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A Random Environment
for Linearly Edge-Reinforced Random Walks on

Infinite Graphs

Franz Merkl1 Silke W.W. Rolles 2

August 19, 2005

Abstract

We consider linearly edge-reinforced random walk on an arbitrary locally finite
connected graph. It is shown that the process has the same distribution as a random
walk in a time-independent random environment given by strictly positive weights
on the edges. Furthermore, we prove bounds for the random environment, uniform,
among others, in the size of the graph. 34

1 Introduction

Linearly edge-reinforced random walk (errw) is the following model: Consider a locally
finite connected graph G = (V, E) with vertex set V and edge set E. The edges are
undirected. A random walker moves randomly on the vertices of the graph, traversing an
edge between each discrete time t = 0, 1, 2, . . .. Let Xt denote the random location of the
random walker at time t. At time 0, the random walker starts in a distinguished vertex
X0 = 0 ∈ V . We realize the Xt as canonical projections defined on the set Ω0 ⊆ V N0 of
all admissible paths.

The random walk (Xt)t∈N0 is non-Markovian. The relevant memory of the random
walker is encoded in random weights we(t), e ∈ E, t ∈ N0, which change with time.
Initially, the weights take prescribed values we(0) := ae > 0, e ∈ E, possibly depending
on the edge e. Each time the random walker traverses the edge e = {u, v} ∈ E, the
weight of e is increased by 1, and the weight of all the other edges e′ ∈ E \ {e} remain
unchanged. In other words:

we(t) := ae +
t

∑

s=1

1e({Xs−1, Xs}), (e ∈ E, t ∈ N0). (1.1)

The random weights we(t), representing the memory of the random walker at time t,
determine the transition probabilities of the random walker as follows: For any u ∈ V ,
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one has

P G
0,a[Xt+1 = u | X0, . . . , Xt] =

w{Xt,u}(t)

wXt
(t)

whenever {Xt, u} ∈ E, (1.2)

where for v ∈ V , we set

wv(t) :=
∑

e3v

we(t) and a = (ae)e∈E. (1.3)

Whenever {Xt, u} /∈ E, then

P G
0,a[Xt+1 = u | X0, . . . , Xt] = 0. (1.4)

In other words, the transition probabilities are proportional to the weight of the traversed
edge at that time. For an overview of the history of the model see e.g. [MR05c].

Linearly edge-reinforced random walk is partially exchangeable in the following sense:
Two finite paths with the same starting point are traversed with the same probability by
the reinforced random walker provided every (undirected) edge is traversed the same num-
ber of times in both paths. If the reinforced random walk is recurrent, that is, if it returns
to its starting point infinitely often with probability one, then a de Finetti theorem for
Markov chains due to Diaconis and Freedman [DF80] implies that the reinforced random
walk is a mixture of Markov chains. In particular, this applies to finite graphs. Even
more, on any finite graph, the reinforced random walk is a mixture of reversible Markov
chains; this follows e.g. by a de Finetti theorem for reversible Markov chains (see [Rol03]).
However, on many infinite, locally finite graphs with some initial weights, edge-reinforced
random walk is not recurrent, and on some infinite, locally finite graphs, including Zd for
d ≥ 2, it is not known whether edge-reinforced random walk is recurrent. In this paper,
we prove that for any locally finite graph and any initial weights, edge-reinforced random
walk is a mixture of Markov chains, irrespectively whether it is recurrent or not. The
Markov chains are defined in terms of random, time-independent weights on the (undi-
rected) edges. For finite graphs, there is an explicit but complicated formula for the joint
distribution of these random weights. They show a complicated dependence structure.
This description was first given by Coppersmith and Diaconis in [CD86] and refined by
Keane and Rolles in [KR00]. It has already been useful to analyze edge-reinforced random
walk on certain infinite graphs, including ladders of arbitrary width, by taking the infinite
volume limit of finite subgraphs; see [MR05b], [Rol05], and [MR05a]. However, in this
paper, we do not make use of the explicit form of the mixing measure for finite graphs.

2 Results

For ordinary (Markovian) random walks, the following is known: If the random walker
returns to its starting point a.s. at least once, then it also returns a.s. infinitely often.
For general non-Markovian random walks, this breaks down. However, for linearly edge-
reinforced random walks, the implication is still true, as the following theorem shows:
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Theorem 2.1 For the edge-reinforced random walk on any locally finite connected graph,
the following statements are equivalent:

(a) The edge-reinforced random walker returns to its starting point with probability one.

(b) The edge-reinforced random walker returns to its starting point infinitely often with
probability one.

(c) With probability one, every vertex is visited at least twice by the edge-reinforced
random walker.

(d) The edge-reinforced random walker visits all vertices infinitely often with probability
one.

For x = (xe)e∈E ∈ RE
+, let QG

0,x denote the distribution of the Markov chain on G over
Ω0 with starting vertex 0 and time-independent transition probabilities

QG
0,x[Xt+1 = u′|Xt = u] =

x{u,u′}
∑

e∈E:u∈e xe
1{{u,u′}∈E}. (2.1)

The following theorem generalizes the known representation of linearly edge-reinforced
random walk on finite graphs to general locally finite, possibly infinite graphs.

Theorem 2.2 For edge-reinforced random walk on any locally finite graph G with any
starting vertex 0 and any initial edge weights a = (ae)e∈E ∈ RE

+, there exists a probability
measure QG

0,a on the set (0,∞)E of strictly positive edge weights such that for all events
A ⊆ Ω0, one has

P G
0,a[A] =

∫

RE
+

QG
0,x[A] QG

0,a(dx), (2.2)

i.e. the edge-reinforced random walk has the same distribution as a random walk in a
random environment given by (time-independent) random weights on the edges.

