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The developed theory of the orientational mobility of individual segments of a perfectly branched
dendrimer is used to calculate the relaxation spectrum of a dendrimer. Frequency dependences of
NMR relaxation 1 /T1 and of the nuclear Overhauser effect have been theoretically calculated from
the Brownian dynamics simulation data. The dendrimer segmental orientational mobility is
governed by three main relaxation processes: �i� the rotation of the dendrimer as a whole, �ii� the
rotation of the dendrimer’s branch originated from a given segment, and �iii� the local reorientation
of the segment. The internal orientational mobility of an individual dendrimer segment depends only
on the topological distance between this segment and the terminal shell of the dendrimer.
Characteristic relaxation times of all processes and their contributions to the segmental mobility
have been calculated. The influence of the number of generations and the number of the generation
shell on the relaxation times has been studied. The correlation between the characteristic times and
the calculated relaxation spectrum of the dendrimer has been established. © 2009 American
Institute of Physics. �DOI: 10.1063/1.3063116�

I. INTRODUCTION

Dendrimers represent a new class of polymers character-
ized by regular architecture and nanosizes.1 Due to the spe-
cific topology2 dendrimers possess a number of unique prop-
erties which can define their potential applications in
chemistry, biology, and medicine.

Most of experimental research of dendrimers is devoted
to the studies of equilibrium properties �see, for example,
Refs. 1–8�. At the same time their relaxation properties,
which are very important for many practical applications, are
poorly understood.9–13 Computer simulation14–22 is one of
the perspective methods to study the dendrimer relaxation
properties. Obtained simulation results correlate well with
the existing experimental data on large-scale relaxation pro-
cesses, such as diffusion14 and intrinsic viscosity.15 However,
the computational study of the local segmental mobility of a
dendrimer faces difficulties due to the superposition of many
relaxation processes and the absence of a theoretical ap-
proach for the interpretation of experimental data and com-
puter simulation results �see, e.g., Refs. 14 and 19–22 where
it is shown that the behavior of the orientational ACF P1 for
dendrimer segments

P1�t,i� = �b� i�t�b� i�0�� �1�

is determined by several well-separated relaxation processes

and b� i�t� is a unit vector directed along the ith segment�.
The local mobility of dendrimer segments is studied ana-

lytically using simple viscoelastic model of Gaussian
subchains �segments�.23–32 However, hydrodynamic and
excluded-volume interactions, which play a major role in
defining the dynamic properties of dendrimers, are not taken
into account in this model. Therefore, the question arises to
which extent the conclusions and predictions of this analyti-
cal approach is correct, in particular, in describing the relax-
ation of the P1 autocorrelation function �ACF�. This function
may be calculated directly based on the dielectric relaxation,
polarized luminescence, and NMR data. However, a correct
theoretical approach describing its relaxation does not exist.

These open questions define the goals of the present
study, namely, to examine the predictions of the analytical
theory32 by comparison with the Brownian dynamics �BD�
simulations results,14 and to explain the peculiarities of the
time dependence of the P1 ACF simulated by BD and mea-
sured in NMR experiment. The rest of the paper is organized
as follows. In Sec. II we briefly describe some results of the
viscoelastic theory,23–32 which have been used in the present
study to analyze the orientational mobility of an individual
segment �InS� of the dendrimer. In Sec. III we analyze the
time dependence of the simulated14 P1 ACF for an InS of the
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dendrimer with the help of the viscoelastic theory.32 In Sec.
IV we use theoretical predictions32 to calculate characteristic
relaxation times of P1 ACF based on NMR data. The main
conclusions are summarized in Sec. V.

II. VISCOELASTIC MODEL OF A DENDRIMER

The well-known viscoelastic model of a dendrimer is
described in details in many studies.23–32 In this model every
two consequent branching points are connected by one seg-
ment of the same mean-squared length �l2�, described by the
elasticity coefficient K.33 The viscous friction is supposed to
be concentrated in branching points and is characterized by
the scalar friction coefficient �. The free draining model is
considered, and the excluded volume and hydrodynamic in-
teractions �HIs� are not taken into account.

