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Electrohysterographic conduction velocity estimation

M. Mischi, C. Rabotti, L.P.J. Vosters, S.G. Oei, and J.W.M. Bergmans, Senior Member, IEEE

Abstract— Monitoring and analysis of the fetal-heart and
the uterine-muscle activity, referred to as electrohysterogram
(EHG), is essential to permit timely treatment during preg-
nancy. While remarkable progress is reported for monitoring of
the fetal cardiac activity, the EHG measurement and interpre-
tation remains challenging, and limited knowledge is available
on the underlying physiological processes. In particular, little
attention has been paid to the analysis of the EHG propagation,
whose characteristics might indicate the presence of coordi-
nated uterine contractions leading to intrauterine pressure
increase. Therefore, this study focuses for the first time on
the noninvasive estimation of the conduction velocity of EHG
action potentials by means of multichannel EHG recording
and surface high-density electrodes. A maximum likelihood
algorithm, initially proposed for skeletal-muscle electromyog-
raphy, is modified for the required EHG analysis. The use of
clustering and weighting is introduced to deal with poor signal
similarity between different channels. The presented methods
were evaluated by specific simulations, proving the combination
of weighting and clustering to be the most accurate method.
A preliminary EHG measurement during labor confirmed
the feasibility of the method. An extensive clinical validation
will however be necessary to optimize the method and assess
the relevance of the EHG conduction velocity for pregnancy
monitoring.

I. INTRODUCTION

Statistics confirm that first-time births to women in their
30s are rapidly becoming the norm. As a result, mother
and child face increasing risks for miscarriage, premature
delivery, birth defects, and health problems later in life.
Ten to twenty percent of all pregnancies are complicated by
hypertension, preterm delivery, and fetal growth retardation,
often causing death or permanent damage to the newborn
child [1]. Pregnancy monitoring techniques are essential
to assess the key risk factors and permit timely medical
intervention.

Next to fetal heart rate monitoring, detection and eval-
uation of the uterine contractions is of major importance.
Typical techniques adopted in clinical practice involve the
use of either a tocodynamometer, which provides a non
invasive indication of contraction onset timing based on
external strain gauges, or an intrauterine pressure catheter,
which provides the uterine pressure value by the intrauterine
insertion of a catheter [1]. The latter technique provides
quantitative information, but it is invasive and applicable only
during labor.
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In the past few years, a noninvasive alternative technique
is being proposed that promises to provide quantitative infor-
mation on the uterine activity without the use of intrauterine
catheterization. Quantitative information on the myometrium
(uterine muscle) is in fact derived from the analysis of its
electrical activity, referred to as electrohysterogram (EHG).
Several techniques have been proposed for the analysis of the
EHG. Some authors have proposed reliable techniques for the
noninvasive estimation of the intrauterine pressure [2], while
other authors could distinguish between two different EHG
frequency components [3], possibly being able to predict the
course of pregnancy. The ultimate goal and main challenge
remains the prediction of preterm delivery. While the pre-
sented techniques are invariably based on single channel
measurements, we believe that important information for
monitoring and predicting the progress of pregnancy resides
in the EHG propagation characteristics.

In this study we focus on the conduction velocity (CV) of
the EHG action potential (AP), i.e., the electrical activation of
the myometrial cells. The EHG is measured by high-density
multichannel recording on the lower abdominal surface. Dif-
ferently from skeletal muscles, which are striated and present
an anatomical direction of propagation of the APs, the
myometrium is a smooth muscle; as a result, the AP direction
of propagation is unknown and depends on the the specific
pattern of gap-junction connections between the cells, which
are dynamically formed during each contraction. Therefore,
we performed our measurements by bi-dimensional high-
density surface electrodes, which permit to estimate all the
possible CV directions along the abdominal plane underneath
the electrodes.

Several methods are available from the electromyography
literature for the measurement of the AP CV. Due to the na-
ture of signals measured from skeletal (striate and voluntary)
muscles, these methods use monodimensional information,
as the direction of propagation can be derived from the
muscle fiber orientation. These methods can be divided in
four major categories [4]: cross-correlation, phase difference,
maximum likelihood (ML), spectral multidip. A four elec-
trode implementation of the multidip approach, leading to an
analytical solution, has been presented [5], which can also
be extended to larger dimensions. However, more extensive
validation is required before adapting the system to our EHG
measurements.

