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Abstract 

A tensegrity structure is built using compressive members 
(bars) and tensile members (tendons). 

We discuss bow an optimal and intepted design of ten- 
don length control and topology/geometry of the structure 
can improve the stiffness and stiffness-@mass properties 
of tensegrity systems. To illusuate our approach we apply 
it on a tensegrity system build np from several elementaty 
stages that form a planar beam structure. 

The computations are done with a nonlinear programming 
approach and most design aspex~ (decentralized co-located 
control, static equilibrium, yield and buckling limits, force 
directionality, etc., both for the unloaded and loaded cases) 
are incorporated. 

Due to the way the control coeEcients are constrained, this 
approach also delivers information for a proper choice of 
actuator or sensor locations: there is no need to control or 
sense the lengths of all tendons. 

From this work it becomes clear that certain actuator/sensor 
locations and certain topologies are clearly advantageous. 
For the minimal compliance objective in a planar tenseg- 
rity beam struchm, proper tendons for control are those that 
are peqm&cuIar to the disturbance force direction, close to 
the support, and relatively long, while g w d  topologies are 
the ones that combine different nodal confgurations in a 
tensegrity topology that is akin to a fiamed beam, but, when 
control is used, can be quite different from a classical mss 
smchm. 

Keywords. Mechanical systems, tensegrity systems, struc- 
tural optimization, actuatorlsensor selection, nonlinear p m  
gramming. 

1 Introduction 

Tensegrity systems are composed of tensile members (ten- 
dons, wires or strings) and compressive members (bars, 
sticks) [I]. This class of systems bas been studied for a long 
time, see, e.g., (21, whose terminology consisted of ties and 
struts instead of tendons and bars. The members in a tenseg- 
rity structure are connected in nodal points. In a class one 
node a bar end-point is connected to tendons only, while in 
a class two node two bars are connected together and to sev- 
eral tendons. A structure containing class one nodes derives 
its stability from pre-suessing the members. 

Tendons in tensegrity structures have multiple roles, they: 

rigidize and stiffen the structure, also due to pre- 
stress, 

0 cany structural loads, 

provide opportunities for actuatiodsensing [31. 

Structural control can improve properties like damping and 
stiffness 01 stiffness-to-mass, and may be used in shape 
control strategies. For control, sensing and actuation are 
needed. Sensing provides information about the geometry 
of thestructure, i.e., the deformations or the actual lengths 
of tendons or bars. Actuation can be carded out by chang- 
ing the length of tendons 01 bars. This can be done in several 
ways, by: 

shape memory alloys that enable the tendons to 

linear or rotary motors that can shorten a tendon by 

shorten and lengthen by changes in temperature, 

hauling it, e.g., inside hollow bars, 

extensible bars. 
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When equipped with actuators and sensors, related to the 
tendon 01 bar length, tensegrity structures can change shape 
by controlling those lengths. This shape control ability sets 
them apart from most of the structures used in practice and 
may be used to adapt the shape according to reqnirements 
that change in time, e.g., for deployment, or it may be used 
to keep the shape the same despite disturbances acting on 
the structure. Because elastic tendons connect bars via a 
class one node, and not a pinned joint, tensegrity structure 
of class one may not be suffciently stiff when weight con- 
siderations play a role, because then stiffness cannot be in- 
creased by adding material to the structure. This reduction 
in stiffness may be off set by the shape control system if this 
is confgured to counteract the effects of disturbing loads. 

Here we consider only the tendons as elements that can 
sense their own length and can change that length. Also, we 
initially consider only tensegsity structures of class one, i.e., 
with only class one nodes, although the optimization may 
deliver solutions with nodes that are very close together, and 
therefore could be combined to form a class two node. 

A target area of application for tensegrity systems is where 
the shape of a structure needs to be changed dynamically, 
e.g., in space technology with deployable structures or in 
medicine with expandable inserts. 

Besides control we can also employ changes in topology 
and gwmetry to improve properties of structures. Optimiza- 
tion of topologylgwmetry of structures has been studied 
for a long time, see the shoa overview in 141. Integrated 
structudcontrol design is rare, however, but can be quite 
proftahle, so we aim to contribute to this integrated design 
process. Therefore, in this paper we want to simultanwusly 
achieve 

0 optimal control of tendon length, with a limited num- 
ber of actnatodsensors and a decentralized static 
controller, 

topologylgeometry optimization, incorporating con- 
straints for failure of the structure, l i e  yield and 
buckling. 

We show that this can be done by integrated con- 
trolltopologylgwmetry optimization. 

