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Analysis, numerics, and optimization of algae growth

Kundan Kumar, Maxim Pisarenco, Maria Rudnaya, Valeriu Savcenco

Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract

We extend the mathematical model for algae growth as described in [11] to include
new effects. The roles of light, nutrients and acidity of the water body are taken
into account. Important properties of the model such as existence and uniqueness
of solution, as well as boundedness and positivity are investigated. We also discuss
the numerical integration of the resulting system of ordinary differential equations
and derive a condition which guarantees positivity of the numerical solution. An
optimization problem is formulated which demonstrates an application of the model.

1 Introduction

Existing models for algae growth can be categorized into two groups. The first group, of
“soft models”, consists of models derived from first principles and heuristic assumptions
without relying on validation with experimental data. The models in the second group are
referred to as “hard models” and are designed by fitting the parameters of the model to
real data. A prominent representative of the first group is the model proposed by Huisman
and Weissing [7]. It was one of the first to recognize the role of depth-dependence of light
intensity on the dynamics of algae population. In this work, the algae concentration is
averaged across the vertical direction. This made the model simple but also less realistic.
A later paper [12] extended this work to a full three-dimensional model which could account
for mixing in all directions.

Malve et al [10] and Haario et al [3] applied the “hard modeling” approach to the
analysis of an algae growth problem. The algae dynamics was modeled as a nonlinear
system of ordinary differential equations (ODEs) with parameters fitted to data consisting
of eight years of observations. The model incorporates reaction rate dependence on the
temperature, but neglects the effects of light attenuation with depth.

In our model we consider the algae concentration to be depth-dependent, leading to a
partial differential equation in space and time. The main factors which influence the amount
of algae biomass B are the concentrations of phosphates P , nitrates N , and carbon dioxide
C in the water as well as the intensity of light.

N + P + C
light
−−→ B.
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The light intensity has no direct effect on the the nutrients (N and P ) and the carbon
dioxide, which are also assumed to have a large diffusion rate. This implies that their
concentration may be considered space-independent and the ODEs with coefficients fitted
to experimental data from [3] may be incorporated into our model. This allows realistic
reaction rates and reliable output.

The proposed model offers insight on the influence of mixing and of the pH on the
growth rate. The pH of the medium can be controlled by adding carbon dioxide, which
may be taken as an input parameter in an optimization problem.

The paper is organized as follows. In Section 2 the mathematical model is presented.
Section 3 is concerned with the analysis of the model. A numerical scheme is proposed in
Section 4 together with conditions which guarantee positivity of the numerical solution.
Sections 5 and 6 demonstrate respectively numerical experiments and the optimization of
growth with respect to the amount of minerals and carbon dioxide. Finally our conclusions
are presented in the Section 7.

2 Mathematical model

We model the growth of the algae (biomass) in the water body. The biomass growth rate
is related to the process of photosynthesis, the process of mixing, and the death rate. The
process of photosynthesis depends on the concentration of the nutrients, the availability of
carbon dioxide and the availability of light. The death rate includes both the harvesting
rate as well as the natural death rate of the algae. Since the light intensity is uneven at
different depths of the water, it is important to stir the water causing the mixing of the
algae. In our model advection is assumed to be absent.

In the horizontal plane, we consider no variation and hence, the growth rate is independent
of x and y coordinates. Thus, it is sufficient to consider a one-dimensional domain denoted
by Ω = [0, zmax], where zmax is the depth of the water body.

In our model the growth rate w of the algae biomass is given by

∂tw = g(Iin)f1(P )f2(N)f3(C)w + DM∂zzw − Ha(w, C), (1)

where Iin, P, N and C are respectively the light intensity, the concentrations of phosphorus,
nitrogen and carbon dioxide. The mixing is modeled by a diffusion term with a constant
coefficient DM . Inclusion of the mixing term helps to understand the effect of mixing on the
overall production rate of the algae. The functions g(Iin), f1(P ), f2(N) and f3(C) define
the dependence of the biomass growth rate on the light intensity, the concentration of
nutrients (phosphates and nitrates) and the carbon dioxide. The function Ha models the
depletion rate of algae biomass and includes both the harvesting and the natural decay. A
similar model is used in [6, 11]. Following [5] the effect of light intensity on the biomass
growth is modelled by a Monod function (see [14], [12]),

g(Iin) =
µ0Iin

HL + Iin

, (2)
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where Iin is the effective light intensity received by the algae and HL is the half-saturation
intensity. The Monod form ensures that the growth rate is almost linear when the light
intensity is very small, and that the growth rate remains bounded by µ0 when Iin becomes
very large. Figure 1 illustrates a family of Monod functions for different half-saturation
constants. The light intensity received by the algae is not uniform throughout the water
body. The light intensity is attenuated by two factors: the presence of algae and the water
surface. The presence of the algae in the top layers causes reduction in the available light
for the algae in the deeper layers. Moreover, the water layers themselves cause attenuation
in the available light intensity for the deeper layers. Considering the above discussions, the
light intensity can be modeled by

Iin(w, z, t) = I0(t)e
−kze(−rs

R z

0
w(s,t) ds), (3)

where I0(t) is the incident light intensity which changes in time (for instance, day and
night cycle). The constant k is the specific light attenuation coefficient due to the water
layer and rs is the specific light attenuation coefficient due to the presence of algae.