The spectrum of the relaxation times of normal modes in
framework of this dendrimer model consists of two parts:
internal relaxation spectrum and pulsating spectrum. As was
shown earlier,25,27,28 internal relaxation spectrum is not much
influenced on by the size of a dendrimer. The relaxation
times of the internal relaxation spectrum lie in some interval
between �min

int and �max
int . At the same time, the pulsating spec-

trum strongly depends on a dendrimer size. The relaxation
times of the pulsating spectrum are determined by the size of
subbranches and are equal for subbranches of the same size.
For every segment the subbranch to which it belongs can be
defined uniquely; subbranch represents the dendrimer part
originated from this segment, Fig. 1.28 The subbranch is
characterized by the number m=n− j, where n is the total
number of the dendrimer generations and j is the number of
a generation shell to which the given segment belongs to.
The smallest subbranch with m=0 is just a terminal segment,
Fig. 1�d�. The largest subbranch is characterized by the num-
ber m= �n−1�, and corresponds to a branch originated from
the dendrimer core �Fig. 1�a��. As was already shown,25,27,28

for m�1 the pulsating relaxation time of a three-functional
dendrimer, �m

pul, is equal to

�m
pul � 2m+2�0 �m = 2,3, . . . ,n� . �2�

Here �0=� /K is the characteristic rotational time of a single
dendrimer segment with one fixed end. The pulsating relax-
ation times for subbranches with m=0 and 1 have been de-
rived by Gotlib and Markelov28 as

�0
pul = �0 �m = 0� , �3�

�1
pul = �2 + �3��0 �m = 1� . �4�

The degree of degeneracy D of relaxation times of both
spectra for n=3 and n=5 dendrimer has been shown in Figs.
2�a� and 2�b�, correspondingly. This degree of degeneracy
shows how often each relaxation time is found in the den-
drimer spectrum, i.e., D is the number of normal modes with
the same relaxation time. Here solid lines mark the relax-
ation times of a dendrimer, dashed lines label the borders of
the internal spectrum, �av

int is the average time of the internal
spectrum �this time is determined below�.

In the viscoelastic model described above, every seg-
ment is flexible and represent normally several monomer

units of a real polymer chain. However, a majority of known
dendrimers have very rigid segments and short spacers be-
tween branching points. Gotlib and Neelov34 studied the re-
laxation spectrum of a free-draining dendrimer model where
all segments are substituted by rigid rods �bead-rod model�.

FIG. 1. The generation n=4 dendrimer. InSs are topologically located in an
arbitrary generation shell of a dendrimer: �a� j=1, m=3; �b� j=2, m=2; �c�
j=3, m=1, and �d� j=4, m=0. j is the number of a generation shell of an
InS, m is the number of generations of a marked subbranch. Dotted lines
mark shells, the thick line highlights the InS, the dashed line indicates the
marked subbranch.
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They showed that the relaxation spectra for both bead-rod
and viscoelastic models coincide with each other if the
length of a rod in the rigid model is equal to the mean-
squared length of a segment in the viscoelastic model.

For an InS belonging to the jth generation shell the vis-
coelastic theory of a n-generations dendrimer32 gives the fol-
lowing approximate expression for the time dependence of
the P1 ACF:

P1�t,n, j� = A�n, j�exp�− t/�n−j
pul � + B�n, j�exp�− t/�av

int� , �5�

where �n−j
pul is the pulsating relaxation time of the subbranch

that originates from this segment; �av
int is the characteristic

relaxation time of the internal spectrum; the expression for
�av

int is given below �Eq. �7��. The contributions A and B of
relaxation times must satisfy the normalization condition:

A + B = 1. �6�

An initial slope of the P1�t ,n , j� ACF is determined only by
the internal spectrum and does not practically depend on n
and j because �av

int��n−j
pul �Fig. 3�. The relationship between

the characteristic relaxation time �av
int and the limiting values

of the internal spectrum of the dendrimer has been also ob-
tained as32

1

�av
int �

1

2
	 1

�min
int +

1

�max
int 
 . �7�

At large times, the relaxation of P1�t ,n , j� is determined,
obviously, by the larger relaxation time �n−j

pul . For the
n-generation dendrimer �n−j

pul is equal to the maximum pulsat-
ing time of a subbranch with the number of generations m
=n− j, see Eq. �2�.