We prove bounds for the distribution of the transition probabilities of edge-reinforced
random walk. These estimates hold for any locally finite, possibly infinite graph and any
initial weights. They depend only on the local structure of the graph and on the initial
weights nearby.

Theorem 2.3 For edge-reinforced random walk on any locally finite graph G with any
starting vertex 0 and any initial edge weights a, there is a measure QG

0,a with the properties
specified in Theorem 2.2, such that the following holds: For any vertex v and any edge e
incident to v, there are constants c1 = c1(av, ae) > 0 and c2 = c2(av, ae) > 0, depending
continuously only on av and ae, av ≥ ae > 0, but not depending on any other details of
G, 0, and a, such that for all ε > 0, the estimates

QG
0,a

[

xe

xv
≤ ε

]

≤ c1ε
ae/2 and QG

0,a

[

xe

xv
≥ 1 − ε

]

≤ c2ε
(av−ae)/2 (2.3)

hold.
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The random variables xe/xf ; e, f ∈ E are tight with algebraically bounded tails,
uniformly in the choice of the graph G, provided that the graph distance from e to f is
bounded, and provided that the initial weights are bounded and bounded away from 0.

More precisely:

Theorem 2.4 For all compact sets K ⊂ (0,∞), there exists a constant c3(K) > 0, such
that for all locally finite graphs G = (V, E), any starting vertex 0 and all initial edge
weights a = (ae)e∈E, there is a measure QG

0,a with the properties specified in Theorems 2.2
and 2.3, such that the following holds: For all edges e, f ∈ E, for all paths

e=e0−→ v1
e1−→ v2

e2−→ . . .
el−1
−→ vl

el=f
−→ (2.4)

of length l+1 from e to f with the property aei
∈ K and avj

=
∑

e′3vj
ae′ ∈ K (i = 0, . . . , l;

j = 1, . . . , l) and for all M > 0, one has

QG
0,a[xe ≥ Mxf ] ≤ c3(K)lM−γ , (2.5)

where

γ =
1

2l
min{aei

: 1 ≤ i ≤ l}. (2.6)

In general, it is not known whether the measure QG
0,a is unique. If the underlying graph

is of the form Z × T with a finite tree T and the initial weights are large, then, up to
multiplication of all xe by the same constant, there is a unique measure QG

0,a satisfying (2.2)
for all events A; see Theorem 2.4 in [MR05a]. Furthermore, in that case,

∑

e∈E xe < ∞
holds QG

0,a-almost surely.
The bounds in Theorems 2.3 and 2.4 are first proven on finite graphs. In the sense

of convex order, we bound the jump probability distribution for edge-reinforced random
walk by transition probabilities of suitable Polya urn models. The notion of convex order
plays an important role in our argument. Therefore, we review the basic properties of
convex order in Section 3. The comparison with Polya urn models is a local construction.
It therefore yields uniform bounds in the size of the graph. We approximate an infinite
locally finite graph by growing finite pieces, using compactness and tightness arguments.
The uniformity of the estimates is essential in this approximation to get tightness.

3 Preliminaries

In this section, we collect just the basic properties of convex order that we need.

Definition 3.1 Let X and Y be random variables with finite expectation, not necessarily
defined on the same probability space. We say that X and Y are in convex order, in

symbols X / Y , if there are random variables X1
d
= X and Y1

d
= Y defined on a common

probability space (Ω,A, P ) such that (X1, Y1) is a 1-step martingale, i.e., if there is a
σ-field F ⊆ A such that X1 is F-measurable and

X1 = EP [Y1|F ] (3.1)
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holds a.s. The relation X / Y depends only on the laws LX and LY of X and Y ; we
therefore write also LX / LY .

Note that we may always replace F by σ(X1) in (3.1).

Lemma 3.2 (a) The relation / is transitive.

(b) Assume that (Xn)n∈N and (Yn)n∈N are uniformly integrable martingales with respect
to filtrations (Fn)n∈N and (Gn)n∈N, respectively, not necessarily defined on the same
probability space. Let X and Y denote the a.s. limit of (Xn)n and (Yn)n, respectively.
Assume that for all n ∈ N, the relation Xn / Yn holds. Then X / Y also holds.

(c) Let µ1, . . . , µn and ν1, . . . , νn be distributions on R such that µi / νi holds for all
i = 1, . . . , n. Let pi, i = 1, . . . , n, be nonnegative numbers with sum 1. Then

n
∑

i=1

piµi /

n
∑

i=1

piνi (3.2)

also holds.

(d) Let X /Y . For any convex function f : I → R, defined at least on an interval I ⊆ R

containing the range of X and Y , such that E[f(Y )] < ∞ is valid, the inequality

E[f(X)] ≤ E[f(Y )] (3.3)

holds.

Remark. As a consequence of Strassen’s theorem (see e.g. Theorem 2 in Strassen’s
classical paper [Str65]), the converse of part (d) is also true. This theorem could be used
to prove the lemma. However, in this paper, we rather base the proof of the lemma on
more direct, elementary arguments, using only Jensen’s inequality, i.e. the trivial direction
of Strassen’s theorem.

Proof.