Among the remaining three methods, the phase difference
method and the ML method, both implemented in the fre-
quency domain, permit CV measurements that are not limited
by the time sampling rate [4]. Given the EHG frequency
content, usually lower than 1 Hz [2], this characteristic is
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highly desirable, permitting low sampling rates and, there-
fore, reducing the complexity of the acquisition/analysis sys-
tem. The ML approach [6], compared to the phase difference
method, permits a complete exploitation of our multichannel
measurements because it uses all the available acquisition
channels, leading to an increased robustness to a low signal-
to-noise ratio (SNR).

In conclusion, the ML method has been chosen for the
EHG analysis. In order to improve the method performance,
a subset of signals is automatically selected based on the
signal similarity by minimum spanning tree clustering [7].
The signal similarity is determined by analysis of the
cross-correlation function. In addition, the method has been
improved by integration of weights in the mean square
error minimization; the weights are automatically determined
based on the signal similarity. The algorithm is applied in two
perpendicular directions. The resulting CV estimate is there-
fore a vector determined by two perpendicular components
in the abdominal plane. A preliminary test of the method
feasibility was performed with a woman in labor.

II. METHODOLOGY

In this Section, more detailed information is provided on
the proposed CV-estimation methods. These methods are
based on the characteristics of the measured signals, depend-
ing on the measurement system, presented in Section II-A,
as well as on the implemented preprocessing steps, presented
in Section II-B. The adopted ML algorithm and the proposed
improvements are then presented in Sections II-C and II-D,
respectively.

A. Measurement

One measurements was performed at the Máxima Medical
Center in Veldhoven (the Netherlands) on a women in labor
who signed an informed written consent. The sensors were
placed as described in Fig. 1 after skin preparation with
an abrasive paste for impedance reduction. The EHG was
recorded by a Refa system (TMS International, Enschede,
the Netherlands) comprising a multichannel amplifier for
electrophysiological signals and a grid of 64 (8x8) high-
density (HD) electrodes (1 mm diameter, 4 mm inter-
electrode distance). The HD electrode grid was placed on
the mid-line of the abdomen below the umbilicus; the ground
(GRD) electrode was positioned on the right hip. An external
tocogram was employed to support the assessment of the
contraction period.

B. Data preprocessing

Given the narrow-band nature of the EHG signal, the
acquired signals were band-pass filtered by a sixth order
Butterworth filter with low and high cut-off frequencies
at 0.3 and 1 Hz, respectively. This permitted to suppress
most of the noise introduced by the respiration, the maternal
electrocardiogram, and the abdominal electromyogram [8].
The filtered signals could therefore be downsampled from
1024 to 16 Hz without introducing aliasing and reducing
significantly the computational complexity of the following

Fig. 1. Scheme of the measurement setup.

Fig. 2. Example of EHG APs recorded by one column of the acquisition
matrix after filtering and downsampling.

analysis. This result is particularly desirable when dealing
with 64 parallel channels. Fig. 2 shows an EHG AP sequence
registered by a column (8 channels) of the acquisition matrix
after filtering and downsampling.

C. Maximum likelihood method

Focusing on either one column or one line of the acqui-
sition matrix, the adopted ML method is developed under
the hypothesis that the measured multichannel signal can be
modeled as

xk (n) = s(n− (k−1)q)+ak (n) , (1)

where xk (n) is the signal measured at the kth electrode
(k ∈ [1,2, ...,K]) of any column (or row) of the high density
matrix, n indicates the time sample, n ∈ [1,2, ...,N], q is the
integer number of time samples by which the signal is de-
layed between two subsequent channels, s(n) is the reference
signal shape (delayed in each channel k by q · (k−1)), and
ak (n) is white Gaussian noise with variance σ2

a . Similarly
to all CV measurement methods that are reported in the
literature on electromyography, the major assumption is that
the same signal shape, s(n), is measured at each channel. The
CV estimation requires the estimation of q, representing the
integer number of sampling periods that the signal is delayed
between adjacent channels. The estimate of q can be seen
as the maximization of the probability p(q|xk(n),s(n)). The
shape function s(n) can be estimated as the average xk(n)
for all channels after alignment, i.e.,