The ratio A /B depends only on the number m of genera-
tions for the corresponding subbranch and decreases when m
increases, Fig. 4. Therefore, we can rewrite Eq. �5� as

P1�t,n,m� = Am exp�− t/�m
pul� + Bm exp�− t/�av

int� . �8�

As follows from Eq. �8�:

P1�t,n�,m� = P1�t,n�,m�, �m = n� − j� = n� − j�� , �9�

where n� and n� are the numbers of dendrimer generations,
j� and j� are the numbers of generation shells for the selected

FIG. 2. The analytical theory predictions �Ref. 28� for the degree of degen-
eracy D of both the internal spectrum and the pulsating spectrum for �a� n
=3 and �b� n=5. m is the number of generations of a marked subbranch, n
is the number of generations of a dendrimer, �0 is the characteristic relax-
ation time of a single segment, �m

pul is the relaxation time of the pulsating
spectrum, �min

int and �max
int are the limiting values for the relaxation times of the

internal spectrum �dashed lines�, and �av
int is the average relaxation time of

the internal spectrum �dotted lines�.

FIG. 3. The theoretical predictions �Ref. 32� for the time dependence of the
P1 ACF of InS of a n-generations dendrimer at different numbers of gen-
erations m=n− j for a marked subbranch. j is the number of a generation
shell of the InS, �0 is the characteristic relaxation time of a single segment.
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segments. In other words, the expressions for P1 ACFs are
the same for different segments, if these segments are char-
acterized by the same m.32 Thus, the orientational mobility of
InS of a dendrimer is determined only by the topological
distance of this segment from the terminal shell, i.e., by the
size of the corresponding subbranch instead of the size of the
dendrimer. Equations �8� and �9� will be used below to ana-
lyze the time dependence of P1 ACF obtained earlier in the
BD simulation study.14

III. BROWNIAN DYNAMICS SIMULATION OF THE
LOCAL ORIENTATIONAL MOBILITY IN DENDRIMERS

The time behavior of the P1 ACF has been simulated14

for a single dendrimer up to n=5 generations for two models,
with and without HIs. The dendrimer was represented as a
system of beads with friction coefficient � connected by rigid
rods of length l. Excluded-volume interactions were defined
by the repulsive part of the Lennard-Jones potential ULJ cor-
responding to the athermal solvent, with the cutoff distance
rcut=2.5� and parameters �=0.8l and �LJ=0.3kbT,35

ULJ�rij� = 4�LJ	 �

rij

12

− 4�LJ	 �

rcut

12

. �10�

As was shown in Ref. 14 for both models Eq. �9� does
not work properly to describe the BD results, and the time
dependences of P1 ACF can be different for the same values
of m. We suppose that this discrepancy could be related to
the rotation of the dendrimer as a whole because this type of
motion is not taken into account in the theoretical treatment,
Eq. �9�.

A. Contribution of a dendrimer rotation as a whole to
segmental relaxation.

The rotational mobility of a dendrimer as a whole is
characterized by the relaxation times �rot of the correlation
function Crot�t�

Crot�t� = �en�0�en�t�� . �11�

Here e�n=Q� n / �Q� n� is a unit vector that is collinear with the

radius vector Q� n directed from the core to a terminal seg-
ment,

Q� n = r�t − r�0, �12�

where r�t represents the location of an arbitrary tth terminal
segment for a n-generation dendrimer, and the vector r�0 rep-
resents the position of a dendrimer core. Averaging in Eq.
�11� is performed over all terminal groups and over time. In
the Table I we present relaxation times �rot calculated in BD
simulations for both models, with and without HI.14 The
value of �rot increases with increasing the number of genera-
tions n.