(a) Assume that X / Y and Y / Z. Let X1
d
= X and Y1

d
= Y be random variables on

a common probability space (Ω1,A1, P1), such that X1 = EP1[Y1|X1] holds. Let
P1[Y1 ∈ ·|X1 = ·] denote a regular conditional distribution of Y1 conditional on X1,
i.e. it is a stochastic kernel defined on R × B(R) such that for all A, B ∈ B(R), one
has

P1[X1 ∈ A, Y1 ∈ B] =

∫

A

P1[Y1 ∈ B | X1 = x]LX(dx). (3.4)

Similarly, let Y2
d
= Y and Z2

d
= Z be random variables on a common probability

space (Ω2,A2, P2), such that Y2 = EP2[Z2|Y2] holds. Let P2[Z2 ∈ ·|Y2 = ·] denote
a regular conditional distribution of Z2 conditional on Y2. Let P3 be the law of a
time-inhomogeneous Markov chain with 3 time points, starting distribution LX , first
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transition kernel P1[Y1 ∈ ·|X1 = ·], and second transition kernel P2[Z2 ∈ ·|Y2 = ·],
i.e. P3 is the probability measure on B(R3) which fulfills

P3[A × B × C] =

∫

A

∫

B

P2[Z2 ∈ C|Y2 = y] P [Y1 ∈ dy|X1 = x]LX(dx) (3.5)

for all cylinder events A × B × C ⊆ R3. Let X3, Y3, and Z3 denote the projections
to the first, second, and third coordinate of R3, respectively. By construction, with

respect to P3, X3
d
= X, Y3

d
= Y , Z3

d
= Z, and we have P3-a.s.:

EP3[Z3|X3, Y3] = EP3[Z3|Y3] = Y3 (3.6)

and therefore

EP3 [Z3|X3] = EP3[EP3 [Z3|X3, Y3]|X3] = EP3[Y3|X3] = X3. (3.7)

This shows X / Z.

(b) Fix n ∈ N. Since the martingale (Ym)m∈N is uniformly integrable, it also converges
in L1 to Y , and we have E[Y |Gn] = Yn a.s.; in particular Yn /Y holds. Since Xn /Yn

holds by assumption, we conclude Xn / Y . Therefore, we can take X ′
n

d
= Xn and

Y ′
n

d
= Y on some common probability space (Ωn,An, Pn) such that X ′

n = EPn
[Y ′

n|X
′
n].

Hence, for any bounded continuous function f : R → R, the identity

EPn
[f(X ′

n)X
′
n] = EPn

[f(X ′
n)Y ′

n] (3.8)

holds. Since (X ′
n)n∈N is uniformly integrable, (X ′

n, Y ′
n)n∈N is tight. Thus, there exists

a subsequence (X ′
nk

, Y ′
nk

)k∈N that converges weakly to a limit (X ′, Y ′). Taking the
limit as k → ∞ and using uniform integrability yields

E[f(X ′)X ′] = E[f(X ′)Y ′], (3.9)

which is equivalent to X ′ = E[Y ′|X ′]. Since by construction LX′ = LX (recall that
Xn → X almost surely and hence in distribution) and LY ′ = LY , we have shown
that X / Y .

(c) For 1 ≤ i ≤ n, let Xi and Yi be random variables on some probability space
(Ωi,Ai, Pi) with LXi

= µi and LYi
= νi such that Xi = E[Yi|Fi] for some σ-algebra

Fi ⊆ Ai. Without loss of generality, we assume that the sets Ωi are pairwise
disjoint. We set Ω = ∪n

i=1Ωi, A = σ(∪n
i=1Ai), P [A] =

∑n
i=1 piPi[A ∩ Ωi] for A ∈ A

and F = σ(∪n
i=1Fi). Furthermore, we define random variables X =

∑n
i=1 Xi1Ωi

and Y =
∑n

i=1 Yi1Ωi
on (Ω,A, P ). Then, LX =

∑n
i=1 piµi, LY =

∑n
i=1 piνi, and

E[Y |F ] = X. Hence, (3.2) holds.

(d) The claim follows immediately from the conditional version of Jensen’s inequality.
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4 Comparison of ERRW on finite graphs with Polya

urns

Throughout this section, we consider linearly edge-reinforced random walk on a finite
graph G = (V, E) with starting point 0 ∈ V and initial weights a = (ae)e∈E . Let Xt,
t ∈ N0, denote the location of the random walker at time t. Recall that we realize Xt as
the t-th projection defined on the subset Ω0 ⊆ V N0 of all admissible paths within the set
V N0 of all paths. Recall the definitions (1.1) and (1.3) of we(t) and wv(t). For v ∈ V and
t ∈ N0, we abbreviate

av =
∑

e3v
e∈E

ae = wv(0). (4.1)

Fix a vertex v∗ ∈ V and an edge e∗ ∈ E incident to v∗. For n ∈ N0, we define Tn,
n ∈ N0, to denote the time of the n + 1-st visit of the vertex v∗. Note that all these times
are almost surely well-defined. Define the filtration F = (Fn)n∈N0 with

Fn := σ(Xt : 0 ≤ t ≤ Tn), (4.2)

encoding the observable information up to time Tn. We set

M errw
n :=

we∗(Tn)

wv∗(Tn)
=

we∗(Tn)

wv∗(T0) + 2n
. (4.3)

Here, we use that wv∗(Tn) = wv∗(T0) + 2n, since between two subsequent visits of v∗, two
(maybe coinciding) edges adjacent to v∗ have been crossed, one to leave v∗, and one to
enter v∗ again. The random variable M errw

n equals the conditional probability given Fn

that the edge-reinforced random walker leaves the vertex v∗ at time Tn via the edge e∗.

