed, Dobrushin and Shlosman [2], [3] proposed a programme of Gibbsian restoration,
based on the idea that the pathological bad configurations of a transformed Gibbs measure
(i.e., the essential points of discontinuity of some of its finite-set, e.g. single-site, conditional
probabilities) are exceptional in the measure-theoretic sense (i.e., they form a set of measure
zero). This has led to two extended notions of Gibbs measures: weakly Gibbsian measures
and almost Gibbsian measures (see Maes, Redig and Van Moffaert [21]). Later, several refined
notions were proposed, such as intuitively weakly Gibbs (Van Enter and Verbitskiy [9]) and
right-continuous conditional probabilities.

In Van Enter, Fernández, den Hollander and Redig [5], the behavior of a Gibbs measure µ
subject to a high-temperature Glauber spin-flip dynamics was considered. A guiding example
is the case where we start from the low-temperature plus-phase of the Ising model, and we run
a high-temperature dynamics, modeling the fast heating up of a cold system. The question
of Gibbsianness of the measure µt at time t > 0 can then be interpreted as the existence
of a reasonable notion of an intermediate-time-dependent temperature (at time t = 0 the
temperature is determined by the choice of the initial Gibbs measure, while at time t =∞ the
temperature is determined by the unique stationary measure of the dynamics). For infinite-
temperature dynamics, the effect of the dynamics is simply that of a single-site Kadanoff
transformation, with a parameter that depends on time. The extension to high-temperature
dynamics was achieved with the help of a space-time cluster expansion developed in Maes and
Netocný [22]. The basic picture that emerged from this work was the following:

(1) µt is Gibbs for small t;

(2) µt is non-Gibbs for intermediate t;

(3) in zero magnetic field µt remains non-Gibbs for large t, while in non-zero magnetic field
µt becomes Gibbs again for large t.

Further research went into several directions and, roughly summarized, gave the following
results:

(a) Small-time conservation of Gibbsianness is robust: this holds for a large class of spin
systems and of dynamics, including discrete spins (Le Ny and Redig [18]), continuous
spins (Dereudre and Roelly [1], van Enter, Külske, Opoku and Ruszel, [15], [7], [8], [23],
[6]), which can be subjected to Glauber dynamics, mixed Glauber/Kawasaki dynamics,
and interacting-diffusion dynamics, not even necessarily Markovian (Redig, Roelly and
Ruszel [25]), appliedto a large class of initial measures (e.g. Gibbs measures for a finite-
range or an exponentially decaying interaction potential).

2



(b) Gibbs-non-Gibbs transitions can also be defined naturally for mean-field models (see
e.g. Külske and Le Ny [14] for Curie-Weiss models subject to an independent spin-flip
dynamics). In this context, much more explicit results can be obtained: transitions
are sharp (i.e., in zero magnetic field there is a single time after which the measure
becomes non-Gibbs and stays non-Gibbs forever, and in non-zero magnetic field there is
a single time at which it becomes Gibbs again). Bad configurations can be characterized
explicitly (with the interesting effect that non-neutral bad configurations can arise below
a certain critical temperature). For further developments on mean-field results see also
[16], [10].

(c) Gibbs-non-Gibbs transitions can also occur for continuous unbounded spins subject to
independent Ornstein-Uhlenbeck processes (Külske and Redig [17]), and for continuous
bounded spins subject to independent diffusions (Van Enter and Ruszel [7], [8]), even in
two dimensions where no static phase transitions occur.

Bad configurations can be detected by looking at a so-called two-layer system: the joint
distribution of the configuration at time t = 0 and time t > 0. If we condition on a particular
configuration η at time t > 0, then the distribution at time t = 0 is a Gibbs measure with an η-
dependent Hamiltonian Hη, which is a random-field modification of the original Hamiltonian
H of the starting measure. If, for some η, Hη has a phase transition, then this η is a bad
configuration (see Fernández and Pfister [13]).

1.2 Nature versus nurture

While these results led to a reasonably encompassing picture, we were unsatisfied with the
strategy of the proofs for the following reason. All proofs rely on two fortunate facts: (1)
the evolutions can be described in terms of space-time interactions; (2) these interactions cor-
respond to well-studied models in equilibrium statistical mechanics. In particular, although
the most delicate part of the analysis – the proof of the onset of non-Gibbsianness – was
accomplished by adapting arguments developed in previous studies on renormalization trans-
formations, the actual intuition that led to these results relied on entirely different arguments,
based on the behavior of conditioned trajectories. These intuitive arguments, already stated
without proof in our original work [5], can be summarized as follows:

(I) If a configuration η is good at time t (i.e., is a point of continuity of the single-site
conditional probabilities), then the trajectory that leads to η is unique, in the sense that
there is a single distribution at time t = 0 that leads to η at time t > 0. In particular,
if t is small, then this trajectory stays close to η during the whole time interval [0, t].

(II) If a configuration η is bad at time t (i.e., is a point of essential discontinuity of the single-
site conditional probabilities), then there are at least two trajectories compatible with
the occurrence of η at time t. Moreover, these trajectories can be selected by modifying
the bad configuration η arbitrarily far away from the origin.

(III) Trajectories ending at a configuration η at time t are the result of a competition between
two mechanisms:

– Nature: The initial configuration is close to η, which is not necessarily typical for
the initial measure, and is preserved by the dynamics up to time t.
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– Nurture: The initial configuration is typical for the initial measure and the system
builds η in a short interval prior to time t.

As an illustration, let us consider the low-temperature zero-field Ising model subject to
an independent spin-flip dynamics. In [5] we proved that the fully alternating configuration
becomes and stays bad for large t. This fact can be understood according to the preceding
paradigm in the following way. Short times do not give the system occasion to perform a large
number of spin-flips. Hence, the most probable way to see the alternating configuration at
small time t is when the system started in a zero-magnetization-like state and the evolution
kept the magnetization zero up to time t. This is the nature-scenario! For larger times t, a
less costly alternative is to start in a less atypical manner, and to arrive at the alternating
configuration following a trajectory that stays close for as long as possible to the unconditioned
dynamical relaxation. This is the nurture-scenario! In this situation, we can start either from
a plus-like state or a minus-like state, as the difference in probabilistic cost between these
two initial states is exponential in the size of boundary, and thus is negligible with respect
to the volume cost imposed by a constrained dynamics. It is then possible to select between
the plus-like and the minus-like trajectories by picking the alternating configuration in a large
block, then picking either the all-plus or the all-minus configuration outside this block, and
letting the block size tend to infinity.

We see that the above explanation relies on two facts:

(i) The existence of a nature-versus-nurture transition, as introduced in [5].

(ii) The existence of several possible trajectories (once the system is in the nurture regime),
all starting from configurations that are typical for the initial measure (modulo an
boundary-exponential cost). These trajectories evolve to the required bad configuration
over a short interval prior to time t.

1.3 Large deviations of trajectories

The goal of the present paper is to put rigor into the above qualitative suggestions. We
propose two novel aspects:

(1) the development of a suitable large deviation theory for trajectories, in order to estimate
the costs of the different dynamical strategies;

(2) the use of empirical measures instead of configurations, in order to express the condi-
tioning at time t.