The contribution of the rotation of the dendrimer as a
whole may be taken into account by adding a new mode in
Eq. �8� �this approach is similar to that used earlier for a
single polymer chain36�,

P1�t,n,m� = Am exp�− t/�m
pul� + Bm exp�− t/�av

int�

+ Cm exp�− t/�rot�n�� . �13�

Now, the sum of all three contributions of the characteristic
relaxation processes has to satisfy a new normalization con-
dition:

Am + Bm + Cm = 1. �14�

As follows from Eq. �14� both Am, Bm, and Cm depend on the
m=n− j only. The value of Cm can be calculated from the
simulation data for segments of dendrimers of different gen-
eration numbers �for example, n� and n��, but with the same
number of subbranch generations m=n�− j�=n�− j�:

P1�t,n�,m� − P1�t,n�,m� = Cm�exp�− t/�rot�n���

− exp�− t/�rot�n���� . �15�

The calculated values Cm �m=0, 1 , 2� for different
segments are close to each other, and are presented in Table
II for both simulated models. These results confirm our hy-
pothesis that the difference in the time dependence of P1

FIG. 4. The theoretical predictions �Ref. 32� for the ratio Am /Bm of pulsat-
ing and internal characteristic times as a function of the number of genera-
tions m of a marked subbranch.

TABLE I. The BD-simulated time �rot of a rotation of a dendrimer as a
whole for two models, with and without HIs �Ref. 14�. n is the number of
generations of a dendrimer, �0 is the characteristic relaxation time of a single
segment.

n

��rot /�0�

Without HI With HI

2 4 2.9
3 10 7.5
4 22.5 17
5 48.6 34

044907-4 Markelov et al. J. Chem. Phys. 130, 044907 �2009�
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�t ,n ,m� for the same m is determined mainly by the differ-
ence in rotation relaxation times of a dendrimer as a whole.

B. Calculation of parameters of dendrimer local
motions in P1 relaxation

Having the contributions to P1 ACF of the dendrimer

rotation as a whole, we introduce another ACF, P̃1, which
depends only on the local motions of a segment within a
dendrimer. It allows us to study the remaining parameters of
P1 ACF. To calculate the parameters in Eq. �13�, the contri-
bution P1

rot�t ,n ,m�=Cm exp�−t /�rot�n�� of the rotation of a
dendrimer as a whole is subtracted from P1�t ,n ,m�,

P̃1�t,m� = P1�t,n�,m� − Cm exp�− t/�rot�n���

= P1�t,n�,m� − Cm exp�− t/�rot�n��� . �16�

Calculated P̃1 ACF is determined only by the internal orien-
tational mobility of dendrimer segments and depends only on
the number of generations m in the marked subbranch, see

Eq. �8�. In Fig. 5 the time dependence of P̃1 ACF for seg-
ments with the number m of subbranch generations is shown.

All P̃1�t ,m� ACFs are well fitted by Eq. �8�. Thus, relaxation
times �m

pul, �av
int and their contributions Am, Bm that determine

the BD simulation time dependence of P1 ACF can be de-
fined. In Table II the calculated values of Am, Bm, �m

pul, and
�av

int are shown for models with and without HI.

C. Analysis of obtained parameters Am, Bm, Cm, �m
pul,

�av
int, and �rot

In this section the relaxation times of P1 ACF for the
viscoelastic model and for the simulated bead-rod model are
analyzed in detail. In BD simulations the characteristic time
�av

int�0, 2�0 is the same for both models, with and without
HI, and does not depend on the dendrimer generation num-
ber n and an InS topological location. This result agrees with
the theoretical predictions for viscoelastic model,32 i.e., this
time belongs to the internal spectrum and corresponds to the
local reorientational motions of InS for dendrimers with slow
mobility of the terminal shell. The characteristic time �m