For the nutrients (N and P), we once again take Monod-type rates

f1(P ) =
kP [P − Pc]+

HP + [P − Pc]+
, (4)

f2(N) =
kN [N − Nc]+

HN + [N − Nc]+
. (5)

Here, HP and HN are the half-saturation concentrations of phosphates and nitrates respec-
tively. The [·]+ denotes the positive cut function [x]+ = max(0, x). Parameters Pc and Nc

are the critical concentration of the nitrates and phosphates, respectively, below which the
growth becomes zero. We assume that the acidity of the water (pH value) is solely deter-
mined by the concentration of carbon dioxide. Thus, apart from the other factors discussed
above, the growth rate of the algae is influenced by the pH . The consumption of carbon
dioxide leads to an increase in the pH value. It is known that there is a certain range of
acidity for which the algae growth is optimal. The pH may be controlled by adding carbon
dioxide to the system. Hence, if more carbon dioxide than required is added, the pH value
of the water will decrease. This decrease can lead to the enhancement of the decay rate
of the biomass. The growth rate dependence is modeled by a function that monotonically
decreases with pH (and hence monotonically increases with the concentration of carbon
dioxide). However at higher concentrations of carbon dioxide the growth rate becomes
constant and bounded. We consider the following function

f3(C) =
1

1 + e(λ(pH(C)−pHdopt))
, (6)

where λ is a parameter that describes the sharpness of the profile and pHdopt describes
the ”switching” value of pH at which the growth increases if all other factors are kept
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Figure 1: Monod-type function for different half-saturation constants.
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Figure 2: Plot of f3 as function of pH , for different values of parameter λ.

unchanged. The relation between the pH and the concentration of carbon dioxide is given
as

pH(C) = (6.35 − log10 C)/2.

This relation is obtained using the chemical equilibrium constant of the hydrolysis of the
carboxylic acid. The modeling of the harvesting term includes the specific death rate having
pH dependence so that at small pH the death rate enhances. We propose the following
functional dependence for this term similar to the f3(pH)

Ha(w, C) = µef4(C)w , (7)

with µe being a constant and

f4(C) =
1

1 + e(λ(pH(C)−pHdopt))
, (8)

where pHdopt is again the ”switching” value of the pH at which the death rate increases.
In Figure 2 we illustrate the nature of the f3 function.

We complete the system with the following ordinary differential equations describing
the evolution of the nutrients and the carbon dioxide

dN

dt
= −

1

zmax

(
∫ zmax

0

g(Iin)f1(P )f2(N)f3(C)wdz

)

N + SN =: LN (N, P, C, w),

dP

dt
= −

1

zmax

(
∫ zmax

0

g(Iin)f1(P )f2(N)f3(C)wdz

)

P + SP =: LP (N, P, C, w), (9)

dC

dt
= −

1

zmax

(
∫ zmax

0

g(Iin)f1(P )f2(N)f3(C)wdz

)

C + SC =: LC(N, P, C, w),
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where zmax is the maximum depth of the water body and SN , SP , SC are the source terms
for the nitrogen, phosphorus and carbon dioxide and for analysis purpose we set them to
0. Including these would not alter the conclusions as long as they are bounded and regular
enough. These source terms are used to account for adding fertilizers or providing carbon
dioxide to the pond.

We use homogeneous Neumann boundary conditions at z = 0 and homogeneous Dirich-
let boundary conditions for z = zmax for (1) and we require the following initial conditions

N(0) = N0, P (0) = P0, C(0) = C0, w(z, 0) = w0(z). (10)

Equations (1), (9) together with initial conditions (10) constitute the system of equations
under study. We use the following values of the parameters for the numerical computations
taken from [2, 5, 3].

µ0kpkN [1/s] HL[W/(m2 · day)] HN [g/l] HP [g/l]
0.0886 70 14.5 · 10−6 10.4 · 10−6

rs[l · m/g] k[1/m] DM [m2/s] µe[g/(l · day)]
10 0.2 5 · 10−4 0

The chosen values of the parameters are realistic [3], however, not all the parameters are
exactly known and approximate values are taken for those parameters. The model is generic
and for a given type of algae these parameters need to be determined experimentally. Here,
we need the parameters to see whether the obtained results are realistic.