The paper is structured as follows. First, we outline a model 
for static equilibria for pre-stressed systems. Then, we ex- 
plain our optimization problem formulation. This is fol- 
lowed by an application for a planar beam structure built 
up from elementary tensegrity stages. A set of conclusions 
fnisbes the paper. 

2 Static equilibria of pre-stressed systems 

The equilibrium conditions for a frame structure with nodal 
point ~ 0 0 1 d i ~ t e ~  p under a load f acting on those nodes 
and causing a displacement U of these nodes can be posed 

(1) 

which is just the balance of element forces under load at 
each of the nodes. Boundary conditions, e.g., for a support, 
are handled by removing the balance equations for the rele- 
vant nodes from (I). Equation (1) is a classical result in the 
analysis of equilibria for mechanical structures. 

Here, p E lRh."" is a column containing the nodal co- 
ordinates (n. is the number of nodes and dim is the di- 
mensionality of the problem, either 2 or 3, note that f and 
U are elements of the same sized space as p). The matrix 
c E @"'(nmxnm) represents the connectivity of the frame, 
with n, the number of elements or members. Matrix C is 
a sparse block matrix whose i, j-th block is Id,,, or -&, 
if the element i ends at 01 emanates from node j, otherwise 
it is Odm. It is a member-node incidence matrix. By using 
this formulation, it is assumed that a maximum set of al- 
lowed element connections of a tensegrity structure and its 
associated oriented graph have been adopted. 

The diagonal ma& A E lR"mX"m contains the force coef- 
fcients (note that the member force itself is the force coef- 
fcient (a scaling factor) times the element vector gj). The 
sign convention is that A is positive for tensile and nega- 
tive for compressive forces. A is a function of the displace- 
ment U, so the equations are nonlinear, and it also depends 
on the control action, member volume, and material p p e r -  
ties. Pre-stress is incorporated because A is not necessarily 
zero in the unloaded case with f = 0, so without load the 
member forces do not vanish in general, and the structure is 
stabilized. By using the Kronecker product we expand A by 
a factor dim, so it matches in the equation. 

The vector g E W h + " ' ,  representing the orientation of the 
elements, here in the loaded equilibrium, is computed as 

g = C(P + U )  

as 
CT kron(A. Idim)C(p + U )  = f, 

while the length of member i is derived from 

li = llgi112. 

Depending on the material model chosen, the relationship 
between force coeffcients, A, and physical parameters of 
the structure may be different. For this analysis the linear 
elastic material model is used. Then the relation for A is 
smooth, algebraic, and monotonous. It depends on material 
properties like Young's modulus and on the control coef- 
fcients, because these together determine the changes in 
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length of the tendons due to changes in tendon force. Ef- 
fectively, proportional control based on changes in length 
has the same effect as a change in Young's modulus, so the 
control can also be regarded as a way to change the material 
proOperes. even to a range that cannot be achieved by I&- 
terial science. This is called pamneuic conml. Expressed 
in terms of initial length, pre-stress and elongation of mem- 
ber i, it holds that 

(2) 
l j  - lo, 

lihi 
Aili =(Ej+ei)ui-  

with Ei the modulus of elasticity of member i ,  ei its para- 
metric control coeffcient, and ui its volume. Tbe subscript 
0 indicates the values of force coeffcients and lengths for 
the unloaded (f = 0. U = 0) case. 

3 Formulation of optimization problem 

The objective of this analysis is to design a controlled 
tensegrity structure, i.e., a structure and a proportional di- 
agonal feedback controller. that, for a given mass of the 
material available and for a given sum of feedback coeff- 
cients. has an optimal stiffness. Assuming that all the ele- 
ments are made of the same material, fxing the mass avail- 
able is equivalent to specifying total volume S, of the mate- 
rial used. 

The optimization algorithm to a tensegrity structure whose 
nnmber of nodes and number of members available are n., 
n, respectively, assigns structural parameters collected in 
vectors of the nodal positions p, pre-stress of the elements 
Ao, volumes of the elements U E R",, and control mff- 
cieuts e E Wnm. For a given vector of applied extemal nodal 
forces f ,  this set of parameters de.fnes a structure, whose 
static response, defned in the vector of nodal displacements 
U, yields a compliance energy I f ' u ,  that is guaranteed to 
be improved from the value corresponding to an initial de- 
sign. Note that compliance is used as a measure of the stiff- 
ness of the structure. 

Our approach is based on nonliioear programming (NLP), 
in which we can embed decentralized control, pre-stress, 
failure conditions and changes in geometry due to displace- 
ments. 