For a translation-invariant spin-flip dynamics and a translation-invariant initial measure,
nothing is lost by moving to the empirical measure because the bad configurations form a
translation-invariant set. Instead, a lot is gained because, as we will show, the trajectory of
the empirical measure satisfies a large deviation principle under quite general conditions on
the spin-flip rates (e.g. there is no restriction to high temperature). Moreover, the question
of uniqueness versus non-uniqueness of optimal trajectories (i.e., minimizers of the large de-
viation rate function) can be posed and tackled for a large class of dynamics, which places
the dynamical Gibbs-non-Gibbs-transition into a framework where it gains more physical
relevance.

Here is a list of the results presented in the sequel.
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(A) Existence of a large deviation principle for trajectories. We apply the theory developed
in Feng and Kurtz [11], Section 8.6. The rate function is the integral of the Legendre
transform of the generator of the non-linear semigroup defined by the dynamics. In
suitably abstract terms, this generator can be associated to a Hamiltonian, and the rate
function to the integral of a Lagrangian (Sections 2–5).

(B) Explicit expression for the generator of the non-linear semigroup of the dynamics. These
are obtained in Theorems 3.1–3.2 below (Section 3).

(C) Rate functions for trajectories and associated optimal trajectories. The general Legendre-
transform prescription is explicitly worked out for a couple of simple examples, and
optimal trajectories are exhibited (Sections 4.2–4.3).

(D) Relation with thermodynamic potentials. Relations are shown between the non-linear
generator and the derivative of a “constrained pressure”. Similarly, the rate function
per unit time is related to the Legendre transform of this pressure (Section 5.2).

(E) Definition of bad measures. This definition, introduced in Section 6, is the transcription
to our more general framework of the notion of bad configuration used in our original
work [5]. In Section 7 we discuss the possible relations between these two notions of
badness.

1.4 Future research program

The results in (A)–(E) above are the preliminary steps towards a comprehensive theory of
dynamical Gibbs-non-Gibbs transitions based on the principles outlined above. Let us con-
clude this introduction with a list of further issues which must be addressed to develop such
a theory:

• Definition of “nature-trajectories” and “nurture-trajectories”. This is a delicate issue
that requires full exploitation of the properties of the rate function for the trajectory.
It must involve a suitable notion of distance between conditioned and unconditioned
trajectories.

• Relation between nature-trajectories and Gibbsianness. It is intuitively clear that
Gibbsianness is conserved for times so short that only nature-trajectories are possible.
A rigorous proof of this fact would confirm our intuition and would lead to alternative
and less technical proofs of short-time Gibbsianness preservation.

• Study of nurture-trajectories. We expect that nurture-trajectories start very close to
unconstrained trajectories, and move away only shortly before the end in order to satisfy
the conditioning. For the case of time-reversible evolutions, the time it takes to get to the
nurture-regime should be the same as the initial relaxation time to (almost) equilibrium.

• Study of nature-nurture transitions. Transitions from nature to nurture should happen
only once for every conditioning measure (i.e., there should be no nature-restoration).
Natural questions are: Does the time at which these transitions take place depend on
the conditioning measure? Is there a common time after which every trajectory becomes
nurture?
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• Case studies of trajectories leading to non-Gibbsianness. These should determine “for-
bidden regions” in trajectory space. Natural questions are: How do these regions evolve?
Are they monotone in time?

• Relation between nurture-trajectories and non-Gibbsianness. While we expect that “all
trajectories are nature” implies Gibbsianness of the evolved measure, we do not expect
that“some trajectories are nurture” leads to non-Gibbsianness. Examples are needed
to clarify this asymmetry. The case of the Ising model in non-zero field – in which
Gibbsianness is eventually restored – should be particularly enlightening.

1.5 Outline

Our paper is organized as follows. In Section 2, we consider the case of independent spin-flips,
as a warm-up for the rest of the paper. In Section 3, we compute the non-linear generator
for dependent spin-flips, which plays a key rol in the large deviation principle we are after.
In Sections 4 and 5, we compute the Legendre transform of this non-linear generator, which
is the object that enters into the associated rate function, as an action integral. In Section 4
we do the computation for independent spin-flips, in Section 5 we extend the computation
to dependent spin-flips. In Section 6, we look at bad measures, i.e., measures at time t > 0
for which the optimal trajectory leading to this measure and minimizing the rate function is
non-unique. In Section 7, we use these results to develop our large-devation view on Gibbs-
non-Gibbs transtions. In Appendix A we illustrate the large deviation formalism in Feng and
Kurtz [11], which lies at the basis of Sections 2–5, by considering a simple example, namely, a
Poisson random walk with small increments. This will help the reader not familiar with this
formalism to grasp the main ideas.

2 Independent spin-flips: trajectory of the magnetization

2.1 Large deviation principle

As a warm-up, we consider the example of Ising spins on the one-dimensional torus TN =
{1, . . . , N} subject to a rate-1 independent spin-flip dynamics. Write PN to denote the
law of this process. We look at the trajectory of the magnetization, i.e., t 7→ mN (t) =
N−1

∑N
i=1 σi(t), where σi(t) is the spin at site i at time t. A spin-flip from +1 to −1 (or from

−1 to +1) corresponds to a jump of size −2N−1 (or +2N−1) in the magnetization, i.e., the
generator LN of the process (mN (t))t≥0 is given by

(LNf)(m) = 1+m
2 N

[
f
(
m− 2N−1

)
− f(m)

]
+ 1−m

2 N
[
f
(
m+ 2N−1

)
− f(m)

]
(2.1)

for m ∈ {−1,−1 + 2N−1, . . . , 1 − 2N−1, 1}. If limN→∞mN = m and f is C1 with bounded
derivative, then

lim
N→∞

(LNf)(mN ) = (Lf)(m) with (Lf)(m) = −2mf ′(m). (2.2)

This is the generator of the deterministic process m(t) = m(0)e−2t, solving the equation
ṁ(t) = −2m(t) (the dot denotes the derivative with respect to time).
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The trajectory of the magnetization satisfies a large deviation principle, i.e., for every time
horizon T ∈ (0,∞) and trajectory γ = (γt)t∈[0,T ],

PN
((
mN (t)

)
t∈[0,T ]

≈ (γt)t∈[0,T ]

)
≈ exp

[
−N

∫ T

0
L(γt, γ̇t) dt

]
, (2.3)

where the Lagrangian t 7→ L(γt, γ̇t) can be computed following the scheme of Feng and
Kurtz [11], Example 1.5. Indeed, we first compute the so-called non-linear generator H
given by

(Hf)(m) = lim
N→∞

(HNf)(mN ) with (HNf)(mN ) =
1
N
e−Nf(mN ) LN (eNf )(mN ), (2.4)

where limN→∞mN = m. This gives

(Hf)(m) = m+1
2 (e−2f ′(m) − 1) + 1−m

2 (e2f ′(m) − 1), (2.5)

which is of the form
(Hf)(m) = H

(
m, f ′(m)

)
(2.6)

with
H(m, p) = m+1

2 (e−2p − 1) + 1−m
2 (e2p − 1). (2.7)

Because p 7→ H(m, p) is convex, we have

H(m, p) = sup
q∈R

[pq − L(m, q)] (2.8)

with
L(m, q) = sup

p∈R
[pq −H(m, p)]

=
q

2
log

(
q +

√
q2 + 4(1−m2)
2(1 +m)

)
− 1

2

√
q2 + 4(1−m2) + 1.