pul is
related to the pulsations of the corresponding subbranch and

increases with increasing m. Indeed, the BD simulation re-
sults show this increase. For the model without HI, this effect
is larger than for the model with HI, Fig. 6. In Fig. 6, the
relaxation times �m

pul and �av
int are shown for both simulated14

models, with and without HI, and for the viscoelastic
model.32 Note that pulsating relaxation times of the BD
model with HI are close to the values of the pulsating times
for the viscoelastic model �see Fig. 6�. This fact shows the
mutual compensation of the excluded volume and HI inter-
actions that are not taken into account in the viscoelastic
model. Thus, we conclude here that the simulated time de-
pendence of the P1 ACFs is well described by Eq. �13� and is
defined completely by three main relaxation processes:

• rotation of the dendrimer as a whole,

• turns of the marked subbranch characterized by the
maximal pulsating relaxation time, and

• local reorientational motions of an InS characterized by
the average characteristic time of the internal spectrum.

The contribution of each process depends on the number
m of generations in the marked subbranch �Table II�. How-
ever, the time dependence of P1 ACF is determined not only
by m but also by n because the rotation time of a dendrimer
as a whole is determined only by its size, i.e., by the number
n of generations for a chosen model. For terminal InS �m
=0� P1 does not depend on n because the contribution of the
normal mode corresponding to �rot is negligible in this case.

The conclusions of the developed theory correlate well
with the results of the molecular-dynamics simulations of
dendrimers by Karatasos et al.19 In Ref. 19 AB2 dendrimers
of generations n=4–7 have been simulated in a dilute solu-
tion with explicit solvent molecules. To study the relaxation
processes which determine the orientational mobility of InS,
the authors calculated the distribution of relaxation times,
F�ln����. This function is connected to P1�t� as P1�t�
=�−�

� F�ln����e−t/�d ln���.19 Maxima of F�ln���� may be rec-
ognized as corresponding characteristic times of P1 relax-
ation, if these times are well separated from each other. Oth-
erwise, contributions of different relaxation times merge into
one maximum. Thus, for rather short subbranches �m=0 and

TABLE II. Characteristic BD-simulated relaxation times of pulsating and internal spectra and their contribu-
tions to P1 ACF relaxation for two models with and without HIs �Ref. 14�. �m

pul is the characteristic pulsating
time, �av

int is the characteristic time of the internal spectrum, Cm is the contribution of the rotation of a dendrimer
as a whole, Am is the contribution of a motion with �m

pul, Bm is the contribution of a motion with �av
int, m=n− j is

the number of generations of a marked subbranch, j is the number of a generation shell of the InS, n is the
number of generations of a dendrimer, and �0 is the characteristic relaxation time of a single segment.

Model without HIs

m Sm Am �m
pul /�0 Bm �av

int /�0

0 0.06�0.02 0.50�0.02 1.27�0.05 0.44�0.02 0.17�0.05
1 0.26�0.01 0.47�0.01 3.9�0.2 0.27�0.01 0.17�0.02
2 0.36�0.01 0.38�0.01 26�1 0.26�0.01 0.20�0.02

Model with HIs
0 0.06�0.02 0.59�0.02 1.09�0.05 0.35�0.02 0.20�0.05
1 0.24�0.01 0.47�0.01 3.6�0.2 0.29�0.01 0.19�0.02
2 0.41�0.01 0.33�0.01 11.9�0.5 0.26�0.01 0.21�0.02
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1� function F�ln���� is characterized in Ref. 19 by one maxi-
mum due to a small contribution of the dendrimer rotation as
a whole in this case. This maximum corresponds to a joint
contribution of the internal spectrum and pulsating processes
because the characteristic time �av

int is close to the value of
�m

pul. However, for larger dendrimers �n=4–6 and m=2-n�
two relaxation processes are split.19 The characteristic time
of the faster process does not depend practically on n and m.
The contribution of this process decreases with increasing m.
This process corresponds to the contribution of the internal
spectrum in P1 ACF �see discussion at the beginning of this
section�. The characteristic time of the second process in-
creases with m, and for m=n-2 becomes close to �rot.