Lemma 4.1 The sequence (M errw
n )n∈N0 is a martingale with respect to F .

Proof. By its definition (4.3), M errw
n is Fn-measurable. Define a partition of Ω0 by

A = {{XTn
, XTn+1} = e∗, {XTn+1−1, XTn+1} 6= e∗}, (4.4)

B = {{XTn
, XTn+1} 6= e∗, {XTn+1−1, XTn+1} = e∗}, (4.5)

C = {{XTn
, XTn+1} = e∗, {XTn+1−1, XTn+1} = e∗}, (4.6)

D = {{XTn
, XTn+1} 6= e∗, {XTn+1−1, XTn+1} 6= e∗}. (4.7)

The events A, B, C, D distinguish whether the reinforced random walker leaves the vertex
v∗ at time Tn via e∗ or not and whether it enters v∗ at time Tn+1 via e∗ or not. We observe
that

we∗(Tn+1) =







we∗(Tn) + 1 on A ∪ B,
we∗(Tn) + 2 on C,
we∗(Tn) on D.

(4.8)
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Let us consider the transformation Πn+1 : Ω0 → Ω0 which reverts the orientation of
the n + 1-st excursion from v∗, i.e. the excursion between time Tn and time Tn+1, while
keeping the rest of the path unchanged. By partial exchangeability (see e.g. Lemma 2 of
[KR00]), this transformation is measure preserving. Furthermore, it maps A bijectively
to B. Hence, abbreviating P := P G

0,a, the formula P [A|Fn] = P [B|Fn] is valid. Note that

P [A|Fn] + P [C|Fn] = M errw
n and (4.9)

P [B|Fn] + P [D|Fn] = 1 − M errw
n (4.10)

hold. Consequently,

E[M errw
n+1 |Fn] =

we∗(Tn) + 1

wv∗(T0) + 2n + 2
(P [A|Fn] + P [B|Fn]) +

we∗(Tn) + 2

wv∗(T0) + 2n + 2
P [C|Fn]

+
we∗(Tn)

wv∗(T0) + 2n + 2
P [D|Fn]

=
we∗(Tn) + 1

wv∗(T0) + 2n + 2
· 2P [A|Fn] +

we∗(Tn) + 2

wv∗(T0) + 2n + 2
(M errw

n − P [A|Fn])

+
we∗(Tn)

wv∗(T0) + 2n + 2
(1 − M errw

n − P [A|Fn])

=M errw
n . (4.11)

Hence, (M errw
n )n∈N0 is a martingale.

Now consider the star subgraph Gpolya = (V polya, Epolya) of G consisting of v∗ and
its immediate neighbors and the edges connecting v∗ with its immediate neighbors. We
consider edge-reinforced random walk (Xpolya

t )t∈N0 on Gpolya starting in v∗ with random
initial weights (apolya

e )e∈Epolya having the same joint distribution as (we(T0))e∈Epolya, the
weights of the edges e ∈ Epolya for the edge-reinforced random walk on G at time T0.
Let us explain the difference between ae and apolya

e : If v∗ = 0, then (apolya
e )e∈Epolya just

equals (ae)e∈Epolya. But if v∗ 6= 0, then v∗ is entered the first time via a random edge
ẽ = {XT0−1, XT0} ∈ Epolya; then one has wẽ(T0) = aẽ + 1, while we(T0) = ae for all other
edges e ∈ Epolya \ {ẽ}.

For this reinforced random walk on the subgraph Gpolya, we introduce similar notation
as for the reinforced random walk on the full graph G: Let wpolya

e (t), e ∈ Epolya, denote
the weight of the edge e at time t, and T polya

n = 2n is the time of the n + 1-st visit of the
vertex v∗. We set

apolya
v∗ =

∑

e∈Epolya

apolya
e =

{

av∗ if 0 = v∗,

av∗ + 1 if 0 6= v∗,
(4.12)

wpolya
v∗ (t) =

∑

e∈Epolya

wpolya
e (t), (4.13)

Mpolya
n :=

wpolya
e∗ (T polya

n )

wpolya
v∗ (T polya

n )
=

wpolya
e∗ (2n)

apolya
v∗ + 2n

. (4.14)
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Note that the denominator apolya
v∗ + 2n is not random.

Remark 4.2 In down-to-earth terms, (Mpolya
n )n∈N0 is a Polya urn model, at least if the

initial weights are natural numbers: Consider an urn containing initially apolya
e∗ red and

apolya
v∗ − apolya

e∗ blue balls. In each discrete time step, draw a ball at random and put it back
together with two balls of the same color. Then, the probability to draw a red ball in the
n + 1-st drawing equals Mpolya

n . It is well-known that (Mpolya
n )n∈N0 is a martingale.

Furthermore, (Mpolya
n )n∈N0 is a time-inhomogeneous Markov chain with random initial

state Mpolya
0 = apolya

e∗ /apolya
v∗ and transitions

Mpolya
n+1 =







αnMpolya
n + 1 − αn with probability Mpolya

n ,

αnMpolya
n with probability 1 − Mpolya

n ,
(4.15)

where we have set

αn =
apolya

v∗ + 2n

apolya
v∗ + 2n + 2

. (4.16)

The following lemma plays a central role in the whole article: It compares reinforced
random walk on any finite graph with a much simpler Polya urn model.

Lemma 4.3 For all n ∈ N, one has M errw
n / Mpolya

n .