(2.9)

Hence, using the theory developed in Feng and Kurtz [11], Chapter 1, Example 1.5, we indeed
have the large deviation principle in (2.3) with L(γt, γ̇t) given by (2.9) with m = γt and q = γ̇t.

2.2 Optimal trajectories

We may think of the typical trajectories (mN (t))t∈[0,T ] as being exponentially close to optimal
trajectories minimizing the action functional γ = (γt)t∈[0,T ] 7→

∫ T
0 L(γt, γ̇t) dt. The optimal

trajectories satisfy the Euler-Lagrange equations

d

dt

∂L

∂γ̇t
=
∂L

∂γt
(2.10)

or, equivalently, the Hamilton-Jacobi equations corresponding to the Hamiltonian in (2.7),

ṁ =
∂H

∂p
, ṗ = −∂H

∂m
, (2.11)

which gives
ṁ = −m(e2p + e−2p) + (e2p − e−2p), ṗ = 1

2 (e2p − e−2p). (2.12)
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Putting h = tanh(p) and integrating the second equation in (2.12), we obtain

h(t) = C e2t. (2.13)

Using that arctanh(x) = 1
2 log(1+x

1−x), we get

ṁ = −m 2 + 2h2

1− h2
+

4h
1− h2

, (2.14)

which can be integrated to yield the solution

m(t) = C1e
2t + C2e

−2t, (2.15)

where the constants C1, C2 are determined by the initial magnetization and the corresponding
initial momentum. One example of an optimal trajectory corresponds to the dynamics starting
from an initial magnetization m0, giving m(t) = m0e

−2t, i.e., C1 = 0 and C2 = m0. Another
example of an optimal trajectory is the reversed dynamics arriving at magnetization mT at
time T , giving m(t) = mT e

2(t−T ), i.e., C2 = 0 and C1 = mT e
−2T .

Yet another example is the following. Suppose that we start the independent spin-flip
dynamics from a measure under which the magnetization satisfies a large deviation principle
with rate function, say, I, e.g. a Gibbs measure. If we want to arrive at a given magnetization
mT at time T , then the optimal trajectory is given by (2.15) with end condition m(T ) = mT

and satisfying the open-end condition relating the Lagrangian L at time t = 0 to the rate
function I at magnetization m = γ0 as follows:[

∂L(γt, γ̇t)
∂γ̇t

]
t=0

= −
[
∂I(m)
∂m

]
m=γ0

. (2.16)

This condition is obtained by minimizing γ 7→ I(γ0) +
∫ T

0 L(γt, γ̇t) dt (see Ermolaev and
Külske [10]).

3 Trajectory of the empirical measure for dependent spin-flips

We will generalize the computation in Section 2 in two directions. First, for independent spin-
flips we are confronted with the problem that the rate at which the average of a local observable
changes in general depends on the average of other observables. Second, for dependent spin-
flips even the trajectory of the magnetization is not Markovian. Therefore, we are obliged to
consider the time evolution of all spatial averages jointly, i.e., the empirical measure.

3.1 Setting and notation

For N ∈ N, let TdN be the d-dimensional N -torus (Z/(2N + 1)Z)d. For i, j ∈ TdN , let i + j
denote coordinate-wise addition modulo 2N + 1. We consider Glauber dynamics of Ising
spins located at the sites of TdN , i.e., on the configuration space ΩN = {−1, 1}TdN . We write
Ω = {−1, 1}Zd to denote the infinite-volume configuration space. Configurations are denoted
by symbols like σ and η. For σ ∈ ΩN , σi denotes the value of the spin at site i. We write
M1(Ω) to denote the set of probability measures on Ω, and similarly for M1(ΩN ).
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The dynamics is defined via the generator LN acting on functions f : ΩN → R as

(LNf)(σ) =
∑
i∈TdN

ci(σ) [f(σi)− f(σ)], (3.1)

where σi denotes the configuration obtained from σ by flipping the spin at site i. The rates
ci(σ) are assumed to be strictly positive and translation invariant, i.e.,

ci(σ) = c0(τiσ) = c(τiσ) with (τiσ)j = σi+j . (3.2)

We think of the dynamics with generator LN as a finite-volume version with periodic boundary
condition of the infinite-volume generator

(Lf)(σ) =
∑
i∈Zd

ci(σ) [f(σi)− f(σ)], (3.3)

where now f is supposed to be a local function, i.e., a function depending on a finite number
of σj , j ∈ Zd. We denote by (St)t≥0 with St = etL the semigroup acting on C(Ω) (the space
of continuous functions on Ω)) associated with the generator in (3.3), and similarly (SNt )t≥0

with SNt = etLN . For µ ∈M1(Ω), we denote by µSt ∈M1(Ω) the distribution µ evolved over
time t, and similarly for µNSNt and µN ∈M1(ΩN ).

We embed TdN in Zd by identifying it with ΛdN = ([−N,N ]∩Z)d. Through this identifica-
tion, we give meaning to expressions like

∑
i∈TdN

f(τiσ) for σ ∈ Ω and f : Ω→ R. In this way
we may also view local functions f : Ω→ R as functions on ΩN as soon as N is large enough
for ΛdN to contain the dependence set of f . For a translation-invariant µ ∈M1(Ω), we denote
by µN its natural restriction to ΩN .

By the locality of the spin-flip rates, the infinite-volume dynamics is well-defined and is
the uniform limit of the finite-volume dynamics, i.e., for every local function f : Ω → R and
t > 0,

lim
N→∞

‖SNt f − Stf‖∞ = 0. (3.4)

See Liggett [20], Chapters 1 and 3, for details on existence of the infinite-volume dynamics.

3.2 Empirical measure

For N ∈ N and σ ∈ ΩN , the empirical measure associated with σ is defined as

LN (σ) =
1
|TdN |

∑
i∈TdN

δτiσ. (3.5)

This is an element of M1(ΩN ) which acts on functions f : Ωn → R as

〈f,LN 〉 =
∫

ΩN

f dLN =
1
|TdN |

∑
i∈TdN

f(τiσ). (3.6)

As already mentioned above, a local f : Ω→ R may be considered as a function on ΩN for N
large enough. A sequence (µN )N∈N with µN ∈M1(ΩN ) converges weakly to some µ ∈M1(Ω)
if

lim
N→∞

∫
ΩN

fdµN =
∫

Ω
fdµ ∀ f local. (3.7)
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For σ ∈ Ω, we define its periodized version σN as σNi = σi for i = (i1, . . . , id) with −N ≤ ik <
N for k ∈ {1, . . . , d}, and σNi = σimod (2N+1) otherwise.

If µ is ergodic under translations, then by the locality and the translation invariance of
the spin-flip rates also µSt is ergodic under translations. Let µN be the distribution of σN

when σ is drawn from µ. Since the semigroup (SNt )t≥0 uniformly approaches the semigroup
(St)t≥0 as N →∞, the ergodic theorem implies that

LN (σN (t))→ µSt weakly as N →∞, (3.8)

where σN (t) denotes the random configuration that is obtained by evolving σN over time t in
the process with generator LN .