3 Analysis of the model

In this section we prove the existence and uniqueness of the solution for above model
and furthermore show that the solution preserve positivity and boundedness. We first for-
mulate the equations in the weak form and use fixed point iteration to obtain existence.
The existence proof also provides bounds on the solution and its non-negative proper-
ties. Furthermore, the uniqueness proof is provided to ensure that the solution is unique.
The nonstandard aspect of this model is that the model is non-local and this introduces
additional complications for the proof of uniqueness.

3.1 Definition of weak solution

Further we formulate a weak form for (1)-(10). We define a function space V

V = L2(0, T ; H1(Ω))
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and we seek for the solution w ∈ V, such that ∂tw ∈ L2(0, T ; H−1(Ω)) with N, P, C ∈
H1(0, T ) and

(∂tw, v) + (DM∂zw, ∂zv) = (g(Iin)f1(P )f2(N)f3(C)w, v) − (Ha(w, C), v), ∀v ∈ V, (11)

(
d

dt
N, φ1) = (LN (N, P, C, u), φ1), (12)

(
d

dt
P, φ2) = (LP (N, P, C, u), φ2), (13)

(
d

dt
C, φ3) = (LC(N, P, C, u), φ3), (14)

∀φi ∈ L2(0, T ), where LN , LP , LC are defined in (9).

3.2 Properties of the solution

Obviously, functions (2), (4), (5), (6) are bounded

g(Iin) = |
µ0Iin

HL + Iin

| ≤ µ0,

f1(P ) = |
kP [P − Pc]+

HP + [P − Pc]+
| ≤ kP , f2(N) = |

kN [N − Nc]+
HN + [N − Nc]+

| ≤ kN ,

f3(C) = |
1

1 + eλ(pH(C)−pHdopt)
| < 1,

which leads to
|g(Iin)f1(P )f2(N)f3(C)| ≤ µ0kPkN ≤ K, (15)

where we denote a generic constant by K. Furthermore, we note that 0 ≤ Ha(w, C)/w ≤ K
and Ha(w, C)/w → K(C) as w → 0 where K(C) ≥ 0.

For a function u we define the negative cut u− = min(u, 0) and the positive cut u+ =
max(u, 0). We need the following lemma in order to prove the uniqueness of the solution.

Lemma 3.1. If f1, f2, f3 are Lipschitz continuous and bounded, then

|f1(x1)f2(y1)f3(z1) − f1(x2)f2(y2)f3(z2)| ≤ K (|x1 − x2| + |y1 − y2| + |z1 − z2|) .

Proof. This lemma is an easy consequence of the boundedness and Lipschitz continuity.
First, we see for two functions,

|f1(x1)f2(y1) − f1(x2)f2(y2)| ≤ K(|x1 − x2| + |y1 − y2|).

This follows from

|f1(x1)f2(y1) − f1(x2)f2(y2)| = |f1(x1)f2(y1) − f1(x1)f2(y2) + f1(x1)f2(y2) − f1(x2)f2(y2)|

= |f1(x1) (f2(y1) − f2(y2)) + f2(y2) (f1(x1) − f1(x2)) |

6



and using Lipschitz continuity

≤ K (|f1(x1)||y1 − y2| + |f2(y2)||x1 − x2|)

and boundedness of f1, f2 implies

≤ K (|y1 − y2| + |x1 − x2|) . (16)

For the three functions, the proof proceeds on a similar line. By following similar procedure,
the result can be extended to any finite number of functions.

Remark 3.1. By an abuse of notation, we identify the function g in (2) as g(
∫ z

0
w). Since

g is formed as a composition of two Lipschitz functions, namely Monod and exponential,
we conclude that g satisfies,

|g(

∫ z

0

w1) − g(

∫ z

0

w2)| ≤ K|

∫ z

0

(w1 − w2)| ≤ K|

∫ zmax

0

(w1 − w2)|.