Proof. The proof is by induction. The claim is obvious for n = 0, since M errw
0 has the

same distribution as Mpolya
0 . For the step n ; n+1, we introduce the Polya urn transition

kernel

Kn : [0, 1] × B([0, 1]) → [0, 1], Kn(x, ·) := xδαnx+1−αn
+ (1 − x)δαnx, (4.17)

which was already described in (4.15). We define an auxiliary random variable M aux
n+1 by

Maux
n =

{

αnM errw
n + 1 − αn for {XTn

, XTn+1} = e∗,
αnM errw

n otherwise.
(4.18)

It has the law
LMaux

n
= LMerrw

n
Kn. (4.19)

For an interpretation of M aux
n in the case of integer weights, consider an urn containing

we∗(Tn) red and wv∗(Tn) − we∗(Tn) blue balls. Draw a ball at random and put it back
together with two balls of the same color. Then, the probability to draw a red ball in the
next drawing equals M aux

n .
We claim that

M errw
n+1 / Maux

n+1 and Maux
n+1 / Mpolya

n+1 (4.20)

hold. Since the relation / is transitive by Lemma 3.2, these claims imply our goal M errw
n+1 /

Mpolya
n+1 .
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To prove the first claim M errw
n+1 / Maux

n+1, we introduce the following σ-field:

Gn+1 = σ(we(Tk) : e ∈ E; k = 0, . . . , n + 1). (4.21)

(Note that Gn+1 contains less information than Fn+1. In particular, the orientation of the n+1st excursion

from v
∗ of the random walker is not measurable with respect to Gn+1.)

We now show that
M errw

n+1 = E[Maux
n+1|Gn+1] (4.22)

holds, which implies the first claim M errw
n+1 / Maux

n+1. Indeed, M errw
n+1 is Gn+1-measurable,

and M errw
n+1 = Maux

n+1 holds on the two Gn+1-measurable events {we∗(Tn+1) = we∗(Tn)} and
{we∗(Tn+1) = we∗(Tn) + 2}. The complement of the union of these two events equals

{we∗(Tn+1) = we∗(Tn) + 1} = A ∪ B, (4.23)

with the two disjoint events A and B defined in (4.4) and (4.5). Note that M aux
n+1 equals

αnM errw
n + 1 − αn on A and αnM errw

n on B. Consider again the transformation Πn+1 :
Ω0 → Ω0 which reverts the orientation of the excursion between time Tn and time Tn+1,
while keeping the rest of the path unchanged; Πn+1 was introduced after (4.8). For every
random variable X taking values in [0, 1], one has E[X ◦ Πn+1|Gn+1] = E[X|Gn+1], i.e.
Gn+1 cannot distinguish between any path ω ∈ Ω0 and its partially time-reversed variant
Πn+1(ω). Furthermore,

1

2

(

Maux
n+1 + Maux

n+1 ◦ Πn+1

)

= M errw
n+1 (4.24)

holds true. Using that M errw
n+1 is measurable with respect to Gn+1, we conclude:

E[Maux
n+1|Gn+1]1A∪B =

1

2
E[Maux

n+1 + Maux
n+1 ◦ Πn+1|Gn+1]1A∪B = M errw

n+1 1A∪B , (4.25)

which finishes the proof of the claim (4.22).
The second claim M aux

n+1 / Mpolya
n+1 in (4.20), i.e. LMerrw

n
Kn /LMpolya

n
Kn, is a consequence

of the induction hypothesis M errw
n / Mpolya

n and the following lemma.

Lemma 4.4 If µ is a discrete distribution on [0, 1] and ν is any distribution on [0, 1] with
µ / ν, then µKn / νKn also holds.

Proof. We prove the lemma first in the special case µ = δx, x ∈ [0, 1]. Thus we claim: If
the distribution ν has the expectation x, then one has

xδαnx+1−αn
+ (1 − x)δαnx / νKn. (4.26)

To prove this, let X and Y be [0, 1]-valued random variables with joint distribution ν⊗Kn,
i.e. with joint distribution ν(dx) Kn(x, dy). We abbreviate the variance of ν by σ2. Note
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that Y ≥ X is the same as Y = αnX + 1 − αn and Y < X is the same as Y = αnX a.s.
We get:

E[Y, Y ≥ X] =

∫

[0,1]

(αny + 1 − αn)y ν(dy) = (αnx + 1 − αn)x + αnσ2, (4.27)

P [Y ≥ X] =

∫

[0,1]

y ν(dy) = x, (4.28)

E[Y, Y < X] =

∫

[0,1]

αny(1 − y) ν(dy) = αnx(1 − x) − αnσ2, (4.29)

P [Y < X] =

∫

[0,1]

(1 − y) ν(dy) = 1 − x. (4.30)

Thus,

xδαnx+1−αn+αnσ2/x + (1 − x)δαnx−αnσ2/(1−x) ∼ E[Y |σ({Y ≥ X})] / Y ∼ νKn. (4.31)

Finally, we show that

xδαnx+1−αn
+ (1 − x)δαnx / xδαnx+1−αn+αnσ2/x + (1 − x)δαnx−αnσ2/(1−x). (4.32)

Since / is transitive, (4.31) and (4.32) imply the claim (4.26).
To verify (4.32), we show more generally that for any numbers A ≥ C ≥ D ≥ B with

xA + (1 − x)B = xC + (1 − x)D, the relation

xδC + (1 − x)δD / xδA + (1 − x)δB (4.33)

holds. We apply this then with

A = αnx + 1 − αn + αn
σ2

x
≥ C = αnx + 1 − αn ≥ D = αnx ≥ B = αnx − αn

σ2

1 − x
.