The deterministic trajectory t 7→ µSt is the solution of the equation

dµt
dt

= L∗µt, (3.9)

where L∗ denotes the adjoint of the generator acting on the space of finite signed measures
M(Ω). Thus, we can view the convergence in (3.8) as an infinite-dimensional law of large
numbers, where the random measure-valued trajectory (LN ((σN (t)))t∈[0,T ] converges to the
deterministic measure-valued trajectory (µSt)t∈[0,T ]. It is therefore natural to ask for an
associated large deviation principle, i.e., does there exist a rate function γ 7→ I(γ) such that

PN
((
LN ((σN (t))

)
t∈[0,T ]

≈ γ
)
≈ exp[−|TdN |I(γ)]? (3.10)

Inspired by the example of the magnetization described in Section 2, we expect the answer to
be yes and the rate function to be of the form

I(γ) =
∫ T

0
L(γt, γ̇t) dt (3.11)

for some appropriate Lagrangian L. In order to compute L, we must first find the generator
of the non-linear semigroup.

3.3 The generator of the non-linear semigroup

In our setting the non-linear generator is defined as follows:

(HNF )(LN (σ)) =
1
|TdN |

e−|T
d
N |F (LN (σ))LN

(
e|T

d
N |(F◦LN )

)
(σ). (3.12)

If the expression in (3.12) has a limit (HF )(µ) as N → ∞ when LN (σ) → µ weakly, then a
candidate rate function can be constructed via Legendre transformation (see Section 5).

To compute the limit operator, we start with a simple function of the form

F (LN (σ)) = 〈f,LN (σ)〉, (3.13)

where f : Ω→ R is a local function. Such f ’s are linear combinations of the functions

HA(σ) =
∏
i∈A

σi, A ⊆ Zd finite, (3.14)

which live on ΩN for N large enough.

10



Theorem 3.1. For all local f ∈ Ω and N large enough,

1
|TdN |

e−|T
d
N |〈f,LN (σ)〉 LN

(
e|T

d
N |〈f,LN 〉

)
(σ) =

〈
c
(
eDNf − 1

)
,LN (σ)

〉
, (3.15)

where DN is the linear operator, acting on functions on ΩN , defined via

DN1 = 0, DNHA =
∑
r∈−A

(−2)HA+r for A ⊆ TdN , (3.16)

where the N -dependence refers only to the fact that the addition A+ r is modulo 2N + 1.

Proof. Using the definition of the generator LN in (3.1), we write (recall (3.2))

e−|T
d
N |〈f,LN (σ)〉 LN

(
e|T

d
N |〈f,LN 〉

)
(σ)

=
∑
k∈TdN

c(τkσ)

exp

 ∑
j∈TdN

[
f
(
τj(σk)

)
− f

(
τj(σ)

)]− 1

 .
(3.17)

Since
(DkNf)(σ) =

∑
j∈TdN

[
f
(
τj(σk)

)
− f

(
τj(σ)

)]
(3.18)

is a linear operator, it suffices to prove that

(DkNf)(σ) = (DNf)(τkσ) for f = HA, (3.19)

where DNf is given by (3.16) for f = HA (note that if f = HA, then f(σk) = −HA(σ) for
k ∈ A and f(σk) = f(σ) otherwise). Hence

(DkNHA)(σ) =
∑
j∈TdN

(∏
i∈A

(σk)i+j −
∏
i∈A

σi+j

)
=
∑
j∈TdN

1{k−j∈A} (−2)
∏
i∈A

σi+j

=
∑
j∈TdN

1{j∈−A+k} (−2)
∏
i∈A

σi+j = (−2)
∑
r∈−A

∏
i∈A

σi+r+k

=

(
(−2)

∑
r∈−A

HA+r

)
(τkσ).

(3.20)

Remark: Note that, in the limit as N → ∞, DN becomes an unbounded operator, defined
on local functions f : Ω→ R via

D1 = 0, D

(∑
A

αAHA

)
=
∑
A

HA

(∑
r∈−A

(−2)αA−r

)
. (3.21)

The domain of D can be extended to functions f =
∑

A αAHA for which∑
A

∑
r∈−A

|αA−r| <∞. (3.22)

11



The dual operator D∗ acts on M(Ω), the space of finite signed measures on Ω, and since
D1 = 0, D∗ has the measures of total mass zero as image set. The intuitive idea is that when
the dynamics starts from the empirical measure µ, after an infinitesimal time t the empirical
measure is µ+ tD∗µ+ o(t).

Remark: From Theorem 3.1 it follows that, for f =
∑N

i=1 λifi,

LN

(
e|T

d
N |

PN
i=1 λi〈fi,LN 〉

)
(σ) = |TdN | e|T

d
N |

Pn
i=1 λi〈fi,LN (σ)〉

〈
c
(
e

Pn
i=1 λiDfi − 1

)
,LN (σ)

〉
.

(3.23)
The right-hand side is a function of LN . By taking derivatives with respect to the variables
λi, we see that the generator maps any function of LN into a function of LN . This shows that
(LN (σN (t)))t≥0 is a Markov process. Roughly speaking, this Markov process can be viewed
as a random walk that makes jumps of size 1/|TdN | at rate |TdN |. Of course, the problem is
that this random walk is infinite-dimensional, and therefore we cannot directly apply standard
random-walk theory.

Theorem 3.1 shows that the operator H defined by

(HF )(µ) = lim
N→∞

(HNF )(LN (σ)) when lim
N→∞

LN = µ weakly (3.24)

is well-defined for F (µ) = 〈f, µ〉. We next extend Theorem 3.1 to F of the form

F (µ) = Ψ
(
〈f1, µ〉, . . . , 〈fn, µ〉

)
, (3.25)

where Ψ: Rn → R is C∞ with uniformly bounded derivatives of all orders.

Theorem 3.2. If limN→∞ LN = µ and F is of the form (3.25), then (with the same notation
as in (3.12))

(HF )(µ) = lim
N→∞

(HNF )(µ) =

〈
c

(
exp

[
n∑
i=1

∂Ψ
∂xi

(
〈f1, µ〉, . . . , 〈fn, µ〉

)
Dfi

]
− 1

)
, µ

〉
.

(3.26)

Proof. Compute

1
|TdN |

e−|T
d
N |F (LN (σ)) LN

(
e|T

d
N |F (LN )

)
(σ)

=
∑
k∈TdN

c(τkσ)
(

exp
[
|TdN |

(
F
(
LN (σk)

)
− F

(
LN (σ)

))]
− 1
)
.

(3.27)

Next, use the fact that

〈f,LN (σk)〉 − 〈f,LN (σ)〉 =
1
|TdN |

(DNf)(τk(σ)) (3.28)

to see that

Ψ
(
〈f1,LN (σk)〉, . . . , 〈fn,LN (σk)〉

)
−Ψ

(
〈f1,LN (σ)〉, . . . , 〈fn,LN (σ)〉

)
=

n∑
i=1

∂Ψ
∂xi

(
〈f1,LN (σ)〉, . . . , 〈fn,LN (σ)〉

)
(Dfi)(τkσ) + o

(
1
|TdN |

)
.