ŝ(n) =
1
K

K

∑
k=1

xk (n+(k−1)q). (2)
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Using Bayesian inference and assuming p(q) uniform, the
maximization of p(q|xk(n),s(n)) corresponds to the maxi-
mization of p(xk(n)|q,s(n)). Given the model in (1), with
the assumption of white Gaussian noise, p(xk(n)|q,s(n)) can
be expressed as

p(xk(n)|q,s(n)) =
1

(2π)
N
2 σN

a

· e−
∑N

n=1[xk(n)−s(n−(k−1)q)]2

2σ2a . (3)

The probability function in (3) can be extended to the
vector x(n) including all channels k. The ML estimation
of q corresponds to the maximization of ln(p(x(n)|q, ŝ(n)))
[9]. Therefore, focusing on a selected time window t(n),
the estimation of q reduces to the minimization of the cost
function

ε2(q) =
K

∑
k=1

N

∑
n=1

[t(n) · (xk(n)

− 1
K

K
∑

m=1
xm(n+(m− k)q))2]. (4)

Since the signals xk are only available for discrete values
of q, minimization of (4) results in a discrete estimate
of the optimum q, which depends on the sampling rate.
By using the Parseval’s equality, (4) can be transformed
in the frequency domain, where q becomes a continuous
multiplicative factor of the phase and can be estimated
without resolution limits. The resulting cost function is

E2(q) = (
2
N

)

N
2

∑
f =1
|T ( f )∗Xk( f )

− 1
K

K
∑

m=1
[T ( f )∗Xm( f )e j2π f (m−k) q

N ]|2, (5)

where f represents the discrete frequency and T ( f ) is the
fourier transform of

√
t(n).

Since the derivatives of the cost function in (5) with re-
spect to the delay parameter q can be calculated analytically,
gradient based iterative methods can be used very efficiently
to minimize ε2(q). We have tested the least mean squares
(LMS) algorithm, which requires the first derivative only,
and the Newton’s method, which requires the first and second
derivative [10]. The Newton’s method shows a much faster
convergence (only few iterations are required), although it
requires an accurate initialization to avoid convergence to
local minima. Therefore, the Newton’s method is adopted
and combined with a preliminary grid search to determine a
proper initialization.

D. Channel clustering and weighting

The proposed method is based on the assumption, implicit
in (1), that the signals registered at different channels are
delayed versions of the same reference shape s(n). This
assumption, already weak for skeletal muscles [11], is even
weaker for the myometrium, where differences in the volume
conductor and cell-to-cell conduction path underneath the
electrodes may cause shape variations of the propagating
APs [3]. The proposed approach can therefore measure the

average CV underneath the acquisition matrix. In order to
increase the robustness of the CV estimation with respect to
AP shape variations, the method is improved by automatic
selection of a cluster of channels showing “similar” APs and
by proper weighting of the cost function in (4).

Both clustering and weighting are based on the quantifica-
tion of the signal similarity and, therefore, the definition of
their distance. To this end, two approaches are considered,
based on signal time correlation and spectral coherence,
respectively. By these two approaches, the similarity ξi j
between two signals xi(n) and x j(n) is defined as either the
maximum of the cross correlation function, normalized with
respect to the product of the signal standard deviations, or
the correlation coefficient of the amplitude spectra. In both
cases, −1 ≤ ξi j ≤ 1, with ξi j = 1 for xi(n) = x j(n) (best
case). The second approach is not limited by the sampling
rate; however, the missing phase information makes it less
sensitive to shape variations. Therefore, the first approach is
chosen to define the distance di j as di j = (1−ξi j)/2.

A distance matrix [D] is defined that collects all the mutual
distances di j of the signals measured at different channels.
Clustering is obtained by applying the Prim’s algorithm
on the distance matrix [D] and, therefore, by growing the
minimum spanning three until all electrodes are connected
[12]. The resulting tree defines different clusters of similar
electrodes. The largest clusters are considered for further
analysis. Clusters can include rows and columns. Eventually,
the ML algorithm is applied on the row and the column
with the largest clusters. In general, if two clusters have the
same size, then the cluster with the smallest length (sum of
distances) is chosen.

A further improvement of the ML algorithm consists of
introducing proper weights, wk, in the cost function ε2(q).
In addition, the estimated reference shape ŝ(n) in (2) can
also be improved by weighting the sum of functions xk(n)
depending on their similarity with the other functions in the
same column or row. Equation (4) can then be formulated as

ε2
w(q) =

K

∑
k=1

N

∑
n=1

wk[t(n) · (xk(n)

−
K
∑

m=1
wm · xm(n+(m− k)q))2], (6)

with

wk =

K
∑

i=1,i6=k
ξi,k

K
∑

i=1

(
K
∑

j=1, j 6=i
ξi, j

) .