With this, Lemma 3.1 in particular implies

(

g(

∫ z

0

w1)f1(N1)f2(P1)f3(C1) − g(

∫ z

0

w2)f1(N2)f2(P2)f3(C2)

)

≤ K

(
∫ zmax

0

|w1 − w2| + |N1 − N2| + |P1 − P2| + |C1 − C2|

)

. (17)

|LN (w1, N1, P1, C1) − LN(w2, N2, P2, C2)|

≤ K

(

|

∫ zmax

0

|w1 − w2| + |N1 − N2| + |P1 − P2| + |C1 − C2|

)

. (18)

Similarly for LP and LC , we have

|LP (w1, N1, P1, C1) − LP (w2, N2, P2, C2)|

≤ K

(

|

∫ zmax

0

|w1 − w2| + |N1 − N2| + |P1 − P2| + |C1 − C2|

)

, (19)

|LC(w1, N1, P1, C1) − LC(w2, N2, P2, C2)|

≤ K

(

|

∫ zmax

0

|w1 − w2| + |N1 − N2| + |P1 − P2| + |C1 − C2|

)

. (20)
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3.3 Existence of a solution

We follow ideas from [15] to use the fixed point operator argument to prove existence.
We define a fixed point operator and prove that it is well-defined and continuous. We also
prove that this fixed point maps a compact set into itself and using Schauder’s fixed point
theorem we obtain existence. We define a fixed point operator T :

T : u 7→ w,

with

u ∈ K := {u ∈ L2(0, T ; H1(Ω), ∂tu ∈ L2(0, T ; H−1(Ω)), 0 ≤ u ≤ MeKT )}

where w together with (N, P, C) solves the following system

(∂tw, v) + (DM∂zw, ∂zv) = (g(Iin)f1(P )f2(N)f3(C)w, v) − (
Ha(u, C)

u
w, v), ∀v ∈ V,

(
d

dt
N, φ1) = (LN (N, P, C, u), φ1),

(
d

dt
P, φ2) = (LP (N, P, C, u), φ2), (21)

(
d

dt
C, φ3) = (LC(N, P, C, u), φ3),

for all φi ∈ L2(0, T ). In this way we have defined an operator and we first show that

T : K 7→ L2(0, T ; H1(Ω))
⋂

H1(0, T ; L2(Ω)).

Furthermore, note that K is a compact set with respect to strong L2 topology. For a given
u ∈ K, first N, P and C are computed and using this from the first equation (21):1, w
is computed. Clearly, a fixed point u of this operator together with the corresponding
N, P, C solves the system. To obtain this fixed map, we derive a priori estimates, and
estimate T u1 −T u2 in terms of u1 −u2 to prove the continuity of T . To simplify notation,
denote

F := g(

∫ z

0

u)f1(P )f2(N)f3(C)

and note that |F | ≤ K.

Lemma 3.2. Operator T is well-defined and T u ∈ K.

Proof. For u ∈ K, (21):2, (21):3, (21):4 are ordinary differential equations with Lipschitz
right hand side and therefore have unique solution N, P, C. Also for these solutions

F −
Ha(u, C)

u
≤ K

8



for u ∈ L2(Ω) and hence the linear parabolic equation (21):1 (linear w.r.t. w) has a unique
weak solution and for u ∈ K, T u ∈ L2(0, T ; H1(Ω))

⋂

H1(0, T ; L2(Ω)).

To see that 0 ≤ T u ≤ MeKT , we first choose v = w− and obtain

(∂tw, w−) + (DM∂zw, ∂zw−) = (Fw, w−) − (
Ha(u, C)

u
w, w−)

and hence,
d

dt
||w−||

2 ≤ K||w−||
2

leading to w ≥ 0. Similarly, test with [w − MeKT ]+ to obtain T u ∈ K.

Lemma 3.3. T is a continuous operator.

Proof. To estimate T u1 − T u2 we use the system of equations. For u = u1 − u2 we obtain
for all v ∈ V

(∂t(w1 − w2), v) + (DM∂z(w1 − w2), ∂zv)

= (F1w1 − F2w2, v) − (
Ha(u1, C1)

u1
w1 −

Ha(u2, C2)

u2
w2, v),

where Fi = g(
∫ z

0
ui)f1(Pi)f2(Ni)f3(Ci). Consider the first equation,

(∂t(w1−w2), v)+(DM∂z(w1−w2), ∂zv) = (F1w1−F2w2, v)−(
Ha(u1, C1)

u1
w1−

Ha(u2, C2)

u2
w2, v),

and use v = w1 − w2 as the test function to obtain

(∂t(w1 − w2), w1 − w2) + (DM∂z(w1 − w2), ∂z(w1 − w2))

= (F1w1 − F2w2, w1 − w2) − (
Ha(u1, C1)

u1
w1 −

Ha(u2, C2)

u2
w2, w1 − w2).