19 We
suppose that observed process is the superposition of pulsa-

tion ��m
pul� and the dendrimer rotation as a whole ��rot� be-

cause the difference between corresponding relaxation times
��m

pul and �rot� is not enough to separate these processes. Our
hypothesis is verified by the shape of the F�ln���� for n=7
generation dendrimer.19 In this case �n=7 and m=2–4�,
three characteristic times are clearly recognized. The pro-
cesses with faster and moderate characteristic times have the
similar behavior as for the smaller system with only two
maxima �n	7�. As was shown in Ref. 19, the third process
has a maximal relaxation time and corresponds to the den-
drimer rotation as a whole. The characteristic times of this
process are practically the same for m=2–4.

Thus, the developed analytical theory of local orienta-
tional mobility correctly describes time dependence of P1

ACF for separate segments produced by computer
simulations.14 The studies of the orientational mobility of InS
in different shells allow us to calculate the pulsating spec-
trum �m

pul �see Eqs. �2�–�4��, the average time �av
int of the in-

ternal spectrum, and finally, the full relaxation spectrum of a
dendrimer, Fig. 2. The relaxation spectrum can be further
used for description and investigation of various relaxation
processes in a dendrimer that are observed in computer simu-
lations and in some physical experiments such as dielectric
and mechanical relaxation, and NMR. Moreover, the com-
parison of the viscoelastic theory with BD data allows us to
improve analytical description of P1 relaxation, namely, that
P1 ACF should additionally include the rotation of a den-
drimer as a whole.

IV. MANIFESTATIONS OF THE ORIENTATIONAL
MOBILITY OF DENDRIMER SEGMENTS IN NMR

The orientational mobility of a dendrimer segment can
be displayed in the reorientation of an internuclear vector,
which is observed in NMR experiments. In this section we
will use theoretical results of the present study to analyze

FIG. 5. The time dependence of P̃1�t ,m� ACF. m=n− j is the number of
generations of a marked subbranch, j is the number of a generation shell of
the InS, n is the number of generations of a dendrimer, and �0 is the char-
acteristic relaxation time of a single segment. Shown are the results of the
BD simulations for models �b� with and �a� without HIs �Ref. 14�.

FIG. 6. Characteristic relaxation times ��m
pul and �av

int� for the relaxation of P1

ACF. m=n− j is the number of generations of a marked subbranch, j is the
number of a generation shell of the InS, n is the number of generations of a
dendrimer, and �0 is the characteristic relaxation time of a single segment.
Shown are the results of the analytical theory �Ref. 32� and the BD simula-
tions �Ref. 14�.
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NMR data. In the developed theory only the longitudinal
components of the internuclear vector have been investi-
gated, Eq. �1�. Such situation is realized, for example, in
polyphenylene dendrimers37–39 where C–H bonds possess the
longitudinal component of the internuclear vector, Fig. 7.

The information about the local orientational mobility of
a dendrimer can be obtained from the NMR relaxation of 13C
nuclei or from the nuclear Overhauser effect �NOE�. The
inverse time of the NMR relaxation, 1 /T1C, and the value of
NOE can be represented as �see, for example, Refs. 40–42�:

1/T1C�
,n,m� =
�C

2 �H
2 �2

10r
6 �6J�4.97
,n,m�

+ J�2.97
,n,m� + 3J�
,n,m�� , �17�

NOE�
,n,m�

= 1 + 3.976
6J�4.97
,n,m� − J�2.97
,n,m�

6J�4.97
,n,m� + J�2.97
,n,m� + 3J�
,n,m�
,

�18�

where �H and �C are the gyromagnetic ratios for nuclei 1H
and 13C, correspondingly; rII is the projection of the internu-
clear vector on the axis directed along the InS, and J�
 ,n ,m�
is the spectral density function, which is calculated from the
real part of the Fourier transform of the time dependence of
P2�t ,n ,m� ACF. The orientational ACF P2 is defined as