(3.29)

Combine (3.27) and (3.29) and take the limit N →∞, to obtain (3.26).
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Remark: For
F (µ) = Ψ

(
〈f1, µ〉, . . . , 〈fn, µ〉

)
, (3.30)

the functional derivative of F with respect to µ is defined as

δF

δµ
=

n∑
i=1

∂Ψ
∂xi

(
〈f1, µ〉, . . . , 〈fn, µ〉

)
fi. (3.31)

We may therefore rewrite (3.29) as

H(F )(µ) =
〈
c

(
exp

[
D
(
δF

δµ

)]
− 1
)
, µ

〉
. (3.32)

4 The rate function for independent spin-flips

4.1 Legendre transform

Having completed the computation of the non-linear generator in Section 3, we are ready to
compute its Legendre transform. As a warm-up, we will first do this for independent spin-flips,
i.e., when c ≡ 1 in (3.2). In Section 5 we will extend the calculation to general c, which will
not represent a serious obstacle.

The non-linear generator in (3.26) is of the form

(HF )(µ) = H
(
µ,
δF

δµ

)
, (4.1)

where, for µ ∈M1(Ω) and f : Ω→ R continuous,

H(µ, f) =
〈
c
(
eDf − 1

)
, µ
〉
. (4.2)

By the convexity of f 7→ H(µ, f), we have

H(µ, f) = sup
α∈M(Ω)

[∫
Ω
f dα− L(µ, α)

]
(4.3)

with

L(µ, α) = sup
f∈C(Ω)

[∫
Ω
f dα−H(µ, f)

]
(4.4)

the Lagrangian appearing in the large deviation rate function in (3.11). As explained in Feng
and Kurtz [11], Section 8.6.1.2, the representation of the generator in (4.1), where H(µ, f) is
a Legendre transform as in (4.3), implies that the generator in (4.1) generates a non-linear
semigroup, called the Nisio control semigroup, associated with the function L (see [11], Section
8.1).

Remark: The operator D has the property

Df0 = −2f0, f0(σ) = σ0, (4.5)

i.e., f0 is an eigenfunction of D. We recover the Hamiltonian in (2.7) (associated with the
large deviation principle of the magnetization) from the infinite-dimensional Hamiltonian in
(4.2) via the relation

H(µ, pf0) = H
(
〈f0, µ〉, p

)
. (4.6)
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Remark: The infinite-dimensional Hamiltonian in (4.2) can be thought of as a function of the
“position” variable µ and the “momentum” variable f . The corresponding Hamilton-Jacobi
equations read

µ̇ =
δH

δf
, ḟ = −δH

δµ
. (4.7)

These give a closed equation for f , because the Hamiltonian in (4.2) is linear in µ. If we
can solve the latter equation to find f , then we can integrate the equation for µ and find the
solution for µ. This is precisely the same situation – but now infinite-dimensional – as we
encountered in (2.12), where the equation for p was closed and could be integrated to give the
solution for m.

4.2 Computation of the Lagrangian

To find L, the function appearing in the rate function in (3.11), we have to compute the
Legendre transform in (4.4). To do so, we first consider the finite-dimensional analogue. We
start with rates c ≡ 1, for which (4.4) becomes

L(µ, α) = sup
f∈Rn

[
n∑
i=1

fiαi −
n∑
i=1

(
e

Pn
j=1Dijfj − 1

)
µi

]
,

µ = (µ1, . . . , µn), α = (α1, . . . , αn), f = (f1, . . . , fn),

(4.8)

where µi ∈ (0,∞),
∑n

i=1 µi = 1, αi ∈ R, fi ∈ R, and Dij ∈ R. The matrix D has the
additional property that D(1) = 0, where 1 is the vector with all components equal to 1.
Hence

∑n
i=1(DTµ)i = 0, i.e., the transposed matrix DT maps any vector to a vector with

zero sum. For a vector α, we say that (DT )−1α is well-defined if there exists a unique vector
ν = ν(α) with sum equal to 1 such that DT ν = α. For two column vectors α, β ∈ Rn, let αβ
be the vector with components αiβi, α/β the vector with components αi/βi. For f : R→ R,
write f(α) to denote the vector with components f(αi). Then the equation for the maximizer
f = f∗ of (4.8) becomes

αk =
n∑
i=1

µi e
Pn
j=1Dijf

∗
j Dik, k = 1, . . . , n, (4.9)

which in vector notation reads
α = DT (µeDf

∗
). (4.10)

If (DT )−1α is well-defined, then we can rewrite the latter equation as

Df∗ = log
[

(DT )−1α

µ

]
, (4.11)

and for this f∗ we have

n∑
i=1

f∗i αi = 〈f∗, α〉 =
〈

log
[

(DT )−1α

µ

]
, (DT )−1α

〉
(4.12)

and
n∑
i=1

(
e

Pn
j=1Dijf

∗
j − 1

)
µi = 0, (4.13)
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because the total mass of µ and (DT )−1 are both equal to 1. Hence, inserting (4.12) and
(4.13) into (4.8), we obtain the expression

L(µ, α) =
〈

log
[

(DT )−1α

µ

]
, (DT )−1α

〉
, (4.14)

which is the relative entropy of (DT )−1α with respect to µ. The intuition behind (4.14) is that
L(µ, α) is the cost under the Markovian evolution for the initial measure to have derivative α
at time zero.

Let us next consider the infinite-dimensional version of the above computation. First, for
α ∈ M(Ω) with total mass zero, we declare (D∗)−1α = ν to be well-defined if there exists a
probability measure ν such that, for all f in the domain of D,

〈ν,Df〉 = 〈α, f〉. (4.15)

If α is translation-invariant, then also (D∗)−1α is translation-invariant. For translation-
invariant µ, ν ∈ M(Ω), we denote by s(ν|µ) the relative entropy density of ν with respect to
µ, i.e.,

s(ν|µ) = lim
N→∞

1
|TdN |

∑
σTd
N

ν(σTdN
) log

[
ν(σTdN

)

µ(σTdN
)

]
. (4.16)

Note that this limit does not necessarily exist. But if µ is a Gibbs measure, then for all
translation-invariant ν both s(ν|µ) and s(ν|µt) exist, where µt is µ evolved over time t (see
van Enter, Fernández and Sokal [4], Le Ny and Redig [19]). The rate function which is the
analogue of (4.14) is now given by

L(µ, α) = s
(
(D∗)−1α|µ

)
(4.17)

with the same interpretation as for (4.14): (D∗)−1α produces derivative α at time zero for
the trajectory of the empirical measure, and its cost is the relative entropy density of this
measure with respect to the initial measure µ.

4.3 Optimal trajectories

In order to gain some intuition about the rate function corresponding to the Lagrangian in
(4.17), we identify two easy optimal trajectories.