For the optimization of controlltopologylgeometry we con- 
sider the following set of design or optimization variables, 
as sketched above, 

xT = [p  AO U e U ] .  

AI1 columns stacked together give the design vector x E R" 
with n = 2 .  dim. n, + 3n,. Appropriate modifcations 
are made when some of the variables are not supposed to 

change, e.g., for the position of the nodes where the force is 
applied, or no deformations occur, e.g., for the position and 
displacement of the nodes that are connected to the suppon, 
or for members whose length is not controlled, e.g., the bars, 
so the size of the design vector is slightly less than indicated 
above. 

It is clear that with this design vector the geometry can 
be i n w e n d .  Also the topology can be determined, when 
we allow a starting grid of nodal points and members that 
is more detailed than required, e.g., for accuracy of shape 
control. Members are. allowed to vanish, when their vol- 
ume approaches zero, making a change in topology. Actu- 
atodsensors are not needed for members who's feedback 
coeffcients are zero. 

To make the structure stiff, our objective is to "ize 
compliance 

min f'u, 

the inner product between the load f and the displacement 
U of the nodal points nnder load, in the presence of a set of 
(nonlinear) constraints. The composition of the load vector 
f is given. The nonlinear equality and inequality constraints 
are: 

1. equilibrium constraint 

C' kron(A(x), I,ji,,,)C(p +U) - f = 0 

employing the equations for a static equilibrium, 

2. sign restricted force coeffcients constraint 

-ziAi 5 0 

which enforces tensile forces in the tendons (for 
which zi = 1) and compressive forces in the bars (for 
which zi = -1). 

3. yield consuaint 

IAiILf - uiui 5 0 

so the stress in member i is always bounded by the 
yield-stress ui, 

4. buckling constraint for the bars 
x 

lAillf - -Eju,? 5 0 
4 

which considers Euler buckling of a round cross sec- 
tion bar, 

5. minimum length constraint for the unloaded case 

-lo, +ai 5 0, ai > amin 

imposed because the member length cannot be too 
short, otherwise there is no place for the joint con- 
struction or for the device that is needed to actively 
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change the tendon lengths, or, when using memory 
type alloys, a shod tendon allows only a limited range 
of length changes. 

There are also a number of linear constraints and bounds. 
The sign requirement on ho is implemented as a bound. 

A fxed volume, or mass, for the system is obtained with the 
linear equality constraint 

where we sum over all members of the st~~cture.  

Likewise it holds for the control coeffcients: 

C e i s S , ,  e i z o  
i 

where we sum over all tendons. 

With this type of constraint on the control coeffcients we 
expect to be able to allocate actuators and sensors, because 
a relatively small number of control coeffcients is expected 
to be nonzero, see [5, Section 3.81. 

When only one load case is considered the constraints 1 4  
have to hold for both unloaded (f = 0, U = 0) and loaded 
case. Several load cases can be handled simultaneously by 
extending the vector of design variables x with the nodal 
displacements U for the other loads, by using a linear wm- 
bination of compliances as criterion, and by requiring con- 
straints 1 4  to hold for the additional load cases also. 

AU nonlinear constraints are incorporated in a constraint 
vector c E W"~+')"m'""+2"~+""~2). where n./2 is the num- 
ber of bars and nl the number of loaded cases. The part 
of c related to inequality constraints is required to be non- 
positive, and the part related to equality constraints is re- 
quired to be zero. The actual number of constraints con- 
tained in c is slightly less than indicated above, due to the 
boundary conditions. The linear constraints are specifed di- 
rectly by their coeffcients 

Using actuation, sensing, and control we expect to im- 
prove performance. A physical motivation for this statement 
is that we are now able to decouple the requirements for 
compliance and failure conditions. Improved compliance is 
achieved by control and failure conditions are met by re- 
distribution of material. There is less need to redistribute 
material to improve compliance. 

This nonlinear programming problem is solved with 
SNOPT 6.1-1(2) [61. This program employs a sequential 
quadratic programming (SQP) approach with active set 
strategy to solve the problem. 

This software is extended with MAD [7], a library of func- 
tions in Matlab, using a class library and operator overload- 
ing, for automatic differentiation, to compute the Jacobian 
J of the constmint vector c. This is advantageous from a 
numerical point of view, because fnite differencing is not 
needed anymore. 

4 Application 

The basic design problem used to illustrate our approach is 
stiffness optimization for the tensegrity beam in Fig. 1. 

This beam smcture 

0 is built up from 3 planar tensegrity crosses 

with an aspect ratio of 7 

while the support at the left side removes the 3 
degrees-of-freedom of a rigid body when dim = 2 

and is loaded by a unit vertical load at the top/right 
node. 