P2�t� = 3
2���b� i�t�b� i�0��2� − 1

3� , �19�

where b� i�t� is a unit vector directed along the ith segment.
We do not directly calculate P2 ACF, but use the follow-

ing approach instead. In Ref. 43 the following relation be-
tween P1 and P2 for rigid segments has been obtained:

P2�t� = �P1�t��3. �20�

BD simulations results14 for both models �with and without
HI� demonstrate that Eq. �20� is valid also for a dendrimer
model with rigid segments. Thus, using our theoretical pre-

dictions, Eq. �13�, we can obtain the relationship between
1 /T1 �or NOE� and the P1 relaxation time. Using Eqs. �13�
and �20�, the expression for P2 ACF can be written as

P2�t,n,m� = 
l1=1

3


l2=1

3


l3=1

3 	gl1
�m�gl2

�m�gl3
�m�

�exp�−
t

�l1l2l3
�
 , �21�

where g1�m�=Am, g2�m�=Bm, and g3�m�=Cm, �see Table II�;
�l1l2l3

are the characteristic relaxation times of P2 ACF,

�l1l2l3
= 	 1

�l1

+
1

�l2

+
1

�l3

−1

. �22�

Here, �1=�m
pul, �2=�av

int, and �3=�rot�n�.
Therefore, we have

J�
,n,m� = 
l1=1

3


l2=1

3


l3=1

3 gl1
�m�gl2

�m�gl3
�m�

1 + ��l1l2l3

�2 . �23�

We have calculated the NMR relaxation for the more realis-
tic model with HI. Using Eqs. �17� and �23�, and the calcu-
lated values of �m

pul, �av
int, �rot, �n�, Am, Bm, and Cm for the

model with HI �see Tables I and II�, we obtain the frequency
dependence of the 1 /T1C

� �
 ,n , j�

1/T1C
� �
,n,m� = 	 10r�CH

6

�C
2 �H

2 �2
 


T1C�
,n,m�
. �24�

In Fig. 8, the frequency dependence of 1 /T1C
� is shown for

dendrimers with different number of generations. The fre-
quency 
max of the maximal value of the 1 /T1C

� does not
depend practically on the size of a dendrimer and on the
topological location of the InS in it. As was shown earlier,38


max relates to the characteristic time �ch of P2 ACF as

FIG. 7. �a� A dendrimer segment with benzene ring �Refs. 37–39� and �b� a
bead-rod model of its segment which is used in this study. r�CH is the inter-
nuclear vector of a C–H bond, r�II is the longitudinal component of the
internuclear vector of a C–H bond.

FIG. 8. The frequency dependence of the normalized inverse time of the
NMR relaxation, 1 /T1C

� �
 ,n ,m�= �10r�
6 /�C

2 �H
2 �2�
 /T1C�
 ,n ,m�, for InSs

of a dendrimer. m is the number of generations of a marked subbranch, n is
the number of generations of a dendrimer, �0 is the characteristic relaxation
time of a single segment.
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�ch =
1

0.63
max
. �25�

For the model with HI we obtain �ch��av
int /2�0.1�0. These

results can be explained by the fact that segmental motions
with relaxation times �122 and �322 �see Eqs. �26� and �27��
give maximal contributions to relaxation of the P2 ACF

�122 = 	 1

�m
pul +

1

�av
int +

1

�av
int
−1

= 	 1

�m
pul +

2

�av
int
−1

� �av
int/2,

�26�

�322 = 	 1

�rot�n�
+

2

�av
int
−1

� �av
int/2. �27�

Thus, the frequency dependence of 1 /T1C
� �
 ,n ,m� �Fig. 8�

can be approximated as

1/T1C
� �
,m� �

Lm


1 + �0.315�av
int
�2 . �28�

Here Lm is constant that depends only on m. Note that Eq.
�28� can be used to test the developed theory and to calculate
�av

int from the frequency dependence of 1 /T1C
� obtained in a

NMR experiment. Equation �28� is indirectly justified by the
experimental investigation of NMR relaxation in DAB den-
drimers �see Ref. 44�. In Ref. 44 the temperature dependence
of the NMR relaxation of H �Ref. 1� nuclei, T1H, was studied.
Their results44 clearly show that for different dendrimers �n
=2, 4 , 5� the positions of the 1 /T1H maxima for all den-
drimer segments coincide.