(4.34)

Before proving (4.33) formally, let us interpret it intuitively: Suppose we have two bottles
of vinegar, having volumes x and 1 − x and concentrations A and B, respectively. By
partially mixing the content of the bottles, we can obtain two other bottles of vinegar,
also having volumes x and 1 − x, but concentrations C and D, respectively.

For A = B, there is nothing to show. Otherwise, take Ω = {C, D} × {A, B} with the
probability measure

x(C − B)

A − B
δ(C,A) +

(1 − x)

A − B

{

(D − B)
[

δ(C,B) + δ(D,A)

]

+ (A − D)δ(D,B)

}

, (4.35)

and let ω1 and ω2 denote the projections on the first and second coordinate, respectively.
Then, E[ω2|ω1] = ω1 ∼ xδC + (1 − x)δD and ω2 ∼ xδA + (1 − x)δB.
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To prove the lemma in the general case, we write

µ =
n

∑

i=1

piδxi
. (4.36)

Let X ∼ µ and Y ∼ ν be random variables with X = E[Y |X]. For i = 1, . . . , n, we define

νi = P [Y ∈ · | X = xi] (4.37)

to denote the conditional distribution of Y given X = xi. Then δxi
/ νi. By the already

proven special case, we infer
δxi

Kn / νiKn. (4.38)

The claim

µKn =
n

∑

i=1

piδxi
Kn /

n
∑

i=1

piνiKn = νKn (4.39)

now follows from Lemma 3.2(c).

Let β(a, b) denote the beta distribution with parameters a, b > 0.

Lemma 4.5 As n → ∞, the sequence (Mpolya
n )n∈N converges almost surely to a random

limit with distribution

Qpolya =Q
polya,G
0,a,v∗,e∗

=































β

(

ae∗

2
,
av∗ − ae∗

2

)

if v∗ = 0,

P G
0,a[we∗(T0) = ae∗ + 1]β

(

ae∗ + 1

2
,
av∗ − ae∗

2

)

+P G
0,a[we∗(T0) = ae∗]β

(

ae∗

2
,
av∗ − ae∗ + 1

2

)

if v∗ 6= 0.

(4.40)

Proof. Recall Remark 4.2. To make the proof more intuitive, we use the language of
the Polya urn model, by abuse of notation also in the case where the initial weights are
not natural numbers. We consider an urn with a random initial composition consisting
of apolya

e∗ red and apolya
v∗ − apolya

e∗ blue balls. The dynamics consists of drawing a ball at
random from the urn and putting it back into the urn together with two balls of the same
color. Conditioned on the initial number of balls apolya

e∗ and apolya
v∗ − apolya

e∗ , the fraction of
red balls in the urn after n drawings, namely Mpolya

n , converges almost surely to a beta
distribution with parameters apolya

e∗ /2 and (apolya
v∗ −apolya

e∗ )/2; see e.g. [Dur04], Section 4.3b,
page 238. The initial composition is distributed according to

(apolya
e∗ , apolya

v∗ − apolya
e∗ )

=







(ae∗, av∗ − ae∗) if v∗ = 0,
(ae∗ + 1, av∗ − ae∗) with probability P G

0,a[we∗(T0) = ae∗ + 1] if v∗ 6= 0,
(ae∗, av∗ − ae∗ + 1) with probability P G

0,a[we∗(T0) = ae∗] if v∗ 6= 0.
(4.41)
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The claim follows.

It is well-known (see e.g. Theorem 3.1 of [Rol03]) that the edge-reinforced random walk
on a finite graph G has the same distribution as a random walk in a random environment
given by random weights on the edges. Let

Qerrw = QG
0,a (4.42)

denote the unique mixing measure on the simplex ∆ :=
{

(xe)e∈E ∈ (0, 1)E :
∑

e∈E xe = 1
}

.

Theorem 4.6 For any finite graph G, any starting point 0, any initial weights a, any
vertex v∗, and any edge e∗ incident to v∗, the distribution QG

0,a[xe∗/xv∗ ∈ ·] of xe∗/xv∗ with
respect to QG

0,a fulfills

QG
0,a

[

xe∗

xv∗
∈ ·

]

/ Q
polya,G
0,a,v∗,e∗. (4.43)

Proof. Recall the abbreviations (4.40) and (4.42). Both, (M errw
n )n∈N and (Mpolya

n )n∈N

are bounded and hence uniformly integrable martingales. By Lemma 4.5, the limit
of (Mpolya

n )n∈N has the distribution Qpolya. Since the edge-reinforced random walk on
the finite graph G is a mixture of recurrent Markov chains, we know that (wt(e)/t)e∈E

converges almost surely as t → ∞ to a limit with distribution Qerrw. Consequently,
M errw

n = we∗(Tn)/wv∗(Tn) converges almost surely as n → ∞ to a random limit with
distribution Qerrw[xe∗/xv∗ ∈ ·]. Using that M errw

n / Mpolya
n for all n by Lemma 4.3, the

claim follows from Lemma 3.2(b).

5 Proofs of the main results

First, we prove the following uniform tail estimates for xe/xv:

Lemma 5.1 Theorem 2.3 holds for all finite graphs G.

Proof. Recall the abbreviation (4.42). Since Qerrw[xe/xv ≤ ε] ≤ 1 and Qerrw[xe/xv ≥
1 − ε] ≤ 1, it suffices to prove the estimates (2.3) for all ε ∈ (0, 1/3). The claim follows
then with possibly larger constants c1 and c2.