The first term of the right hand side can be estimated as follows,

(F1w1 − F2w2, w1 − w2)

= (g(

∫ z

0

u1)f1(N1)f2(P1)f3(C1)w1 − g(

∫ z

0

u2)f1(N2)f2(P2)f3(C2)w2, w1 − w2)

= (g(

∫ z

0

u1)f1(N1)f2(P1)f3(C1)(w1 − w2), w1 − w2)

+(w2(g(

∫ z

0

u1)f1(N1)f2(P1)f3(C1) − g(

∫ z

0

u2)f1(N2)f2(P2)f3(C2)), w1 − w2)

9



≤ K||w1−w2||
2+(w2(g(

∫ z

0

u1)f1(N1)f2(P1)f3(C1)−g(

∫ z

0

u2)f1(N2)f2(P2)f3(C2)), w1−w2)

≤ K||w1 − w2||
2 + K||w1 − w2||(||u1 − u2|| + ||N1 − N2|| + ||P1 − P2|| + ||C1 − C2||)

≤ K
(

||w1 − w2||
2 + ||u1 − u2||

2 + ||N1 − N2||
2 + ||P1 − P2||

2 + ||C1 − C2||
2
)

.

For the second term, note that Ha(u,C)
u

is uniformly bounded and Lipschitz in C and hence
can be bounded by

(
Ha(u1, C1)

u1
w1 −

Ha(u2, C2)

u2
w2, w1 − w2) ≤ K(||w1 − w2||

2 + ||C1 − C2||
2)

and hence, we have

d

dt
||w1 −w2||

2 ≤ K
(

||w1 − w2||
2 + ||u1 − u2||

2 + ||N1 − N2||
2 + ||P1 − P2||

2 + ||C1 − C2||
2
)

and for ||u1 −u2|| → 0, we conclude using Gronwall’s lemma and continuity of solutions of
ODEs for (N1, P1, C1), (N2, P2, C2) that ||w1 − w2|| → 0.

Lemma 3.4. There exists a solution (w, N, P, C) of the weak formulation (11)-(14).

Proof. Since T maps a compact set K to itself and is continuous, using Schauder’s fixed
point theorem there exists a fixed point w ∈ K such that

T w = w

which implies the existence of the solution for the weak formulation (11)-(14).

3.4 Positivity

Lemma 3.5 (Positivity of w,N, P, C). If the initial conditions w(z, 0), N(0), P (0), C(0) ≥
0, then the solution of (11)-(14) w(z, t), N(t), P (t), C(t) ≥ 0.

Proof. The case for w is trivial as w ∈ K. Next, we consider the case for N and note that
0 ≤ LN(w, N, P, C) ≤ KN . In the weak formulation,

(
d

dt
N, φ1) = (LN(w, N, P, C), φ1),

choose φ1 = N− (where N− is the negative cut of N) to obtain

d

dt
||N−||

2 ≤ K||N−||
2

and using the initial condition ||N−||t=0 = 0 and Gronwall’s lemma, we conclude,

N(t) ≥ 0.

The proofs for P and C follow similar arguments.
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3.5 Boundedness

Lemma 3.6. If the initial condition is bounded w(z, 0), N(0), P (0), C(0) ≤ M , then the
solution of (11)-(14) remains bounded that is, w(z, t), N(t), P (t), C(t) ≤ MeKt.

Proof. Once again the case for w is straightforward as it inherits this property from the set
K. Next we consider the case for N, P, C. Use φ1 = [N − MeKt]+ in the weak formulation
to obtain,

(
d

dt
N, [N − MeKt]+) = (LN (w, N, P, C), [N − MeKt]+)

and rewrite the left hand side,

(
d

dt
N, [N − MeKt]+) = (

d

dt
(N − MeKt), [N − MeKt]+) + (MKeKt, [N − MeKt]+)

and hence,

d

dt
||[N − MeKt]+||

2 = (LN(w, N, P, C), [N − MeKt]+) − (MKeKt, [N − MeKt]+)

which leads to

d

dt
||[N − MeKt]+||

2 ≤ 2K(N − MKeKt, [N − MeKt]+) ≤ 2K||[N − MeKt]+||
2

and together with initial condition, ||[N −MeKt]+|| = 0 and Gronwall’s lemma proves the
assertion. The proofs for P and C are similar.

3.6 Uniqueness

Lemma 3.7 (Uniqueness of weak solution). Assume (w1, N1, P1, C1), (w2, N2, P2, C2)
are two weak solutions of (1)-(10) corresponding to the same initial data, then (w1, N1, P1, C1) ≡
(w2, N2, P2, C2).

Proof. If possible, let {w1, N1, P1, C1} and {w2, N2, P2, C2} be two weak solutions for the
same initial data. Hence, both these satisfy the weak form

(∂tw1, v) + (DM∂zw1, ∂zv) = (g(Iin)f1(P1)f2(N1)f3(C1)w1, v) − (Ha(w1), v), ∀v ∈ V,

(
d

dt
N1, φ1) = (LN(N1, P1, C1, w1), φ1),

(
d

dt
P1, φ2) = (LP (N1, P1, C1, w1), φ2), (22)

(
d

dt
C1, φ3) = (LC(N1, P1, C1, w1), φ3),
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∀φi ∈ L2(0, T ).