First, we consider a trajectory that starts from a product measure νx0 and ends at a
product measure νxt with xt = x0e

−2t. The typical trajectory is then simply the product-
measure-valued trajectory γt = νxt with xt = x0e

−2t. We can easily verify that this trajectory
has zero cost. Indeed, 〈γt, HA〉 = x

|A|
t , and hence 〈γ̇t, HA〉 = |A|x|A|−1

t ẋt. On the other hand,
〈D∗(γt), HA〉 = −2|A|x|A|t and, since ẋs = −2xt, we thus see that 〈γ̇t, HA〉 = 〈D∗(γt), HA〉.
Therefore (D∗)−1(γ̇t) = γt, and (4.17) gives

L(γt, γ̇t) = s
(
(D∗)−1(γ̇t)|γt

)
= s(γt|γt) = 0. (4.18)

Note that this is the only product-measure-valued trajectory that has zero cost. Indeed, if
γt = νxt has zero cost, then from the requirement that 〈γ̇t, HA〉 = 〈D∗(γt), HA〉 = −2|A|x|A|t
we find that ẋt = −2xt. For a general starting measure µ, the trajectory that has zero
cost satisfies 〈γ̇t, HA〉 = −2|A| 〈γt, HA〉, which has as solution 〈γt, HA〉 = 〈µ,HA〉 e−2|A|t,
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corresponding to the Markovian independent spin-flip evolution started from µ. Note that,
for a general trajectory γ, 〈(D∗)−1(γ̇t), HA〉 = −2|A|〈γ̇t, HA〉.

Second, we consider the case where µ = µy is a product measure with

〈µy, HA〉 = y|A|, −1 < y < 1, (4.19)

and α = αx is the derivative at time zero of another product measure, i.e.,

〈αx, HA〉 = −2|A|x|A|, −1 < x < 1. (4.20)

In that case D∗α = νx with νx the translation-invariant product measure with 〈νx, HA〉 = x|A|.
The latter follows from the identity〈[∑

i∈A
HA(σi)−HA(σ)

]
, νx

〉
= −2|A|x|A|, (4.21)

and the rate function becomes

L(µy, αx) =
1 + x

2
log
(

1 + x

1 + y

)
+

1− x
2

log
(

1− x
1− y

)
. (4.22)

5 The rate function for dependent spin-flips

5.1 Computation of the Lagrangian

For general spin-flip rates c in (3.2), let us return to the matrix calculation in (4.8) and (4.9).
Equation (4.8) has to be replaced by

L(µ, α) = sup
f∈Rn

[
n∑
i=1

fiαi −
n∑
i=1

ci

(
e

Pn
j=1Dijfj − 1

)
µi

]
, (5.1)

where ci > 0, i = 1, . . . , n. Put Cµ =
∑n

i=1 ciµi. In the calculation with ci = 1, i = 1, . . . , n,
this “total mass” does not depend on µ and is equal to 1. Now, however, it becomes a
normalization that depends on µ. We say that (DT )−1(α, µ) is well-defined if there exists a
non-negative vector ν = ν(α, µ) = (ν1 . . . , νn) with sum Cµ such that DT ν = α. The analogue
of (4.14) reads

L(µ, α) =
〈

log
[

(DT )−1(α, µ)
µ

]
, (DT )−1(α, µ)

〉
. (5.2)

In order to find the analogue of this expression in the infinite-dimensional setting, we
proceed as follows. For two finite positive measures µ, ν of equal total mass M , we define
S(µ|ν) to be the relative entropy density of the probability measures µ/M, ν/M , i.e., S(µ|ν) =
s(ν/M |µ/M). For µ ∈ M1(Ω), we define the c-modification of µ as the positive measure
defined via

∫
Ω f(σ)dµc(σ) =

∫
Ω c(σ)f(σ)dµ(σ). For a signed measure of total mass zero and

µ ∈ M1(Ω), we say that (D∗)−1(α, µ, c) = ν is well-defined if there exists a positive measure
ν of total mass equal to that of µc such that D∗(ν) = α. Then the analogue of (5.2) becomes

L(µ, α) = s
(
(D∗)−1(α, µ, c)|µc

)
. (5.3)
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5.2 The non-linear semigroup and its relation with relative entropy

The non-linear semigroup with generator (3.12) is defined as follows. Let P inv(Ω) be the set
of translation-invariant probability measures on Ω. For local functions f1, . . . , fn : Ω→ R and
a C∞-function Ψ: Rn → R, we define an associated function F f1,...,fNΨ : P inv(Ω)→ R via

F f1,...,fnΨ (µ) = Ψ
(∫

Ω
f1dµ, . . . ,

∫
Ω
fndµ

)
. (5.4)

Since 〈fi,LN 〉 is well-defined for N large enough, we can define F f1,...,fnΨ (LN ) for N large
enough as well. This allows us to define a non-linear semigroup (V (t))t≥0 via

(
V (t)F f1,...,fnΨ

)
(µ) = lim

N→∞

1
|TdN |

log EσN
(

exp
[
|TdN |F

f1,...,fn
Ψ

(
LN (σN (t))

)])
, (5.5)

where EσN denotes expectation with respect to the law of the process starting from σN , and
the limit is taken along a sequence of configurations (σN )N∈N with σN ∈ ΩN such that the
associated empirical measure LN (σN ) converges weakly to µ as N →∞. If V (t) exists, then
it defines a non-linear semigroup, and the generator of V (t) is given by (3.32).

Conversely, if H in (3.32) generates a semigroup, then this must be (V (t))t≥0. The fact
that this semigroup is well-defined is sufficient to imply the large deviation principle for the
trajectory of the empirical measure (Feng and Kurtz [11], Theorem 5.15). Technically, the
difficulty consists in showing that the generator in (3.32) actually generates a semigroup.

We now make the link between the non-linear semigroup, its generator and some familiar
objects of statistical mechanics, such as pressure and relative entropy density.

Definition 5.1. The constrained pressure at time t associated with a function f : Ω→ R and
a Gibbs measure µ ∈ P inv(Ω) is defined as

pt(f |µ) = lim
N→∞

1
|TdN |

log EσN
(
e

P
x∈TN

τxf(σt)
)
, (5.6)

where the limit is taken along a sequence of configurations (σN )N∈N with σN ∈ ΩN such that
the associated empirical measure LN (σN ) converges weakly to µ as N →∞.

In particular, p0(f |µ) =
∫

Ω fdµ. The relation between the non-linear semigroup in (5.5)
and the constrained pressure at time t reads(

V (t)〈f, ·〉
)
(µ) = pt(f |µ). (5.7)

The pressure at time t is defined as

p(f |µt) = lim
N→∞

1
|TdN |

log Eµ
(
e

P
x∈TN

τxf(σt)
)
. (5.8)

This is well-defined as soon as the dynamics starts from a Gibbs measure µ0 = µ (see Le Ny
and Redig [19]). The relation between the pressure and the constrained pressure reads

p(f |µt) = sup
ν∈P inv(Ω)

[pt(f |ν)− s(ν|µ)]. (5.9)
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On the other hand, the pressure at time t is the Legendre transform of the relative entropy
density with respect to µt, i.e.,

p(f |µt) = sup
ν∈P inv(Ω)

[∫
Ω
fdν − s(ν|µt)

]
, (5.10)

where the relative entropy density s(ν|µt) exists because µt is asymptotically decoupled (see
Pfister [24]) as soon as µ0 = µ is a Gibbs measure (see Le Ny and Redig [19]).