Let G be a finite graph, let 0 be any vertex, and let a ∈ RE
+ be any initial weights. In

this case, it is known that the measure Qerrw satisfies the assertions of Theorem 2.2 (see
e.g. Theorem 3.1 of [Rol03]).

Let v ∈ V and let e ∈ E be an edge incident to v. If degree(v) = 1, then xe/xv = 1
and av = ae. Hence, the left estimate in (2.3) always holds and the right estimate in (2.3)
holds for any c2 ≥ 1. In the following, we assume degree(v) ≥ 2. Combining Theorem 4.6
with Lemma 3.2(d) yields for any convex bounded function f : [0, 1] → R the inequality

EQerrw

[

f

(

xe

xv

)]

≤

∫ 1

0

f(x) Qpolya(dx). (5.1)
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Let ε ∈ (0, 1/3). We apply the last inequality with

f(x) =







1 −
x

2ε
for 0 ≤ x ≤ 2ε,

0 for 2ε ≤ x ≤ 1
(5.2)

to obtain

1

2
Qerrw

[

xe

xv

≤ ε

]

≤ EQerrw

[

f

(

xe

xv

)]

≤

∫ 1

0

f(x) Qpolya(dx) ≤ Qpolya[[0, 2ε]]. (5.3)

Recall the definition (4.40) of Qpolya. In the case v 6= 0, we first estimate

I1 :=P G
0,a[we(T0) = ae + 1] ·

1

B
(

ae+1
2

, av−ae

2

)

∫ 2ε

0

x(ae+1)/2−1(1 − x)(av−ae)/2−1 dx, (5.4)

where B denotes the Beta function. Clearly, P G
0,a[we(T0) = ae + 1] ≤ 1. Since the Beta

function is continuous, the normalizing constant of the beta distribution in (5.4) depends
continuously on av and ae. To bound the last integral, we use 1/3 ≤ 1 − 2ε ≤ 1 − x ≤ 1
for all x ∈ (0, 2ε). This yields the estimate

I1 ≤ c4(av, ae)ε
(ae+1)/2 ≤ c4(av, ae)ε

ae/2 (5.5)

with a constant c4(av, ae) > 0 depending continuously on av and ae and not depending on
any other quantity, in particular, not depending on G, 0, v and e. An analogous argument
yields

I2 :=P G
0,a[we(T0) = ae] ·

1

B
(

ae

2
, av−ae+1

2

)

∫ 2ε

0

xae/2−1(1 − x)(av−ae+1)/2−1 dx

≤c5(av, ae)ε
ae/2 (5.6)

with a constant c5(av, ae) > 0 depending continuously on ae and av. Combining (5.5) and
(5.6), we conclude

Qpolya[[0, 2ε]] ≤ [c4(av, ae) + c5(av, ae)]ε
ae/2. (5.7)

In the case v = 0, a similar argument yields the bound (5.7) with a different constant.
This proves the estimates for the lower tail probabilities in Theorem 2.3.

To bound the upper tail probabilities, we apply (5.1) with

f(x) =







0 for 0 ≤ x ≤ 1 − 2ε,

1 −
1 − x

2ε
for 1 − 2ε ≤ x ≤ 1.

(5.8)
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This yields

1

2
Qerrw

[

xe

xv

≥ 1 − ε

]

≤ EQerrw

[

f

(

xe

xv

)]

≤

∫ 1

0

f(x) Qpolya(dx) ≤ Qpolya[[1 − 2ε, 1]]. (5.9)

We indicate only the estimate in the case v = 0. In this case, one gets

Qpolya[[1 − 2ε, 1]] =
1

B
(

ae

2
, av−ae

2

)

∫ 1

1−2ε

xae/2−1(1 − x)(av−ae)/2−1 dx

=
1

B
(

ae

2
, av−ae

2

)

∫ 2ε

0

x(av−ae)/2−1(1 − x)ae/2−1 dx. (5.10)

Again, similar arguments as above imply

Qpolya[[1 − 2ε, 1]] ≤ c6(av, ae)ε
(av−ae)/2 (5.11)

with a constant c6(av, ae) > 0 depending continuously on av and ae.

Lemma 5.2 Theorem 2.4 holds for all finite graphs G.

Proof. Given a compact set K ⊂ (0,∞), we set

c3(K) = sup
a,a′∈K
a≥a′

c1(a, a′) < ∞, (5.12)

where c1(a, a′) is taken from Lemma 5.1, the version of Theorem 2.3 for finite graphs.
Now take a finite graph G = (V, E), a starting point 0 ∈ V , and initial weights a ∈ RE

+.
By Lemma 5.1, Qerrw has the properties specified in Theorems 2.2 and 2.3. Given any
edges e, f ∈ E, any path

e=e0−→ v1
e1−→ v2

e2−→ . . .
el−1
−→ vl

el=f
−→ (5.13)

from e to f , any M > 0, and assuming that the initial weights (ae′)e′∈E satisfy aei
∈ K

and avj
=

∑

e′3vj
ae′ ∈ K (i = 0, . . . , l; j = 1, . . . , l), we estimate, using Lemma 5.1 in the

last but one step:

Qerrw[xe ≥ Mxf ] ≤ Qerrw[xei−1
≥ M1/lxei

for at least one i = 1, . . . , l]

≤

l
∑

i=1

Qerrw[xei−1
≥ M1/lxei

] ≤

l
∑

i=1

Qerrw[xvi
≥ M1/lxei

]

≤

l
∑

i=1

c1(avi
, aei

)M−aei
/2l ≤ c3(K)lM−γ , (5.14)
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where γ is defined in (2.6).