(∂tw2, v) + (DM∂zw2, ∂zv) = (g(Iin)f1(P2)f2(N2)f3(C2)w2, v) − (Ha(w2), v), ∀v ∈ V,

(
d

dt
N2, φ1) = (LN(N2, P2, C2, w2), φ1),

(
d

dt
P2, φ2) = (LP (N2, P2, C2, w2), φ2), (23)

(
d

dt
C2, φ3) = (LC(N2, P2, C2, w2), φ3),

∀φi ∈ L2(0, T ). Note that w1 − w2, N1 − N2, P1 − P2, C1 − C2 have zero initial data.

Subtract (23) from (22) and choose for the test functions v = w1 −w2, φ1 = N1 −N2, φ2 =
P1 − P2, φ3 = C1 − C2 to obtain

d

dt

(

||w1 − w2||
2 + ||N1 − N2||

2 + ||P1 − P2||
2 + ||C1 − C2||

2
)

= (g(

∫ z

0

w1)f1(N1)f2(P1)f3(C1)w1 − g(

∫ z

0

w2)f1(N2)f2(P2)f3(C2)w2, w1 − w2)

+(LN(w1, N1, P1, C1)N1 − LN (w2, N2, P2, C2)N2, N1 − N2)

+(LP (w1, N1, P1, C1)N1 − LP (w2, N2, P2, C2)N2, P1 − P2)

+(LC(w1, N1, P1, C1)N1 − LC(w2, N2, P2, C2)N2, C1 − C2).

Denote the first term of the right hand side by Ii, i = 1, 2, 3, 4. We treat I1 first,

(g(

∫ z

0

w1)f1(N1)f2(P1)f3(C1)w1 − g(

∫ z

0

w2)f1(N2)f2(P2)f3(C2)w2, w1 − w2)

= (g(

∫ z

0

w1)f1(N1)f2(P1)f3(C1)(w1 − w2), w1 − w2)

+(w2(g(

∫ z

0

w1)f1(N1)f2(P1)f3(C1) − g(

∫ z

0

w2)f1(N2)f2(P2)f3(C2)), w1 − w2)

≤ K||w1−w2||
2+(w2(g(

∫ z

0

w1)f1(N1)f2(P1)f3(C1)−g(

∫ z

0

w2)f1(N2)f2(P2)f3(C2)), w1−w2)

≤ K||w1 − w2||
2 + K||w1 − w2||(||N1 − N2|| + ||P1 − P2|| + ||C1 − C2||).

For the last inequality, we have used (17) and Cauchy-Schwarz and the pointwise bound-
edness of w2. The constant K depends on final time T . Furthermore, we use Young’s
inequality to obtain

|I1| ≤ K(T )
(

||w1 − w2||
2 + ||N1 − N2||

2 + ||P1 − P2||
2 + ||C1 − C2||

2
)

.

12



For I2, we use (18), Cauchy-Schwarz and Young’s inequality to get

|I2| ≤ K(T )
(

||w1 − w2||
2 + ||N1 − N2||

2 + ||P1 − P2||
2 + ||C1 − C2||

2
)

.

And similarly, for I3, I4.
Hence,

d

dt

(

||w1 − w2||
2 + ||N1 − N2||

2 + ||P1 − P2||
2 + ||C1 − C2||

2
)

≤ K(T )
(

||w1 − w2||
2 + ||N1 − N2||

2 + ||P1 − P2||
2 + ||C1 − C2||

2
)

and using Gronwall’s lemma and zero initial condition for w1−w2, N1−N2, P1−P2, C1−C2

leads to
||w1 − w2||

2 + ||N1 − N2||
2 + ||P1 − P2||

2 + ||C1 − C2||
2 = 0

and thus, the assertion for the uniqueness of weak solution for the system.

4 Numerical solution of the model

In this section we discuss the numerical solution approach for the algae growth model. We
use the method of lines (MOL) approach which consists of two stages. The first stage is
the spatial discretization in which the spatial derivatives of the PDE are discretized, for
example with finite differences, finite volumes or finite element schemes. By discretizing
the spatial operators, the PDE with its boundary conditions is converted into a system of
ODEs in R

m

W
′(t) = F (t, W (t)) , W (0) = W 0 , (24)

called the semi-discrete system. This ODE system is still continuous in time and needs to be
integrated. So, the second stage in the numerical solution is the numerical time integration
of system (24). At this stage the approximations W n at time levels tn are computed. The
discretization of the diffusion term in (1) results in a contribution proportional to DM/∆x2,
where ∆x denotes the spatial grid size. Thus, for fine grids system (24) becomes stiff and
implicit time integration methods have to be considered.