The relation between the non-linear generator and the constrained pressure is now as
follows. Define the Legendre transform of the constrained pressure as

p∗t (ν|µ) = sup
f∈C(Ω)

[∫
fdν − pt(f |µ)

]
. (5.11)

Then the relation with the Hamiltonian in (4.2) and the Lagrangian in (5.3) is

H(µ, f) =
[
d

dt
pt(f |µ)

]
t=0

(5.12)

and
L(µ, α) = lim

t→0

1
t
p∗t (µ+ tα|µ). (5.13)

Remark: The operator D, acting on the space C(Ω) of continuous functions on Ω, has a dual
operator D∗, acting on the space M(Ω) of finite signed measures on Ω, defined via

〈f,D∗µ〉 = 〈Df, µ〉. (5.14)

In order to gain some understanding for D∗ (which will be useful later on), we first compute
D∗ for a Gibbs measure µ ∈ P inv(Ω). Without loss of generality we may assume that the
interaction potential of µ is a sum of terms of the form Φ(A, σ) = JAH(A, σ), A ⊆ Zd
finite, where JA is translation invariant, i.e., JA+k = JA, k ∈ Zd. We also assume absolute
summability, i.e., ∑

A30

|JA| <∞. (5.15)

Remember that
(Df)(σ) =

∑
j∈Zd

[
f(τj(σ0))− f(τj(σ))

]
. (5.16)

Therefore, for the Gibbs measure µ under consideration, we have

〈µ,Df〉 =
∫

Ω

∑
j∈Zd

dµ0

dµ
◦ τ−j − 1

 fdµ, (5.17)

where µ0 denotes the distribution of σ0 when σ is distributed according to µ. Note that the
sum in the right-hand side of (5.17) is formal, i.e., the integral is well-defined due to the
multiplication with the local function f . In terms of JA, A ⊆ Zd finite, we have∑

j∈Zd

dµ0

dµ
◦ τ−j − 1

 (σ) =
∑
j∈Zd

(
e−

P
A30−2JAH(A−j,σ) − 1

)
, (5.18)

where, once again, this expression is well-defined only after multiplication with a local function
and integrated over µ.
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6 Bad empirical measures

In Section 7 we will see what consequences the large deviation principle for the trajectory
of the empirical measure derived in Sections 3 and 5 has for the question of Gibbs versus
non-Gibbs. This needs the notion of bad empirical measure, which we define next.

If we start our spin-flip dynamics from a Gibbs measure µ ∈ P inv(Ω), then a probability-
measure-valued trajectory γ = (γt)t∈[0,T ] has cost

Iµ(γ) = s(γ0|µ) +
∫ T

0
L(γt, γ̇t) dt, (6.1)

where the term s(γ0|µ) is the cost of the initial distribution γ0. We are interested in the
minimizers of Iµ(γ) over the set of trajectories γ that end at a given measure ν. Let

KT (µ′, ν) = inf
γ : γ0=µ′,γT=ν

∫ T

0
L(γt, γ̇t) dt

= − lim
N→∞

1
|TdN |

log Pµ
(
LN (σT ) = ν|LN (σ0) = µ′

)
.

(6.2)

Then e|T
d
N |−KT (µ′,ν) can be thought of as the transition probability for the empirical measure

LN to go from µ′ to ν, up to factors of order eo(|T
d
N |). Hence

− 1
|TdN |

log Pµ
(
LN (σ0) = µ′|LN (σT ) = ν

)
= [s(µ′|µ) +KT (µ′, ν)]− inf

µ′∈P inv(Ω)
[s(µ′|µ) +KT (µ′, ν)].

(6.3)

Let M∗(µ, ν) be the set of probability measure µ′ for which the infimum in the right-hand
side of (6.3) is attained. We can then think of each element in this set as a typical empirical
measure at time t = 0 given that the empirical measure at time T is ν. When M∗ is a
singleton, we denote its unique element by µ∗(µ, ν).

Definition 6.1. (a) A measure ν is called bad at time t if M∗(µ, ν) contains at least two
elements µ1 and µ2 and there exist two sequences (ν1

n)n∈N and (ν2
n)n∈N, both converging to ν

as n→∞, such that µ∗(µ, ν1
n) converges to µ1 and µ∗(µ, ν2

n) converges to µ2.
(b) A measure ν that is bad at time t has at least two possible histories, stated as a two-layer
property: seeing the measure ν at time t is compatible (in the sense of optimal trajectories)
with two different measures at time t = 0.

Badness of a measure can be detected as follows.

Proposition 6.2. A measure ν is bad at time t if there exists a local function f : Ω→ R, two
sequences (ν1

n)n∈N and (ν2
n)n∈N both converging to ν, and an ε > 0 such that∣∣∣E(f(σ(0)) | LN (σ(t)) = (ν1

n)N
)
− E

(
f(σ(0)) | LN (σ(t)) = (ν2

n)N
)∣∣∣ > ε ∀N,n ∈ N, (6.4)

where (νn)N denotes the projection of νn on TdN .
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7 A large deviation view on dynamical Gibbs-non-Gibbs tran-
sitions

In van Enter, Fernández, den Hollander and Redig [5] we studied the evolution of a Gibbs
measure µ under a high-temperature spin-flip dynamics. We showed that the Gibbsianness of
the measure µt at time t > 0 is equivalent to the absence of a phase transition in the double-
layer system. More precisely, conditioned on end configuration η at time t, the distribution
at time t = 0 is a Gibbs measure µη with η-dependent formal Hamiltonian

Hη
t (σ, η) = H(σ) + ht

∑
i∈Zd

σiηi, (7.1)

where t 7→ ht is a monotone function with limt↓0 ht = ∞ and limt→∞ ht = 0. If the double-
layer system has a phase transition for an end configuration η, then η is called bad. In that
case η is an essential point of discontinuity for any version of the conditional probability
µt(σΛ = · |σΛc), Λ ⊆ Zd finite.

The relation between the double-layer system and the trajectory of the empirical distribu-
tion is as follows. Suppose that the double-layer system has no phase transition for any end
configuration η. If we condition the empirical measure at time t > 0 to be ν, then (by further
conditioning on the configuration η at time t > 0) we conclude that at time t = 0 we have the
measure

∫
Ω µ

ην(dη). Hence the optimizing trajectory is unique. Conversely, if there exist a
bad configuration η, then (because of the translation invariance of the initial measure and of
the dynamics) all translates of η are bad also. Hence we expect that a translation-invariant
measure ν arising as any weak limit point of |TdN |

−1∑
x∈TdN

δτxη is bad also.