For this example n, = 26 and n, = 12. Using the NLP 
formulation, we obtain the results in Figs. 2-11. Figures 2 
and 7 give the results for an optimization without using con- 
Uol, so Se = 0, see also [4]. The other fgures show the 
additional benets of active control, were Se = 300 and 
S, = Z o o 0  have been chosen to show the innuence of the 
allowable sum of the control coeffcients. In the shallow fg- 
ures we do not allow the positions of the nodal points p to 
move outside the horizontal lines af y = Oand y = 1, so the 
y-components of p are removed from x, while in the other 
fgures the nodal points p can move freely in the plane, ex- 
cept for the nodes at the support and for the node with the 
load. The size of J is then 182 x 120 and 182 x 129, re- 
spectively. Figures 4, 6, 9, and I1 present the tendons that 
are controlled, so for which ei > 0, and the width of the 
lines indicate the magnitude of the control cceffcients per 
unit length. The width of the lines in the other fgures is pro- 
portional to the diameter of the bars and tendons, so gives 
an indication of the volume that is assigned to them by the 
optimization process. 

The color coding in the fgures is as follows 

unstressed member. light gray (green), 

0 pre-stressed bars: dark gray (red), 

pre-stressed tendons: black (blue). 

Table 1 gives an overview of the performance objective that 
could be achieved in the cases presented. 



Table 1: Overview of compliances 

se = 0 0.20716 0.14287 
se = 300 0.14216 0.10509 
s. = zoo0 0.05523 0.05009 

We note the following 

optimizing topologylgeometry improves the objective 
by more than 5096, and leaving the nodal points free 
to move is quite advantageous, 

intepted controUtopologylgwmetry design im- 
proves performance, as expected, in this case by 30% 
for the we that Se = 300 and with 60-7096 for 
the case that S, = 2000, with respect to the situa- 
tion without control, so the advantage is mainly de- 
termined by the choice of design parameter Se, 

for larger values of Se the number of tendons used 
tends to become smaller and more of the tendons are 
controlled, 

for larger values of Se the difference in objective be- 
tween the restricted and the free nodal point case 
diminishes because the stiffness of the structure. is 
mainly determined by the controlled tendons and less 
inouenced by gwmeuy, 

for the optimized structures the sum of force coef- 
Ecients is increased considerably, due to more short 
members, but al l  forces are within the failure. con- 
straints, 

e only few tendons are controlled, those close to the 
support, with long lengths, and horizontal orientation 
(perpendicular to the load), th is  agrees with results 
in [8], where a more involved method based on H,- 
criteria was used, 

the tendons that are controlled tend to be quite long, 
because this is clearly advantageous, so expressing 
conml coeffcients per unit length may make sense, 

the number of members in the optimal structure is 
smaller with control, reducing the complexity of the 
structure, 

the optima tends to include class two nodes because 
some nodes move close to each other, this also causes 
members to be close to each other, so some members 
are bidden from view in the fgures. 

- 

5 condusions 

The conclusions are as follows 

the integrated controUtoplogy/geometry optimiza- 
tion, with a set of diverse cons!” and cast in the 
form of a nonlinear program, is effectively solvable, 
providing an appropriate design tool, 

shape control improves performance, reduces the 
complexity of the structure, and can be implemented 
by using a small number of aCtuatorS/SenSOrS and a 
decenaalized control scheme, 

information about optimal actuatorlsensor location is 
available from the optimal design, 

topologies including class two nodes are preferred, 

although tensegrity beams do not always excel at 
stiffness, in the application considered bere the com- 
pliance is excellent, and better than for an nn- 
controlled optimal structure without tensegdty con- 
suaints, see [4], a so-called Michell beam [9]. 
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Figure 1: Basic tensegrity beam system (not optimized) 
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Figure 2: Optimal topologylgeometry, displacement under load 
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Figure 4: Optimal controlltoplgeo, controlled tendons 

Figure 5: optimal conmlltoplgeo, displacement under load 
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Figure 6 Optimal controlltoplgeo, controlled tendons 

Figure 7: Optimal topolopylgwmetry, displacement under load 

C-m E,..". -.-sea -7,- w 1- 

Figure 8 Optimal wnml/top/geo. displacement under load 
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Figure 9 Optimal controlltop'geo, controlled tendons 
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Figure 1 0  Optimal conmlltoplgeo, displacement under load 

Figure 11: Optimal controlltoplgeo, controlled tendons 
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