Since our model describes the relation between the algae concentration and concentra-
tions of phosphates, nitrates and CO2 which are all positive quantities, it is important that
the time integration method possesses the positivity preservation property. With positiv-
ity preservation we mean that the numerical solution vector W n ≥ 0, ∀t > 0 if the initial
solution W 0 ≥ 0.

In this section we will assume that there exist a τ0 > 0 such that

v + τF (t, v) ≥ 0 for all v ≥ 0, t ≥ 0, 0 < τ < τ0 . (25)

We will look for a two-step method

W n =
2

∑

k=1

akW n−k + τ
2

∑

k=0

bkF (tn−k, W n−k) (26)

13



which preserves positivity. For consistency, the condition

a1 + a2 = 1 (27)

has to be satisfied. If b0 6= 0 then the method is implicit. Second-order methods of type
(26) form a two-parameter family with coefficients

a1 = 2 − ξ, a2 = ξ − 1, b0 = η, b1 = 1 +
1

2
ξ − 2η, b2 = η +

1

2
ξ − 1 . (28)

The method is zero-stable if ξ ∈ (0, 2] and is A-stable if we also have η ≥ 1
2
.

We introduce the following sublinear functional

||v||0 = −min(v1, . . . , vm, 0) . (29)

It is easily seen that ||v||0 is nonnegative.
We also observe that the positivity of the starting vectors v0 and v1 together with the

existence of a bound µ > 0, such that the boundedness property

||vn||0 ≤ µ · max
0≤j≤1

||vj||0, for all n ≥ 2 (30)

holds, guarantees the positivity of the numerical solution.
Using the results from [8] we can write the conditions which would imply the bounded-

ness property (30). We denote by m the number of steps performed with the method (26),
by E the backward shift matrix

E =











0
1 0

. . .
. . .

1 0











∈ R
m×m , (31)

and

A =
2

∑

j=1

ajE
j , B =

2
∑

j=0

bjE
j . (32)

From [8] it follows that if for a γ > 0 and a zero-stable method (26) we have

P = (I − A + γB)−1γB > 0 for all m (33)

then there exist a µ > 0 such that boundedness property (30) is satisfied for any τ ≤ γτ0.
In (33) the inequality should be satisfied element wise. We mention that this result was
derived for the case when the function F , the sublinear functional (29) and the initial
solution W 0 are unknown. In practice we can still have positivity preservation by allowing
the use of larger time steps.
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In order to ease the verification of the condition (33) we decompose P as

P = (I − A + γB)−1γB =
∑

j≥0

πjE
j , (34)

where

πn = γ

2
∑

j=0

bjρn−j (n ≥ 0) (35)

and the coefficients ρn satisfy the multiple recursion

ρn =

2
∑

j=1

ajρn−j − γ

2
∑

j=0

bjρn−j + δn0 (n ≥ 0) , (36)

with Kronecker delta symbol δn0 and ρj = 0 for j < 0.
For instance, if we consider the BDF2 method [4], obtained for ξ = η = 2

3
, the condition

(33) is satisfied for all γ for which all the elements of the sequence defined by the recurrence
relation

ρn+2 =
1

3 + 2γ
(4ρn+1 − ρn) (37)

with

ρ0 =
3

3 + 2γ
, ρ1 =

12

(3 + 2γ)2
(38)

are strictly positive.
For γ = 1

2
the sequence (37) is defined by

ρn =
3(n + 1)

2n+2
> 0 for all n , (39)

whereas for γ > 1
2

it is easy to show that the strict positivity of the elements ρn does not
hold anymore. Thus, for the BDF2 method the largest value of γ which satisfies (33) is
γ = 1

2
.

5 Numerical experiment

In this section we test our model for the set of parameters presented in the Section 1.
We discretize the diffusion operator in (1) by standard second-order central differences

on a fixed uniform grid 0 = z1 < z2 < . . . < zm = zmax. The integral term within the light
function (3) is approximated by

∫ zk

0

wdzk ≈
zk

k

k
∑

i=1

zi .
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The other integral term used in (9) is approximated by

∫ zmax

0

g(Iin)f1(P )f2(N)f3(C)wdz ≈
zmax

m
f1(P )f2(N)f3(C)

m
∑

i=1

g(Iin(zi, t))zi .

The obtained system (24) is stiff due to the diffusion term, therefore, an implicit numerical
integration method must be used. We use the two-step implicit BDF2 method [4].

An illustration of the algae concentration in time is given in Figure 3. The behavior in
time of P , N , C and pH is presented in Figure 4 and Figure 5.

Figure 3: Concentration of algae.
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Figure 4: Concentration of P and N.
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Figure 5: Concentration of C and pH.