Notice that
K
∑

k=1
wk = 1. With the same procedure used to

obtain (5), (6) is transformed in the frequency domain in
order to obtain an estimate of q in the continuous domain by
minimization of E2

w(q). Clustering and weighting should not
necessarily be combined. In fact, clustering can be viewed
as a form of binary weighting.
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Fig. 3. Example of preprocessed simulated signals with SNR varying from
-1 to 25 dB.

TABLE I
DELAY ESTIMATES BY DIFFERENT METHODS.

Method Estimates of 49.8 ms Estimates of 149.4 ms
ML 51.3±4.3 ms 150.0±5.8 ms
ML+clust. 50.5±1.9 ms 149.8±4.2 ms
ML+weights 50.8±3.7 ms 149.9±5.4 ms
ML+clust.+weights 50.5±1.5 ms 149.5±3.4 ms

III. RESULTS

The presented CV-estimation methods are evaluated by
means of simulations based on real signals. A time interval
of 10 s including a complete EHG AP was extracted from a
real EHG recording. This signal was then artificially delayed
to simulate the measurement of the same AP by the other
electrodes lying along the same line. Two different delays,
equal to 49.8 and 149.4 ms, respectively, were considered.
After downsampling at 16 Hz, these delays corresponded to
a fraction of the sampling frequency. For the inter-electrode
distance of the adopted electrode matrix, the simulated delays
corresponded to velocities of 8.0 and 2.7 cm/s, within the
physiological range of the EHG CV [3].

The simulated signals were first tested to evaluate the
effect of the number of electrodes on the accuracy of the
CV estimation by the ML approach. White Gaussian noise
was added to each simulated signal with a SNR equal to
10 dB. The added noise, viewed as the shape difference
between the signals, corresponded to the average SNR in the
measurement. As expected, the results confirm an increased
accuracy for increased number of electrodes. The standard
deviation of the CV estimates with 100 different noise
sequences was calculated simulating 2, 4, 6, and 8 electrodes.
For a delay of 49.8 ms, the standard deviations were equal
to 4.2, 1.4, 0.59, and 0.36 ms, respectively. For a delay of
149.4 ms, the standard deviations were equal to 4.3, 1.3,
0.86, and 0.6 ms, respectively. The mean bias was always
smaller than 2% of the real CV.

The simulation with eight electrodes was then used to
evaluate the different methods for the CV estimation. In this
simulation, the SNR of each channel was randomly varied,
ranging between -1 and 25 dB. An example of simulated
signals, after preprocessing, is shown in Fig. 3. The CV-
estimates were calculated by the ML method alone, and after
the addition of clustering, weighting, and the combination
of clustering and weighting. 100 different noise sequences
were used. The mean values and the standard deviations are
reported in Table I.

The measurement feasibility was also tested with one
woman in labor. A time segment of 50 s during a contraction
was visually inspected and five subsequent APs were deter-
mined. The method combining clustering and weighting was
applied on the entire 8x8 electrode matrix. The estimated
velocity components for the horizontal and vertical directions
(x and y directions in Fig. 1) were 4.3± 0.4 cm/s and
−7.4± 1.5 cm/s. These estimates are within the expected
physiological range [3].

IV. DISCUSSION AND CONCLUSIONS
The EHG CV measurement by high-density multichannel

recording is proposed for the first time. A ML approach,
reported for the CV estimation in skeletal muscles, is chosen
for the measurement. The algorithm is further improved
by means of clustering and weighting, based on the signal
similarity between different channels. Our simulations prove
that the combined use of weighting and clustering produces
the most accurate results; on average, the variance dimin-
ished by 23% becoming less than 3.4% of the measured
value. The use of an electrode matrix permits estimating
the CV vector in two dimensions. In fact, differently from
electromyographic CV measurements, the EHG CV direction
is not known a priori. The method feasibility was confirmed
by a preliminary test with a woman in labor. After a more
extensive validation, the method might open new possibilities
for future clinical studies aimed at assessing the CV-vector
dynamics and its value for prediction of the pregnancy course
and, in particular, preterm delivery.
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