Similar to the 1 /T1C
� calculation, we calculate the fre-

quency dependence of NOE�
 ,n ,m� by using Eqs. �18� and
�23�, and the parameters from Tables I and II. The frequency
dependence of NOE for dendrimers with n=2–5 generations
is shown in Fig. 9. In the high-frequency region,
NOE�
 ,n ,m�, as well as 1 /T1C

� are determined by �av
int only.

In this limit NOE�
 ,n ,m� does not depend on n and m. In
the low-frequency region NOE�
 ,n ,m� depends on the size
of a marked subbranch and on the size of a dendrimer, i.e.,
on both values of n and m. For m=0, 1 the NOE�
 ,n ,m� is
determined only by �m

pul and does not practically depend on
�rot�n�. NOE�
 ,n ,m� depends on n for m=2. The character-
istic frequency 
ch of the onset of NOE�
 ,n ,m� decrease
depends on the maximal relaxation time of P2 ACF,

�333 = �rot�n�/3. �29�

The correlation between 
ch and �rot�n� is determined by the
expression


ch �
1

4.97
	 3

�rot�n�

 �30�

because for low frequencies the maximal contribution to
NOE�
 ,n ,m� is equal to 6J�4.97
� �see Eq. �19��. Note that
Eq. �30� and the frequency dependence of NOE�
 ,n ,m� for
a dendrimer can be used for the calculation of �rot�n� and for
the examination of the developed theory by the comparison
of �rot�n� with the results of other experimental methods �for
example, dynamic light scattering�.

Thus, the correlation between the characteristic fre-
quency of the NMR relaxation dependence and the relax-
ation spectrum of a dendrimer have been found. To the best
of our knowledge, there is no experimental data on the fre-
quency dependences of 1 /T1 and NOE for a dendrimer. We
plan to carry out such experiments in the nearest future.

V. CONCLUSIONS

In the present study we have tried to improve the ana-
lytical approach to calculate the P1�t� ACF relaxation times

FIG. 9. The frequency dependence of the NOE for the InS of a dendrimer
with �a� m=0, 1 and �b� m=2. Vertical lines correspond to the characteristic
times NOE in the low-frequency region. m is the number of generations of
a marked subbranch, n is the number of dendrimer generations, �0 is the
characteristic relaxation time of a single segment.
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of a dendrimer by the direct comparison with BD simulation
data. Predictions of the developed theory are in a qualitative
agreement with the results of the molecular dynamic simula-
tions of a dendrimer in dilute solution.19

The relaxation of an orientational P1�t� ACF of an indi-
vidual dendrimer segment is determined by three processes
with rather different characteristic times. The first process
corresponds to the local reorientation motions of an InS with
the average time of the internal spectrum of the dendrimer.
This time does not depend practically on the size of a den-
drimer and the topological location of an InS. The second
process corresponds to a rotation of a dendrimer branch that
originates from this InS. The characteristic time of this pro-
cess is the maximal pulsating time of the branch and depends
only on the number of generations of this branch. The third
process is the rotation of a dendrimer as a whole with the
characteristic time depending only on the size of a den-
drimer. We found that the local orientational mobility of the
InS �i.e., not taking into account the rotation of a dendrimer
as a whole� depends only on the topological distance be-
tween this segment and the terminal shell of a dendrimer.

Improved theoretical approach is also used to calculate
analytically the frequency dependence for both NMR relax-
ation of 13C nuclei and NOE. We established the correlation
between the characteristic frequencies of these dependences
and the relaxation spectrum of a dendrimer.
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