As an example, let us consider a situation studied in [5]. The dynamics starts from µ+
β , the

low-temperature plus-phase of the Ising model with zero magnetic field, and evolves accord-
ing to independent spin-flips. Then, from some time onwards, the alternating configuration
ηalt(x) = (−1)

Pd
i=1 |xi| becomes bad. The same is true for −ηalt, and so the translation-

invariant measure

ν = 1
2 (δηalt + δ−ηalt) (7.2)

has the property that, for ν-a.e. configuration η, the double-layer system has a phase transition
when the end configuration is η. Moreover, the Hamiltonian Hη

t has a plus-phase µ+
η and a

minus-phase µ−η . Therefore, when we condition on the empirical measure in (7.2) we get two
possible optimal trajectories, one starting at 1

2(µ+
η +µ+

−η) and one starting at 1
2(µ−η +µ−−η). To

realize the approximating measures of Proposition 6.2, we choose ν1
n, ν

2
n to be the randomized

versions of ν where we first choose a configuration according to ν and then independently flip
spins with probability 1/n, to change either from minus to plus or stay plus if it was plus to
begin with, respectively to change to minus or stay minus. Clearly, by the FKG-inequality,
when conditioning on ν1

n, respectively, ν2
n as empirical distribution, we get a measure at time

t = 0 that is above µ+
η +µ+

−η, respectively, below µ−η +µ−−η. Hence (6.4) holds with f(σ) = σ0,
and ν is bad.
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A A simple example of the Feng-Kurtz formalism

A.1 Poisson walk with small increments

In order to introduce the general formalism developed in Feng and Kurtz [11], let us consider
a simple example where computations are simple yet the fundamental objects of the general
theory already appear naturally.

Let XN = (XN (t))t≥0 be the continuous-time random walk on R that jumps N−1 forward
at rate bN and −N−1 backward at rate dN , with b, d ∈ (0,∞). This is the Markov process
with generator

(LNf)(x) = bN
[
f
(
x+N−1

)
− f(x)

]
+ dN

[
f
(
x−N−1

)
− f(x)

]
. (A.1)

Clearly, if limN→∞XN (0) = x ∈ R, then

lim
N→∞

XN (t) = x+ (b− d)t, t > 0, (A.2)

i.e., in the limit as N →∞ the random process XN becomes a deterministic process (x(t))t≥0

solving the limiting equation
ẋ = (b− d), x(0) = x. (A.3)

For all N ∈ N, we have

XN (t) = N−1
[
N+(Nbt)−N−(Ndt)

]
=

N∑
i=1

(Xbt
i − Y dt

i ) (A.4)

with N+ = (N+(t))t≥0 and N− = (N−(t))t≥0 independent rate-1 Poisson processes, and
Xt
i , Y

t
i , i = 1, . . . , N , independent Poisson random variables with mean bt, respectively, dt.

Consequently, we can use Cramér’s theorem for sums of i.i.d. random variables to compute

I(at) = lim
N→∞

1
N

log PN
(
XN (t) = at | XN (0) = 0

)
= sup

λ∈R

[
atλ− F (λ)

]
, (A.5)

where
F (λ) = lim

N→∞

1
N

log EN
(
eλNXN (t)

)
= b
(
eλ − 1

)
+ d
(
e−λ − 1

)
. (A.6)

Thus, we see that
I(at) = tL(a) (A.7)

with
L(a) = sup

λ∈R

[
aλ− b

(
eλ − 1

)
− d
(
e−λ − 1

)]
. (A.8)

Using the property that the increments of the Poisson process are independent over disjoint
time intervals, we can now compute

lim
N→∞

1
N

log PN
(

(XN (t))t∈[0,T ] ≈ (γt)t∈[0,T ]

)
= lim

n→∞

n∑
i=1

lim
N→∞

1
N

log PN
(
XN (ti)−XN (ti−1) ≈ γ̇ti−1(ti − ti−1)

)
= lim

n→∞

n∑
i=1

(ti − ti−1)L
(
γ̇ti−1

)
=
∫ T

0
L
(
γ̇t
)
dt,

(A.9)
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where L is given by (A.8) and ti, i = 1, . . . , n, is a partition of the time interval [0, T ] that
becomes dense in the limit as n→∞.

We see from the above elementary computation that, in the limit as N →∞,

PN
(

(XN (t))t∈[0,T ] ≈ (γ(t))t∈[0,T ]

)
≈ exp

[
−N

∫ T

0
L(γt, γ̇t) dt

]
, (A.10)

where the Lagrangian L only depends on the second variable, namely,

L(γt, γ̇t) = L(γ̇t) (A.11)

with L given by (A.8). We interpret (A.10) as follows: if the trajectory is not differentiable
at some time t ∈ [0, T ], then the probability in the left-hand side of (A.10) decays superexpo-
nentially fast with N , i.e.,

lim
N→∞

1
N

log PN
(

(XN (t))t∈[0,T ] ≈ (γt)t∈[0,T ]

)
= −∞, (A.12)

and otherwise it is given by the formula in (A.10) (read in the standard large-deviation
language).

The Lagrangian in (A.8) is the Legendre transform of the Hamiltonian

H(λ) = b
(
eλ − 1

)
− d
(
e−λ − 1

)
. (A.13)

This Hamiltonian can be obtained from the generator in (A.1) as follows:

H(λ) = lim
N→∞

1
N
e−Nfλ(x)

(
LNe

Nfλ
)
(x), fλ(x) = λx. (A.14)

More generally, by considering the operator

(Hf)(x) = lim
N→∞

1
N
e−Nf(x)

(
LNe

Nf
)

(x) = b
(
ef
′(x) − 1

)
− d
(
e−f

′(x) − 1
)
, (A.15)

we see that the Hamiltonian equals

H(λ) = (Hfλ)(x), (A.16)

and that, by the convexity of λ 7→ H(λ),

(Hf)(x) = H(f ′(x)) = sup
a∈R

[af ′(x)− L(a)]. (A.17)

The operator H is called the generator of the non-linear semigroup.

A.2 The scheme of Feng and Kurtz

The scheme that produces the Lagrangian in (A.8) from the operator in (A.15) actually works
in much greater generality. Consider a sequence of Markov processes X = (XN )N∈N with
XN = (XN (t))t≥0, living on a common state space (like R, Rd or a space of probability
measures). Suppose that XN has generator LN and in the limit as N → ∞ converges to a
process (x(t))t≥0, which can be either deterministic (as in the previous example) or stochastic.
We want to identify the Lagrangian controlling the large deviations of the trajectories:

PN
(

(XN (t))t∈[0,T ] ≈ (γt)t∈[0,T ]

)
≈ exp

[
−N

∫ T

0
L(γt, γ̇t) dt

]
. (A.18)

Omitting technical conditions, we see that this can be done in four steps:
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1. Compute the generator of the non-linear semigroup

(Hf)(x) = lim
N→∞

1
N
e−Nf(x)

(
LNe

Nf
)

(x). (A.19)

2. Look for a function H(x, p) of two variables such that

(Hf)(x) = H(x,∇f(x)). (A.20)

What ∇f means depends on the context: on Rd it simply is the gradient of f , while on
an infinite-dimensional state space it is a functional derivative.

3. Express the function H as a Legendre transform:

H(x, p) = sup
p

[〈p, λ〉 − L(x, λ)] . (A.21)

What 〈·〉 means also depends on the context: on Rd it simply is the inner product, while
in general it is a natural pairing between a space and its dual, such as 〈f, µ〉 =

∫
fdµ.

4. The Lagrangian in (A.18) is the function L with x = γt and λ = γ̇t.
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