Let G = (V, E) be a locally finite graph, and let Gn = (Vn, En) be finite con-
nected subgraphs of G with Vn ↑ V and En ↑ E, and 0 ∈ Vn for all n. We de-
note by Qerrw

n := QGn

0,a the unique mixing measure as defined in (4.42) for the edge-
reinforced random walk on the graph Gn. By its definition, Qerrw

n is a measure on the
simplex ∆n =

{

(xe)e∈En
∈ (0, 1)En :

∑

e∈En
xe = 1

}

. We introduce the canonical projec-
tions xe : ∆n → (0, 1), e ∈ En, suppressing the dependence on n in the notation.

Fix e0 ∈ E. We assume without loss of generality that e0 ∈ En for all n. We set
x̃e = xe/xe0 for e ∈ En. In particular, x̃e0 = 1 holds. The weights (xe)e∈En

and (x̃e)e∈En

are multiples of each other; hence they induce the same Markov chain (QGn

0,x = QGn

0,x̃).
Thus, we can use the law of (x̃e)e∈En

with respect to Qerrw
n as mixing measure for the

edge-reinforced random walk on Gn.

Lemma 5.3 There exists a strictly increasing sequence (n(k))k∈N in N such that for all
finite F ⊆ E, the law of (x̃e)e∈F with respect to Qerrw

n(k) converges weakly as k → ∞ to a

distribution, supported on (0,∞)F .

Proof. We prove first that for any fixed k ∈ N, there exists n0 = n0(k) ≥ k such that
the distributions Qerrw

n [(ln x̃e)e∈Ek
∈ ·], n ≥ n0, are tight. Fix e ∈ Ek and a path π:

e0−→ v1
e1−→ v2

e2−→ . . .
el−1
−→ vl

el=e
−→ (5.15)

from e0 to e in Ek. Choose n0 ∈ N so large that for any vj in the path π, any edge e ∈ E
incident to vj belongs to En0. Let K := {aei

, avj
: i = 0, . . . , l, j = 1, . . . , l} and let γ be

as in (2.6). Then, by Lemma 5.2 (the finite graph version of Theorem 2.4), taking c3(K)
as in that lemma, we obtain for all n ≥ n0 and all M > 0:

Qerrw
n [x̃e ≥ M ] = Qerrw

n [xe ≥ Mxe0 ] ≤ c3(K)lM−γ (5.16)

and
Qerrw

n [x̃e ≤ M−1] = Qerrw
n [xe0 ≥ Mxe] ≤ c3(K)lM−γ . (5.17)

This implies tightness of Qerrw
n [(ln x̃e)e∈Ek

∈ ·], n ≥ n0.
Using a compactness argument, the tightness proven above allows us to construct, by

recursion over k, a sequence of strictly increasing sequences mk = (mk(i))i∈N, k ∈ N,
with values in N, such that for all k ∈ N, mk+1 is a subsequence of mk and the sequence
Qerrw

mk(i)[(x̃e)e∈Ek
∈ ·] converges weakly as i → ∞. By (5.17), the limiting distribution is

supported on (0,∞)Ek. Then, the diagonal sequence n(k) := mk(k), k ∈ N, fulfills the
claim of the lemma.

Proof of Theorem 2.2. Let QG
0,a be the limit of a weakly convergent subsequence

(

Qerrw
n(k) [(x̃e)e∈Ek

∈ ·]
)

k∈N
as in Lemma 5.3. By Lemma 5.3, QG

0,a is supported on (0,∞)E.
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Let π = (0, v1, . . . , vl) be a finite path in G. Then, for all k sufficiently large,

P G
0,a [(Xs)s=0...l = π] =P

Gn(k)

0,a [(Xs)s=0...l = π]

=

∫

Q
Gn(k)

0,x̃ [(Xs)s=0...l = π] Qerrw
n(k)(dx). (5.18)

Note that for all k large enough and all x ∈ (0,∞)E, we have Q
Gn(k)

0,x̃ [(Xs)s=0...l = π] =

QG
0,x̃ [(Xs)s=0...l = π]. Since x 7→ QG

0,x̃ [(Xs)s=0...l = π] is a bounded and continuous cylinder
function, taking the limit as k → ∞ in (5.18) yields

P G
0,a [(Xs)s=0...k = π] =

∫

QG
0,x̃ [(Xs)s=0...l = π] QG

0,a(dx). (5.19)

The events of the form {(Xs)s=0...l = π} form a closed system with respect to intersection
and generate the canonical σ-algebra on Ω0. Thus, the claim (2.2) follows from (5.19).

Proof of Theorem 2.3 and 2.4. By Lemmas 5.1 and 5.2, the claimed estimates hold
for the measures Qerrw

n(k) [(x̃e)e∈Ek
∈ ·], uniformly in k ∈ N. Lemma 5.3 allows us to take

the limit as k → ∞ to obtain

QG
0,a

[

xe

xv
< ε

]

≤ c1ε
ae/2 and QG

0,a

[

xe

xv
> 1 − ε

]

≤ c2ε
(av−ae)/2 (5.20)

for all ε > 0. Taking the limit ε ↓ ε̃, the claims (2.3) follow with ε replaced by ε̃. An
analogous argument yields (2.5).

Proof of Theorem 2.1. By Theorem 2.2, the edge-reinforced random walk is a mixture
of irreducible Markov chains. Since for every irreducible Markov chain the statements (a)–
(d) are equivalent, the claim follows.
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