The model equations (1),(9)-(10) are discretized and solved in the domain z ∈ [0, zmax]
on the interval t ∈ [0, T ], where T = 96 [hours], which corresponds to 4 days. Minerals are
being added with a constant rate of 3.64 · 10−10 [mol/(l · s)] and 2.78 · 10−10 [mol/(l · s)] for
N and P respectively. No carbon dioxide is added. In Figure 3 we notice the periodic nature
of the algae concentration. This is due to the day-night cycle of the external illumination
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modeled by I0(t). The decay of light intensity with depth makes the solution z-dependent.
As expected, the algae concentration is lower at the bottom. However, the mixing included
in the model diminishes this difference. Due to a large initial concentration of algae, the
rate of consumption of minerals is larger than their inflow rate. There is no inflow of carbon
dioxide. Thus, the concentration of minerals and of carbon dioxide in the water decreases
monotonically as seen from Figure 4 and Figure 5. During one day, the maximum algae
concentration is attained in the noon when the light intensity on the surface is the largest.
In this particular simulation the value of the maximal concentration increases from day to
day at a rate which is comparable with literature data.

6 Optimization

We define the average concentration of algae

V =
1

zmaxT

∫ zmax

0

∫ T

0

w(z, t)dtdz,

or in discrete form

V ≈
1

nm

n
∑

j=1

m
∑

i=1

w(zi, tj) ,

where ti are the time points in which the numerical solution is computed. The average
concentration computed by means of the model described above can be optimized as a
function of three design variables: carbon dioxide, nitrate and phosphate inflow rates, i.e.

maximize V (SC , SN , SP ),

subject to SC ≥ 0, SN ≥ 0, SP ≥ 0.

For this purpose we apply the Nelder-Mead simplex method [1, 13]. The Nelder-Mead
simplex method is designed to find a local optimum of a function. It makes no assumptions
about the shape of the function and does not use derivative information. At each iteration
the Nelder-Mead simplex method evaluates the function in a finite number of points. In
our case one function evaluation corresponds to computing the average concentration of
algae.

Figure 6 shows an example of the Nelder-Mead optimization. In this case the optimiza-
tion required 55 function evaluations. The values of the design variables and correspond-
ingly obtained concentration are plotted for each function evaluation. Table 1 shows the
values of the initial guess and the values after optimization. For the optimized values of
the design variables the average algae concentration has increased by 7.03%.

Further, the result of the optimization could be improved by assuming SC , SN , SP to be
functions of time. Thus, we assume that sC = {SC,i}

L
i=1, where SC,i is the carbon dioxide

inflow rate at time ti. For fixed SN and SP we obtain an optimization problem of L design
variables

maximize V (sC),
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Figure 6: Nelder-Mead simplex optimization.

Table 1: Optimization parameters.
SC [mol/(l-s)] SN [mol/(l-s)] SP [mol/(l-s)] V [g/l]

Initial 10−10 10−10 10−10 0.946
Optimized 5.309 × 10−14 1.886 × 10−11 2.129 × 10−10 1.0125

subject to SC,i ≥ 0.

This could result in further improvement of the average algae concentration. As an initial
guess for optimization, instead of applying constant carbon dioxide inflow rate, we could
use a periodic function with the same period as of the incident light function, with different
amplitude and vertical and horizontal shift (see Figure 7).

It is important to note that the average algae concentration function may have multiple
maxima. However, the Nelder-Mead simplex method is designed to find a local optimum
of a function. It means that initial parameter guess should be close enough to the desir-
able optimum. For a global optimum other optimization methods (for example, simulated
annealing optimization [13]) could be used.
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Figure 7: Input of CO2 as a function of time.
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7 Conclusions

We proposed a model for the growth of algae in a mineral solution. The model consists of
a partial differential equation for the algae concentration coupled to three ordinary differ-
ential equations for the phosphate, the nitrate and the carbon dioxide concentrations. The
minerals and the carbon dioxide are assumed to have a constant concentration through-
out the volume, while the algae concentration is modeled as a z-dependent quantity. This
choice is explained by the strong dependence of light intensity on depth. Moreover, the
z-dependency allows us to study the effect of mixing on the algae population. Numerical
simulations were performed with the model. To this end, the continuous equations are
discretized in space by a finite difference scheme, and the resulting system of ordinary
differential equations is integrated in time by a two-step implicit BDF2 method. The sim-
ulations have shown a good qualitative prediction for the concentration of algae, minerals
and carbon dioxide. In order to achieve also a good quantitative prediction, the parameters
of the model have to be adjusted to the experiment. Based on the proposed model, the
average concentration of the algae can be optimized by means of derivative-free optimiza-
tion.
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